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Finite temperature tensor network algorithm for frustrated two-dimensional quantum materials
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Aimed at a more realistic classical description of natural quantum systems, we present a two-dimensional
tensor network algorithm to study finite temperature properties of frustrated model quantum systems and real
quantum materials. For this purpose, we introduce the infinite projected entangled simplex operator ansatz
to study thermodynamic properties. To obtain state-of-the-art benchmarking results, we explore the highly
challenging spin-1/2 Heisenberg antiferromagnet on the Kagome lattice, a system for which we investigate
the melting of the magnetization plateaus at finite magnetic field and temperature. Making a close connection
to actual experimental data of real quantum materials, we go on to studying the finite temperature properties
of Ca10Cr7O28. We compare the magnetization curve of this material in the presence of an external magnetic
field at finite temperature with classically simulated data. As the first theoretical tool that incorporates both
thermal fluctuations as well as quantum correlations in the study of this material, our work contributes to settling
the existing controversy between the experimental data and previous theoretical works on the magnetization
process.
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I. INTRODUCTION

Simulating complex quantum materials is considered to
be one of the hardest problems in modern physics. Density
functional theory is arguably the most popular approach to
date for calculating the electronic structure of molecules and
extended materials [1,2]. In situations in which strong corre-
lations are expected to be dominant, however, its applicability
can be limited. Ultimately, the core computational challenge
in the numerical simulation of strongly correlated quantum
materials arises from the exponential scaling of the size of the
Hilbert space with the system size. Thus, it comes as no sur-
prise that the exact diagonalization (ED) technique can only
study small sizes and therefore may fail to capture the impor-
tant physics of emergent many-body phenomena. Mean-field
techniques are also unsuitable in the study of quantum mate-
rials as they neglect the most crucial ingredient in describing
these systems: quantum entanglement. While quantum Monte
Carlo constitutes a versatile tool for simulating unfrustrated
strongly correlated systems [3], they suffer from severe limita-
tions for frustrated quantum systems due to the sign problem.
In this respect, tensor network techniques have emerged as
a powerful alternative for studying challenging many-body
problems which does not suffer from any of those limitations
[4–7].

The success of one-dimensional tensor networks, also
known as matrix product states (MPS) [8–11], in describ-
ing one-dimensional phases of matter have provided much
impetus to the development of two-dimensional tensor net-
work algorithms. While the situation is much more intricate

and challenging in two spatial dimensions, such tensor net-
work algorithms, also known as projected entangled pair
states (PEPS) or iPEPS [5,12,13] in its infinite instance tack-
ling directly the thermodynamic limit, have recently matured
and have been employed successfully to study various chal-
lenging problems in two dimensions. This includes finding
ground states of frustrated systems and real quantum ma-
terials [14–20] and nonequilibrium systems [21–27]. While
most of the efforts has been dedicated towards identifying
ground states of closed quantum systems, in order to accu-
rately capture the physics of quantum materials in realistic
conditions in the laboratory, one needs to include the ef-
fects of temperature. With this aim, there have been several
recent works on two-dimensional finite temperature tensor
network algorithms [28–35]. Most of these works have, how-
ever, focused on paradigmatic, theoretical models such as the
Ising, Kitaev or Heisenberg models, and mostly models that
are defined on the square lattice. Previous works on realis-
tic two-dimensional systems using tensor networks for finite
temperature mostly rely on MPO-based approaches [36–39].
These methods, while accurate and efficient, can target the
thermodynamic limit of the system only along one direction.

In this work, we develop a two-dimensional tensor net-
work algorithm in the true two-dimensional thermodynamic
limit for studying finite temperature properties of existing
quantum materials, thus mimicking experimental studies as
closely as possible. We start by describing our method and
then present results on two important instances of strongly
correlated systems: (i) the paradigmatic spin-1/2 Kagome
Heisenberg antiferromagnet both in the absence and presence
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of an external magnetic field and (ii) the real quantum material
Ca10Cr7O28 that features a bilayer Kagome structure.

II. METHOD

Our method substantially advances the algorithm proposed
in Ref. [30] by extending it to the more challenging realm of
frustrated quantum systems and real quantum materials. This
step renders it possible to directly compare experimental data
and theoretical tensor network simulations, as we do here.
We will now review the underlying annealing algorithm and
highlight the improvements. In order to simulate a quantum
system at finite temperature β := 1/T > 0, we describe it by
an (unnormalized) thermal quantum state

ρ(β ) = e−βH , (1)

where H is the full local many-body Hamiltonian. To obtain
such a Gibbs state, we start from an infinite temperature state,
i.e., ρ(β = 0) and cool down the system to the desired tem-
perature β−1 > 0. The initial state is simply a tensor product
of identities, the (unnormalized) single-particle thermal state
in the limit T → ∞. The evolution to the desired temperature
can be generated by suitably many small temperature steps
δβ, so that the full quantum state is obtained for N ∈ N by

ρ(β ) = ρ(δβ )N = (e−δβH )N (2)

with δβ := β/N and ρ(δβ ) as what we call the infinitesimal
thermal density matrix (ITDM). This cooling is implemented
by a simple update technique [30,40]. The simple update
is adopted here for its numerical stability and efficiency
[14,16,30,41], particularly relevant while working on systems
with large physical dimensions, which seems a necessity for
the demanding task considered here (see the Appendix).

Instead of directly cooling down to β > 0, it is advanta-
geous to cool down to β/2 and evaluate the Gibbs state as

ρ(β ) = ρ(β/2)†ρ(β/2). (3)

This ensures that the resulting operator is positive semidefinite
and hence reflects a valid quantum state, which is otherwise
not guaranteed in tensor network implementations due to trun-
cation effects [37,42,43]. Equation (3) is the main difference
to the underlying algorithm presented in Ref. [30] and is the
crucial improvement which enables the simulation of frus-
trated systems (along with using the correct tensor network
structure of the underlying lattice of the model as we discuss
in the next paragraph). Thus, we have the freedom of evolving
up to only N/2 steps thereby saving a factor of two in the
number of annealing steps or evolving up to N steps with
each step size being δβ/2. The latter choice is adopted in our
simulations and decreases the Trotter error from O(δβ2) to
O(δβ2/4).

We will now introduce the tensor network representation
of the Gibbs state: the infinite projected entangled simplex
operator (iPESO) shown in Fig. 1. It is the operator version
of the infinite projected entangled simplex state (iPESS) pro-
posed in Ref. [44], applied to the simulation of thermal density
matrices. In both tensor networks, the quantum correlations
inherently present on the Kagome triangles are efficiently and
accurately captured by exploiting the structure of its dual, the
honeycomb lattice. Green tensors represent the lattice sites of

FIG. 1. iPESO ansatz for the simulation of Gibbs states on the
Kagome lattice (shown in light blue).

the Kagome lattice, with two physical indices for the density
matrix (as opposed to a quantum state, for which tensors only
have a single physical index). They are connected by purely
virtual simplex tensors shown in grey. The accuracy with
which the iPESO approximates the thermal density matrix is
controlled by the bond dimension of the virtual bulk indices,
denoted as χB. It is important to note that χB needs to be
chosen sufficiently large to prevent truncation effects in the
ITDM. This leads to a minimal bond dimension of p2, where
p is the dimension of the Hilbert space of the local physical
degrees of freedom. For the final simulations of the targeted
real material, we choose the bond dimension such that the total
truncation error becomes insignificant, an extended discussion
of this error is presented in the Appendix. Expectation values
are then directly computed in the tensor network representa-
tion of the thermal state according to

〈Ô〉 = 1

Nρ

Tr[ρ(β/2)† Ô ρ(β/2)], (4)

with a normalization factor Nρ := Tr[ρ(β/2)† ρ(β/2)]. Ex-
pectation values can be computed by either using the simple
update mean-field environment, or by a full corner transfer
matrix renormalization group (CTMRG) procedure [45–47],
which captures quantum correlations more faithfully. For
the latter, the environment bond dimension χE controls
the approximations in the contraction of the infinite two-
dimensional lattice. Details for both the simple update cooling
and calculations of expectation values are presented in de-
tail in the Appendix. Compared to the basic algorithm in
Ref. [30], the iPESO simple update is computationally more
efficient with a leading cost of O(d8χ4

B ) in contrast with
O(d4χ5

B + d12χ3
B ). Due to the preservation of the positivity of

the thermal state, our double-layer CTMRG approach scales
as O(d2χ6

Bχ2
E + χ6

Bχ3
E ). The smallest possible unit cell of the

iPESO consists of three lattice site tensors and two simplex
tensors, as presented in Fig. 1. Besides this structure, we also
employ a nine-site unit cell in our numerical simulation. This
is required to capture thermal states with larger structures that
are not commensurate with three-site translational invariance.
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FIG. 2. Thermal state energy for the spin-1/2 Heisenberg model
on the Kagome lattice at various bulk bond dimensions χB, using
CTMRG environments. The dashed line corresponds to the T/J =
0 ground state energy of Ref. [54]. (Top inset) Convergence of
the thermal state energy with inverse bond dimension at T/J =
0.01. (Bottom inset) Specific heat C at χB = 16, using mean-field
environments.

III. MODELS AND RESULTS

A. Kagome Heisenberg antiferromagnet

The first application of the developed iPESO method is
the finite temperature study of the frustrated spin-1/2 Heisen-
berg antiferromagnet on the Kagome lattice, a paradigmatic
model that has been a topic of intense study in the community
[14,48–53]. Its Hamiltonian is given by

H = J
∑
〈i, j〉

�Si · �S j − hz

∑
i

Sz
i , (5)

where �Si are spin-1/2 operators on site i and 〈i, j〉 denotes
nearest-neighbours in the underlying lattice, hz is a magnetic
field applied along the z-axis. In the following, we employ
the iPESO method to study the model at J = 1.0 over a large
temperature range, choosing an infinitesimal temperature step
δβ = 10−3. In the main panel of Fig. 2, we show the thermal
state energy for a three-site iPESO ansatz at bulk bond di-
mensions up to χB = 10. These results are computed using a
CTMRG procedure with individual environment bond dimen-
sions χE such that expectation values are well converged at
least up to three significant digits. The other source of error
is in the truncation of the simple update cooling procedure,
which corresponds to the amount of information that is dis-
carded to keep the bond dimension of the iPESO fixed for
practical reasons. In our simulation, we balance all refinement
parameters such that the overall truncation error stays below
ε ∼ 1 × 10−2. A detailed discussion of this error is provided
in the Appendix. The energy of the thermal state approaches
the ground state energy at T = 0 for low temperatures, as
shown in the top inset. A second order polynomial fit of
E (1/χB) provides further indication, that the annealing pro-
cedure does not get stuck in local minima and flows towards
the correct ground state as would have been obtained using di-
rect ground state optimization techniques in the infinite bond
dimension limit. While the thermal state energies in Fig. 2
have been computed with CTMRG environments, we note

FIG. 3. Magnetization of the Kagome Heisenberg antiferro-
magnet over magnetic fields hz for various temperatures T/J .
Additionally, we show the T = 0 magnetization curve obtained via
iPESS simulations in black. (Inset) Melting of the mz/mS = 1/3
plateau.

that the accuracy is not affected while using the mean-field
environment of the simple update. Therefore we compute
the heat capacity C := ∂U/∂T at a higher bulk bond dimen-
sion χB = 16, using these environments. The result is shown
in the bottom inset and matches previous finite temperature
studies of the model [43]. For further analysis of the model
and for the target real material, we therefore use mean-field
environments, since CTMRG calculations are limited to inex-
pressively small environment bond dimensions in these cases.

We further use our method to study the effect of tempera-
ture on the magnetization behavior of the Heisenberg model
in Eq. (5). It is known that different magnetization plateaus at
values mz/mS = [1/9, 1/3, 5/9] of the saturation magnetiza-
tion mS = 1/2 appear at T/J = 0 upon tuning the magnetic
field hz [15,17]. Those plateaus are correctly recovered when
employing T/J = 0 iPESS simulations. At finite temperature,
we simulate the Kagome Heisenberg model in a field using a
nine-site iPESO at bond dimension χB = 12. Figure 3 reports
the magnetization for various temperatures. Of all the T/J =
0 magnetization plateaus, we find that only the mz/mS = 1/3
plateau survives at finite temperature up to T/J ∼ 2 × 10−2.
Above this temperature, the plateau starts melting and disap-
pears. We therefore focus our study on this most prominent
1/3 magnetic plateau in the figure inset. The chosen constant
temperature slices of 1/(T/J ) = [∞, 100, 80, 60, 40] reveal,
that the melting is stronger at the low-field end of the plateau.
This is in good agreement with a recent exact diagonalization
study of the melting of the magnetization plateaus [55,56].
Our results serve as an important guide to the experimental
study of the magnetization process of closely related real
materials such as Herbertsmithite ZnCu3(OH)6Cl2 and its
relatives.

B. Real material Ca10Cr7O28

The material Ca10Cr7O28 has a breathing bilayer Kagome
structure, with alternating ferro- and antiferromagnetic
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FIG. 4. Breathing bilayer Kagome lattice with different cou-
plings for the compound material Ca10Cr7O28. The double bonds
denote interlayer coupling with coupling strength Jinter.

Heisenberg interactions on neighboring triangles, defined by

H =
2∑

k=1

⎡
⎣J�

k

∑
〈i, j〉

�Si · �S j + J�
k

∑
〈i, j〉

�Si · �S j

⎤
⎦

+ Jinter

∑
〈i, j〉

�Si · �S j − hz

∑
i

Sz
i , (6)

where J�
k and J�

k are the intra-Kagome couplings in the two
layers k = 1 and k = 2 while Jinter denotes the coupling be-
tween the two layers. The lattice structure is shown in Fig. 4.
The different coupling parameters have been determined
from neutron scattering experiments of the real material in
Ref. [57]. These values (in meV) are J�

1 = +0.09(2), J�
1 =

−0.27(3), J�
2 = −0.76(5), J�

2 = +0.11(3) and Jinter =
−0.08(4), where the numbers in round brackets indicate the
uncertainties.

The bilayer Kagome structure can be mapped to a single
layer by combining the two spins in the different layers to
a single physical site, so that a regular iPESO ansatz with
an enlarged local physical dimension of d = 4 can be used.
The large physical dimension of the system also means that
the minimum bond dimension required for accurate simula-
tions of the material needs to be sufficiently high (χB � 16).
This becomes a bottleneck in computing expectation values
using CTMRG routines. For this reason, we have adopted the
mean-field environment calculation which takes into account
the quantum correlations within a cluster. We find that even
with such approximations in computing the magnetization and
heat capacity, our results are compatible with the experimental
data and provide novel insights into the earlier discrepancy
between theory and experiment data as we show below. For a
detailed discussion of the numerical errors in the simulation
of the bilayer material, we refer to the Appendix.

1. Magnetization behaviour

The magnetic properties of this real material have been
investigated previously at zero temperature using tensor net-
works and compared to experimental measurements by some
of the current authors [19]. While results at small magnetic
fields were in good agreement, the magnetization curve shows

FIG. 5. Magnetization curve of Ca10Cr7O28 for the Hamiltonian
given in Eq. (6) and magnetic fields between 0 and 12 T at different
temperatures at χB = 30. With decreasing temperature, the slope
increases and the magnetization saturates earlier. Dashed lines are
guides to the eye, showing the saturation threshold (gray) as well as
corresponding magnetic field values for both simulated temperatures.
The inset shows the magnetization at fixed field of hz = 0.1 T as a
function of temperature, using χB = 48 to reduce simulation errors
at this small scale. The accumulated truncation error ε (right axis) is
shown to be insignificant for the full temperature range.

a significant discrepancy between simulation and experiment
at large values of the field. Such a discrepancy has also been
observed when comparing the experimental data to theoretical
mean-field calculations [57]. The experimental data, which
was measured at T = 1.8 and 3.0 K, show that the magne-
tization of this material increases rapidly for small external
magnetic fields up to 2 T, above which the slope flattens and
saturation is achieved for a field value of approximately 12 T.
In contrast, the previous tensor network simulation at T = 0 K
predicted saturation at a much smaller value of the external
magnetic field of approximately 1 T. This theoretical investi-
gation, while quantum, has ignored thermal fluctuations. For
comparison, classical Monte Carlo simulations which take
temperature effects into account, result in a better qualitative
agreement [58]. These simulations, which were performed
at the same temperatures as the experimental measurements,
predict the general observed suppression of magnetization at
low fields (see Fig. 13 of Ref. [58]). However, they overes-
timate the suppression of magnetization at higher fields with
the magnetization far from saturation even at a field of 14 T.
This might be because the quantum fluctuations are ignored
by this method. Our present technique encompasses both the
quantum properties of the material as well as the effect of
finite temperature.

We now investigate the quantum material Ca10Cr7O28 in
the presence of magnetic fields between 0 and 12 T at different
temperatures. The TN simulations are done with a nine-site
iPESO at bond dimension χB = 30 and with δβ = 10−2, re-
sults are shown in Fig. 5. Our theoretical results are plotted for
temperatures T = 1.81 K and 2.98 K. This is then compared
against the experimental data measured at T = 1.8 and 3.0 K.
The conversion factors between the theoretical calculations
and experiment are shown in the Appendix. From the plots
in Fig. 5, we see that as we increase the temperature, the field
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value at which the magnetization saturates becomes larger and
approaches the experimental findings. Overall, we find that
the magnetization curve shows a strong dependence on the
temperature and the saturation sets in quicker for low T . This
seems to indicate that the earlier discrepancy between theory
and experimental data has been largely due to neglecting finite
temperature effects in the theory simulations. For comparison,
we show the T = 0 K magnetization curve obtained with a
nine-site iPESS at χB = 24 with mean-field environments.

In order to quality the saturation behavior and compare
against previous simulations, we declare saturation for a mag-
netization value above mz/mS = 0.98 (gray dashed line in
Fig. 5). Our current TN simulations show that saturation is
achieved at hz ≈ 5.6 T for T = 1.8 K and hz ≈ 8.8 T for T =
3.0 K. In the experimental data saturation is reached at hz ≈
10.6 T and hz ≈ 12.2 T (outside the plotting region) for the
two temperature values. As expected, the agreement improves
with increasing temperature. Previous classical Monte Carlo
simulations did not reach saturation even at the highest field
of hz = 14 T, at which the magnetization was calculated to be
mz/mS ≈ 0.84 and ≈0.75, respectively. To set this in compar-
ison, our TN simulations reach those values at hz = 2.8 and
3.5 T, and the experimental data at hz = 5.5 and 4.2 T, respec-
tively. Therefore the TN simulations outperform the classical
Monte Carlo in predicting the magnetization, because they
take into account both the quantum and thermal effects.

Inelastic neutron scattering has previously revealed that the
spin liquid ground state of this material is destroyed by a
magnetic field of 1 T [57]. However, heat capacity measure-
ments could show that magnetic fields of up to 0.5 T leave the
spin liquid ground state intact as indicated by featureless C/T
curves [57]. To check that the effect of small fields is correctly
captured by our model, we have computed the magnetization
as a function of temperature at fixed field strength hz = 0.1 T
and contrasted it with measured experimental data. Since the
ground state is still expected to be in the gapless spin liquid
phase at hz = 0.1 T, we use a 60 % higher bond dimension
of χB = 48 to increase accuracy and reduce simulation errors.
The comparison is shown in the inset of Fig. 5, and the model
indeed reproduces the experimental curve without any anoma-
lies that would indicate a phase transition into a magnetically
ordered ground state. The larger bond dimension reduces the
error to a maximal value of ε ≈ 0.003 at the lowest tem-
perature T = 1 K. This confirms the accuracy of our method
even for intricate phases and small computed quantities. The
small discrepancy between experimental data and simulation
is examined below.

2. Heat capacity and entropy

Finally, we compute the magnetic heat capacity from the
thermal state energy U according to C := ∂U/∂T for two
different values of the magnetic field hz = 2.0 and 3.0 T and
compare it with the experimental data. Results are shown in
Fig. 6. The conversion factors between the theoretical cal-
culations and experiment are again shown in the Appendix.
As well as the heat capacity data, we have also computed
the thermodynamic entropy by integrating the heat capac-
ity. This is shown in the inset of Fig. 6. We find good

FIG. 6. Magnetic heat capacity C/T as a function of temperature
for different strengths of the magnetic fields hz. Integrating this
quantity over T yields the entropy, which accurately approaches the
theoretical value of Sth = 6R ln(2), with R the ideal gas constant.

agreement between our theoretical predictions and experi-
mental data.

The heat capacity of Ca10Cr7O28 at intermediate fields
is characterized by a broad and smooth peak of a Schottky
anomaly due to the excitations that become gapped by the
magnetic field. The position of this peak shifts to higher
temperature with increasing field both in the model and the
experimental data. This is in qualitative agreement with an
increasing gap due to the Zeeman term in the Hamiltonian,
see Eq. (6). Integrating C/T to obtain the magnetic entropy
shows that the model does well in capturing the total possible
entropy for spin-1/2 over the temperature range up to 15 K.

3. Implications for cross-benchmarking

The results presented here have implications for the task
of cross-benchmarking classical simulations and quantum ex-
periments. We see our work as a contribution to the line of
thought of co-evolving increasingly accurate tensor network
based classical simulations and quantum experiments and
simulations. This approach can be traced back to Ref. [59] and
possibly even earlier work, in which results from a dynam-
ical quantum simulations were compared to state-of-the-art
findings from tensor network simulations. Such efforts have
taken center stage in particular in the context of computational
quantum advantage of quantum random sampling [60], where
tensor network methods have been able to approximate the
distributions of the original quantum experiment to good ac-
curacy [61,62]. Similarly, tensor network methods have been
used [63–65] to successfully simulate and cross benchmark
quantum simulations in two spatial dimensions probing a
kicked Ising system [66]. This development in the field of
quantum simulation is increasingly reflected in the context
of condensed matter physics. It is a major motivation of this
work to contribute to the line of thought of developing tensor
network methods substantially further, so that they are able
to capture aspects of condensed matter experiments quantita-
tively [19,67,68]. It is such a cross-benchmarking effort that
advances both fields and allows to build confidence in the
correctness of the analysis: We believe that only if numerical
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techniques are developed in parallel with the solid-state syn-
thesis of interacting quantum many-body systems, then high
levels of predictive power can be reached.

IV. CONCLUSIONS AND OUTLOOK

In this work, we have presented a two-dimensional tensor
network algorithm for studying finite temperature properties
for the highly challenging realm of frustrated systems and
two-dimensional quantum materials. We achieve this by in-
troducing the infinite projected entangled simplex operator
algorithm. Our algorithm explicitly preserves the positive
semidefiniteness of the Gibbs state represented by the iPESO.
We use our technique to benchmark against finite temper-
ature properties of the well-known, paradigmatic model of
the spin-1/2 Kagome Heisenberg antiferromagnet and obtain
very competitive state-of-the art results for the thermal state
energy and heat capacity. We also study the melting of the
magnetization plateaus of this model in the presence of ex-
ternal magnetic field at finite temperature. By focusing on
the most prominent 1/3 plateau, we find that it starts melting
and disappears at temperature T ∼ 2 × 10−2. Moreover, the
plateau starts melting from the lower end of the field, an
observation that was also made recently in an independent
exact diagonalization study [55].

Finally, we have investigated the finite temperature prop-
erties of the quantum material Ca10Cr7O28 using our tensor
network technique. This is particularly important due to a
recent discrepancy in the magnetization process predicted by
theoretical simulations compared to experimental findings. As
a first theoretical study of this real material that includes both
quantum correlations and finite temperature effects, we find
a strong temperature dependence of the magnetization curve
of this material in the presence of an external magnetic field.
We find that on systematically increasing the temperature,
our theoretical simulations approach the experimental data
which was collected at finite temperature. We provide a direct
comparison of the theoretical magnetization data with the
experimental data at T = 1.8 and 3.0 K and find them to be
in surprisingly good but not quite perfect agreement. We also
computed the magnetic heat capacity (C/T ) as a function of
temperature at different field strengths hz = 2.0 and 3.0 T as
well as the entropy S. For all these quantities, we find good
agreement with the experimental data.

One can argue that the agreement is striking, given that
the Hamiltonian in Eq. (6) has only been recovered by neu-
tron scattering techniques to finite precision considering five
Heisenberg interactions, while Dzyaloshinskii-Moriya inter-
actions have been excluded. Furthermore, there are truncation
errors in the classical simulation. One can argue that the
present analysis allows to cross-benchmark quantum exper-
iments with classical simulations. The findings can also be
seen as an invitation, however, to use high-precision tools
of Hamiltonian learning to better identify the actual un-
derlying microscopic Hamiltonian, given data from Gibbs
states [69,70], possibly even based on tensor networks akin
the approach taken in Ref. [71]. These steps would further
contribute to an engineering perspective of studying realistic
strongly correlated quantum materials with tensor networks.

We believe our work to be an important step towards bridg-
ing the gap between theoretical simulations and experimental
studies of quantum materials, and towards providing method
development increasing the predictive power of such studies.
It would be straightforward to extend our algorithm to other
lattices and geometries that may suit other quantum materials.
By incorporating both quantum correlations and finite temper-
ature effects, we have now made direct comparison between
experimental and theoretical data possible.
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APPENDIX A: DETAILS OF THE TENSOR
NETWORK ALGORITHM

1. Simple update

The simple update describes an efficient, yet approxi-
mate scheme to do the annealing respectively the imaginary
time evolution of the initial density matrix. It essentially
implements the evolution in Eq. (A2) together with a local
truncation to keep the bulk bond dimension fixed. Without
the loss of generality, we consider a Hamiltonian with local
interactions in the form of

H = H� + H�, (A1)

where H� and H� are three-spin interactions on the two types
of triangles of the Kagome lattice, respectively. Making use
of a first-order Suzuki-Trotter decomposition, the imaginary
time evolution to evolve the thermal density matrix ρ(β ) →
ρ(β + δβ ) can be approximated by applying the operator

U (δβ ) = e−δβH�

e−δβH� + O(δβ2)

≈ U�(δβ )U�(δβ )
(A2)

to both three-site configurations in the tensor network. In
Fig. 7, we illustrate the evolution of the iPESO with the three-
body gate U�(δβ ). This step involves three lattice tensors,
as well as the simplex tensor

�
. After the gate has been

contracted with the tensors, a higher-order singular value
decomposition (HOSVD) with subsequent truncation is used
to separate the network back into simplex and lattice tensors.
Since the truncation is based only on the singular values for
the three indices, it is purely local. In a similar fashion, the
simplex

�
is updated alongside the three lattice site tensors
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FIG. 7. Simple update step for the (imaginary) time evolution of
the iPESO ansatz. After applying the three-body gate to the physical
indices, a truncated higher-order SVD is used to decompose the nine-
index tensor and restore the lattice and simplex tensors.

by applying the three-body gate U�(δβ ). After both steps
have been performed, we obtain the thermal density matrix
ρ(β + δβ ), represented by a three-site iPESO. This process
is repeated for a fixed number of steps, such that the final
thermal density matrix represents the quantum system at the
desired (inverse) temperature. Naturally, this can be extended
to Hamiltonians with less or more than three-site interactions.
Additionally, physical symmetries of the Hamiltonian [like
U(1) or SU(2)] can be readily directly incorporated, exploit-
ing symmetry-preserving tensors [73,74].

2. Bond dimension considerations

As it is common in tensor network applications, the bond
dimension controls the precision of the simulations. Here,
we aim at presenting a discussion of the minimal bond di-
mensions required in order to obtain meaningful results. The
infinitesimal thermal density matrix

ρ(δβ ) =
∏

〈i, j,k〉
e−δβHi, j,k + O(δβ2), (A3)

here to first order in the Suzuki-Trotter decomposition, can
be constructed by applying the Trotterized Hamiltonian gates
exp(−δβHi, j,k ) onto the infinite temperature Gibbs state
ρ(β = 0), as shown in Fig. 8 (the infinite temperature state is
simply a tensor product of identity matrices). An accurate rep-
resentation (within the inevitable Trotter error) of this state is
only possible if the resulting iPESO tensors are not truncated.
Since the infinite temperature state has a bond dimension
of unity, the infinitesimal thermal density matrix necessarily
has bond dimension p2, where p is the physical dimension
of the system. Naturally, cooling the state down to lower
temperatures can only produce meaningful results, if the bond
dimension is larger than the minimally necessary one.

FIG. 8. Construction of the infinitesimal thermal density opera-
tor ρ(δβ ) by a decomposition of the Trotter gates [see Eq. (A2)].
An exact representation (apart from the inevitable Trotter error) can
only be achieved without truncating the virtual bulk bond dimension,
which is therefore at least p2.

FIG. 9. Coarse-graining of a three-site iPESO into a single-site
iPEPO tensor. For larger iPESO unit cells the resulting iPEPO net-
work will have a larger unit cell, too.

3. Effective environments and expectation values

In order to evaluate physical observables and compute
expectation values accurately, the infinite two-dimensional
iPESO tensor network needs to be contracted. It is known that
this task cannot be performed exactly classically efficiently
both in worst case and average case complexity [75,76],
without an exponential increase in computation time, so that
approximate methods must be employed. Here we utilize
the so-called corner transfer matrix renormalization group
(CTMRG) to compute the effective environment tensors for
every lattice site. To this end, we coarse-grain the iPESO net-
work to an iPEPO network, the operator form of the famous
infinite projected entangled pair state (iPEPS), as visualized
in Fig. 9. After coarse-graining, the environment surrounding
each local thermal density matrix can be conveniently com-
puted using a standard CTMRG procedure. To this end, the
contraction of the infinite square lattice is approximated by a
set of fix-point environment tensors, as shown in Fig. 10. This
enables both accurate calculations of expectation values and
would be essential in devising a sophisticated update proce-
dure that includes all quantum correlations in the system—the
so-called full update [22,77]. Since the two physical indices
are traced over, the procedure is a straightforward extension of
a regular CTMRG routine for a two-dimensional iPEPS wave
function. In order to ensure that the thermal density matrix
is reflected by a positive semidefinite operator, a double-
layer approach is taken in contrast to the original proposal in
Ref. [30].

APPENDIX B: EFFECT OF DIFFERENT UNIT CELL SIZES

In order to test the simple update cooling procedure on
different unit cells, we simulated the regular Kagome Heisen-
berg AF using a three-, six-, and nine-site iPESO. While a
three-site ansatz is natural to capture the fully translational

FIG. 10. A directional CTMRG routine is used to approximate
the contraction of the infinite square lattice by a set of fixed-point
environment tensors, denoted in grey.
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FIG. 11. Convergence of the thermal state energy with tempera-
ture for the Kagome Heisenberg AF. Simulations are performed at a
fixed bond dimension χB = 10 for different sizes of the iPESO unit
cell, using CTMRG environments to compute expectation values.

and rotational invariant spin-liquid ground state, cooling a
larger unit cell reveals the method’s tendency to break lattice
symmetries. Using a bulk bond dimension of χB = 10, we
employed unit cells

L1 = (A), L2 =
(

A B
B A

)
, L3 =

⎛
⎝A B C

B C A
C A B

⎞
⎠ (B1)

on the coarse-grained square lattice, where each iPEPO tensor
incorporates three lattice sites of the iPESO on the honeycomb
lattice. Results for the thermal state energy over temperature
are shown in Fig. 11. The thermal state energies of the three
unit cells agree to at least three significant digits over the full
range of temperatures. Moreover, starting from a fully transla-
tionally invariant infinite temperature state of local identities,
the cooling procedure does not break the lattice symmetry,
which has been checked by computing the spatial pattern of
spin-spin correlations. This shows that our procedure gives
consistent results for different sizes of the unit cell.

1. Truncation errors in the cooling procedure

The annealing scheme adopted in this study is based on
the simple update, which requires truncations in order to keep
the bulk bond dimension χB constant. Moreover, the choice
of the infinitesimal cooling step δβ controls the unavoidable
error in the Trotterization, and the number of annealing steps
which include a truncation. The simple update is the main
source of errors in the numerical procedure, since it generates
the thermal density matrix ρ(β ) in the first place. For the
calculations of CTMRG expectation values, a high enough
environment bond dimension χE ensures that truncation ef-
fects can be neglected. For mean-field expectation values,
the singular values of the simple update again determine the
accuracy. In order to get an estimate of the overall cooling
error, we compute the accumulated truncation error ε, given
by the vector norm of the discarded singular values of all
simple update annealing steps.

For the thermal state simulation of the Kagome Heisen-
berg antiferromagnet, we choose a small temperature step

FIG. 12. Accumulated truncation error in the simple update an-
nealing for the AF Heisenberg model on the Kagome lattice for δβ =
10−3. The inset shows the truncation error at the lowest temperature
over the inverse bond dimension.

δβ = 10−3. In Fig. 12, we show the accumulated truncation
error over temperature for various bond dimensions. At lowest
temperature of T/J = 0.01 the truncation error is not yet fully
converged, however, it stays well below ε = 1 × 10−2 for the
largest bond dimension χE = 10.

For the thermal state simulations of Ca10Cr7O28 we choose
a cooling step size of δβ = 10−2. In Fig. 13 we show the
thermal state energy E over temperature T for several values
of the magnetic fields, at which we compare our simulations to
experimental findings. For hz = 0.1 T, where the system is ex-
pected to be in the gapless spin liquid phase, we choose higher
bond dimensions to reduce simulation errors. The thermal
state energy converges very well with temperature and ap-
proaches the value of the true ground state energy in the limit
T → 0 K, simulated by iPESS at χB = 24. The agreement of
simulations at different bond dimensions, and as well with
the ground state energy as T → 0 gets better with increasing
magnetic field. This is expected, since at small values of the

FIG. 13. Convergence of the thermal state energy with bond di-
mension χB and temperature T for several magnetic field strengths
considered in our study. The inset shows the accumulated truncation
error ε as a measure of numerical errors in the cooling procedure.
Dashed lines correspond to T = 0 K iPESS ground state energies.
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field, the low temperature states are closer to the highly entan-
gled spin-liquid ground state of the material at hz = 0 T and
therefore, require higher bond dimension for their simulation.
This is also supported by the inset showing the accumulated
truncation error for the same simulation parameters, that all
stay below ε ∼ 5 × 10−2. At the temperatures where we com-
pare with experimental data, the truncation errors even stay
below ε = 1 × 10−2.

APPENDIX C: CONVERSION BETWEEN EXPERIMENT
AND SIMULATION

In order to compare the simulated tensor network data
with measured experimental data, we need to apply the cor-
rect conversion factors. Since the coupling constants in the

Hamiltonian are given in units of meV and we set kB = 1, the
temperature Tsim is in meV, too. The proper conversion to K
is, therefore, given by

Texp

Tsim
= 1 meV

kB
= 1.602 × 10−22 J

kB
≈ 11.6 K. (C1)

Furthermore, we need to convert the heat capacity C between
simulated and measured data. The tensor network data is given
per spin in units of meV K−1. In order to convert it, a factor of

Cexp

Csim
= 6 · 1.602 × 10−22 J · NA ≈ 578.8 J mol−1 (C2)

with NA = 6.022 × 1023 mol−1 the Avogadro constant, is re-
quired. The additional factor of six stems from the fact, that
one formula unit of Ca10Cr7O28 has six spin-1/2 chromium
ions.
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