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Role of many-phonon modes on the high-temperature linear-in-T electronic resistivity
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We theoretically consider the possibility that phonons may be playing a role in the observed linear-in-T
resistivity in cuprates by focusing on the obvious question: How can phonon scattering be consistent with a
linear-in-T resistivity with a constant slope given that cuprates have many phonon modes with different energies
and electron-phonon couplings (e.g., 21 phonon modes for LSCO)? We show using an arbitrarily large number
of independent phonon modes that, within a model Boltzmann transport theory, the emergent high-T linear-in-T
resistivity manifests an approximately constant slope independent of the number of phonon modes except in
some fine-tuned narrow temperature regimes. We also comment on the quantitative magnitude of the linear-in-T
resistivity in cuprates pointing out the constraints on the effective electron-phonon coupling necessary to produce
the observed resistivity.
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I. INTRODUCTION

A central topic in the physics of cuprates over the last
30 years has been its so-called “strange metallicity”. An
important component of this “strangeness” is a linear-in-T
resistivity over a large temperature range, particularly in the
optimally doped regime [1–5]. The effect is most pronounced
near optimal doping (x ∼ 0.15) in La2−xSrxCuO4 (LSCO),
where the measured resistivity ρ(T ) is linear from ∼50 K
to the highest measurement temperature ∼1000 K, with a
constant slope dρ/dT throughout [6,7]. Although such an
impressive linear-in-T resistivity seems to be specific to the
fine-tuned doping x ∼ 0.15 in LSCO, similar, but not as
spectacular, behavior of a sustained approximate linear-in-T
resistivity appears generic in many (but, by no means all)
cuprates (both with hole and electron doping).

The current paper is motivated by the specific question
of whether such a linear-in-T resistivity could arise at all,
even as a matter of principle, from phonon scattering effects
[8–12], which is generally discarded by the experts as a pos-
sible mechanism for strange metallicity in cuprates [1–5]. We
emphasize that “strange metallicity” is not a sharp concept and
consists often of a collection of phenomena, of which a linear-
in-T resistivity is perhaps the most discussed aspect. We focus
only on the linear-in-T resistivity and are not discussing any
other aspects of “strange metallicity” [1–5]. The goal here is
not by any means to claim that phonon scattering is necessar-
ily leading to the observed “strange metallicity” in cuprates,
but to critically consider whether there are compelling reasons
to assert that phonons cannot possibly be playing any role
in this physics of linear-in-T resistivity at all. This is not an
unreasonable goal because (1) no commonly accepted mech-
anism for this linear-in-T behavior in cuprates is agreed upon
by the community in spite of hundreds of papers focused on
this topic, and (2) most normal metals (e.g., Al, Ag, Cu, Pb)
also manifest a linear-in-T resistivity over a large temperature
range (50 K–800 K) arising entirely from phonon scattering

in the high-T equipartition regime (> TD/5, where TD is the
Debye temperature) [10,13–16]. We mention that our focus
is entirely on the linear-in-T resistivity behavior and no other
aspects of strange metallicity. To avoid any misunderstanding,
we emphasize that our focus is entirely on the zero magnetic
field situation, which we believe needs to be explained at some
level before the more complex situation of magnetotransport
in the presence of a magnetic field could be considered. The
linear-in-T behavior we focus on thus does not persist to
arbitrarily low temperatures, applying generally for T > Tc in
cuprates (where Tc is the superconducting transition tempera-
ture) and for T > 50 K in most metals.

II. RESISTIVITY DUE TO PHONONS

The linear-in-T resistivity in metals arising from phonons
with a dimensionless electron-phonon coupling of λ and a
Debye temperature (or typical phonon energy) TD follows
from the well-established Bloch-Grüneisen transport theory
for carrier transport limited by phonon scattering [17–20]. In
particular, the standard transport theory gives the following
leading order metallic resistivity ρ(T ) at high temperatures
(T � TD) arising from electron-phonon scattering in 3D sys-
tems, where τ is the electron-phonon transport scattering
time [21]:

ρ(T ) = 4π

ω2
pτ (T )

, (1)

h̄

τ (T )
= 2πkBT λ

[
1 − T 2

D

12T 2

]
. (2)

Here ωp = (4πne2/m)1/2 is the effective plasma frequency of
the metal, defined by the effective carrier density n and the
effective mass m, and TD is the Debye temperature (or the
typical phonon temperature scale). Here, Eq. (2) arises from
an expansion in TD/T (valid for “high temperatures”) where
subleading terms in higher orders, O(TD/T )4 and above, have
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been neglected. Note that the factor of 12 in Eq. (2) may
depend on the details such as the exact form of the dispersions
of electrons and phonons, but the leading high-temperature
(T � TD) correction to linear-in-T goes as O(TD/T )2 quite
generally [21]. In our paper, we do not use such a high-
temperature expansion anywhere, and we provide Eqs. (1) and
(2) only for the sake of completeness. An important feature of
this TD/T expansion is that the linear-in-T resistivity is an
asymptotic high-T result, and there is really no sharp T value
where suddenly the resistivity becomes linear-in-T . The cor-
responding low-T resistivity (for T � TD) is also well known,
going as T 5 or T 4 depending on the system dimensionality be-
ing 3 or 2, respectively. We mention that these approximations
apply when the phonon scattering is quasielastic, which is a
well-valid approximation when the phonon frequency is much
smaller than the electronic Fermi energy, which is the situation
we consider. From this high-T expansion, we see that for
(TD/T )2 < 12, the metal manifests an approximate linear-in-
T resistivity—explicit calculations show that the linear-in-T
resistivity applies for T > TD/5, continuing indefinitely for
higher T , thus explaining the linear-in-T high-T resistivity in
normal metals. We mention that the bound TD/5 should not
be taken too seriously as the precise bound varies between
∼TD/3–TD/7 depending on the other parameters of the prob-
lem, but the main physics is that the linearity sets in at a
temperature much below TD. In addition, as discussed later,
there is no sharp onset temperature for the linearity to show up
since the resistivity crosses over from a power law with high
power at low T to a linear-in-T resistivity over a temperature
range as should be obvious from Eq. (2) above. We note
that the results defined by Eqs. (1) and (2) are standard and
can be found in the literature going back 50–80 years, and
thus a linear-in-T resistivity is the generic result for phonon
induced metallic resistivity for T > TD [17–19]. For quanti-
tative comparison with experiments, of course, sophisticated
(and completely numerical) first-principles calculations are
necessary using the detailed appropriate band structures and
solving the Boltzmann equation numerically [22,23].

We note that for materials with low Fermi momentum kF

(or equivalently, low carrier density n, since kF ∼ n1/d , with d
being the system dimensionality), TD (> TBG) is replaced by
TBG = 2h̄kF v, where v is the sound (or phonon) velocity [10].
Note that TBG < 2TD in general (since the maximal possible
kF is the size of the Brillouin zone and TD corresponds to
the maximum phonon energy with a phonon wave vector
equal to the Brillouin zone boundary), but in principle TBG

could be much less than TD in low-density metals, leading
to the linear-in-T behavior persisting to low temperatures,
depending on how low the effective carrier density is, defining
TBG ∼ n1/d [8–12,24]. We stick to the situation (as in normal
metals) where TBG > TD, and do not consider low-density
metals although such a situation may be relevant to under-
doped cuprates with small Fermi surfaces.

The key thing to focus on for our purpose here is that,
according to Eq. (2) above, the phonon-induced resistivity is
linear-in-T for T > T ∗ ∼ TD/5 with the slope dρ/dT ∼ λ.
In a system with many phonon modes (e.g., LSCO has 21
phonon modes and YBCO has 38), there are in principle as
many λ and TD values as there are phonon modes. There-
fore, one could argue that a linear-in-T resistivity with an

apparent constant slope is unlikely in a system with many
phonon modes since different phonon modes would manifest
different T ∗ with different λ-dependent slopes resulting in a
nonlinear (in T ) resistivity even at high temperatures. Thus,
the observed linear-in-T resistivity in cuprates may seem
qualitatively inconsistent with phonon scattering, given the
large number of phonon modes in a material with multi-atom
unit cells. This qualitative issue, the main topic of the current
paper, is independent of any quantitative consideration of
the actual magnitude of the resistivity (or the slope dρ/dT ),
which is proportional to the electron-phonon coupling (and
other electronic band parameters such as the effective plasma
frequency). The basic question addressed here is whether the
resistivity limited by scattering from many phonon modes in
a system leads to nonlinear (in T ) behavior at high T instead
of the linear-in-T phonon-induced metallic resistivity generic
in normal metals.

The quantity to calculate for the resistivity, according
to Eq. (1), is the transport relaxation time τ , which for a
single phonon mode is easily calculated within the leading-
order Boltzmann theory, leading to the following well-known
Bloch-Grüneisen resistivity formula arising from electron-
phonon interaction:

ρ(T ) = ρ0 + 2πλkBT/h̄

(n/m)e2

∫ ωD

0

dω

ω

×
(

ω

ωD

)4[ h̄ω/kBT

sinh(h̄ω/2kBT )

]2

. (3)

In Eq. (3), n and m are effective carrier density and
effective mass with ωD being the Debye frequency (or tem-
perature, with TD = h̄ωD/kB) imposing a high-energy cut-off
on the phonon spectrum. (For systems with small Fermi sur-
faces, where TD > TBG, the cut-off ωD is replaced by ωBG =
kBTBG/h̄ with no loss of generality, affecting only the quan-
titative issue of how low in T the linearity should persist in
general.) The first term, ρ0, is the sample-dependent nonuni-
versal temperature-independent residual resistivity, arising
from elastic disorder/defect/impurity scattering, which is of
no consequence in the current paper and is ignored in the rest
of this paper and in our results, where we set ρ0 = 0 with
no loss of generality. When the phonons are described by the
Einstein model with one sharp frequency ωE , instead of a
phonon dispersion as in the Debye model, the (ω/ωD)4 factor
inside the integral gets replaced by (ωE/4)δ(ω − ωE ), making
the frequency integral trivial. We note that the thermal factor
within the square bracket in Eq. (3) implies the asymptotic
temperature dependence of the phonon-induced resistivity as
being T (or T 5) for high (or low) temperatures with the tem-
perature scale defining high versus low T behavior, according
to Eq. (2), being approximately ∼TD/5 where TD is the Debye
temperature (TD = h̄ωD/kB).

We note that, although we take the electron-phonon cou-
pling constant λ as a parameter, in principle it is determined
by the electronic structure and phonon details of the material
through the formula [18]

λ = NF

∑
k,k′ (vkx − vk′x )2|Mk,k′ |2/h̄ωk−k′δ(εk )δ(εk′ )∑

k,k′ (vkx − vk′x )2δ(εk )δ(εk′ )
. (4)
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Here, NF is the electronic density of states on the Fermi
surface, M is the electron-phonon scattering matrix elements
between electron wavenumbers k and k′, ωk−k′ is the relevant
phonon frequency for the momentum exchange k − k′, vkx

is the electron group velocity ∂εk/∂kx, where εk is the band
energy dispersion. We note that the above equation for λ

applies to each phonon mode, and the total or net effective
electron-phonon coupling, defining the transport scattering
rate and carrier resistivity, would be a combined effect of all
the electron-phonon couplings in the material, which could
considerably enhance its effective strength.

III. EFFECT OF MANY PHONON MODES

To ascertain the effect of many phonon modes in the sys-
tem, we must take into account the sum of the resistivity
arising from each individual phonon mode. In doing so, the
Boltzmann transport theory asserts that one must carry out the
thermal average for the scattering time before calculating the
resistivity, which is proportional to 1/τ (and not to τ ). This
may lead to a violation of Matthiessen’s rule for temperatures
comparable to the Fermi temperature. Since we restrict our-
selves to T � TF for all our results, we find that Matthiessen’s
rule applies well for all the results presented in this paper,
since the correction to Matthiessen’s rule is suppressed by
∼O(T/TF )2. (We explicitly checked that Mattheissen’s rule
is well valid for all the results shown in this paper.) Thus, by
calculating the resistivity ρn(T ) arising from the individual
phonon mode, defined by individual phonon frequency ωD,n

(or ωE ,n) and individual electron-phonon coupling λn, the total
resistivity is simply calculated by the sum ρ(T ) = ∑

n ρn(T )
over the individual contributions.

Since we keep all other system variables (e.g., n, m, etc.)
fixed, the final resistivity depends only on the phonon vari-
ables, i.e., on the set of individual phonon frequencies and
coupling constants. We take the Fermi temperature TF to be
much larger than the characteristic phonon frequencies (e.g.,
the Debye or the Einstein temperature) throughout with no
loss of generality since our interest is on the T dependence
arising from the phonon physics, in particular, the role of
multiple distinct phonon modes on the high-T (but still < TF )
linear-in-T electronic resistivity. Note that rescaling T and TD

in Eq. (3) only leads to a rescaling of ρ, so the result will
only depend on T/TD and the unit of T can thus be chosen
arbitrarily. In the calculation below, we use arbitrary units for
temperature and resistivity that correspond to setting m, e, TF ,
kB, h̄ in Eq. (3) to the unity.

The theory now involves using a large number of individual
phonon modes with arbitrary ωD and λ, and calculating the
resistivity. Since the resistivity slope in temperature dρn/dT
in the “high-temperature” linear-in-T equipartition regime
arising from the nth phonon mode is given by λn, and since
the linearity sets in at a temperature scale T ∼ TD,n/5, where
λn and TD,n are the coupling and Debye temperature for the
nth mode, we expect the net resistivity summing over all
contributing ρn to look nonlinear in the whole temperature
range. This naive expectation is, however, not what happens
when the resistivity calculation is carried out in actuality as
described below, particularly when the number of phonon
modes is large (� 1), which is the case for cuprates.

In Fig. 1, we show the calculated resistivity as a function of
temperature (with fixed TF , whose exact value is not important
as long as it is much larger than the temperature range being
considered) for scattering from 10, 20, and 50 completely
random Debye phonon modes, with each phonon mode having
random coupling and random TD. The actual random values
of the individual λ and TD are also shown in each figure. No
significance should be attached to the choice of parameters
and the magnitude of the resistivity—the only goal here is
to investigate the linearity or not of the effective “high-T ”
resistivity in the presence of a large number of phonon modes
with arbitrary coupling and dispersion. In each case, the indi-
vidual resistivity arising from each mode is shown (in gray)
along with the net resistivity from all the modes together (in
blue, which would be the experimental situation since the
carriers only care about the total resistive scattering from all
mechanisms). The contribution of each mode shows the usual
“bending” behavior from a high power law (∼T 5) at low-T
(T < TD/5) to the linear-in-T high-T (T > TD/5) behavior
with the resistivity slope at high-T being proportional to the
corresponding λ. The net resistivity, however, shows some
low-T crossover behavior to a high-T linear behavior at some
T ∗, and the linearity, once it sets in for, continues to arbitrary
T > T ∗ within our Boltzmann-Debye transport theory. This
persistence of a clearly linear high-T resistivity happens for
all three cases with 10, 20, 50 phonon modes in Fig. 1. We
have studied many examples with many more phonon modes,
always finding a well-defined linear-in-T behavior arising
from electron-phonon interactions independent of how many
phonons with random coupling and dispersion are used in the
calculation.

In the top and middle row of Fig. 2, the calculated resis-
tivity for phonon scattering in the Einstein model, again with
random electron-phonon coupling and phonon frequency, are
shown for 10 and 20 random Einstein modes. Here, the low-
T resistivity is exponential in temperature, but the high-T
equipartition behavior is still linear-in-T since the phonons
become classical in the high-T regime. We note that the quali-
tative high-T behavior for Debye (Fig. 1) and Einstein (Fig. 2)
models are the same, and above a transient crossover low-T
regime, both models show manifest linear-in-T resistivity in-
dependent of how many phonon modes are contributing to the
resistivity with an effective slope determined by the random
phonon couplings.

In the bottom row of Fig. 2, we show results using both
models together, using 20 random Einstein modes and three
random Debye modes. (The results are representative as we
have produced results combining many more situations of
random Debye and Einstein modes, finding very similar qual-
itative results.) Again, the high-T behavior is linear-in-T with
the low-T behavior manifesting a complicated crossover. The
important point to emphasize is that the universal linear-in-T
resistivity always manifests for high-T although the low-T
behavior, where the phonon-induced resistivity is generally
small, shows complex crossover arising from the contribu-
tions of individual phonon modes. What is surprising and not
mentioned in any early literature is that having many phonon
modes does not segment this high-T linearity into many dif-
ferent linear-T regimes with different slopes, which of course
will manifest as a nonlinear behavior. No matter how many
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FIG. 1. Calculated resistivity as a function of T due to 10 (top row), 20 (middle row), and 50 (bottom row) Debye phonon modes with
randomly chosen parameters shown in the right column. Gray curves indicate the resistivity contribution from individual phonon modes, and
blue indicates the total resistivity. Vertical-dashed lines indicate T ∗, the temperature at which dρ/dT becomes approximately constant. The
units are arbitrary.

different phonon modes with different dispersions/couplings
we use, we find a clear linear-in-T behavior except in some
fine-tuned situations. This is significant because cuprates have
many phonon modes (� 10), and therefore, one cannot ar-
gue, based just on the existence of many phonon branches
in the system, that the high-T linearity will be suppressed.
We also mention that the realistic situation is that only
three of the N phonon modes in any system are acous-
tic with N − 3 being optical, but for our strictly theoretical
analysis, this is not relevant as we use completely random
phonon modes and electron-phonon couplings for all the
calculations.

One may try to quantitatively define the crossover tem-
perature T ∗ that separates the low-T (nonlinear) and high-T
(linear) behavior. In the second column of Figs. 1 and 2, we
plot d (log ρ)/d (log T ), which extracts the exponent of T in
ρ. We see that the crossover regime from the low-T behavior
(= 5 for Debye modes) to the high-T behavior (= 1) is very
wide, and the behavior within that regime is very complicated.
This indicates that a canonical definition of T ∗ is impossible.
Instead, we visually define T ∗ as the temperature at which
dρ/dT reaches about 93% of the asymptotic slope (∝ ∑

i λi).
The factor is chosen such that T ∗ for a single Debye mode
is exactly TD/5. The value of T ∗ for each case is shown as

FIG. 2. Calculated resistivity as a function of T due to 10 (top row) and 20 (middle and bottom row) Einstein phonon modes, with the
addition of three Debye phonon modes in the bottom row, all with randomly chosen parameters. Gold (gray) curves indicate the resistivity
contribution from individual Einstein (Debye) phonon modes, with the corresponding parameters shown in the right panel in the respective
colors, and blue indicates the total resistivity. Vertical-dashed lines indicate T ∗, the temperature at which dρ/dT becomes approximately
constant. The units are arbitrary.
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vertical dashed lines in Figs. 1 and 2. In the third column
of these figures where we plot ρ as a function of T in the
linear scale, T ∗ agrees very well with what appears visually
to separate the nonlinear part and the linear part of the curve.
In the second column of these figures, however, our choice of
T ∗ appears to be a somewhat arbitrary point within the wide
crossover regime. This means that a quantitative analysis of
the dependence of T ∗ on the phonon parameters may not be
meaningful.

We may still seek some rough and qualitative relationship
between our choice of T ∗ with the phonon parameters, al-
though a precise quantitative analysis is beyond the scope of
the current paper as explained above. Note that T ∗ is very
roughly approximated by the largest TD/E ,i/5 among the indi-
vidual phonon modes, since for larger T all modes are linear,
and for smaller T at least one mode is nonlinear. However,
if some mode j with smaller TD/E , j/5 has λ j significantly
larger than λi (or the combined effect of several modes at that
temperature scale), then T ∗ may become closer to TD/E , j/5
because the nonlinearity between the two temperature scales
caused by mode i may be too small visually. In fact, we do
not find any simple way of expressing T ∗ in terms of system
parameters because of its complex dependence on the whole
collection of λn and TD/E ,n values in a nontrivial manner. The
only concrete statement is that there is a clear linear-in-T
resistivity above some effective T = T ∗, whose value depends
on all the complicated details of the system, and for T < T ∗
the resistivity does not manifest any linear-in-T behavior at
all. It may be interesting in future work to investigate how T ∗
correlates with the number of phonon modes and the statistical
distributions of TD (or TE ) and λ. However, the ambiguity in
the definition of T ∗ makes any statistical analysis of T ∗ ill
defined. Moreover, instead of using a statistical distribution
on phonon parameters, T ∗ is better calculated for specific
materials using the specific system parameters—all our work
guarantees is that there will always be a high-T linear-in-T
resistivity independent of all the details. This also suggests
that our finding should apply to other cuprates too since
all cuprates being multi-atomic materials have many phonon
modes. This problem also prevents a general statement on an
effective phonon frequency and an effective electron-phonon
coupling for the whole system including all the phonon modes
since all the details matter, and our general theory can only
establish the linearity, and not the quantitative details. We
leave these questions to future work, which would necessarily
be completely numerical focusing on specific materials with
many phonon modes.

One relevant question is whether there are situations where
one can see several distinct well-separated linear-in-T regimes
with different resistivity slopes in different T regimes, aris-
ing from distinct contributions of individual phonon modes.
Although we do not find such situations generically for any
of our many phonon resistivity simulations (Figs. 1 and
2), it is possible to create such situations through the fine-
tuning of phonon parameters, particularly when the system
has only a few phonon modes. For example, consider a sit-
uation where there are two phonon modes with λ1 � λ2 as
well as TD,1 � TD,2. In this case, mode 1 produces a linear-
in-T regime for TD,1/5 < T where mode 2 contribution is
still strongly suppressed. Once T reaches TD,2/5 � TD,1/5,

mode 2 becomes quantitatively important, increasing the slope
of the linear-in-T resistivity. So, such a fine-tuned situation
should exhibit two separate linear-in-T resistivity regimes,
one for TD,1/5 < T < TD,2/5 and the other for T > TD,2/5,
and they would manifest very different resistivity slopes with
the high-T slope for T > TD,2 being larger than the one in
the intermediate TD,1 < T < TD,2 regime. We show such a
situation in Fig. 3 where two linear-in-T segments are visually
apparent as two phonon modes with fine-tuned parameters
become operational in different regimes, showing an obvious
change in the slope. We find this fine-tuned situation to be
generically absent once many phonon modes are operational
(as is the case for cuprates where typically >20 phonon modes
contribute to scattering). The two-mode fine-tuned situation
shown in Fig. 3 does, however, arise in simpler systems
with just two phonon branches. A well-known example is
doped GaAs, where acoustic phonons produce a linear-in-T
regime for T < 60 K and then optical phonons kick in and
lead to a linear-in-T regime at room temperatures whereas
the intermediate temperature regime manifest nonlinear (in T )
resistivity [19].

We have also calculated the resistivity (not shown) assum-
ing the phonon parameters to be nonrandom—for example,
regularly spaced phonon coupling and frequency, and these
somewhat unphysical phonon models produce results qualita-
tively similar to those shown in Figs. 1 and 2 as long as many
(� 1) phonon modes are considered. The essential finding is
that once many phonon modes are operational, the high-T
resistivity is linear in T with a constant slope, and without
fine-tuning, a situation with different segments manifesting
different linear-in-T regimes with different slopes is generally
unlikely.

Our finding described above suggests that an electronic
system could manifest persistent linear-in-T resistivity with
a constant slope above some characteristic temperature even
in the presence of multiple phonon modes. This is the generic
behavior in the presence of many phonon modes, as occurring,
for example, in many-atom unit cells such as high-Tc cuprates
(e.g., LSCO has 21 distinct phonon modes). But, this finding
by itself does not establish that the often-observed linear-in-T
resistivity in cuprates (e.g., optimally doped LSCO where a
linear-in-T resistivity persists between 60 K and 1000 K with
essentially a constant slope) arises from phonon scattering.
All we have shown is that, as a matter of principle, phonons
cannot be ruled out as the mechanism for linear-in-T resis-
tivity behavior simply because the system has many phonon
modes with distinct dispersions and couplings. To show that
phonons are indeed causing the T -linear resistivity in a ma-
terial what is necessary is a detailed quantitative transport
calculation using the appropriate electronic band structure and
realistic electron-phonon interactions. This is way beyond the
scope of the current paper, and it is unclear that such a quanti-
tatively reliable theory is feasible in cuprates at all, given the
generally unknown electron-phonon coupling values and the
unreliability of standard band theories in describing cuprates.
In particular, there is no consensus on the electron-phonon
coupling constant in cuprates—in LSCO and YBCO, effective
λ values for the electron-phonon coupling are quoted, based
on different estimates from theories and experiments, to be
between 0.3 and 3.0 [25–35]. Instead of making any decisive
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FIG. 3. Calculated resistivity as a function of T due to two Debye phonon modes with parameters chosen such that ρ(T ) shows two linear
segments (nearly constant dρ/dT ) with different slopes. Orange and purple curves indicate the contribution from the two individual phonon
modes, with the parameters shown in the right panel in the respective colors, and blue indicates the total resistivity. The units are arbitrary.

claims for the cuprate resistivity, we provide below some sug-
gestive speculations for future work by focusing on optimally
doped LSCO, which manifests the most spectacular linear-in-
T resistivity perhaps ever seen in any metallic system [6].

IV. COMPARISON BETWEEN LSCO AND Cu

We compare the experimentally measured high-T resis-
tivity of optimally doped LSCO as reported in Ref. [6] with
the high-T resistivity of one of the most studied metals: Cu.
Copper manifests a T -linear resistivity from T ∼ 50 K all the
way to very high T , and this linearity arises entirely from the
electron-phonon interaction [36]. In Cu, TD ∼ 340 K and λ ∼
0.15, implying that Cu manifests a phonon scattering induced
linear-in-T resistivity starting roughly around T ∼ 50 K with
the resistivity slope determined by the λ value of 0.15 (and
the electronic parameters n and m for Cu). For optimal doping
(x ∼ 0.15), La2−xSrxCuO4 (“LSCO”) single crystals manifest
a linear-in-T resistivity for 50 K < T < 1000 K with the typi-
cal resistivity at 300 K being 0.3 m
 cm to be contrasted with
the Cu resistivity at 300 K being 1.5 µ
 cm, making LSCO at
optimal doping roughly 200 times more resistive than Cu in
the 50–1000 K regime with both the resistivity exhibiting a
linear-in-T behavior.

The question we ask is whether the LSCO linear-in-
T resistivity behavior reported first in Ref. [6] could be
crudely semiquantitatively consistent with the phonon scat-
tering mechanism based on simple dimensional arguments
analyzing the high-T resistivity and comparing it with Cu.
To do this, we first use the effective Drude formula for the
resistivity [following trivially from Eqs. (1)–(3)]

ρ = m

e2nτ
, (5)

with the high-T linear-in-T form for τ following directly from
Eq. (2) to be

h̄

τ
= 2πλkBT . (6)

We can then write the ratio of the LSCO resistivity to the Cu
resistivity at the same temperature as

ρLSCO

ρCu
=

(
mLSCO

mCu

)(
nCu

nLSCO

)(
λLSCO

λCu

)
. (7)

For Cu, of course, the effective electron density defining
the Fermi surface nCu, and the effective conduction band
carrier mass are well established, but not so for LSCO, intro-
ducing uncertainties in our simple dimensional estimates. It
seems reasonable to assume that the LSCO has the so-called

“large” Fermi surface at optimal doping, leading to nLSCO ∼
nCu/2 whereas the effective carrier mass for optimally doped
LSCO is often taken to be 4me, making mLSCO ∼ 4mCu [5].
We note that the typical carrier effective mass in hole-doped
LSCO is considered to be 3–10 me [5] and our using m ∼
4me is a conservative choice—a larger mass would actually
make our case stronger as it would further enhance the es-
timated LSCO resistivity, requiring even a smaller effective
electron-phonon coupling. We note that the full band structure
of doped LSCO is complex (see, e.g., Ref. [37]) and is not
important for our considerations since we are not carrying out
any quantitative first-principles calculations, but are only esti-
mating the resistivity using an operational effective mass and
electron-phonon coupling. Putting these parameters in Eq. (7)
and using the experimental resistivity at 300 K (changing this
temperature obviously does not make any difference for the
ratio as long as the temperature is in the linear-T regime for
both materials since 1/τ ∼ T ), we get the following for the
ratio of the effective electron-phonon coupling constants:

λLSCO

λCu
= 10. (8)

Thus, an effective electron-phonon coupling of ∼1.5 (i.e.,
10 times that of λCu) roughly quantitatively explains the
measured LSCO resistivity at optimal doping. Whether this
relatively large coupling is reasonable or not is an open ques-
tion beyond the scope of the current paper, but we mention that
there are many claims in the literature of λLSCO > 1 [25–27],
and given the large number of phonon modes in LSCO, an
effective λLSCO for transport of ∼1.5 may not be entirely
unreasonable. We mention that the effective coupling here
should be a suitable transport average of the couplings to
all the phonon modes contributing to the carrier scattering,
thus possibly enhancing its apparent strength. In terms of the
McMillan function α2F (ω), the effective λ is given by [38]

λ = 2
∫ ∞

0

dω

ω
α2F (ω), (9)

where all phonon modes contribute to the integral through the
F (ω) function.

We can derive an alternative equivalent expression for the
resistivity in terms of the hole doping strength x (>0.1) using
the same analysis as above, obtaining

ρLSCO ∼ 0.7 T

1 + x
µ
 cm, (10)

where T is the temperature in kelvins (>50 K), where the
linear-in-T resistivity constraint applies. For hole doping x <

0.1, the Fermi surface shape changes (from 1 + x carriers per

235118-6



ROLE OF MANY-PHONON MODES ON THE … PHYSICAL REVIEW B 109, 235118 (2024)

unit cell to x carriers per unit cell), and Eq. (10) is replaced by

ρLSCO ∼ 0.7 T

x
µ
 cm. (11)

For x = 0.2 and T = 300 K, Eq. (10) gives, ρ ∼ 0.17 m
 cm
whereas for x = 0.05, Eq. (11) gives for T = 300 K, ρ ∼
4.5 m
 cm. Both of these resistivity values are consistent with
experimental measurements [6], where the measured resistiv-
ity [6] at 300 K is 0.18 m
 cm and 3 m
 cm, respectively for
x = 0.2 and 0.05. Equations (10) and (11) simply follow from
Eqs. (5) and (6) using λ = 1.5 and the appropriate carrier
density associated with the doping x.

Before concluding, we comment on the calculated (and
measured) large resistivity values for LSCO, far surpassing
the so-called Ioffe-Regel-Mott (IRM) criterion for metallicity,
which for regular metals stipulates that the maximum possible
metallic resistivity is ∼150 µ
 cm because the metallic mean
free path for more resistive samples becomes shorter than
1/kF (or the lattice constant, whichever is larger). The IRM
criterion sets the limit on coherent metallic transport where
the concept of momentum is still meaningful, and the claim
is that a resistivity above the IRM limit represents a “bad
metal” or an Anderson localized insulator [39–42]. In fact, the
resistivity of Cu (or other metals) would reach ∼150 µ
 cm
for T ∼ 30 000 K, well above the melting temperature, and
indeed regular conducting metals have a resistivity always
much smaller than the IRM limit of ∼150 µ
 cm. But, as
is obvious here, the experimental resistivity for LSCO (and
other cuprates also) typically surpasses ∼150 µ
 cm, making
them bad metal candidates. This is, however, easily under-
standable as arising, not necessarily from some exotic bad
metallicity, but simply from the peculiar electronic and lattice
structure of doped cuprates, which typically have much lower
kF values than typical metals (and much larger lattice constant
along the c axis). For example, considering the 2D limit of
in-plane (in the ab plane) transport, the IRM criterion of
kF l=1 (where l is the carrier mean free path) in 2D becomes
equivalent to

ρ2D IRM = h/e2. (12)

We convert the 2D IRM limit of Eq. (12) to a corresponding
3D IRM resistivity (for a layered 3D material made out of
parallel 2D layers as the cuprates are) by simply multiplying
by the unit cell size along the c axis (∼1.3 nm), obtaining

ρIRM LSCO ∼
(

h

e2

)
· 1.3 nm = 3.4 m
 cm. (13)

It does appear that the LSCO resistivity remains below this
3.4 m
 cm limit even if it surpasses the 0.15 m
 cm limit of
normal metals. [We emphasize that Eq. (13) is meaningful
only a 3D layered material made of 2D layers, and not for
a true 3D system.] An equivalent 3D derivation of the IRM
resistivity for LSCO (and other cuprates) would be simply
to scale the metallic IRM limit of 0.15 m
 cm by the carrier
density ratio of LSCO to normal metals, giving

ρIRM LSCO ∼
(

350

p

)
µ
 cm, (14)

where p = x1/3 or (1 + x)1/3 depending on whether x < 0.1 or
>0.1 (which decides whether the Fermi surface is “small” or

“large”). Equation (14) gives a resistivity limit of ∼1 m
 cm
for x = 0.05 and 0.3 m
 cm for x = 0.15, which agrees
semiquantitatively with the experimental data. Obviously, the
assumption of the LSCO 3D Fermi wavevector kF ∼ x1/3 or
(1 + x)1/3 is an extremely crude approximation (and there-
fore, an exact agreement with the experiment is not expected).
But the important point is that both Eqs. (13) and (14) imply
bad metallicity for LSCO with the resistivity above the nom-
inal metallic IRM limit of 150 µ
 cm, but there is nothing
profound about this violation of the metallic IRM limit as it
arises from the 2D layered nature of LSCO and/or the low
carrier density compared with metallic systems. Interestingly,
very similar conclusions about the IRM limit have also been
established in the literature for electron-doped cuprates [43].
We mention that Refs. [44,45] consider, using the so-called
“large-N” approximation, the interesting possibility that the
semiclassical Boltzmann theory breaks down near the IRM
limit for strong electron-phonon coupling, leading to a “re-
sistivity saturation”-type phenomenon in cuprates at high
temperatures, where the resistivity becomes sublinear in T at
very high T instead of increasing indefinitely linearly in T
[39,41,46]. This would then imply that optimally doped LSCO
would reflect resistivity saturation at some high T , ruling out
bad metallicity. There is some indirect experimental evidence
[47] for such a behavior if the measured resistivity (at con-
stant pressure) is converted to the constant-volume resistivity
(which is the theoretically appropriate quantity [47]). Further
discussions of the actual cuprate resistivity values are beyond
the scope of the current work where our focus is only on the
qualitative role of having many phonon modes in the system,
and not a quantitative transport theory.

We mention that although we specifically discuss optimally
doped LSCO simply because this is where the most spectac-
ular linear-in-T resistivity has been experimentally reported
over a large temperature range, all our considerations remain
valid for other cuprates (e.g., YBCO) or for any material
with many phonon modes. One could wonder whether our
consideration applies away from optimal doping too, and in
principle, it does, but the cuprate band structure is extremely
complex away from optimal doping and shows localization at
low doping. Therefore, it will be a stretch to apply our theory
far away from optimal doping because our theory is the theory
for a good metal, and cuprates simply are not simple good
metals away from optimal doping. They become localized at
low doping, and manifest a ∼T 2 resistivity at high doping,
clearly indicating the appearance of competing physics arising
from strong electron-electron correlations.

V. CONCLUSIONS

We conclude by summarizing our results and emphasizing
the caveats. Our main finding is that having many phonon
modes in a system does not necessarily lead to a high-T elec-
tronic resistivity, which is nonlinear (and made of many linear
segments with different slopes). Our second finding is that the
experimental resistivity of LSCO is consistent with the Ioffe-
Regel-Mott constraint for the LSCO materials parameters, and
there is nothing strange or exotic about the LSCO resistiv-
ity being larger than the nominal 150 µ
 cm IRM limit for
normal metals. Both of these findings are suggestive, and all
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quantitative details would depend on the materials parameters,
which are generally not known in cuprates.

One aspect of physics we did not discuss at all is the
so-called Planckian behavior [1–4,10] where the transport
scattering rate h̄/τ becomes equal to or larger than kBT
because of the large resistivity of the system. For electron-
phonon scattering-limited resistivity, the Planckian behavior
happens trivially whenever λ > 0.16 simply by virtue of the
factor of 2π in Eq. (6). Thus, most normal metals manifest
Planckian behavior at room temperatures since the electron-
phonon scattering rate in most normal metals exceeds kBT
in the linear-in-T equipartition regime. This is not a mys-
tery or anything profound whatsoever since the scattering
in this equipartition regime is basically elastic. Thus, if
the cuprate resistivity in the linear-in-T regime arises from
electron-phonon scattering, the observed Planckian behavior
is guaranteed since the effective coupling strength must be
greater than 0.16. In fact, this would be true even if electron-
phonon scattering is contributing only partially to the cuprate
resistivity since it is unlikely that the effective coupling arising
from the many phonon modes in LSCO or YBCO is less
than 0.16. Therefore, one simple consequence of the resistive
mechanism in cuprates (even partially) being electron-phonon
interaction is an immediate physical explanation for the ob-
served Planckian behavior. If the applicable kF values are
small (i.e., small Fermi surface), then this linear-in-T strange
metallicity along with the Planckian behavior would persist
to TBG/5, which for small kF could be low since TBG ∼ kF .
Whether this actually happens in cuprates or not because of
electron-phonon scattering is beyond the scope of the current
paper.

The extent to which our findings in this paper apply to
realistically explaining LSCO transport properties remains an
open question, mainly because the actual materials parameters
for electron-phonon interaction for LSCO are not known ac-
curately, and we ignore all scattering mechanisms other than
phonon scattering at high temperatures. Moreover, from the
experimental data it is very difficult to identify the crossover
regime of the exponent of T in ρ, as it is very sensitive to
noise in the data. In addition, there is really no strict absolutely
linear-in-T resistivity anywhere even as a matter of principle,
with ρ(T ) crossing over from a high power in T (4 or 5)
for T � TD to a linear power for T � TD with the crossover
happening over a temperature range, which depends on all the
details as is obvious from our numerical results. The same is
often true for the experimental cuprate data with the resistivity
only being approximately linear at best at higher temperatures
as in the theory. Our paper is at best suggestive, providing an
incentive for further investigations of these questions using

realistic (which would necessarily be numerically intensive)
models of electron-phonon coupling in cuprates.

Finally, we mention that the subject of strange metallic-
ity and linear-in-T resistivity in cuprates (or more generally,
in strongly correlated materials) is a highly active research
area with many publications discussing the possibility of the
linear-in-T resistivity (and Planckian behavior) arising from
electron-electron interaction effects [1–4]. Some concrete ex-
amples of such theories (which should be construed as a
representative, and by no means, an exhaustive reference list
on the topic) can be found in Refs. [48–52]. We emphasize
that phonons are always present, and therefore, their contri-
bution to the linear-in-T resistivity is ever present even when
phonon scattering may not be the dominant scattering mech-
anism. An interesting unexplored question beyond the scope
of the current paper in this context is then why the linear-in-T
slope remains constant even for T > 100 K where phonons
are certainly producing a linear-in-T resistivity if indeed the
dominant resistive scattering mechanism is electron-electron
scattering. Any complete theory of carrier transport invok-
ing electron-electron interactions should not ignore phonon
scattering for T > 50 K (or so) since phonon scattering is
invariably present independent of the importance of electron-
electron scattering.

We emphasize that our focus is only on the linear-in-T
resistivity, showing that the existence of many phonon modes
does not generically destroy the high-temperature linear-in-T
resistivity in electronic materials. We also show that the ob-
served linear-in-T resistivity in LSCO is likely consistent with
a reasonable value of the electron-phonon coupling without
any anomalous violation of the Ioffe-Regel-Mott metallicity
bound. There are many other aspects of strange metallicity in
cuprates [1–5], which are beyond the scope of our work, and
future work should ask if some of them (e.g., magnetotrans-
port and Hall resistivity) could also be theoretically explained
by phonon scattering—this is beyond the scope of the current
paper. Finally, electron-electron interactions are undoubtedly
important in cuprates, and the effects of strong correlations
on the resistivity and on other aspects of strange metallicity
remain a most important open question in condensed matter
physics.
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