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Material science methods aim at developing efficient computational schemes for describing complex many-
body effects and how they are revealed in experimentally measurable properties. The Bethe-Salpeter equation in
the self-consistent Hartree-Fock basis is often used for this purpose, and in this paper we employ the real-
frequency diagrammatic Monte Carlo framework for solving the ladder-type Bethe-Salpeter equation for the
three-point vertex function (and, ultimately, for the system’s polarization) to study the effect of electron-hole
Coulomb scattering on Landau damping in the homogeneous electron gas. We establish how this damping
mechanism depends on the Coulomb parameter rs and changes with temperature between the correlated liquid
and thermal gas regimes. In a broader context of dielectric response in metals, we also present the full polarization
and the typical dependence of the exchange-correlation kernel on frequency at finite momentum and temperature
within the same computational framework.
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I. INTRODUCTION

Landau damping (LD) was originally introduced to de-
scribe the decay of charge oscillations in plasma [1]. Its
importance is hard to overestimate because it appears in
multiple physics contexts from electron liquids in metals
to nuclear matter, galactic dynamics [2], and interstellar
plasma turbulence [3] (for reviews, see Refs. [4,5]). In
condensed matter physics, the LD mechanism is most of-
ten associated with energy losses due to the creation of
electron-hole pair excitations [6] at frequencies � below
vF Q, where Q is the pair momentum and vF is the Fermi
velocity.

The standard way of characterizing energy losses in the
homogeneous electron gas (HEG) due to interactions be-
tween the charges is through the imaginary part of the
inverse dielectric function ε−1(Q,�), or, equivalently, the
system’s polarization �(Q,�); the two quantities are straight-
forwardly related by ε = 1 − V �, where V (Q) = 4πe2/Q2

is the Coulomb potential. In what follows we define the LD
coefficient as the quantity controlling the slope of the linear
low-frequency dependence of Im �,

Im �(Q,�) = −γLD
�

v
(0)
F Q

, � � v
(0)
F Q � εF . (1)

Here, v
(0)
F = kF /m and εF = k2

F /2m are the Fermi velocity
and Fermi energy of the ideal gas, respectively, and m is the
electron mass. In a noninteracting system at zero tempera-
ture the LD coefficient is proportional to the Fermi-surface
density of states, γLD = (π/2)ρ (0)

F , with ρ
(0)
F = mkF /π2. For

convenience, below we measure momenta in units of kF and
energies in units of εF . By the Luttinger theorem, the electron
number density is given by n = k3

F /3π2.
The HEG model describes electrons interacting via the

long-range Coulomb force on a positively charged neutraliz-
ing background.

The corresponding Hamiltonian is defined by

H =
∑

i

k2
i

2m
+

∑

i< j

e2

|ri − r j | − μN. (2)

The strength of the many-body correlations is characterized
by the Coulomb parameter rs = (4πa3

Bn/3)−1/3, which mea-
sures the interparticle distance in terms of the Bohr radius
aB = 1/me2.

The ideal gas zero-temperature expression for γLD im-
mediately follows from the widely used random phase
approximation (RPA) when the polarization is estimated from
the lowest-order contribution �(0) shown by Fig. 1(a). How-
ever, using a simple analogy with the exciton problem in
insulators, where a Coulomb interaction leads to radical
changes in the behavior of the particle-hole pair at the lowest
energies and the formation of the bound state, one should
expect that the value of γLD in metals is also strongly affected
by the Coulomb force between the created electron and hole.
The crucial difference, of course, is that in metals interactions
are screened at low frequency. The physics in question is
described by the series of ladder diagrams shown in Fig. 1(b).
Within the field-theoretical framework, the problem boils
down to calculating the polarization � using the dressed
three-point vertex function 	(3) [see Fig. 1(c) and Ref. [7]]. In
this reformulation, summing up the series of ladder diagrams
is equivalent to solving the Bethe-Salpeter equation (BSE) [8]
for 	(3) presented schematically in Fig. 1(e).

The summation of ladder diagrams for the polarization
must be supplemented by the simultaneous renormalization
of the electron Green’s function G by considering noncross-
ing diagrams for the proper self-energy, 
 = 
F , which is
equivalent to the self-consistent Hartree-Fock (HF) approx-
imation when G−1 = G−1

0 − 
F [G] [see Fig. 1(d)]. Due to
the charge neutrality of HEG the Hartree contribution is ab-
sent. Thus, working in the HF basis not only guarantees
that the plasmon frequency obtained from the solution of the
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FIG. 1. (a) The lowest-order polarization diagram �(0); (b) scat-
tering of the electron-hole pair interacting via potential W ; (c) ex-
pressing the polarization in terms of the dressed three-point vertex
	(3); (d) self-consistent Fock self-energy diagram; (e) Bethe-Salpeter
equation for the vertex function 	(3)(k, ω; Q, �) dressed by ladder
diagrams. Solid lines represent Green’s functions in the HF basis
and wavy lines represent the static screened interaction W (k) (see
the Method section).

Re ε(Q → 0, ωp) = 0 equation is not shifted relative to the
exact result ωp =

√
4πne2/m (see Ref. [9]), but also radically

simplifies calculations by eliminating the need for dealing
with self-energy-type diagrams order by order.

In this paper we apply the above field-theoretical setup
(abbreviated as HF-BSE) to compute the system’s polarization
in a wide range of temperatures at metallic values of the
Coulomb parameter rs and extract the LD coefficient from
its imaginary part at small frequencies. This allows us to
quantify the effects of pair scattering on top of the Fermi
surface and reveal finite-temperature effects as the system
evolves from the correlated liquid state to the nondegener-
ate gas regime at T � εF . Finally, by extending simulations
to arbitrary frequency and comparing to results obtained
within a high-order diagrammatic scheme, we quantify the
role of “beyond HF-BSE” diagrams and establish the typ-
ical functional form of the exchange-correlation kernel at
nonzero momentum and temperature within the HF-BSE
approach, which is important for the modeling of mate-
rial dynamics within the time-dependent density functional
theory (TDDFT) (see, for instance, Ref. [10] and refer-
ences therein), and is considered to be one of the most
important challenges in the modern theory of the electron
liquid [11].

II. METHOD

Most finite-temperature many-body calculations for corre-
lation functions proceed by first solving the problem in the
Matsubara representation [12] and then applying the numeric
analytic continuation to the real-frequency axis in order to

link theoretical results with experimental probes. However,
the final step is ill conditioned and often distorts impor-
tant spectral features (especially at low frequency) even for
very accurate imaginary-frequency data [13]. Instead, we rely
on the diagrammatic Monte Carlo (diagMC) technique for
computing �(Q,�) from the ladder-diagram series directly
on the real-frequency axis. It was introduced in our previ-
ous work [14] and here we apply it with minor technical
modifications.

The key observation made in Refs. [15–17] was that in-
tegration over Matsubara frequencies and the Wick rotation,
i� → � + i0, of the final result to the real-frequency axis for
an arbitrary Feynman diagram formulated in terms of instan-
taneous interactions and “coherent” Green’s functions, G−1 =
iωm − ε(k), can be performed analytically; the corresponding
automatic protocol is called an algorithmic Matsubara inte-
gration (AMI). For an analogous procedure in the real-time
domain, see Refs. [18,19]. The AMI protocol was recently
used for computing the polarization of the HEG [20] by con-
sidering a Taylor series expansion in the Yukawa potential
[21,22]. However, the original formulation of the method was
based on the nonzero regularization parameter η > 0 in the
Wick rotation i� → � + iη to avoid divergent statistical mea-
sures. On the one hand, simulations with nonzero η introduce
a systematic bias. On the other hand, simulations with very
small η, which are required to quantify the bias, are suffering
from large statistical errors; this problem is especially severe
for high-order diagrams and limits the accessible expansion
orders.

An explicit procedure for taking the η → 0 limit and elimi-
nating singular statistical contributions from simple poles was
proposed in Ref. [23] and its first implementation for a series
of ladder diagrams was reported in Ref. [14]. While specif-
ically designed and optimized for a limited set of diagrams,
the η = 0 scheme is very efficient and allows one to accurately
compute contributions from expansion orders high enough for
obtaining converged results or for using reliable resummation
protocols for divergent series.

In all previous AMI simulations of the HEG the dia-
grammatic series were formulated in terms of the Yukawa
potential with some screening momentum κ (expansion in
terms of the bare Coulomb potential is ill defined) and κ

counterterms. This is an exact procedure within the gen-
eral shifted-action approach [24], and one among infinitely
many ways of formulating different diagrammatic expansions
in terms of dressed, or renormalized, quantities. It allows
one to expand in terms of an arbitrary potential W (k) and
counterterms C(k) = 1/V (k) − 1/W (k). If W is chosen to be
the Yukawa potential one faces the problem of selecting the
“best” κ value. As famously advocated by Stevenson [25],
the best choice is the one least sensitive to variations in κ

(see also Ref. [21]). However, for the ladder-diagram series
Ref. [14] established that the polarization is nearly indepen-
dent of the choice of the screening momentum if κ ∼ κTF,
where κTF is the Thomas-Fermi momentum. This observation
suggests (and calculations explicitly verify the expectation)
that equally accurate results are obtained for expansion in
powers of W (k) = V (k)/[1 − V (k)�RPA(k, ω = 0, T = 0)],
where �RPA is the polarization of the ideal gas (the so-called
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FIG. 2. Landau damping coefficient γLD for different values of
the Coulomb parameter rs as functions of temperature within the
HF-BSE approach. Simulations were performed at small values of
the transfer momentum Q/kF = 0.1. For comparison, the two lowest
curves are computed within the HF-RPA at nonzero temperature, i.e.,
from the �(0) diagram in Fig. 1(a), at rs = 1 and rs = 4, and the
brown half-solid symbols show predictions of the high-order AMI
simulations [20] for rs = 1 (triangle) and rs = 2 (circle). Error bars
are within the symbol sizes. The dashed line is the asymptotic ideal
gas law.

Lindhard function). All our calculations were done using this
form of W (k).

Finally, we note that the self-consistent HF solution for
the Green’s function amounts to replacing the parabolic
dispersion relation ε (0)(k) = k2/2m − μ (counting energies
from the chemical potential) with the HF expression ε(k) =
k2/2m + 
F (k) − μF , which preserves the simple pole struc-
ture of G. The chemical potential μF is self-consistently
adjusted to keep the electron density fixed. Monte Carlo
simulations of the HF-BSE scheme described above are nu-
merically exact and do not introduce any bias beyond the
diagrammatic approximations.

III. LANDAU DAMPING

Our results for LD coefficient are summarized in Fig. 2.
The strongest renormalization of γLD takes place at low tem-
perature, T/εF � 1, in the correlated Fermi-liquid regime.
The effect of Coulomb interactions is to increase γLD and it is
getting more pronounced at larger values of rs. One may won-
der whether this behavior is the result of multiple rescattering
of the electron-hole pair on top of the Fermi surface or, at least
partially, from working in the HF basis with the renormalized
dispersion relation. To answer this question we also show
results based on the �(0) contribution, which is equivalent
to the RPA in the HF basis (HF-RPA) (see the lowest two
curves in Fig. 2). Clearly, the HF basis has little to do with the
large increase of Landau damping with interactions—close to
a factor of 2 at rs = 4. Our results demonstrate that for the

F

FF

FIG. 3. Partial contributions to Im � as functions of frequency at
T/εF = 0.01, rs = 4, and Q/kF = 0.1. Each contribution represents
a ladder diagram containing from 0 [RPA-HF, see Fig. 1(a)] to 5 [see
Figs. 1(c) and 1(e)] interaction lines.

HEG system the RPA estimates for Landau damping are rather
inadequate at low temperature and the problem is progres-
sively more severe at larger rs. Even at rs = 1 the T = 0 value
is significantly affected by the Coulomb scattering of the pair.

Nonzero temperature effects on γLD become visible at
T/εF > 0.1, and around T/εF ∼ 1 we observe a smooth
crossover to the classical gas behavior. After a signifi-
cant drop from the T = 0 values, all curves for different
values of rs collapse at T/εF > 2 on the asymptotic ideal-
gas high-temperature expression γLD = a(εF /T )3/2 with a =
(2

√
π/3)ρ (0)

F .
To gauge the role of other diagram topologies on γLD,

we also show in Fig. 2 (brown half-solid symbols) pre-
dictions of the AMI simulations reported in Ref. [20] and
conclude that for Landau damping the contributions from
these diagrams nearly cancel except at frequencies � > vF Q
where nonzero spectral density at T = 0 is due to multi-
ple (e − h) pairs not included in the ladder-type HF-BSE
scheme.

Finally, we would like to note that the ladder-diagram
series for γLD are well converged. In Fig. 3 we show partial
contributions to Im � from diagrams of various orders—all
curves (i) linearly extrapolate to the origin [see Eq. (1) for the
definition of LD], and (ii) clearly demonstrate that contribu-
tions beyond the fifth order are negligible. The computational
cost of the HF-BSE calculations is moderate; it takes about
2 days to produce all data in Fig. 2 using a 16-core desktop
computer.

IV. EXCHANGE-CORRELATION KERNEL

In the absence of precise data for the frequency dependence
of the HEG polarization, one of the most promising attempts
to include effects of interactions on dynamics in compari-
son with the RPA solution is the exchange-correlation kernel
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FIG. 4. Real (left panels) and imaginary (right panels) parts of
the polarization (upper panels) and the exchange-correlation kernel
(lower panels) within the HF-BSE formalism and high-order dia-
grammatic AMI scheme with finite regularization parameter η as
functions of frequency at T/εF = 0.1, rs = 2, and Q/kF = 0.2.

approach. The kernel is formally defined by

Kxc(Q,�, T ) = �−1
RPA(Q,�, T ) − �−1(Q,�, T ), (3)

and this framework is used to suggest various functional
dependencies of Kxc constrained by exact sum rules and
ground state energy dependence on density (see Ref. [10] and
references therein). In this work we examine the structure of
Kxc within the HF-BSE scheme directly from the accurate �

and �RPA calculations and demonstrate how it depends on fre-
quency at a finite value of momentum and temperature. This
information cannot be deduced from sum rules and ground
state energies and is considered to be very challenging [11].

To obtain the kernel, we extend the frequency range of
simulations all the way to �/εF � 1 where Kxc saturates to
a plateau. In the upper panels of Fig. 4 we present a direct
comparison between the HF-BSE and high-order AMI results
of Ref. [20] for polarization in the degenerate Fermi-liquid
regime. It reveals that all AMI data are reproduced by the
HF-BSE scheme very accurately, both for real and imaginary
parts of �. This further supports an earlier observation that
at this level of comparison the contributions of high-order
diagrams other than ladder type nearly cancel out and account
only for small corrections.

However, since Kxc is defined as the difference between
the �−1 functions, even tiny variations between � and �RPA

are magnified by orders of magnitude in regions where ei-
ther function is small (note that Re � changes sign at �

slightly below vF Q). It is thus not surprising that HF-BSE
and AMI results of Ref. [20] for Kxc appear very different
quantitatively (see the lower panels in Fig. 4), while having
the same characteristic shape in the vicinity of �/εF ∼ 1. The
advantage of the HF-BSE scheme is that it is far more efficient

(despite going to higher expansion orders for ladder-type dia-
grams to obtain converged results) and takes the η → 0 limit
exactly. As a result, it allows one to obtain precise data at
high frequency where previous simulations failed because of
exploding error bars.

The HF-BSE exchange-correlation kernel has the same
key properties established in Ref. [20]: Both real and imagi-
nary parts feature a nonmonotonic behavior with two extrema
around � ∼ vF Q with the imaginary part violating causality
at low frequency in contrast to early assumptions. On the one
hand, these features reflect a strong renormalization of the
LD coefficient while preserving the total spectral weight of
the (e − h) continuum, which leads to several crossing points
between the real and imaginary parts of � and �RPA (see
Refs. [14,20]). On the other hand, they were missed in the
phenomenological modeling of the kernel for lack of convinc-
ing evidence/arguments. Thus, we attribute the nonmonotonic
behavior of Kxc to the processes in the (e − h) continuum that
can only be captured by high-order techniques; in particular,
one has to account for Coulomb scattering of the (e − h) pair
nonperturbatively.

Clearly, accurate calculations of Kxc are much more de-
manding than calculations of � or the charge response
function χ = �/ε, especially at frequencies where either �,
or �RPA, or both functions are getting very small. The latter
situation takes place at high frequency when both functions
go to zero while the difference between the two is approach-
ing zero even faster. This is why observing the plateau in
Kxc = (� − �RPA)/(��RPA) is challenging numerically and
requires a theoretical scheme where vertex corrections and
self-energy renormalization of G are properly balanced.

V. CONCLUSIONS

Using the recently developed real-frequency diagrammatic
Monte Carlo technique [14] for solving the Bethe-Salpeter
equation in the Hartree-Fock basis at nonzero temperature
for the ladder-type three-point vertex convoluted with two
Green’s functions, we studied the effect of Coulomb scattering
on the electron-hole pair creation process responsible for the
Landau damping coefficient. We found that vertex corrections
on top of the RPA result (in the Hartree-Fock basis) in the
degenerate (T/εF → 0) homogeneous electron gas strongly
renormalize γLD towards a larger value even at rs = 1, and
this effect is getting more pronounced with increasing the
Coulomb parameter. On approach to the classical gas limit
(at T/εF > 2) the vertex corrections become negligible at all
values of rs and γLD follows the ∝T −3/2 law.

Within the same theoretical framework we also studied
the frequency dependence of the exchange-correlation kernel
and found that it features a highly nonmonotonic behavior
around � ∼ vF Q and lacks casuality at � < vF Q, in agree-
ment with previous results based on the full (but relatively
low-order) diagrammatic expansion and nonzero parameter
for the regularization of poles. These results demonstrate that
starting from expansion in terms of the static screened in-
teraction, solving the self-consistent Hartree-Fock equations,
and performing a summation of the ladder-diagram series for
the polarization, we have an efficient computational scheme
that captures most of physics correctly despite dealing with
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a limited set of diagrams. Future work should explore the
possibility of upgrading the scheme to the expansion in terms
of dynamically screened interaction when the self-consistent
Hartree-Fock is replaced with the self-consistent GW0

approximation.
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