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Alkali superoxides AO2 (A = Na, K, Rb, Cs), due to an open p shell of the oxygen ion O−
2 with degenerate π

orbitals, have spin and orbital degrees of freedom. The complex magnetic, orbital, and structural phase transitions
observed experimentally in this family of materials are only partially understood. Based on density functional
theory, we derive a strong-coupling effective model for the isostructural compounds AO2 (A = K, Rb, Cs)
from a two-orbital Hubbard model. We find that CsO2 has highly frustrated exchange interactions in the a-b
plane, while the frustration is weaker for RbO2 and KO2. We solve the resulting Kugel-Khomskii model in the
mean-field approximation. We show that CsO2 exhibits an antiferro-orbital (AFO) order with the ordering vector
q = (1, 0, 0) and a stripe antiferromagnetic order with q = (1/2, 0, 0), which is consistent with recent neutron
scattering experiments. We discuss the role of the π -orbital degrees of freedom for the experimentally observed
magnetic transitions and interpret the as-yet-unidentified Ts2 = 70 K transition in CsO2 as an orbital ordering
transition.
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I. INTRODUCTION

O2 is a unique molecule that possesses a magnetic moment
S = 1 on its own. Solid oxygen, in which O2 molecules are
aggregated by the van der Waals force, exhibits a variety
of electronic properties such as antiferromagnetism, metal-
to-insulator transition [1], and superconductivity [2] under
temperature and pressure variations.

Another interesting system composed of O2 molecules is
an ionic crystal, where O2 molecules act as electron acceptors
for the counter metal ions. Alkali superoxides AO2 (A = Na,
K, Rb, Cs) are famous examples of such compounds [3]. The
O−

2 ion has three electrons in the antibonding π∗
g orbitals,

which consist of two orbital states with symmetries similar
to dzx and dyz. Hence, one hole per O−

2 molecule having spin
S = 1/2 and orbital degrees of freedom dominate the low-
temperature physical properties. As a consequence, spin and
orbital physics as in d electron systems are expected.

Electronically, alkali superoxides exhibit insulating behav-
ior for all temperatures. Since the unit cell contains an odd
number of electrons, the insulating behavior is ascribed to
the Coulomb repulsion. A first-principles assessment with
dynamical mean-field theory for RbO2 concluded that RbO2

is indeed a Mott insulator [4]. This indicates that AO2 (A = K,
Rb, Cs) are strongly correlated electron systems consisting of
π electrons.

Three compounds KO2, RbO2, and CsO2 with the ex-
ception of NaO2 take the same crystal structure at room
temperature [5–9]. The temperature variation of crystal struc-
ture and magnetic properties is summarized in Fig. 1. Above
400 K, AO2 exhibits the cubic NaCl-type (Fm3̄m, no. 225)
crystal structure, in which O2 molecules are disoriented
(phase I). At around room temperature, the O2 molecules
are oriented parallel to the c axis (phase II), and the crystal

structure of AO2 becomes tetragonal (I4/mmm, no. 139) with
a = b < c. Figure 2(a) shows the crystal structure in phase II.
Phases below 200 K are material dependent, although there
is a tendency that a smaller alkali radius leads to a lower
symmetry. KO2 undergoes two steps of symmetry lowering
to monoclinic at T = 196 K and to triclinic at T � 10 K [7].
RbO2 first loses the fourfold symmetry to become orthorhom-
bic (Immm, no. 71) with a �= b at T = 194 K and is slightly
distorted to γ = 90.6◦ (angle between a and b axes) to become
monoclinic below T = 90 K [9,10]. CsO2 undergoes only one
structural transition from tetragonal to orthorhombic (Immm)
at T = Ts1 � 150 K [7,11].

Magnetic properties of KO2 and RbO2 follow the Curie-
Weiss law. A transition to the antiferromagnetic (AFM) state
has been observed at TN � 10 K and TN � 15 K, respectively
[8]. The magnetic structure of KO2 has been identified to be
AFM with ordering vector q = (1, 0, 0) in units of the recipro-
cal lattice vector of the conventional unit cell [12]. For RbO2,
the magnetic structure has not been determined, although
full magnetic volume fraction has been confirmed [10]. On
the other hand, CsO2 shows peculiar magnetic properties.
The susceptibility χ (T ) in CsO2 follows the Curie-Weiss law
down to T = Ts2 � 70 K [11,13]. Below Ts2, χ (T ) takes a
maximum and is suppressed as T decreases. This indicates
a development of short-range spin correlations. It is reported
that χ (T ) in this region is well fitted by the Bonner-Fisher
function, which was taken to suggest that the magnetic prop-
erties are described by the one-dimensional antiferromagnetic
Heisenberg model [11,13]. At T = TN = 9.6 K, an AFM tran-
sition takes place [8]. Recent neutron scattering experiments
revealed a stripe-type magnetic structure [14,15]. Two experi-
ments proposed different propagation vectors q = (0, 1/2, 0)
[14] and q = (1/2, 0, 0) [15], in the orthorhombic structure
with a < b.
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FIG. 1. Summary of the structural phase transitions and magnetic
properties in CsO2, RbO2, and KO2 [5,7–9].

These experimental results demonstrate the diverse struc-
tural and magnetic properties in AO2 (A = K, Rb, Cs). For a
comprehensive understanding, the following two issues need
to be addressed: (i) What is the relevant microscopic con-
trol parameter that governs the physical properties in AO2?
An apparent parameter that systematically changes for dif-
ferent A atoms is the lattice parameter, which increases in
the order of K, Rb, and Cs. However, it is highly nontrivial
why the short-range correlations are clearly observed only in
CsO2, which has the largest O2–O2 distance. We thus raise
a more specific issue: (ii) What is the electronic state of
CsO2? The role of the orbitals in the magnetic properties is of
particular interest.

FIG. 2. (a) Structure of tetragonal CsO2 (I4/mmm space group).
(b) Wannier functions of oxygen π∗

g orbitals in (πa, πb) basis and in
(πa+b, πa−b) basis.

Theoretical studies have addressed the electronic structure
in RbO2 [4,16–18] and KO2 [19–23]. Regarding the correlated
magnetic behavior in CsO2, Riyadi et al. proposed a zigzag
orbital ordered state [13]. By assuming only hopping between
O2-π∗

g and Cs-5p, they argue that superexchange interaction
is allowed only on a one-dimensional zigzag path in the a-b
plane. The magnetic properties have been investigated by
NMR [24], electron paramagnetic resonance [25], and high-
field magnetization measurement [11].

In this paper, we derive an effective spin-orbital model for
AO2 based on first-principles calculations. We will demon-
strate that geometrical frustration is the key element that
constitutes a difference between A atoms: The frustration
plays a crucial role in CsO2 but is less important in KO2

and RbO2. With a mean-field calculation, we will propose
an alternative type of orbital order in CsO2 that leads to
the magnetic state with the experimentally observed stripe
AFM order.

The rest of this paper is organized as follows. We first
derive the electronic structure of AO2 and an approximate
tight-binding model in Sec. II. Using perturbation theory, we
derive an effective model describing intersite spin and orbital
interactions in Sec. III. Possible spin and orbital phase transi-
tions are identified using the mean-field (MF) approximation
in Sec. IV. Based on these results, we discuss implications for
AO2 in Sec. V. Results are summarized in Sec. VI.

II. ELECTRONIC STRUCTURE

We perform our density functional theory calculations us-
ing the all electron full potential local orbital (FPLO) basis
set [26]. We use the generalized gradient approximation ex-
change correlation functional [27]. In order to extract suitable
tight-binding models, we employ the symmetry preserving
projective Wannier functions of FPLO [28]. We base our
calculation on the structures specified in Table I.

Figure 3(a) shows the band structure and density of states
of the room-temperature structure of CsO2 (I4/mmm space
group). The k path is a standard one for the body-centered
tetragonal structure [29,30]. There are only two π�

g orbitals
of oxygen near the Fermi level. The weights of the two π∗

g
Wannier functions are shown in Fig. 3(b). The weights are
not equally distributed in the path segments Y − � and Z − P
along which either only kx or only ky changes. The dispersion
of the two π�

g bands of RbO2 and KO2 at room temperature
(I4/mmm structure) is very similar to CsO2.

Figure 4 shows the results for the T = 40 K structure of
CsO2 (Immm space group). At �, the πb band is 14 meV
below the πa band because the b axis is 0.7% longer than the
a axis. RbO2 in Immm space group (T = 130 K structure)
exhibits a similar dispersion of π�

g orbitals near the Fermi
level.

The band structure near the Fermi level can be well de-
scribed by a two-orbital tight-binding model consisting of the
π∗

g orbitals. Figure 2(b) shows Wannier orbitals of the π∗
g in

two sets of representations. The (πa, πb) basis describes or-
bitals that extend along a and b axes, which have a symmetry
similar to dzx and dyz. On the other hand, (πa+b, πa−b) basis
describes orbitals that extend to the [110] and [11̄0] directions.
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TABLE I. Crystal structures used in the density functional theory calculations. O z positions in brackets are obtained by structure
optimization within GGA.

Material SG T [K] a [Å] b [Å] c [Å] O z Ref.

CsO2 Immm 40 4.37164 4.40176 7.34214 0.412030 (0.408076) [9]
CsO2 I4/mmm 300 4.46529 = a 7.32980 0.422770 (0.407922) [9]
RbO2 Immm 130 4.14325 4.16334 7.00745 0.40656 (0.403463) [9]
RbO2 I4/mmm 300 4.20866 = a 7.00572 0.407160 (0.403441) [9]
KO2 I4/mmm 298 4.03334 = a 6.69900 0.40450 (0.399067) [31]

These representations are converted to each other by(
|πa−b〉
|πa+b〉

)
= 1√

2

(
1 −1

1 1

)(
|πa〉
|πb〉

)
. (1)

Figure 5 shows three kinds of dominant bonds, which in-
clude the hopping along the a or b axis (denoted by l = a,
b), the diagonal hopping in the a-b plane (l = a + b), and
the hopping between the corner site and the body-center site
(l = BC). The hopping matrix tγ γ ′

i j becomes diagonal in the
(πa, πb) basis for l = a and b, and diagonal in the (πa+b,
πa−b) basis for l = a + b and BC. We assign two eigenvalues
to π and δ hopping following the usual convention [32], and

FIG. 3. (a) Band structure and density of states of CsO2 in
I4/mmm space group (T = 300 K structure). The k points are de-
fined in [30]. (b) Wannier fit of the two bands near EF with weights
of the πa and πb Wannier orbitals.

represent them by t l
π and t l

δ , respectively. The hopping param-
eters computed using DFT and projective Wannier functions
are summarized in Table II. The tight-binding bands computed
only with the hoppings along three paths in the tetragonal
case and along four paths in the orthorhombic case perfectly
reproduce the original dispersion in Figs. 3 and 4. In order
to characterize differences in the hopping parameters between
the three compounds, we introduce two kinds of dimension-
less parameters as follows. Firstly, the ratio between t l

π and
t l
δ for each bond l is defined as rl ≡ t l

δ/t l
π . Table II indicates

that |rl | ranges from 0 to 0.68 depending on the bond and
A atoms. Here, we averaged ra and rb as rab ≡ (ra + rb)/2.

FIG. 4. (a) Band structure and density of states of CsO2 in Immm
space group (T = 40 K structure). The k points are defined in [33].
(b) Wannier fit of the two bands near EF with weights of the πa and
πb Wannier orbitals.
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TABLE II. The hopping parameters, t l
π and t l

δ , for AO2 in units of meV. Other quantities, t , θ , φ, and rl , are defined from t l
π and t l

δ . See
Eqs. (2)–(4) for the definitions. “opt O z” means the use of the optimized O z positions (the values in the brackets in Table I).

Material SG t a
π t a

δ t b
π t b

δ t a+b
π t a+b

δ tBC
π tBC

δ t θ φ rab ra+b rBC

(i) CsO2 Immm 39 23 36 24 –38 –2 –82 22 84 16.6◦ 45.8◦ 0.63 0.05 –0.27
(ii) CsO2 Immm (opt O z) 36 22 33 23 –34 0 –80 21 81 14.5◦ 43.6◦ 0.66 0.01 –0.26
(iii) CsO2 I4/mmm 55 27 55 27 –43 –1 –102 30 105 18.8◦ 31.4◦ 0.49 0.02 –0.29
(iv) CsO2 I4/mmm (opt O z) 32 19 32 19 –28 0 –78 20 79 12.0◦ 37.4◦ 0.59 0 –0.26
(v) RbO2 Immm 55 15 53 15 –28 0 –94 26 97 18.9◦ 15.0◦ 0.27 0 –0.29
(vi) RbO2 Immm (opt O z) 52 14 50 14 –26 0 –92 25 95 17.7◦ 14.6◦ 0.28 0.02 –0.27
(vii) RbO2 I4/mmm 52 13 52 13 –25 –1 –92 26 94 18.2◦ 13.0◦ 0.25 0.04 –0.28
(viii) RbO2 I4/mmm (opt O z) 48 12 48 12 –23 0 –90 25 92 16.6◦ 12.8◦ 0.25 0.02 –0.27

KO2 I4/mmm 68 6 68 6 –19 –1 –109 31 113 21.3◦ 4.5◦ 0.09 0.05 –0.28
KO2 I4/mmm (opt O z) 63 5 63 5 –17 0 –107 30 110 19.3◦ 4.1◦ 0.08 0.02 –0.23

Secondly, the relation between different bonds is represented
by three-dimensional polar coordinates defined by(

tBC
π

)2 = t2 cos θ, (2)(
t ab
π

)2 = t2 sin θ cos φ, (3)(
t a+b
π

)2 = t2 sin θ sin φ, (4)

where (t ab
π )2 ≡ [(t a

π )2 + (tb
π )2]/2. Here, we consider the

square of the hopping parameters because the effective inter-
site exchange interactions are proportional to t2 rather than
t itself (Sec. III). A graphical interpretation of θ and φ is
presented in Fig. 6. The north pole corresponds to a system
with only the nearest-neighbor hopping tBC, while the equa-
tor corresponds to a two-dimensional square lattice model
with t a and t a+b. Combinations of two or more hopping
parameters lead to geometrical frustration of the exchange
interactions. In particular, φ = 45◦ leads to a two-dimensional
frustration within the a-b plane, while θ = 45◦ leads to a
three-dimensional frustration between l = BC bond and in-
plane bonds.

FIG. 5. Relevant transfer integrals between π∗
g orbitals on the

O−
2 ions.

DFT estimates of θ and φ are presented in Table II and
marked with symbols in Fig. 6. The AO2 series is located
in the θ < 45◦ region, which means that the l = BC bond
is the largest and three-dimensional hopping plays a major
role. Regarding the hopping in the a-b plane, CsO2 is located
around φ = 45◦, which indicates that CsO2 is characterized by
two-dimensional frustration between l = a and a + b bonds.
This frustration is largest in CsO2 and tends to get weaker for
smaller alkali ions.

III. STRONG-COUPLING EFFECTIVE MODEL

Since AO2 (A = K, Rb, Cs) are Mott insulators [4], we
employ a strong-coupling effective model that describes inter-
site exchange interactions between localized spin and orbital
degrees of freedom. We first compare two kinds of ex-
change interactions, and then derive an explicit form of the
Hamiltonian.

FIG. 6. Parameterization of the bond dependence of the transfer
integrals using polar coordinates. The symbols indicate the DFT
estimates for CsO2, RbO2, and KO2 (only results without the opti-
mization are shown).
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A. Comparison between two perturbation processes for the
exchange interactions

There are two perturbation processes that give rise to in-
tersite exchange interactions between π∗

g electrons on the O−
2

ions. One is the second-order process of the O−
2 –O−

2 hopping,
and the other is the fourth-order superexchange process of the
O−

2 –Cs+ hopping. The coupling constant in the second-order
process J (2) is estimated to be

J (2) ∼ t2

U
, (5)

where U is the Coulomb repulsion between two electrons on
the same orbital. On the other hand, the coupling constant in
the fourth-order process through Cs+ ions J (4) is estimated
to be

J (4) ∼ (tCs-O2 )4

U
2
5p

, (6)

where tCs-O2 is the hopping amplitude between the O2-π∗
g

orbital and the Cs-5p orbital. We estimated tCs-O2 by pro-
jecting the energy dispersion in Fig. 4 onto an eight-band
tight-binding model consisting of O2-π∗

g , πu, σg, and Cs-5p
orbitals. We thus concluded that tCs-O2 is the same order as
t in the two-band model, namely, t ∼ tCs-O2 . Hence, the ratio
between J (2) and J (4) is estimated as

J (4)

J (2)
∼ t2


2
5p

∼ 10−4. (7)

Here, we used t ∼ 0.1 eV (Table II) and 
5p ∼ 8 eV (Fig. 4).
Therefore, we consider from now on only the second-order
process from the direct O2–O2 hopping, neglecting the fourth-
order superexchange process through Cs.

B. Derivation of the interactions

In order to derive the spin-orbital exchange interactions,
we begin with the two-orbital Hubbard model consisting of
the π∗

g orbitals, πa and πb. The Hamiltonian reads

H =
∑
〈i j〉

∑
γ γ ′σ

tγ γ ′
i j (c†

iγ σ c jγ ′σ + H.c.) + U
∑

iγ

niγ↑niγ↓

+ U ′ ∑
iγ>γ ′

niγ niγ ′ + JH

∑
iσσ ′γ>γ ′

c†
iγ σ c†

iγ ′σ ′ciγ σ ′ciγ ′σ

+ J ′
H

∑
iγ �=γ ′

c†
iγ↑c†

iγ↓ciγ ′↓ciγ ′↑, (8)

where ciγ σ is the annihilation operator for site i, orbital γ ,
and spin σ , and niγ σ = c†

iγ σ ciγ σ is the number operator. The
first term represents the electron hopping between site i and
site j. The symbol 〈i j〉 stands for the pairs of neighboring O2

sites shown in Fig. 5. The second and third terms represent the
intra-orbital and interorbital Coulomb repulsion, respectively.
The fourth and fifth terms represent the Hund’s rule coupling
and the pair hopping interaction, respectively.

We consider the Mott insulating state with the occupation
number n = 3 per site. For convenience, we treat this as
n = 1 from now on, using a hole picture. Note that the relation

FIG. 7. A diagram for the orbital (pseudospin) operators and the
orbital states. The orbital on the right (left) represents the eigenstate
of the operator T z with the eigenvalue +1/2 (−1/2). The orbital state
is rotated around the c axis by ϕ/2 as the operator is rotated by ϕ in
the pseudospin space.

between orbital states and lattice distortion is reversed in the
hole picture, though the effective Hamiltonian derived below
is the same for n = 1 and n = 3. The local electronic degrees
of freedom in the Mott insulating state are described by the
spin and orbital (pseudospin) operators defined by

Si = 1

2

∑
γ σσ ′

c†
iγ σ σσσ ′ciγ σ ′ , (9)

T i = 1

2

∑
γ γ ′σ

c†
iγ σ σγ γ ′ciγ ′σ , (10)

where σ = (σ x, σ y, σ z ) is the Pauli matrix. The eigenstates of
T z are |πa〉 and |πb〉 orbitals, which extend along the a and
b axes, respectively [Fig. 2(b)]. On the other hand, the eigen-
states of T x describe |πa+b〉 and |πa−b〉 orbitals that extend
to the diagonal direction [Fig. 2(b)], because the (πa+b, πa−b)
basis is obtained by linear combination of (πa, πb) as given
in Eq. (1). In general, we can describe the orbital state in an
arbitrary direction by rotating T z and T x in the pseudospin
space as

T̃ z(ϕ) = T z cos ϕ + T x sin ϕ,

T̃ x(ϕ) = −T z sin ϕ + T x cos ϕ. (11)

Figure 7 shows the variation of the eigenstates of the operators
T̃ z(ϕ) and T̃ x(ϕ). The orbital state is rotated by ϕ/2 around
the c axis.

In second-order perturbation theory around the atomic
limit with respect to the hopping, we can derive Kugel-
Khomskii (KK) interactions [34] for alkali superoxides.
We present only the result below, and refer readers to
Refs. [35,36] for general derivation of the KK interaction. The
effective Hamiltonian Heff for the n = 1 subspace of the π∗

g
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system is given by

Heff = − 2
∑
〈i j〉

Jl
1

(
3

4
+ Si · S j

){
[1 + (rl )2]

(
1

4
− τ l

i τ
l
j

)
− rl

(
τ l+

i τ l−
j + τ l−

i τ l+
j

)}

− 2
∑
〈i j〉

Jl
2

(
1

4
− Si · S j

){
[1 + (rl )2]

(
1

4
− τ l

i τ
l
j

)
+ rl

(
τ l+

i τ l−
j + τ l−

i τ l+
j

)}

− 2
∑
〈i j〉

J ′l
2

(
1

4
− Si · S j

)[(
1

2
+ τ l

i

)(
1

2
+ τ l

j

)
+ (rl )2

(
1

2
− τ l

i

)(
1

2
− τ l

j

)
− rl

(
τ l+

i τ l+
j + τ l−

i τ l−
j

)]

− 2
∑
〈i j〉

Jl
3

(
1

4
− Si · S j

)[(
1

2
+ τ l

i

)(
1

2
+ τ l

j

)
+ (rl )2

(
1

2
− τ l

i

)(
1

2
− τ l

j

)
+ rl

(
τ l+

i τ l+
j + τ l−

i τ l−
j

)]
, (12)

where l is the bond index that takes the values a, b, a + b,
a − b, BC, or BC, depending on the combination of i and j
(Fig. 8). Here, we introduced l = a − b and BC, which have
the same hopping parameter as l = a + b and BC, respec-
tively, but are different in the definition of the operator τ l

i (see
below). The coupling constants Jl

1, Jl
2, J ′l

2 , and Jl
3 are given by

Jl
1 =

(
t l
π

)2

U ′ − JH
,

Jl
2 =

(
t l
π

)2

U ′ + JH
,

J ′
2

l =
(
t l
π

)2

U − J ′
H

,

Jl
3 =

(
t l
π

)2

U + J ′
H

. (13)

The operators τ l and τ l± are bond-dependent orbital operators
defined by

τ l = T̃ z(2ϕl ),

τ l± = T̃ x(2ϕl ) ± iT y, (14)

where ϕl is the azimuthal angle around the c axis: ϕa =
0, ϕa+b = ϕBC = π/4, ϕb = π/2, and ϕa−b = ϕBC = 3π/4.
The coupling constants satisfy Jl

1 > Jl
2 � J ′l

2 > Jl
3 in a typical

choice of parameters. Details are given in Appendix A.

FIG. 8. The orbital-orbital interactions τ l
i τ

l
j described by the

bond-dependent orbital operator τ l
i .

Equation (12) includes δ hopping, which is expressed by
the coefficient rl ≡ t l

δ/t l
π . Without rl terms, namely, inserting

rl = 0 into Eq. (12), Heff is reduced to the well-known form
of the KK Hamiltonian for d-eg orbital systems [34–39]. We
note that the definition of the bond-dependent orbital operator
τ l in Eq. (14) is different from that in eg orbital systems, since
the rotation of the π∗

g orbitals follows the rule in Eq. (1), which
is different from that for eg orbitals. The KK-type interaction
for π -electron systems has also been derived in the context of
organic conductors [40,41] and RbO2 [17,18].

Figure 8 shows examples of the bond-dependent orbital
interactions in Eq. (12). For the l = a bond, τ l is given by
τ l = T z and hence the (πa, πb) basis is relevant. Depending
on the sign of the coefficient for T z

i T z
j , either πa or πb is uni-

formly aligned [ferro-orbital (FO) order] or πa and πb orbitals
are alternately aligned [antiferro-orbital (AFO) order]. The
l = b bond has the same interaction T z

i T z
j , since τ l = −T z.

The difference between l = a and l = b arises in the operator
(1/2 + τ l

i ), which projects onto the πa (πb) orbital for l = a
(l = b). On the other hand, the interaction is described by the
τ l = T x (−T x) operator for l = a + b and l = BC (l = a − b
and l = BC). Therefore, if the interactions of the diagonal
in the a-b plane or the body-center are dominant, the orbital
tends to form πa+b or πa−b orbitals.

IV. MEAN-FIELD CALCULATIONS

A. Calculation details

We apply the mean-field (MF) approximation to search for
possible phase transitions emerging in the effective model in
Eq. (12). The order parameters include 〈T ξ

i 〉, 〈Sz
i 〉, and 〈Sz

i T ξ
i 〉,

where ξ = x, y, z and 〈·〉 stands for the thermal average. We
set 〈Sx

i 〉 = 〈Sy
i 〉 = 〈Sx

i T ξ
i 〉 = 〈Sy

i T ξ
i 〉 = 0 to enforce the spin

moment along the Sz direction, because the spin orientation
is arbitrary in the present model without spin-orbit coupling.

We consider eight sublattices in a 2 × 2 × 2 supercell. Five
possible configurations are shown in Fig. 9. There are (a) one
ferroic (F) and (b)–(e) four antiferroic (AF) configurations.
3D-AF (b) is the three-dimensional AF configuration with the
ordering vector q = (1, 0, 0) [which may also be expressed as
q = (0, 1, 0) or q = (0, 0, 1)]. The rest are two-dimensional
AF configurations: 2D-AF (c) is the AF order on the square
lattice with the ordering vector q = (1/2, 1/2, 0). (d) and (e)
are stripe-AF with the ordering vector q = (0, 1/2, 0) and q =
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FIG. 9. Configurations of the ordered states. The ordering vec-
tor q is indicated in units of the reciprocal lattice vectors of the
conventional unit cell. The circles with the same color represent
the same spin or orbital state. The gray sites are not involved in
the two-dimensional ordered states in (c)–(e). The sites connected
by the solid (dashed) lines represent the layer at z = 0 (z = 1/2),
respectively. States are labeled F for ferro-orbital/ferromagnetic and
AF for antiferro-orbital/antiferromagnetic.

(1/2, 0, 0), respectively. They are degenerate in a tetragonal
model. For reference, various ordered states in the Heisenberg
model on the bcc lattice are discussed in Ref. [42].

The spin and orbital separately take one of the five con-
figurations in Fig. 9. We address spin (orbital) configurations
by adding M (O) at the end of the configuration name (here,
M stands for magnetic or magnetism). Examples include 3D-
AFM and stripe-AFO order.

We define the Fourier components of the order parameters
as 〈T ξ

q 〉 = (1/N )
∑

i〈T ξ
i 〉e−iq·Ri , where Ri is the coordinate of

site i and N is the number of sites. We use a simplified notation
by replacing q with the name of the configuration in Fig. 9.
For example, 〈T ξ 〉3D-AF stands for 〈T ξ

q 〉 with q = (1, 0, 0) and
〈Sz〉stripe-AF stands for 〈Sz

q〉 with q = (1/2, 0, 0) or (0, 1/2, 0).
There are four interaction parameters, U , U ′, JH, and J ′

H.
We use the standard relations U ′ = U − 2JH and J ′

H = JH

that are valid in eg orbital systems. Once the ratio JH/U is
given, the effective Hamiltonian Heff in Eq. (12) is propor-
tional to J ≡ t2/U . Hence, we vary JH/U , and measure the
temperature T in units of J . As a reference, the values of
U and JH were estimated for KO2 using a constrained DFT
scheme [19], which gives U ≈ 3.55 eV and JH ≈ 0.62 eV,
and thus JH/U ≈ 0.17. Another estimate on solid oxygen
yields U ≈ 11.6 eV JH ≈ 0.82 eV, and thus JH/U ≈ 0.07,
by the van-der-Waals density functional plus U method [43]
and optical absorption experiment [44]. From these estimates,
we fix the ratio as JH/U = 0.1 in the following calculations,
unless otherwise noted.

Regarding the hopping term, there are three parameters θ ,
φ, and rl . We fix rl to the value for CsO2 [(iv) in Table II]
and vary θ and φ to get a comprehensive understanding of
the present model. This will highlight the importance of the
geometrical frustration in CsO2 compared to KO2 and RbO2.

FIG. 10. The ground-state phase diagram of the tetragonal model
in the (φ, θ ) plane for JH/U = 0.10. The background colors dis-
tinguish orbital states. The diagonally shaded areas indicate phases
having stripe-AFM order. The symbols indicate the DFT estimates
for CsO2, RbO2, and KO2 (see Table II). The open symbols are
for the optimized O z positions, and the filled symbols are for the
experimental values. The spin-orbital configuration of each phase is
shown in Fig. 11. The values of rl were set to (iv) in Table II.

Then, we focus on CsO2 and RbO2 and discuss the influence
of the distortion in the low-temperature phase in Sec. IV C.

B. Ground-state phase diagram for the tetragonal structure

The ground-state phase diagram in the φ-θ plane is
shown in Fig. 10, where the values of rab, ra+b, and rBC

are fixed to the parameter set (iv) in Table II. The blue,
green, and red regions represent the orbital-ordered phases
with the propagation vectors q = (1, 0, 0) (3D-AFO order),
q = (1/2, 1/2, 0) (2D-AFO order), and q = (0, 1/2, 0) or
(1/2, 0, 0) (stripe-AFO order), respectively. The diagonally
hatched area corresponds to the stripe-AFM phases, and the
other areas are the FM, 2D-AFM, or 3D-AFM ordered phases.

There are eight kinds of ordered phases, termed A-H as
shown in Fig. 11, by the combinations of the spin order and
orbital patterns and the ordered components of the orbital
moment. The overall trend is that the 3D-AFO ordered phases
are stabilized in the small θ region (θ < 40◦), while in the
large-θ region, the 2D-AFO and stripe-AFO ordered phases
compete with each other and a phase transition occurs around
φ = 30–40◦. This is because small θ means that (tBC

π )2 dom-
inates over (t ab

π )2 and (t a+b
π )2, and the opposite is true for

large θ . The phase competition between these three orbital
ordered states is reproduced by the MF approximation on the
orbital-only model obtained by setting the spin operators in
Eq. (12) to zero, presented in Appendix B. Since the change
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 11. Schematic diagrams of the spin-orbital ordered states appearing in the phase diagram for the tetragonal model in Fig. 10, The
arrows represent spins. The stripe-AF orders have two degenerate states with q = (1/2, 0, 0) and q = (0, 1/2, 0). The one stabilized under
orthorhombic distortion with a < b is shown.

of the spin configurations strongly depends on the underlying
orbital order patterns as well as on φ and θ , the details will be
described in the following.

Here, let us investigate changes of order parameters as
a function of θ while fixing φ = 46◦, corresponding to the
hopping parameters of tetragonal CsO2. Figure 12(a) shows
the Fourier components of the orbital order parameters,
〈T x〉3D-AF, 〈T x〉stripe-AF, and 〈T z〉F; 〈T x〉3D-AF and 〈T x〉stripe-AF

represent staggered alignments of πa+b and πa−b orbitals
along the c axis and the a or b axis, respectively, and 〈T z〉F

denotes the uniform order of πa or πb orbital. In Fig. 12(b),
the spin order parameters, 〈Sz〉F, 〈Sz〉stripe-AF, and 〈Sz〉2D-AF

are plotted, which characterize the FM, stripe-AFM, and 2D-
AFM order of the Sz component, respectively. All the order
parameters are defined so that their maximum values are 0.5.

At θ = 0, 〈T x〉3D-AF and 〈Sz〉F take the value 0.5, showing
that the phase A (FM + 3D-AFO order) shown in Fig. 11 is
realized. When θ increases, 〈T x〉3D-AF slightly decreases from
0.5 and instead 〈T z〉F becomes finite and increases above θ �
8◦. Simultaneously, the 〈Sz〉F discontinuously drops to zero
and 〈Sz〉stripe-AF jumps to the maximum value. This is a first-
order phase transition from phase A to C (stripe-AFM + 3D-
AFO order). We note that in phase C the direction of the π

orbital shows canting towards the a axis due to the small 〈T z〉F

as shown in Fig. 11.
Further increasing θ in Fig. 12, the dominant orbital order

parameter changes to 〈T x〉stripe-AF and the canting compo-
nent 〈T z〉F begins to decrease for θ � 28◦. As for the spin

sector, 〈Sz〉stripe-AF discontinuously decreases and coexists
with 〈Sz〉2D-AF. This is because the stripe-AFM and 2D-AFM
orders separately develop on the z = 0 and 1/2 planes, re-
spectively, as the phase F in Fig. 11. These results indicate
that the ground state changes from phase C to phase F
at θ � 28◦. When θ approaches the maximum value 90◦,
only two of the constituents in phase F, 〈T x〉stripe-AF and
〈Sz〉2D-AF, remain finite and the canting of the orbitals vanishes
(phase G).

For φ � 44◦ in the phase diagram in Fig. 10, phases B, D,
and E (see Fig. 11) appear in the region with θ > 10◦. Phase
B has the same orbital configuration (3D-AFO order of T x)
with phase A, while the spin pattern is 2D-AFM. Increasing
θ from phase B, the system enters phase D, where the orbital
and spin configurations change to the 2D-AFO order of T z and
3F-AFM order, respectively. In phase E, which is stabilized
for θ � 80◦, the orbital configuration is the same as in the
neighboring phase D whereas the spin configuration is stripe-
AFM, which is common to the other neighboring phase F. On
the other hand, in phase H near φ = 90◦, the 3D-AFM order
appears on the stripe-AFO order, which is shared with phases
F and G.

The DFT estimates of (θ, φ) for CsO2, RbO2, and KO2

(Table II) are indicated by symbols in Fig. 10, showing that
CsO2 is located in phase C but in the competing region with
adjacent phases A, B, and F. We note that, since other param-
eters rl = t l

δ/t l
π were fixed at the value for CsO2, the symbols

of RbO2 and KO2 should be take just for reference; however,
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FIG. 12. (a) The orbital and (b) spin-order parameters in the
ground state as functions of θ for φ = 46◦ and JH/U = 0.1. The
labels such as 〈Sz〉F and 〈T x〉3D-AF stand for the Fourier components,
where the subscript indicates the configuration in Fig. 9. A, C, F, and
G represent the labels of spin-orbital ordered phases listed in Fig. 11.
The hopping parameters are set to (iv) in Table II.

as we will show below, the full set of parameters still leads to
phase B for RbO2.

So far we have fixed the value of JH/U at 0.1. If JH/U is
increased with (θ, φ) fixed at the value for CsO2, phases A
and B are stabilized, while phase F is stabilized if JH/U is
decreased. We obtain phase C in the range 0.03 � JH/U �
0.13. See Appendix C for details.

C. Influence of distortion

In the previous subsection, we have investigated stable
spin- and orbital-ordered states in the tetragonal structure
common to the AO2 at room temperature. Here, we discuss
the influence of the lattice distortion, which depends on each
compound at low temperatures, especially focusing on the
orthorhombic CsO2 and monoclinic RbO2. Since KO2 shows
a triclinic structure accompanied by tilting of O2 molecules,
which is beyond our effective model assuming the O-O bond
parallel to the c axis, we leave it for future work.

1. Orthorhombic distortion in CsO2

CsO2 has the orthorhombic structure with a < b for T <

Ts1 � 150 K (Fig. 1). The orthorhombic crystalline electric

FIG. 13. Schematic diagrams of (a) the orthorhombic distortion
with a < b and (b) the monoclinic distortion with γ > 90◦, and the
resultant CEF splitting of the π∗

g orbitals.

field (CEF) lifts the degeneracy between πa and πb orbitals as
illustrated in Fig. 13(a). We note that the distortion a < b sta-
bilizes the πa orbital in the hole picture. This energy splitting
due to the orthorhombic distortion can be represented using
the operator T z as

HCEF = −
ortho

∑
i

T z
i . (15)

We thus consider the orthorhombic model given by H̃eff =
Heff + HCEF and adopt the parameter set (ii) in Table II as
the hopping parameters for the low-temperature structure of
CsO2.

Figures 14(a) and 14(b) show the 
ortho dependence of
the orbital and spin order parameters, respectively. In the
absence of 
ortho, the ground state is phase C, which is the
same as in the tetragonal CsO2 [parameter set (iv)] shown
in Fig. 10. When 
ortho is introduced, 〈T z〉F, which directly
couples to the CEF, monotonically increases and the spin
and orbital patterns successively change. At 
ortho/(t2/U ) �
0.81, 〈T x〉3D-AF discontinuously decreases, and simultane-
ously, other five orbital-order parameters plotted in Fig. 14(a)
become finite. In the spin sector in Fig. 14(b), 〈Sz〉2D-AF and
〈Sz〉stripe-AF are finite at the same value, indicating the coexis-
tence of the 2D-AFM order and the stripe-AFM order as in
phase F. This ordered state, termed phase I, is represented
by the diagram in Fig. 14(c). Based on the state in phase
F, the orbitals are canted to the a axis accompanied by the
stripe-AFO order with q = (0, 1/2, 0) on the z = 0 plane.
When 
ortho is slightly increased in phase I, the ground state
changes to phase F′, which is stable in a wide range of 
ortho.
The orbital pattern of phase F′ is that the z = 1/2 plane
(stripe-AFO order) in phase F is replaced by the FO order of
πa orbitals. Further increasing 
ortho, the orbital pattern of the
z = 0 plane is also forced to FO order, and accordingly, phase
K with the 2D-AFM order in all planes, shown in Fig. 14(c),
becomes stable.

According to the DFT calculation for orthorhombic CsO2

[parameter set (ii) in Table II], the CEF splitting is estimated to
be 
ortho = 1.1 meV, which is normalized as 
ortho/(t2/U ) ≈
0.60, using t = 81 meV and U = 3.55 eV [19]. This is
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FIG. 14. (a) The orbital and (b) spin-order parameters in the
orthorhombic model as a function of 
ortho defined in Eq. (15). The
hopping parameters (ii) in Table II were used. The arrow represents
the DFT estimate for the orthorhombic CsO2, 
ortho/(t2/U ) = 0.60.
(c) Schematic ordering patterns in the orthorhombic model.

located in phase C as indicated by arrows in Figs. 14(a)
and 14(b). Figure 15 shows the ground-state phase diagram
obtained by changing φ and θ in the presence of the or-
thorhombic distortion with 
ortho/(t2/U ) = 0.60. Comparing
with the phase diagram for the tetragonal model in Fig. 10,
we can see that, although the minor phases I and F′ develop
in the parameter region surrounded by phases A, B, C, D, and
F, the overall structure of the phase diagram does not change
significantly. In addition, the narrow phase J appears between
phases C and H in the large φ region, where both the orbital
and spin orders are stripe-AF configuration.

FIG. 15. The ground-state phase diagram of the orthorhombic
model in the (φ, θ ) plane. The symbols indicate the DFT estimates
for CsO2. See the caption of Fig. 10 for more details. The parameter
set (ii) in Table II were used with 
ortho/(t2/U ) = 0.60.

2. Monoclinic distortion in RbO2

RbO2 undergoes two structural phase transitions from
tetragonal to orthorhombic, a �= b, and then to monoclinic,
γ �= 90◦, with decreasing temperature, as shown in Fig. 1.
The distortion of the angle with γ > 90◦ lifts the degeneracy
of the π∗

g orbitals into πa+b and πa−b orbitals as illustrated in
Fig. 13(a). This energy splitting can be represented using the
operator T x. Hence, the CEF potential in the monoclinic phase
is given by the combination of T x and T z as

HCEF = −
∑

i

(

orthoT z

i + 
monoT x
i

)
. (16)

We estimated 
ortho and 
mono by the DFT calculation
for the monoclinic structure (not shown), and obtained

ortho = 1.15 meV and 
mono = 4.95 meV. We fix the ratio

ortho/
mono = 0.232 and vary 
mono to discuss the influence
of the monoclinic CEF in RbO2. The hopping parameter ratios
rl for the monoclinic structure differ from those for the or-
thorhombic structure only by 0.01. Hence, we adopt the values
in (vi) of Table II.

Figures 16(a) and 16(b) show the variations of the or-
bital and spin order parameters as a function of 
mono. The
ordered states in the presence of monoclinic distortion are
depicted in Fig. 16(c). At 
mono = 0, the ground state is
phase B (3D-AFO + 2D-AFM order) in contrast to CsO2.
In the middle region of 1.13 � 
mono � 1.76 in phase B, six
orbital-order parameters plotted in Fig. 16(a) and two spin
order parameters in Fig. 16(b) appear in a first-order transi-
tion. This state corresponds to phase I, which appeared also
in the case of the orthorhombic distortion. Further increasing

mono, the forced FO ordered state with 2D-AFM order is
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FIG. 16. (a) The orbital- and (b) spin-order parameters in the
monoclinic model as a function of 
mono with fixed 
ortho/
mono =
0.232. The hopping parameter set (vi) in Table II was used.
The arrow represents the DFT estimate for monoclinic RbO2,

mono/(t2/U ) = 2.0. (c) Schematic ordering patterns in the mono-
clinic model.

stabilized (phase K). The difference from the orthorhombic
case is that 〈T z〉F begins to decrease in the large 
mono region
since the distortion is coupled with 〈T x〉F. Besides, under the
monoclinic distortion, phase F′ shown in Fig. 14(c) does not
appear. This is because 〈T z〉F in the z = 1/2 plane is unstable
in the monoclinic CEF in Eq. (16).

The DFT estimate 
mono = 4.95 meV is normalized to

mono/(t2/U ) = 2.0 using t = 95 meV and U = 3.55 eV
[19]. This value is indicated by arrows in Figs. 16(a) and
16(b). We thus conclude that RbO2 is in phase B or phase
K. In both cases, the spin structure is 2D-AFM, which is
characterized by the translation vector q = (1/2, 1/2, 0).

FIG. 17. Temperature dependence of the order parameters in
phase C. (a) The tetragonal parameter set (iv) in Table II and (b) the
orthorhombic parameters (ii) with 
ortho/(t2/U ) = 0.60 were used.

D. Finite-temperature properties

We conclude this section by presenting finite-temperature
properties. Figure 17 shows the temperature dependence of
the order parameters in phase C. (a) is the result for the
tetragonal model and (b) for the orthorhombic model with
finite 
ortho. The order parameter for phase C is represented
by 〈T x〉3D-AF for the orbital part and 〈Sz〉stripe-AF for the spin
part. We define the temperatures of the orbital and spin orders
by TO and TM, respectively. TO is about six times higher than
TM. This ratio depends on parameters such as θ , φ, and JH/U .

It is interesting that the canting of the orbital, represented
by 〈T z〉F, appears only below T = TM in Fig. 17(a). This
means that the stripe-AFM order gives rise to the canting of
the orbital. In fact, the direction of the stripe-AFM order and
the canting of the orbital are correlated with each other. In the
orthorhombic model in Fig. 17(b), 〈T z〉F is finite in the whole
temperature range because of the external orthorhombic dis-
tortion. 〈T z〉F exhibits a cusp at T = TO and increases below
T = TM, indicating that the stripe-AFM order enhances the
orthorhombic distortion.

V. DISCUSSION

A. Role of the orbital degree of freedom

In this section, we first discuss the role of the orbital
degree of freedom in our results. In particular, we focus on
phase C (stripe-AFM + 3D-AFO order), which corresponds
to the orthorhombic phase of CsO2, and consider the origin of
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FIG. 18. Values of the coupling constants Ji j in units of t2/U in
the effective Heisenberg model in Eq. (17). The orange and blue in-
dicate AFM and FM interactions, respectively. (a) 3D-AFO ordered
state, (b) disordered state. The parameter set for the orthorhombic
CsO2 in (ii) of Table II was used.

the phase transitions. The exchange interactions on all three
kinds of bonds are relevant. The order of their strengths is
|JBC| > |Ja| � |Ja+b| as shown in Fig. 6. The leading interac-
tion JBC leads to the 3D-AFO ordered state as demonstrated in
the orbital-only model in Appendix B. The spin correlations
are then considered on top of the 3D-AFO ordered state.

For this purpose, we derive the effective spin-spin interac-
tions represented by the Heisenberg Hamiltonian

Hspin =
∑
〈i j〉

Ji jSi · S j, (17)

by eliminating the orbital operators from Heff in Eq. (12). We
estimate Ji j by replacing the orbital operators T z

i and T x
i with

their expectation values. In the 3D-AFO ordered state in phase
C, for example, T x

i is replaced by +1/2 or −1/2 depending
on the site and T z

i is replaced by 0 for all sites (the canting
of the orbital is ignored). Figure 18(a) shows the exchange
interactions Ji j obtained in the 3D-AFO ordered state. The

leading interaction turns out to be the AFM interaction on the
diagonal bond in the a-b plane (l = a + b), which favors the
stripe-AFM ordering [45,46]. For comparison, we estimated
Ji j in the disordered state by replacing all orbital operators
with zero in Heff . The result is presented in Fig. 18(b). The
strengths of Ji j in the disordered state are simply determined
by the hopping amplitude. Therefore, the l = BC bond has the
largest AFM interaction, which does not enhance the stripe-
AFM order. The comparison between Figs. 18(a) and 18(b)
clearly demonstrates that the orbital order in the 3D-AFO
ordered state is relevant for the emergence of the stripe-AFM
state. Sensitivity of the magnetic order to the presence or
absence of orbital order has been observed for RbO2 [20].

Finally, we consider the direction of the stripe-AFM state
under the orthorhombic distortion. The external orthorhombic
distortion with a < b tilts the πa+b and πa−b orbitals to the a
axis (we again note that we are considering holes). Therefore,
the interaction on the a bond becomes predominant over the b
bond since the a (b) bond is described more by π (δ) hopping
under the distortion. The KK mechanism explains the AF
spin configuration on the ferro-orbital configuration on the a
bond, which leads to the stripe-AFM order with the translation
vector q = (1/2, 0, 0).

B. Implication for experiments

1. CsO2

Recent neutron scattering experiments for CsO2 reported
the stripe-AFM order with propagation vector q = (0, 1/2, 0)
[14] or q = (1/2, 0, 0) [15] in the orthorhombic structure
with a < b. Our results for phase C and other phases having
the stripe-AFM ordered configuration exhibit q = (1/2, 0, 0)
because the KK interaction on the l = a bond favors q =
(1/2, 0, 0) over q = (0, 1/2, 0) as discussed above.

The DFT estimate is located in phase C but close to phases
A, B, I, and F′ in the phase diagram in Fig. 15. Among those
nearby phases, I and F′ have the stripe-AFM configuration.
However, it is not a pure stripe-AFM order but a stack of
the stripe-AFM and the 2D-AFM orders. In these phases,
neutron scattering experiments should observe not only q =
(1/2, 0, 0) but also q = (1/2, 1/2, 0). Since the peak at q =
(1/2, 1/2, 0) has not been observed, we exclude phases I and
F′ and propose only phase C as a candidate for CsO2.

We turn our attention to the finite-temperature properties in
CsO2. Experimentally, there are three phase transitions, Ts1,
Ts2, and TN, in phases II–III (Fig. 1). On the other hand, we
obtained two phase transitions in phase C of our model: the
stripe-AFM transition at TM and the 3D-AFO order transition
at TO [Fig. 17(a) for tetragonal structure and Fig. 17(b) for or-
thorhombic structure]. The energy unit J ≡ t2/U is estimated
to be J ≈ 21 K using the DFT value t = 81 meV for the
orthorhombic CsO2 in (ii) of Table II and U = 3.55 eV [19].
Hence, TM and TO in Fig. 17(b) are converted to TM ≈ 8.4 K
and TO ≈ 59 K. We identify TM with TN since the calculated
magnetic structure and the transition temperature is consistent
with the experiment. We further identify TO with Ts2 as pre-
sented in Fig. 19 since the AFO ordered state for TM < T <

TO does not give rise to a global lattice distortion as shown
in Fig. 17(a). The experimental structural phase transition
from tetragonal to orthorhombic at T = Ts1 is ascribed to an
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FIG. 19. Comparison between the experimental and theoretical
finite-T phase diagrams.

origin that is not considered in our effective model, e.g., the
Jahn-Teller effect. Describing this transition would require a
model that also includes lattice degrees of freedom.

In this scenario, the magnetic properties observed for
TN < T < Ts2 should be explained by the 3D-AFO ordered
state. Experimentally, the temperature dependence of the
susceptibility for TN < T < Ts2 is well fitted by the Bonner-
Fisher function [11,13], which was developed to fit the
one-dimensional Heisenberg model. In our model with O2–O2

hopping, none of the ordered states in Fig. 11 gives a one-
dimensional hopping path. We note that even the stripe-AFO
ordered state proposed in Ref. [13] (e.g., z = 0 plane in
phase F) is not one-dimensional in the presence of the O2–O2

direct hopping. Considering the fact that the Bonner-Fisher
curve of the susceptibility can be observed in a wide range
of Heisenberg models [47], we expect that the susceptibility
could be reproduced by the frustrated Heisenberg model on
top of the 3D-AFO order as presented in Fig. 18(a). For this,
strong correlations and thermal fluctuations beyond the MF
approximation need to be included, which is beyond the scope
of the present study.

The neutron diffraction experiment in Ref. [15] also sug-
gests doubling of the unit cell along the a axis for T � Ts2,
which is attributed to displacements of Cs and O2 ions along
the b axis with the propagation vector q = (1/2, 0, 0). On the
other hand, in the present calculation, the stripe-AFO order
with q = (1/2, 0, 0) has not been obtained within the realistic
parameter range. Therefore, this structural change is expected
to originate from the instability of the background lattice
system rather than the correlated π -electron system.

Finally, we refer to the experimental indication for the
stripe-AFM + 3D-AFO ordered state of phase C in CsO2.
As shown in Fig. 17, the orbital order parameter 〈T z〉F cor-
responding to the orthorhombic distortion is enhanced below
TM, accompanied by the development of the stripe-AFM or-
der. This is because in phase C the orbital on each site
tends to cant uniformly towards the a axis to gain the AFM

exchange interaction along the a axis, parallel to the spin
propagation vector. This canting of the orbital moment can
be detected as the elongation and contraction of the a and b
axes, respectively, as the temperature decreases through TN.
This prediction provides a good validation of our scenario in
experiments.

2. RbO2 and KO2

Regarding RbO2, the spin structure has not been resolved
experimentally (apart from a study of oxygen deficient RbO2

[48]). Our results in Fig. 16 predict phase B, namely, the
2D-AFM order with q = (1/2, 1/2, 0) on top of the 3D-AFO
order, which is the same orbital order as in CsO2. In KO2,
magnetic order occurs in the monoclinic phase, which is be-
yond the scope of the present study. A previous theoretical
study [18] discussed the 3D-AFO + 2D-AFM order (phase
D in Fig. 10) for KO2 and RbO2. It is close to our DFT
estimates, but in-plane hopping would need to be stronger for
its realization.

VI. SUMMARY

We investigated the spin-orbital order in AO2 (A = Cs, Rb,
K) using a strong-coupling effective model derived based on
first-principles calculations. Relevant interactions between the
π∗

g orbitals on the O2 molecule are up to third neighbor for
tetragonal and up to fourth neighbor for orthorhombic struc-
tures. It is common to all A atoms that the interaction between
the corner and body-center sites (l = BC) is the largest. The
difference in A atoms can be seen in the a-b plane. CsO2

has highly frustrated interactions between the a (b) bond and
the diagonal a + b bond, while RbO2 and KO2 have weaker
frustration. We conclude that a relevant microscopic control
parameter that distinguishes the low-temperature properties in
AO2 is the magnitude of the geometrical frustration in the a-b
plane (φ in our notation).

The MF calculations for the strong-coupling effective
model reveal possible ground states in CsO2. Based on this,
we propose a 3D-AFO order of πa+b and πa−b orbitals with
the ordering vector q = (1, 0, 0) below T = Ts2 � 70 K. This
orbital order is caused by the leading interaction on the BC
bond. The subleading interactions (those in the a-b plane)
determine the spin structure. The stripe-AFM state with q =
(1/2, 0, 0) is realized due to the frustrated interactions in the
a-b plane. We predict that the canting of the orbital moment
towards the a axis, which is consistent with the orthorhombic
distortion with a < b, is enhanced, i.e., the lattice distortion
increases, by the stripe-AFM order below TN = 9.6 K. For
RbO2, we predict the 2D-AFM order with q = (1/2, 1/2, 0)
due to weaker frustration.

The peculiar magnetic properties below T = Ts2 in CsO2

remain unsolved in the present MF calculations. Our results
suggest that the temperature dependence of the susceptibility
fitted by the Bonner-Fisher curve should be explained by
another mechanism such as geometrical frustration in systems
with two or three dimensions. The fact that the observed mag-
netic moment is considerably reduced from S = 1/2 [14,15]
indicates the importance of correlations in the magnetic prop-
erties, which is left for future work.
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APPENDIX A: COUPLING CONSTANTS

In this Appendix, we compare the magnitude of the cou-
pling constants defined in Eq. (13). The ratio between Jl

1,
Jl

2, J ′l
2 , and Jl

3 is determined by the local interaction pa-
rameters. Figure 20 shows the ratios, Jl

2/Jl
1 and Jl

3/Jl
1 as a

function of JH/U . Here, we use the relation U ′ = U − 2JH

and J ′
H = JH as in the main text. In this case, J ′l

2 is identical
to Jl

2, namely, J ′l
2 = Jl

2. Figure 20 demonstrates the inequality
Jl

1 � Jl
2 = J ′l

2 � Jl
3. The equality holds when JH/U = 0. For

JH/U = 0.1, for example, Jl
2 and Jl

3 are about 80% and 60%
of Jl

1, respectively.

APPENDIX B: ORBITAL-ONLY MODEL

The effective Hamiltonian Heff in Eq. (12) consists of the
spin and orbital operators. Here, we consider an orbital-only
model by setting Si = 0 in Heff . Figure 21 shows the ground-
state phase diagram of the orbital-only model in the (φ, θ )
plane. This figure explains the tendency of the orbital order in
Fig. 10.

There are three phases. The 3D-AFO state of the
(πa+b, πa−b) orbital is stabilized due to the interaction be-
tween the corner site and the body-center site, which is
dominant near θ = 0. The region near θ = 90◦ is divided into
two phases with a two-dimensional character. The 2D-AFO
state of the (πa, πb) orbital is stabilized below φ � 53◦ by
the interaction along the a axis and b axis. The diagonal
interaction in the a-b plane, which is dominant near φ = 90◦,
stabilizes the stripe-AFO order of the (πa+b, πa−b) orbital.

FIG. 20. The ratios Jl
2/Jl

1 and Jl
3/Jl

1 as a function of JH/U .

FIG. 21. The ground-state phase diagram and orbital configura-
tion in the orbital-only model. The parameters are the same as in
Fig. 10.

APPENDIX C: JH/U DEPENDENCE

In the main text, JH/U has been fixed at 0.1. In this Ap-
pendix, we present how the phases change as JH/U is varied.
Figure 22 shows the phase diagram with φ and JH/U on the
axes. The value of θ is fixed at θ = 12◦ for the tetragonal
CsO2. The cut of Fig. 22 at JH/U = 0.1 corresponds to the

FIG. 22. The ground-state phase diagram in (φ, JH/U ) plane
with θ = 12.0◦. The parameter set for the tetragonal CsO2 was used
[(iv) in Table II]. The vertical dashed lines indicate the DFT estimates
of the φ value for CsO2 (see Table II).
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horizontal cut of Fig. 10 at θ = 12◦. It turns out that JH/U
stabilizes phase A over phases B and C, whereas phase F ap-
pears when JH/U is decreased. Comparison between Fig. 22
and Fig. 10 indicates that an increase of JH/U corresponds to a
decrease of θ . This tendency can be understood as follows. As

JH/U increases, the Jl
1 term becomes dominant (Appendix A).

Then, the simple KK-type ordered state is favored. In contrast,
four interaction terms (Jl

1, Jl
2, J ′l

2 , and Jl
3) become relevant in

the limit JH/U → 0. Competition between different interac-
tion terms favors rather complicated states such as phase F.
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