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Marginal Fermi liquid behavior at the onset of 2kF density wave order
in two-dimensional metals with flat hot spots
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We analyze quantum fluctuation effects at the onset of incommensurate 2kF charge- or spin-density-wave
order in two-dimensional metals for a model in which the ordering wave vector Q connects a single pair of hot
spots on the Fermi surface with a vanishing Fermi surface curvature. The tangential momentum dependence of
the bare dispersion near the hot spots is proportional to |kt |α with α > 2. We first compute the order parameter
susceptibility and the fermion self-energy in a random phase approximation (RPA). Logarithmic divergences are
subsequently treated by a renormalization-group analysis. The coupling between the order parameter fluctuations
and the fermions vanishes logarithmically in the low-energy limit. As a consequence, the logarithmic divergences
found in the RPA do not sum up to anomalous power laws. Instead, only logarithmic corrections to Fermi liquid
behavior are obtained. In particular, the quasiparticle weight and the Fermi velocity vanish logarithmically at the
hot spots.

DOI: 10.1103/PhysRevB.109.235112

I. INTRODUCTION

Quantum fluctuations at and near quantum critical points
in metallic electron systems can trigger non-Fermi-liquid
behavior with unconventional temperature, momentum, and
frequency dependencies of thermodynamic, spectroscopic,
and transport properties [1]. In view of non-Fermi-liquid or
“strange metal” behavior observed in several layered com-
pounds such as the high-Tc cuprates, quantum criticality in
two-dimensional systems has attracted particular interest.

Metals at the onset of charge- or spin-density-wave order
can be grouped in several distinct universality classes of quan-
tum critical non-Fermi liquids. The most thoroughly studied
case of Néel order is just one example [2–5]. A particularly
intriguing situation arises when the wave vector Q of the
density wave is a nesting vector (also known as a “2kF ”
vector [6]) of the Fermi surface, that is, when it connects
Fermi points with collinear Fermi velocities [7]. Charge and
spin susceptibilities exhibit a singularity at such wave vectors
due to an enhanced phase space for low-energy particle-hole
excitations. The wave vector of a Néel state is a nesting vector
only for special electron densities [8,9]. While fluctuations
are naturally stronger in two dimensions, quantum fluctuation
effects at the onset of 2kF density wave order are interesting
also in three dimensions [10].

Non-Fermi-liquid behavior at the onset of charge- or
spin-density-wave order with incommensurate [11] nesting
wave vectors Q in two-dimensional metals has already been
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analyzed, too. In a perturbative one-loop calculation of the
fermion self-energy, a breakdown of Fermi liquid behavior
was found at the hot spots on the Fermi surface connected
by the ordering wave vector [12]. If the ordering wave vector
Q connects only a single pair of hot spots, in an axial or
diagonal direction, the frequency dependence of the one-loop
self-energy at the hot spots obeys a power-law with exponent
2
3 . If Q connects two pairs of hot spots, the imaginary part
of the real frequency one-loop self-energy exhibits a linear
frequency dependence. The perturbative solution is not self-
consistent in either of these two cases, and the feedback of
the non-Fermi-liquid self-energy seems to shift the ordering
wave vector away from the nesting point [13,14]. For the
case of a single hot spot pair, it was argued already long ago
that quantum fluctuations replace the quantum critical point
by a first-order transition [6]. However, a fluctuation induced
flattening of the Fermi surface at the hot spots might save the
quantum critical point [13], and this scenario is supported by
an ε-expansion around the critical dimension dc = 5

2 [15,16].
For two pairs of hot spots, a self-consistent solution with a
stable quantum critical point was found numerically [14].

Recently, we have analyzed non-Fermi-liquid behavior at
the onset of density wave order for a case in which the
nesting vector connects a single pair of flat hot spots, where
the Fermi surface curvature vanishes already in the non-
interacting reference system, that is, before fluctuations are
taken into account [17]. Such a situation can arise at special
electron filling factors, for example in a tight-binding model
with nearest- and next-nearest-neighbor hopping on a square
lattice. Expanded in terms of relative momentum coordinates
kr and kt in normal and tangential directions with respect to
the Fermi surface at a hot spot (see Fig. 1), the dispersion
relation assumed in Ref. [17] has the form ξk = εk − μ =
vkr + bk4

t , where v is the Fermi velocity at the hot spot, and b
is a real constant. Unlike the conventional case of hot spots
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FIG. 1. Hot spots with vanishing Fermi surface curvature con-
nected by the ordering wave vector Q, and the relative momentum
coordinates kr and kt .

with finite curvature, the order parameter susceptibility of
our model with flat hot spots has a robust peak at the nest-
ing vector. The imaginary part of the perturbative one-loop
self-energy was found to depend linearly on (real) frequency,
while the momentum and frequency dependences of its real
part exhibit logarithmic divergences indicating non-Fermi-
liquid behavior with a vanishing quasiparticle weight and a
vanishing Fermi velocity. The logarithmic divergences were
tentatively interpreted as perturbative signatures of power
laws with anomalous exponents [17].

In this paper, we extend our previous analysis of non-
Fermi-liquid behavior at 2kF density wave quantum criticality
with flat hot spots in two directions. First, we treat the
logarithmic divergences obtained in perturbation theory in
a controlled and systematic way by using a field theoretic
renormalization group. Second, we generalize the tangential
momentum dependence of the bare dispersion from quartic to
arbitrary powers, that is,

ξk = εk − μ = vkr + b|kt |α, (1)

with an arbitrary exponent α > 2. Our motivation for this
generalization is to disentangle general features of models
with flat hot spots from features specific for the case α = 4.
Moreover, we would like to explore whether one can shed
light on the most important but also most tricky case α = 2
by considering the limit α → 2.

The renormalization-group analysis reveals that the log-
arithms found in perturbation theory do not sum up to
anomalous power laws, but rather yield only a logarithmic
breakdown of Fermi liquid theory. Hence, the flat hot-spot
model turns out to be a marginal Fermi liquid [18]. For α > 2,
the renormalization-group analysis is controlled by the inverse
number of fermion flavors N . However, in the limit α → 2,
the fluctuation corrections exhibit divergences that cannot be

tamed by the renormalization group, indicating a qualitatively
different behavior for α = 2.

Recently, Song [19] et al. computed the quasiparticle decay
rate near Fermi points with a dispersion of the form Eq. (1)
in a stable two-dimensional Fermi liquid (away from insta-
bilities), and they found an energy dependence of the form
ε

α
α−1 for α > 2. While this decay rate is enhanced compared

to the conventional quadratic behavior, it is still parametrically
smaller than the quasiparticle energy in the low-energy limit,
for any finite α, so that the quasiparticles remain asymptoti-
cally stable.

The remainder of the paper is structured as follows. In
Sec. II we compute the order parameter susceptibility and
the effective interaction at the quantum critical point in a
one-loop approximation. A perturbative one-loop calculation
of the momentum and frequency dependence of the fermion
self-energy is performed in Sec. III, and the corresponding
renormalization-group analysis is presented in Sec. IV. In
Sec. V we close the presentation with a summary and discus-
sion of the main results.

II. SUSCEPTIBILITY AND EFFECTIVE INTERACTION

We consider a one-band system of interacting fermions
with a bare single-particle energy-momentum relation εk. We
are dealing exclusively with ground-state properties (temper-
ature T = 0). The bare fermion propagator has the form

G0(k, ik0) = 1

ik0 − ξk
, (2)

where k0 denotes the imaginary frequency, and ξk = εk − μ.
We assume that, in mean-field theory, the system undergoes a
charge- or spin-density-wave transition with an incommensu-
rate and nested wave vector Q, which connects a pair of hot
spots on the Fermi surface, where the dispersion relation in
the vicinity of the hot spots has a momentum dependence of
the from Eq. (1).

In the random phase approximation (RPA), the order pa-
rameter susceptibility has the form

χ (q, iq0) = χ0(q, iq0)

1 + gχ0(q, iq0)
, (3)

where g < 0 is the coupling constant parametrizing the in-
teraction in the instability channel. The bare charge or spin
susceptibility χ0 is related to the particle-hole bubble �0 by
χ0(q, iq0) = −N�0(q, iq0), where N is the spin multiplicity,
and [20]

�0(q, iq0) =
∫

k

∫
k0

G0(k, ik0) G0(k − q, ik0 − iq0). (4)

∫
k is a shorthand notation for

∫
d2k

(2π )2 , and
∫

k0
for

∫ dk0
2π

. In
Fig. 2 we show the Feynman diagram for �0. While keeping
N as a general parameter in our equations, we choose N = 2,
corresponding to spin- 1

2 fermions, in all numerical results.
Continuing �0(q, iq0) analytically to the real frequency axis
from the upper complex frequency half-plane yields the re-
tarded polarization function �0(q, ω).

The RPA susceptibility diverges when gχ0(Q, 0) =
−1, signaling an instability at the critical coupling gc =
−1/χ0(Q, 0) toward charge- or spin-density-wave order with
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FIG. 2. Feynman diagrams representing the particle-hole bubble
�0 (left) and the fermion self-energy 	 in RPA (right). The solid
lines correspond to the bare fermion Green function G0, and the
wiggly line corresponds to the effective interaction D.

one of the nesting wave vectors Q at which χ0(q, 0) has a
(finite) peak.

To analyze the behavior of the susceptibility near the sin-
gularity, we expand

δ�0(q, ω) = �0(q, ω) − �0(Q, 0) (5)

for q near Q and small ω. Momenta near Q are parametrized
by relative momentum coordinates qr and qt , parallel and
perpendicular to Q, respectively. The leading contributions to
δ�0(q, ω) come from fermionic momenta near the hot spots
connected by Q, where the dispersion relations in Eq. (4)
can be expanded as in Eq. (1), that is, ξk = vkr + b|kt |α
and ξk−q = −v(kr − qr ) + b|kt − qt |α . In the following, we
assume that b is positive. Our derivations and results can be
easily adapted to negative b.

For qt = 0 all integrations are elementary, and we obtain
δ�0(qr, 0, ω) = δ�+

0 (qr, 0, ω) + δ�−
0 (qr, 0, ω), where

δ�+
0 (qr, 0, ω) = |ω − vqr | 1

α

4πv(2b)
1
α

×
{

cot π
α

− i for ω > vqr,(
sin π

α

)−1
for ω < vqr,

(6)
and δ�−

0 (qr, 0, ω) = [δ�+
0 (qr, 0,−ω)]∗. In the static limit

ω → 0, this yields

δ�0(qr, 0, 0) = |vqr | 1
α

2πv(2b)
1
α

×
{

cot π
α

for qr < 0,(
sin π

α

)−1
for qr > 0.

(7)
δ�0(qr, 0, 0) has a cusp with diverging slope for qr → 0 for
any α > 2. In the special case α = 2, the slope vanishes for
qr < 0.

For qt �= 0, the particle-hole bubble can be expressed in a
scaling form as (see Appendix A)

δ�0(qr, qt , ω) = |qt |
4v

[
Iα

(
ω − vqr

b|qt |α
)

+ I∗
α

(−ω − vqr

b|qt |α
)]

,

(8)

with the dimensionless scaling function

Iα (x) = 1

π

∫ ∞

−∞

dk̃t

2π
ln

∣∣k̃t + 1
2

∣∣α + ∣∣k̃t − 1
2

∣∣α − x − i0+

2|k̃t |α
.

(9)
In Fig. 3 we show Iα (x) for various choices of α. The in-
tegrand in Eq. (9) is real for x < |k̃t + 1

2 |α + |k̃t − 1
2 |α . For

x > |k̃t + 1
2 |α + |k̃t − 1

2 |α � 21−α , the logarithm has a con-
stant imaginary part −π . Hence, the imaginary part of Iα (x)

FIG. 3. Real and imaginary parts of the scaling function Iα (x) for
various choices of α.

vanishes for x < 21−α , while

ImIα (x) = − k̃0
t (x)

π
for x > 21−α, (10)

where k̃0
t (x) is the unique positive solution of the equation

|k̃t + 1
2 |α + |k̃t − 1

2 |α = x. For x = 1, one has k̃0
t = 1

2 for any
α. This is why all the curves in the right panel of Fig. 3 go
through the same crossing point at x = 1.

For large |x|, the scaling function behaves asymptotically
as

Iα (x) ∼

⎧⎪⎨
⎪⎩

cot π
α
−i

2
1
α π

|x| 1
α for x → ∞,

(sin π
α )−1

2
1
α π

|x| 1
α for x → −∞.

(11)

The next-to-leading correction for large |x| is of order |x|− 1
α .

For α = 2 and 4, the scaling functions Iα (x) can be ex-
pressed in terms of square roots,

I2(x) = 1√
2π

√
1

2
− (x + i0+), (12)

I4(x) = 1

π

√
3

2
+

√
1

4
− 2(x + i0+). (13)

Inserting I2(x) into Eq. (8), one recovers the well-known ex-
pression for the particle-hole bubble for a quadratic dispersion
relation. I4(x) has been computed numerically in Ref. [17], but
analytic results were found there only for x = 0 and x = 1

8 .
We derive Eq. (13) in Appendix A.

The RPA effective interaction is given by

D(q, iq0) = g

1 + gχ0(q, iq0)
(14)

on the imaginary frequency axis, and by the same expression
with iq0 → ω on the real frequency axis. At the quantum
critical point, gχ0(Q, 0) is equal to −1, so that

D(q, ω) = − 1

Nδ�0(q, ω)
. (15)

Hence, the effective interaction at the quantum critical point
does not depend on the coupling constant g.
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III. FERMION SELF-ENERGY

To leading order in the effective interaction D, the fermion
self-energy is given by the one-loop integral

	(k, ik0) = −M
∫

q

∫
q0

D(q, iq0) G0(k − q, ik0 − iq0),

(16)
with M = 1 for a charge-density- and M = 3 for a spin-
density-wave instability [13]. This approximation for the
self-energy is also known as the random-phase approxima-
tion (RPA). The corresponding Feynman diagram is shown in
Fig. 2. Analytic continuation of Eq. (16) to the real frequency
axis yields [21]

	(k, ω + i0+)

= −M

π

∫
dν

∫
q
[b(ν) ImD(q, ν + i0+)

× G0(k − q, ν + ω + i0+) − f (ν) D(q, ν − ω − i0+)

× ImG0(k − q, ν + i0+)], (17)

where b(ν) = [eβν − 1]−1 and f (ν) = [eβν + 1]−1 are the
Bose and Fermi functions, respectively. At zero tempera-
ture (β = ∞) these functions become step functions b(ν) =
−
(−ν) and f (ν) = 
(−ν). In the following, we de-
note 	(k, ω + i0+), G(k, ω + i0+), and D(q, ν + i0+) by
	(k, ω), G(k, ω), and D(q, ν), respectively.

We analyze 	(k, ω) at the quantum critical point for low
frequencies ω and momenta k near one of the hot spots on
the Fermi surface, which we denote as kH . The effective
interaction D(q, ω) at the quantum critical point is given by
Eq. (15) with δ�0(q, ω) from Eq. (8). The dominant con-
tributions come from momentum transfers q near Q, so that
k − q is situated near the antipodal hot spot −kH . Using
relative momentum variables as above, the dispersion rela-
tion in the fermion propagator can be expanded as ξk−q =
−v(kr − qr ) + b|kt − qt |α .

To evaluate the self-energy, it is convenient to first consider
its imaginary part, and then compute the real part from a
Kramers-Kronig relation. The imaginary part of Eq. (17) reads

Im	(k, ω) = −M

π

∫
dν

∫
q

[b(ν) + f (ν + ω)] ImD(q, ν)

× ImG0(k − q, ω + ν). (18)

Note that ImD(q, ν − i0+) = −ImD(q, ν + i0+). Using the
Dirac identity ImG0(k, ω) = −πδ(ω − ξk ), the frequency in-
tegral in Eq. (18) can be easily carried out, yielding

Im	(k, ω) = M
∫

q
[b(ξk−q − ω) + f (ξk−q)]

× ImD(q, ξk−q − ω). (19)

At zero temperature, the sum of Bose and Fermi functions in
Eq. (19) is given by

b(ξk−q − ω) + f (ξk−q) =

⎧⎪⎨
⎪⎩

−1 for 0 < ξk−q < ω,

1 for ω < ξk−q < 0,

0 otherwise,

(20)

restricting thus the contributing momentum region. The in-
tegral in Eq. (19) is convergent even if the momentum
integration over qr and qt is extended to infinity.

The real part of the self-energy can be obtained from the
Kramers-Kronig-type relation

	(k, ω) = − 1

π

∫ ∞

−∞
dω′ Im	(k, ω′)

ω − ω′ + i0+ + const. (21)

The last term in this relation is a real constant, which can be
absorbed by a shift of the chemical potential. The real part
of the self-energy is dominated by contributions from large
frequencies in Eq. (21), where the low-frequency expansion
of Im	 is not valid. Since we are not interested in a constant
offset but rather in the frequency and momentum dependence
of the self-energy near the hot spots, we will analyze the dif-
ference δ	(k, ω) = 	(k, ω) − 	(kH , 0), where the leading
ultraviolet contributions cancel each other.

A. Frequency dependence at the hot spot

The frequency dependence at the hot spot (for k = kH ) can
be derived by a simple rescaling of the integration variables in
Eq. (19). Substituting qr = |ω/v|q̃r and qt = |ω/b|1/α q̃t , one
obtains

Im	(kH , ω) = −M

N
As(ω)|ω|, (22)

where A+ and A− are two positive dimensionless numbers
depending on α and on the sign of ω. These numbers are
determined by the integral

As = −
∫ ′

q̃
Im

4s

|q̃t |
[
Iα

( |q̃t |α−s
|q̃t |α

) + I∗
α

(−2q̃r−|q̃t |α+s
|q̃t |α

)] , (23)

where s = s(ω) = ±1, and the prime at the integral sign indi-
cates a restriction of the integration region to 0 < q̃r + |q̃t |α <

1 for ω > 0, and to −1 < q̃r + |q̃t |α < 0 for ω < 0. Note that
the frequency dependence of the self-energy at the hot spot
depends neither on v nor on b. In Appendix B, we show a plot
of the coefficients A± as a function of α. They are positive and
finite for all α > 2 and diverge for α → 2. The divergence
for a quadratic dispersion is due to the vanishing slope of
δ�0(qr, 0, 0) for qr < 0; see Eq. (7).

The real part of the self-energy can be obtained from the
Kramers-Kronig relation Eq. (21). With Im	(kH , ω) as in
Eq. (22), the integral in Eq. (21) is logarithmically divergent at
large frequencies ω′. This is due to the fact that the linear fre-
quency dependence has been obtained from an expansion that
captures only the asymptotic low-frequency behavior, which
cannot be extended to all frequencies. The imaginary part of
the exact self-energy of any physical system has to vanish
in the high-frequency limit. To compute the low-frequency
behavior of Re	, we mimic the high-frequency decay of Im	

by imposing an ultraviolet (UV) frequency cutoff �, so that
the frequency integration in Eq. (21) is restricted to |ω′| < �.
Defining δ	(k, ω) = 	(k, ω) − 	(kH , 0), we then obtain

Re δ	(kH , ω) = −M

N

A+ + A−
π

ω ln
�

|ω| (24)

for |ω| 	 �. The imaginary frequency self-energy
δ	(kH , ik0) is given by the same expression with ω 
→ ik0.

The logarithm in Eq. (24) implies a logarithmic di-
vergence of the inverse quasiparticle weight [20], 1 −
∂	(kH , ω)/∂ω ∼ ln(�/|ω|). Hence, Landau quasiparticles
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FIG. 4. Anomalous dimension η for M = 1 and N = 2 as a func-
tion of α.

do not exist at the hot spots, and Fermi liquid theory breaks
down.

Logarithmic divergences are frequently a perturbative
manifestation of power-law behavior, especially in (quantum)
critical systems. Assuming that the one-loop result in Eq. (24)
reflects the leading order of an expansion of a power law, one
obtains

ω − δ	(kH , ω) ∝ (|ω|/�)−η
ω (25)

at low frequencies, with the anomalous dimension

η = M

N

A+ + A−
π

. (26)

Hence, the quasiparticle weight vanishes as |ω|η in the low-
energy limit. A plot of η as a function of α is shown in
Fig. 4. The power law in Eq. (25) is only an educated guess. In
Sec. IV we will see that η is actually scale-dependent, so that
the quasiparticle weight ultimately vanishes only logarithmi-
cally.

B. Frequency and momentum dependencies near the hot spot

We now analyze the momentum and frequency dependence
of the self-energy in the vicinity of a hot spot. We consider
radial and tangential momentum dependencies separately.

For kt = 0, we can express Im	(k, ω) from Eq. (19) in the
scaling form

Im	(k, ω) = −M

N
A(r)

s(ω)(k̃r ) |ω|, (27)

with the dimensionless scaling functions

A(r)
s (k̃r ) =−

∫ ′

q̃
Im

4s

|q̃t |
[
Iα

(−k̃r+|q̃t |α−s
|q̃t |α

) + I∗
α

( k̃r−2q̃r−|q̃t |α+s
|q̃t |α

)] ,

(28)

where the integration region is restricted to 0 < −k̃r + q̃r +
|q̃t |α < 1 for ω > 0, and to −1 < −k̃r + q̃r + |q̃t |α < 0 for
ω < 0. The rescaled variables are defined by qr = |ω/v|q̃r ,
qt = |ω/b|1/α q̃t , and kr = |ω/v|k̃r . The scaling functions A(r)

±
are shown graphically for various choices of α in Fig. 5. For
k̃r = 0 we recover Eq. (22), since A(r)

± (0) = A± from Eq. (23).
For small finite k̃r , the leading k̃r dependence of A(r)

s (k̃r ) is

FIG. 5. Scaling functions A(r)
± (k̃r ) for various choices of α. The

vertical dashed lines mark the location of singularities at k̃r = ±1.

linear,

A(r)
± (k̃r ) = A± + B±k̃r + O

(
k̃2

r

)
. (29)

The coefficients B± are shown as functions of α in Ap-
pendix B. While B+ is always negative, B− has a sign change
for α ≈ 2.3. Both B+ and B− diverge for α → 2. For large
|k̃r |, A(r)

s (k̃r ) decays as |k̃r |−1.
For kr �= 0 and small |ω|, the leading frequency depen-

dence of Im	(k, ω) is quadratic. For |ω| 
 v|kr |, Im	(k, ω)
approaches the asymptotic behavior

Im	(k, ω) ∼ −M

N
[As(ω)|ω| + Bs(ω)vkr], (30)

which follows from Eq. (29). Inserting this asymptotic de-
pendence into the Kramers-Kronig relation Eq. (21) with an
ultraviolet frequency cutoff �, one obtains the leading kr de-
pendence of the real part of the self-energy at zero frequency
as

δ	(k, 0) ∼ M

N

B− − B+
π

vkr ln
�

v|kr | . (31)

The same result is obtained by inserting Eq. (27) with the
full (not expanded) scaling function A(r)

s (k̃r ) into the Kramers-
Kronig integral. The difference B− − B+ in Eq. (31) is always
positive (for all α), and diverges for α → 2. Assuming, as
before, that the logarithm reflects the leading contribution
from a power law, we might expect a momentum dependence
of the form

vkr + δ	(k, 0) ∝ (v|kr |/�)−ηr vkr (32)

for small kr , with the anomalous dimension

ηr = M

N

B− − B+
π

. (33)

We show ηr for M = 1 and N = 2 as a function of α in Fig. 6.
The effective Fermi velocity [20] given by v(kr ) = (1 −
∂	/∂ω)−1(1 + ∂	/∂kr )v is proportional to |ω|η|kr |−ηr with
ω = vkr , and thus v̄(kr ) ∝ |kr |η−ηr . This quantity vanishes for
kr → 0, since η > ηr for all α. However, the renormalization-
group analysis in Sec. IV shows that v(kr ) actually vanishes
only logarithmically.

We now discuss the tangential momentum dependence of
the self-energy. For kr = 0, we can express Im	(k, ω) in the
scaling form

Im	(k, ω) = −M

N
A(t )

s(ω)(k̃t ) |ω|, (34)
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FIG. 6. Anomalous dimension ηr for M = 1 and N = 2 as a
function of α.

with the dimensionless scaling functions

A(t )
s (k̃t ) =−

∫ ′

q̃
Im

4s

|q̃t |
[
Iα

( |k̃t −q̃t |α−s
|q̃t |α

) + I∗
α

(−2q̃r−|k̃t −q̃t |α+s
|q̃t |α

)] ,

(35)

where the integration region is restricted to 0 < q̃r + |k̃t −
q̃t |α < 1 for ω > 0, and to −1 < q̃r + |k̃t − q̃t |α < 0 for ω <

0. The rescaled variables are defined by qr = |ω/v|q̃r , qt =
|ω/b|1/α q̃t , and kt = |ω/b|1/α k̃t . The scaling functions A(t )

± (k̃t )
are symmetric under k̃t 
→ −k̃t . Their behavior as a function
of (positive) k̃t is shown for various choices of α in Fig. 7 [22].

A numerical analysis shows that, to quartic order, A(t )
± (k̃t )

can be expanded as

A(t )
± (k̃t ) = A± + C±k̃2

t + D±k̃4
t + O

(
k̃6

t

)
(36)

for small k̃t . At least to that order no noninteger powers of
k̃t , such as |k̃t |α , contribute. Plots of the coefficients C± and
D± as functions of α are shown in Appendix B. For large |k̃t |,
A(t )

s (k̃t ) decays as |k̃t |−α .
Equations (34) and (36) imply that Im	(k, ω) behaves as

Im	(k, ω) ∼ −M

N

[
As(ω)|ω| + Cs(ω)b

2
α |ω|1− 2

α k2
t

+Ds(ω)b
4
α |ω|1− 4

α k4
t

]
(37)

for |ω| 
 b|kt |α . Computing δ	(k, 0) = 	(k, 0) − 	(kH , 0)
from the Kramers-Kronig relation Eq. (21), the first term in
Eq. (37) cancels, but the second one generates an ultravi-
olet divergent term proportional to (C− − C+)�1−2/αk2

t for

FIG. 7. Scaling functions A(t )
± (k̃t ) for various choices of α.

FIG. 8. δb/b for M = 1 and N = 2 as a function of α (solid line),
and its ε-expansion around α = 4 (dashed line).

any α > 2. This term, along with generic regular many-body
contributions, leads to a renormalized dispersion relation ξ̄k
with a quadratic tangential momentum dependence, in con-
flict with our original assumption. However, the case of a
dispersion with a vanishing quadratic dependence on kt can
be restored by adding a quadratic contribution to the bare
dispersion as a counterterm, which cancels the quadratic self-
energy correction. This quadratic term in the bare dispersion
is needed to make sure that the renormalized dispersion of the
interacting system has no such quadratic term. To achieve self-
consistency, the particle-hole bubble and the self-energy must
be computed with the renormalized dispersion, that is, with-
out any quadratic contribution. This counterterm procedure is
analogous to the widely used shift of the chemical potential
to compensate interaction-induced shifts of the particle den-
sity, and also to the subtraction of a mass term generated by
fluctuations in the field theory of critical phenomena, if one is
interested in the system at its critical point [24].

Hence, to compute the kt dependence of the remain-
ing contributions to δ	(k, 0), we subtract the quadratic
part from Im	(k, ω) in Eq. (37), that is, we compute
the Kramers-Kronig integral for δIm	(k, ω) = Im	(k, ω) +
M
N [As(ω)|ω| + Cs(ω)b2/α|ω|1−2/αk2

t ]. For 2 < α < 4 this inte-
gral is convergent and the result can be written as

δ	(k, 0) = δb |kt |α, (38)

where

δb = b
M

Nπ

∫ ∞

0
dω̃

[
δA(t )

−
(
ω̃− 1

α

) − δA(t )
+

(
ω̃− 1

α

)]
, (39)

where δA(t )
s (k̃t ) = A(t )

s (k̃t ) − As − Csk̃2
t . The integral in

Eq. (39) converges in the infrared (small ω̃) for any α > 2 and
in the ultraviolet (large ω̃) for α < 4. The α dependence of
δb/b for 2 < α < 4 is shown in Fig. 8. For α = 4 the integral
diverges logarithmically in the ultraviolet, and one obtains the
result presented already in Ref. [17],

δ	(k, 0) ∼ M

πN
(D− − D+) bk4

t ln
�

bk4
t

(40)

for bk4
t 	 �, which suggests a power-law with the anomalous

dimension [17]

ηt = M

N

D− − D+
π

. (41)
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The renormalization-group analysis in the next section reveals
that ηt is scale-dependent, so that ultimately only logarithmic
corrections to the quartic tangential momentum dependence
are obtained. The logarithmic UV divergence of δb for α = 4
is reflected by a divergence of δb for α < 4 in the limit α → 4:

δb ∼ 4

ε
ηt b (42)

for ε → 0, with ε = 4 − α and ηt from Eq. (41). The ratio
δb/b expanded to leading order in ε, as described by Eq. (42)
with ηt evaluated for α = 4, is compared to the exact result in
Fig. 8.

IV. RENORMALIZATION-GROUP ANALYSIS

The logarithmic divergences encountered in the one-loop
self-energy imply a breakdown of perturbation theory and
indicate possible power-law behavior with anomalous expo-
nents. For a controlled treatment of these divergences, we now
use the field-theoretic renormalization group [23,24].

For a renormalization-group analysis, it is convenient to
describe our system by a quantum field theory with fermion
and boson fields, where the latter represent fluctuations of the
order parameter. The corresponding action has the form

S = −
∫

k

∑
σ

G−1
0 (k)ψ∗

σ (k)ψσ (k) − 1

2

∫
q
D−1(q)φ∗(q)φ(q)

+ u
∫

k,q

∑
σ

φ(q)ψ∗
σ (k + q)ψσ (k), (43)

where ψ∗
σ (k) and ψσ (k) with σ ∈ {1, . . . , N} are fermionic

fields corresponding to fermionic creation and annihilation
operators, respectively, while φ(q) is a bosonic field de-
scribing the order parameter fluctuations. The variables k =
(k, ik0) and q = (q, iq0) contain frequencies and momenta;∫

k and
∫

q are shorthand notations for
∫

k

∫
k0

and
∫

q

∫
q0

, respec-
tively. Note that the interaction term in Eq. (43) is Hermitian
since φ(−q) = φ∗(q).

An action of the form Eq. (43) can be derived from the orig-
inal purely fermionic action by decoupling the two-fermion
interaction via a Hubbard-Stratonovich transformation [20].
The boson propagator is thereby obtained as D(q) = D0(q) =
g, and the bare Yukawa coupling is u = 1. In the one-
loop approximation the bosonic self-energy is given by
u2N�0(q), so that the boson propagator becomes D(q) =
[g−1 − N�0(q)]−1, which is equal to the RPA effective in-
teraction in Eq. (14). At the quantum critical point, where
N�0(Q, 0) = g−1, we thus obtain D−1(q) = −Nδ�0(q). Our
scaling and renormalization-group analysis is based on the
action Eq. (43) with D−1(q) = −Nδ�0(q). The one-loop bo-
son self-energy has thus already been taken into account.
An analogous procedure has been used previously for a
renormalization-group analysis of the Ising nematic quantum
critical point [25,26].

Since singular contributions are due to fermions with mo-
menta near the two hot spots ±kH , we introduce relative
momentum coordinates and expand around the hot spots as
in the perturbative analysis in the preceding section. We then
need to label fermion fields with an additional index l = ±
to distinguish fields with momenta near kH from those near

−kH , and the bosonic fields are labeled by their momen-
tum transfer being close to Q or −Q as φ(±Q + q, q0) =
φ±(q, q0) = φ±(q). The action Eq. (43) can then be written
as

S =
∫

k

∑
l,σ

(−ik0 + vkr + b|kt |α )ψ∗
l,σ (k)ψl,σ (k)

+N
∫

q
δ�0(q)φ+(q)φ−(−q)

+u
∫

k,q

∑
l,σ

φl (q)ψ∗
l,σ (k + q)ψ−l,σ (k). (44)

We start with a simple analysis of canonical scaling dimen-
sions. Rescaling fermionic momenta and frequencies as

k0 → sk0, kr → skr, kt → s1/αkt , (45)

and analogously for bosonic momenta and frequencies q0, qr ,
and qt , implies

G0(k) → s−1G0(k), D(q) → s−1/αD(q). (46)

The latter relation follows from Eq. (8). Scaling frequencies
by a linear factor s, the scaling of the momentum variables is
determined by requiring a homogeneous scaling relation for
G0(k), that is, all terms contributing to G−1

0 (k) should scale
linearly with s. Requiring that the quadratic parts of the action
be scale invariant, and taking into account that the integration
measures in

∫
k and

∫
q scale as s2+1/α , the fields need to be

rescaled as

ψl,σ → s− 3
2 − 1

2α ψl,σ , ψ∗
l,σ → s− 3

2 − 1
2α ψ∗

l,σ ,

φl → s−1− 1
α φl .

(47)

Inserting this scaling behavior of the fields into the interaction
term in Eq. (44), one finds that this term is scale invariant, so
that the Yukawa coupling constant u is marginal.

We now turn to the renormalization-group analysis with
fluctuations on the one-loop level, which corresponds to the
leading order in a 1/N expansion. While the bosonic one-
loop self-energy is finite, the fermionic self-energy exhibits
logarithmic divergences, which were derived in the preceding
section. Expressing the self-energy as a function of the three
variables kr , kt , and k0, and subtracting 	(kH , 0), we found

δ	(0, 0, ik0) = −ηu2 ik0 ln
�

|k0| , (48)

δ	(kr, 0, 0) = ηru2 vkr ln
�

v|kr | (49)

for any α > 2, where η and ηr are the (tentative) anomalous
dimensions defined in Eqs. (26) and (33), respectively. Note
that we have explicitly included the coupling constant u = 1,
for reasons that will become clear below. For α = 4, there
is also a logarithmic divergence in the tangential momentum
dependence,

δ	(0, kt , 0) = ηt u
2 bk4

t ln
�

bk4
t
, (50)

with ηt from Eq. (41), while for α < 4 only a finite correction
of the order |kt |α is obtained. However, the prefactor δb of
that correction diverges for α → 4; see Eq. (42). For α > 4,
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the coefficient of the quartic contribution to the self-energy
diverges as a power of the ultraviolet cutoff. In the following,
we focus on the cases 2 < α � 4.

A complete one-loop calculation for an action of the form
Eq. (43) involves also a one-loop correction of the Yukawa
vertex. However, for ordering wave vectors distinct from half
a reciprocal-lattice vector, there is no choice of momenta in
the vertex correction at which the singularities of the propaga-
tors coalesce [6], so that the vertex correction is finite. Hence,
the only divergences come from the fermion self-energy.

Since the leading tangential momentum dependence of the
self-energy diverges for α = 4, while it is finite for α < 4, we
need to distinguish these two cases.

A. α = 4

Following the field-theoretic renormalization procedure
[23,24], we define a renormalized fermionic two-point vertex
function

�̄(2)(k; v̄, b̄, ū; λ) = Z (u; λ/�) �(2)(k; v, b, u; �), (51)

where �(2) = G−1
0 − δ	 is the unrenormalized vertex func-

tion,

Z = 1 − ηu2 ln
�

λ
, (52)

and the renormalized parameters ū, v̄, b̄ are defined as

ū = Zu, (53)

v̄ = Z

(
1 + ηru2 ln

�

λ

)
v, (54)

b̄ = Z

(
1 + ηt u

2 ln
�

λ

)
b for α = 4. (55)

The energy scale λ can be chosen arbitrarily, or it may be used
to satisfy normalization conditions of the renormalized theory
at specific frequencies and momenta [23,24]. To second order
in the coupling constant, the renormalized two-point vertex,
expressed as a function of the renormalized parameters v̄, b̄,
and ū, is finite for � → ∞:

�̄(2) (k; v̄, b̄, ū; λ) = ik0

(
1 + ηū2 ln

λ

|k0|
)

−v̄kr

(
1 + ηr ū2 ln

λ

v̄|kr |
)

− b̄k4
t

(
1 + ηt ū

2 ln
λ

b̄k4
t

)
.

(56)

The renormalization of the Yukawa coupling, Eq. (53), is
determined by the renormalization of the Yukawa vertex,

�̄(2,1)(k, q; ū; λ) = Z (u; λ/�) �(2,1)(k, q; u; �). (57)

Since �(2,1) is finite at the one-loop level, the renormal-
ization of u is determined exclusively by Z . Discarding
nonuniversal finite one-loop vertex corrections, we approx-
imate �(2,1)(0, 0; u; �) by its bare value u, so that ū =
�̄(2,1)(0, 0; ū; λ) = Zu.

The renormalization-group flow is obtained from the evo-
lution of �̄(2)(k; v̄, b̄, ū; λ) upon varying the energy scale λ

[23,24]. The bare vertex �(2)(k; v, b, u; �) does not depend

on λ, so that

λ
d

dλ
Z−1�̄(2)(k; v̄, b̄, ū; λ)

∣∣∣∣
v,b,u,�

= 0, (58)

and thus

[λ∂λ + βū∂ū + βv̄∂v̄ + βb̄∂b̄ − γ ]�̄(2)(k; v̄, b̄, ū; λ) = 0,

(59)
where ∂λ is a partial derivative with respect to λ,

βx̄ = λ
∂ x̄

∂λ

∣∣∣∣
v,b,u,�

(60)

for x̄ = v̄, b̄, ū, and

γ = λ
∂ ln Z

∂λ

∣∣∣∣
v,b,u,�

. (61)

Inserting Eq. (52) into Eq. (53), we obtain

βū = ηū3. (62)

On the right-hand side we have replaced u by ū, which is
justified since ū − u is of order (ū)3. The flow equation for
ū does not depend on the other variables and can be easily
integrated. With the initial condition ū = ū0 = 1 for λ = λ0,
we find

ū = 1√
1 + 2η ln(λ0/λ)

. (63)

Hence, ū tends to ū∗ = 0 for λ → 0, albeit very slowly. Insert-
ing Eq. (52) into Eq. (61) yields, to order ū2,

γ = ηū2 = η

1 + 2η ln(λ0/λ)
. (64)

Equations (54) and (55) yield, respectively,

βv̄ = (η − ηr ) ū2v̄, (65)

βb̄ = (η − ηt ) ū2b̄. (66)

Inserting the solution for ū, Eq. (63), the flow equations for v̄

and b̄ can be easily integrated to

v̄ = v̄0[1 + 2η ln(λ0/λ)]
ηr −η

2η , (67)

b̄ = b̄0[1 + 2η ln(λ0/λ)]
ηt −η

2η , (68)

where v̄0 and b̄0 are the initial values of v̄ and b̄, respec-
tively, at λ = λ0. Since ηr and ηt are both smaller than η,
the renormalized quantities v̄ and b̄ decrease upon decreasing
λ. Initially this decrease is very slow, while ultimately (for
λ 	 λ0e−1/(2η)) they vanish as some power of a logarithm.

From the flow of the renormalized quantities and γ as a
function of λ, we can obtain the momentum and frequency
dependences of the fermionic two-point vertex �(2), following
the standard procedure [23,24]. We begin with the frequency
dependence at the hot spot. For kr = kt = 0, the flow equa-
tion (59) for the renormalized vertex �̄(2) can be integrated to

�̄(2)(0, 0, ik0) = ik0[1 + 2η ln(λ/|k0|)] 1
2 , (69)

with the normalization condition �̄(2)(0, 0, ik0) = ik0 for
|k0| = λ. A simple dimensional argument then yields

�(2)(0, 0, ik0) = ik0[1 + 2η ln(�/|k0|)] 1
2 . (70)
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This result agrees with the perturbative expression to lin-
ear order in η. However, the naive expectation of a power
law with an anomalous exponent η was not confirmed by
the renormalization-group analysis. Instead, only a weaker
logarithmic correction to the bare frequency dependence is
obtained. This behavior is similar to the momentum depen-
dence of the two-point vertex in the φ4-theory at the critical
dimension dc = 4, where the interaction is also marginally
irrelevant and leads to logarithmic corrections of the momen-
tum dependence [24]. In that case, however, the beta function
is quadratic in the coupling to leading order, while in our
model it is cubic, so that the renormalized coupling vanishes
more slowly.

From the flow of the renormalized quantities v̄ and b̄
in Eqs. (67) and (68), respectively, we obtain momentum-
dependent coefficients of the fluctuation-corrected dispersion
as

v(kr ) = v

(
1 + 2η ln

�

v|kr |
) ηr −η

2η

, (71)

b(kt ) = b

(
1 + 2η ln

�

bk4
t

) ηt −η

2η

, (72)

via dimensional arguments. These results agree with the
perturbative expressions to leading order in the anomalous
dimensions η, ηr , and ηt . Since η is larger than ηr and ηt ,
both v(kr ) and b(kt ) vanish upon approaching the hot spot in
momentum space, albeit very slowly.

B. α < 4

For α < 4, the tangential momentum dependence of the
fermion propagator acquires only a finite correction, as given
by δb in Eq. (39). The divergences in the self-energy cor-
rections to the frequency and radial momentum dependence
are qualitatively the same as for α = 4. These divergences
can therefore be treated by the same renormalization-group
procedure as for α = 4. The defining equations of Z , ū, and v̄,
as well as their flow equations, remain the same, and one ob-
tains the same results for the frequency and radial momentum
dependence as for α = 4. The dependence on α enters only
via the parameters η and ηr . As to the tangential momentum
dependence, a renormalized coefficient b̄ could be defined as

b̄ = Z (b + u2δb). (73)

The flow of b̄ is then driven only by the divergence of the
Z-factor.

The above procedure is satisfactory as long as δb/b is
small, which is the case for α staying sufficiently far away
from 2 and 4. For α → 2, not only δb/b becomes large,
but also η and ηr , so that the one-loop theory breaks down
completely. For α → 4, however, the frequency and radial
momentum dependence seem to be well captured by the
one-loop approximation, and we can deal with the tangential
momentum dependence by resorting to an ε-expansion in
ε = 4 − α.

To this end, we define our renormalization-group anal-
ysis for a scaling of the tangential momentum variable as
kt → s1/4kt instead of kt → s1/αkt . In this way, the coeffi-
cient b becomes a relevant variable for α < 4 already at tree

level (without loop corrections), while the Yukawa coupling
u remains marginal. The self-energy from Eq. (38) is written
accordingly in the form

δ	(0, kt , 0) = 4

ε
ηt u

2b|kt |−εk4
t , (74)

where ηt can be evaluated for α = 4 to leading order in ε.
The renormalized vertex �̄(2) = Z�(2) is finite for � → ∞
and ε → 0 if ū and v̄ are chosen as before, and

b̄ = Z

(
1 + 4

ε
ηt u

2

)
λ−ε/4 b. (75)

Applying λ∂λ to b̄, and expanding in ū and ε, we obtain the
β-function for the flow of b̄ to order ū2 and order ε,

βb̄ = −ε

4
b̄ + (η − ηt )ū

2 b̄. (76)

For ε → 0 this β-function reduces continuously to the β-
function for α = 4 in Eq. (66). The flow equation for b̄ can
be integrated to

b̄ = b̄0(λ0/λ)ε/4[1 + 2η ln(λ0/λ)]
ηt −η

2η , (77)

where b̄0 is the initial value of b̄ at λ = λ0. Using once again
the common dimensional arguments [24], we thus obtain the
tangential momentum dependence of the fluctuation corrected
dispersion in the form b(kt )|kt |α , with

b(kt ) = b

(
1 + 2η ln

�

b|kt |α
) ηt −η

2η

. (78)

The first scale-dependent factor in Eq. (77) simply shifts the
exponent from k4

t to |kt |α , while the second factor leads to a
logarithmic correction. For α → 4, we recover the behavior
of b(kt ) in Eq. (72).

Since ηr > ηt for all α, the renormalized Fermi velocity
v(kr ) vanishes slightly faster than b(kt ). Hence, the renormal-
ized Fermi surface is slightly (logarithmically) flatter than the
bare one.

V. CONCLUSION

We have analyzed quantum fluctuation effects at the onset
of incommensurate 2kF charge- or spin-density-wave order
in two-dimensional metals for a model in which the ordering
wave vector Q connects a single pair of hot spots on the Fermi
surface with vanishing Fermi surface curvature. The tangen-
tial momentum dependence of the bare dispersion near the hot
spots is proportional to |kt |α with α > 2. Varying α yields
a smooth interpolation between the conventional parabolic
case with a finite Fermi surface curvature, for α = 2, and the
quartic case α = 4, which we have analyzed previously within
RPA [17].

We have first computed the order parameter susceptibility
and the fermion self-energy within RPA for generic values of
α. The static susceptibility forms a sharp peak in momentum
space at Q for any α > 2, while for α = 2 the susceptibility
becomes flat in a half-plane near Q [27]. The susceptibility (as
a function of momentum and frequency) can be written in a
scaling form with a scaling function that depends only on one
variable. For α = 2 and 4, exact analytic expressions for the
scaling functions can be obtained. At the hot spots, the (real)
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frequency dependence of the imaginary part of the fermion
self-energy is linear and slightly asymmetric for any α > 2,
while the real part exhibits a logarithmic divergence, which
indicates a vanishing quasiparticle weight. The momentum
dependence perpendicular to the Fermi surface also develops
a logarithmic divergence for any α > 2. For α = 4 also the
coefficient of the quartic momentum dependence diverges
logarithmically, while for α < 4 only a finite correction to
the prefactor of the leading |kt |α term is obtained. For α = 4,
these RPA results have already been derived in Ref. [17],
except for the exact analytic formula for the susceptibility.

A field-theoretic renormalization-group analysis reveals
that the logarithmic divergences in RPA are not perturba-
tive signatures of non-Fermi-liquid behavior with anomalous
power laws. Instead, only logarithmic corrections to Fermi
liquid behavior are obtained. In particular, the quasiparti-
cle weight and the Fermi velocity vanish logarithmically
at the hot spots. Fermi liquids with a logarithmically van-
ishing quasiparticle weight are known as marginal Fermi
liquids [18]. The reason for this relatively mild breakdown of
Fermi liquid behavior is the vanishing renormalized coupling
between the electrons and the critical order parameter fluctua-
tions, which is due to the suppression of spectral weight at the
Fermi level.

The one-loop renormalization-group analysis is controlled
by a 1/N expansion, where N is the number of fermion
species. Higher loop orders correspond to higher orders in
1/N . The one-loop fluctuation corrections to the fermion
self-energy are numerically quite small for N = 2 (that is,
for electrons), as long as α is not close to 2. Feedback of
the marginal Fermi liquid behavior of the self-energy on the
susceptibility occurs only at the two-loop level. Except for
α ≈ 2, it is unlikely that this feedback will significantly affect
the robust peak at q = Q in the susceptibility. Hence, the 2kF

quantum critical point is not destroyed by fluctuations. This
conclusion holds, in particular, for the physically realizable
case α = 4.

For α → 2, instead, the one-loop fluctuation corrections
become large for any fixed finite N . Not only the RPA, but also
the one-loop renormalization group becomes uncontrolled in
this limit. In Fig. 9 we show the marginal Fermi liquid regime
controlled by our calculation in the plane spanned by α and
M/N , as obtained by requiring, somewhat arbitrarily, that the
anomalous dimension η be smaller than 0.1. Outside this re-
gion, where η > 0.1, the system may still be a marginal Fermi
liquid, but the one-loop calculation becomes increasingly un-
reliable for larger η. Hence, for the parabolic case α = 2, we
have not gained much further insight beyond the previous
results [12,13,15]. The fluctuation-induced flattening of the
Fermi surface found for α = 2 in Refs. [13,15,16] has been
confirmed for α > 2, and may thus be a rather generic effect.

FIG. 9. Schematic phase diagram of 2kF quantum critical sys-
tems with one pair of hot spots in the plane spanned by the
dispersion exponent α and ratio M/N . The marginal Fermi liquid
regime is accessible by a perturbative field-theoretic renormalization-
group analysis, which becomes uncontrolled for small values of
(α − 2)/(M/N ). The line separating the (controlled) marginal Fermi
liquid regime from the (unclarified) strong-coupling regime was
determined by the somewhat arbitrary but conservative condition
η(α, M/N ) = 0.1 for the anomalous dimension η. The physically rel-
evant ratios M/N = 1/2 and 3/2 describing charge and spin density
waves, respectively, are marked by red dots.
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APPENDIX A: EVALUATION OF
PARTICLE-HOLE BUBBLE

The kr integral in Eq. (4) can be easily carried out by using
the residue theorem. Shifting the remaining integration vari-
ables as kt → kt + qt/2 and k0 → k0 + q0/2 to symmetrize
the integrand, one obtains

�0(q, iq0) = i

v

∫ ∞

−∞

dk0

2π

∫ ∞

−∞

dkt

2π

× 
(−k0 − q0/2) − 
(k0 − q0/2)

2ik0 − vqr − b|kt + qt/2|α − b|kt − qt/2|α .

(A1)

Splitting the integral into contributions from positive and
negative k0 and shifting k0 → k0 ± q0/2, the bubble can be
written as

�0(q, iq0) = �+
0 (q, iq0) + �−

0 (q, iq0), (A2)

where

�+
0 (q, iq0) = − i

v

∫ ∞

−∞

dkt

2π

∫ ∞

0

dk0

2π

1

2ik0 + iq0 − vqr − b|kt + qt/2|α − b|kt − qt/2|α ,

�−
0 (q, iq0) = i

v

∫ ∞

−∞

dkt

2π

∫ 0

−∞

dk0

2π

1

2ik0 − iq0 − vqr − b|kt + qt/2|α − b|kt − qt/2|α . (A3)
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These expressions can be continued analytically to real
frequencies by simply substituting iq0 → ω + i0+. The jus-
tification for this step provided for the case α = 4 in Ref. [17]
holds also for generic values of α. Substituting kt = |qt |k̃t and
k0 = b|qt |α k̃0, one obtains

�±
0 (q, ω) = ∓ i

v
|qt |

∫ ∞

−∞

dk̃t

2π

∫ ∞

0

dk̃0

2π

× 1

±2ik̃0 + ±ω−vqr

b|qt |α − ∣∣k̃t + 1
2

∣∣α − ∣∣k̃t − 1
2

∣∣α .

(A4)

Subtracting �0(Q, 0) yields Eqs. (8), with the scaling func-
tion

Iα (x) = − 4i
∫ ∞

−∞

dk̃t

2π

∫ ∞

0

dk̃0

2π

×
[

1

2ik̃0+x−∣∣k̃t+ 1
2

∣∣α−∣∣k̃t− 1
2

∣∣α − 1

2ik̃0 − 2|k̃t |α

]
.

(A5)

Performing the frequency integral yields Iα (x) in the form
Eq. (9).

For α = 2 and 4, the remaining integral over k̃t in Eq. (9)
can be performed analytically. Here we present a derivation
for the nontrivial case α = 4. We first factorize the numerator
of the argument of the logarithm in Eq. (9) as (k̃t + 1

2 )4 +
(k̃t − 1

2 )4 − (x + i0+) = 2(k̃2
t − k̃2

+)(k̃2
t − k̃2

−), where

k̃± =
√

−3

4
± 1√

2

√
1 + x + i0+. (A6)

The logarithm in Eq. (9) can then be written in the form

ln k̃2
t −k̃2

+
k̃2

t
+ ln k̃2

t −k̃2
−

k̃2
t

. From
∫

dk ln k = k ln k − k one easily
derives∫

dk̃t ln
k̃2

t − k̃2
±

k̃2
t

= k̃t ln
k̃2

t − k̃2
±

k̃2
t

+ k̃± ln
k̃t + k̃±
k̃t − k̃±

. (A7)

The integrand is singular at k̃t = 0 and, for real k̃±, at k̃t = k̃±
and k̃t = −k̃±. However, the right-hand side of Eq. (A7) is
finite and continuous at k̃t = k̃± and k̃t = −k̃±. Hence, the k̃t

integral needs to be split only at k̃t = 0, and we obtain∫ ∞

−∞
dk̃t ln

k̃2
t − k̃2

±
k̃2

t

=
∫ −0+

−∞
dk̃t ln

k̃2
t − k̃2

±
k̃2

t

+
∫ ∞

0+
dk̃t ln

k̃2
t − k̃2

±
k̃2

t

= k̃± ln
−0+ + k̃±
−0+ − k̃±

− k̃± ln
0+ + k̃±
0+ − k̃±

= ∓2π ik̃±, (A8)

where in the last step we have used Im k̃+ > 0 and Im k̃− < 0
(the imaginary part can be finite or infinitesimal). Summing
the contributions from k̃+ and k̃−, and using the relation

ik̃− − ik̃+ =
√

3

2
+

√
1

4
− 2(x + i0+),

one obtains the result Eq. (13) for I4(x).

APPENDIX B: COEFFICIENTS As, Bs, Cs, AND Ds

In Fig. 10 we show graphs of the expansion coefficients As,
Bs, Cs, and Ds defined in Sec. III as functions of α.

FIG. 10. Coefficients A±, B±, C±, and D± as functions of α.
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