
PHYSICAL REVIEW B 109, 235110 (2024)
Editors’ Suggestion

Dynamical correlation functions from complex time evolution
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We present an approach to tame the growth of entanglement during time evolution by tensor network
methods. It combines time evolution in the complex plane with a perturbative and controlled reconstruction of
correlation functions on the real time axis. We benchmark our approach on the single impurity Anderson model.
Compared to purely real time evolution, the complex time evolution significantly reduces the required bond
dimension to obtain the spectral function. Notably, our approach yields self-energy results with high precision
at low frequencies, comparable to numerical renormalization group results, and it successfully captures the
exponentially small Kondo energy scale.
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I. INTRODUCTION

Spectroscopic techniques play a central role in condensed
matter physics, as they allow one to probe various excitation
spectra of the system such as angle resolved photoemission
spectra [1], inelastic neutron scattering, or resonant inelastic
x-ray scattering [2]. An in-depth theoretical understanding of
these experiments strongly relies on our capability to com-
pute the real time dynamics of the systems or the related
frequency-dependent spectral function. Transport properties
are also directly related to such functions via the Kubo
formula.

In computational quantum many-body physics, accessing
time-dependent quantities in strongly correlated systems is
often severely limited since many algorithms operate in imagi-
nary time, such as quantum Monte Carlo. Although Matsubara
imaginary time or frequency data provide useful information,
particularly about equilibrium properties and thermodynam-
ics, it is challenging to use for computing real-frequency and
transport properties. The difficulty is due to the well-known
issue of analytic continuation being numerically ill condi-
tioned. In quantum embedding methods like dynamical mean
field theory [3,4], the lack of efficient, precise, and controlled
quantum impurity solvers which can simultaneously access
the low real frequencies required for transport computations
and handle large multiorbital systems constitutes a significant
bottleneck.

In recent years, progress has been made for low-
dimensional systems whose ground state can be efficiently
represented by matrix product states (MPSs) [5–7] and op-
timized through the density matrix renormalization group
(DMRG) [8–10]. Two main directions have been pursued for
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calculating various spectral functions. First, computational
methods have been developed which work directly in fre-
quency space including the Lanczos-vector method [11–13],
correction vector method [14], dynamical DMRG (DDMRG)
[15–20], and Chebyshev polynomials in combination with
MPSs [21–24]. Second, the spectral functions can also be
obtained from time-dependent correlation functions, using
precise time-evolution methods. These include gate evolu-
tion based on the Suzuki-Trotter decomposition [25–30],
efficient matrix product operator (MPO) approximations of
the evolution operator [31], DMRG Lanczos-vector methods
[13,32,33], time-step targeting DMRG [34–37], and the time-
dependent variational principle (TDVP) [38–41], each with its
strengths and weaknesses [42].

Both approaches encounter a similar difficulty at long
times or low frequencies. Frequency methods face limitations
due to the necessity of using a broadening parameter, de-
noted as γ , to regulate the computations at low frequency
ω. Time-evolution methods are limited at long time by the
growth of the entanglement: they require the use of a tensor
network bond dimension which grows with time [43–50], in
contrast with imaginary time evolution where the bond di-
mension saturates. Consequently, the long-time (and therefore
low-frequency) behavior must be inferred through extrapola-
tion techniques, such as linear prediction [51,52]. As a result,
MPS wave-function algorithms are limited in their accuracy
at low frequencies. For instance, state-of-the-art quantum im-
purity solvers based on tensor networks cannot match the
accuracy of the numerical renormalization group (NRG) at
low frequency. Since they can access much larger and more
complicated systems; however, we can expect any significant
improvement in tensor network time evolution to have a large
impact on the field.

In this paper, we address this challenge using Hamiltonian
time evolution in the complex plane, coupled with a
straightforward but controlled perturbative technique to
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reconstruct the physical correlation function on the real time
axis. We demonstrate the feasibility of using a complex-plane
contour located at a sufficient distance from the real axis to
effectively limit the entanglement growth while remaining
close enough to allow an accurate reconstruction of the
function on the real axis. Notably, this approach delivers a
highly accurate Fermi liquid self-energy at low frequencies,
displaying excellent agreement with NRG. Let us mention
that complementary approaches to exploit the complex time
idea are presented in [53].

This paper is organized as follows. In Sec. II A we intro-
duce the idea of time evolution in the complex plane and show
how the spectral function is retrieved from the complex time
contour. In Sec. III, we benchmark our methods on the single
impurity Anderson model (SIAM). Conclusions and future
directions are presented in Sec. IV.

II. METHOD

In this section, we describe our method, a complex time
evolution followed by a perturbative reconstruction of the
result on the real axis. We wish to compute the real time
correlation functions involving operators Ô1 and Ô2 given by

G>

Ô1Ô2
(t ) = −i〈ψg|Ô1(t )Ô2|ψg〉, (1a)

G<

Ô1Ô2
(t ) = −ζ i〈ψg|Ô2Ô1(t )|ψg〉 (1b)

where |ψg〉 denotes the ground state of the system Hamil-
tonian Ĥ, ζ = −1 (resp. +1) for fermionic (resp. bosonic)
operators. We will choose the ground-state energy Eg = 0
without loss of generality. Typical choices of the operators
are ĉσ and ĉ†

σ , the creation and annihilation operators, or
Ŝ− and Ŝ+, the spin ladder operators for dynamical spin struc-
ture factors.

A. Time evolution in the complex plane

The first step of the method consists in evolving on a
time contour in the complex plane. Let us start with the
parametrization of this contour, given by

z(t, α0) ≡
∫ t

0
e−iα0 f (t ′ )dt ′, (2)

where t is real, α0 ∈ [0, π
2 ], and f is a real-valued smooth

function such that 0 � f (t ) � 1. For the results discussed in
this paper, we choose f (t ) = e− t

2π , even though our approach
is general and not limited to this specific form. Real and
imaginary time evolutions correspond to α0 = 0 and α0 f (t ) =
π/2, respectively. This time contour is sketched in Fig. 1.
Crucially, we have the property Imz(t, α0) < 0.

The greater time-dependent correlation function of opera-
tors Ô1 and Ô2 can be generalized to the complex plane

G>

Ô1Ô2
(t, α0) ≡ −i〈ψg|Ô1e−iz(t,α0 )ĤÔ2|ψg〉, (3)

where |ψg〉 is the many-body ground state and Ĥ is the
Hamiltonian with the ground-state energy Eg subtracted [54].
The α0 dependence of G>(t, α0) is such that for α0 = 0,
z(t, 0) = t and G>(t, 0) = G>(t ).

The evaluation of G> involves the time-evolved state

|ψ (t, α0)〉 ≡ e−iz(t,α0 )ĤÔ2|ψg〉 (4)

FIG. 1. Illustration of the time contours in the complex plane.

for a time interval t ∈ [0, tmax]. Due to the finite imagi-
nary part Imz(t, α0) < 0, we expect that the complex time
evolution of |ψ (t, α0)〉 gradually projects the state to the
low-energy manifold, and therefore that it will have lower
entanglement than its real time evolved counterpart |ψ (t, 0)〉.
In practice, its MPS representation will require a smaller bond
dimension χ to reach the same accuracy. Purely imaginary
time evolution is a limiting case, which exhibits nearly con-
stant entanglement [55] and approaches the ground state at
large time t . The specific form of the contour chosen in this
paper is designed to approximately project into the low-energy
manifold after a short time period, then remain in near-unitary
evolution afterwards. More detailed discussions on complex
time contours can be found in Appendix A.

For the lesser Green’s function we define an analogous
complex time generalization

G<

Ô1Ô2
(t, α0) = −ζ i〈ψg|Ô2eiz(t,α0 )ĤÔ1|ψg〉 (5)

with one important change: to suppress high-energy excita-
tions one should employ a complex time contour with an
imaginary part having the opposite sign, obtained by re-
versing the sign of the angle α0 → −α0, i.e., z(t, α0) =∫ t

0 e+iα0 f (t ′ )dt ′. Below we will primarily discuss G>(t, α0)
but an otherwise similar analysis follows for G<(t, α0). For
brevity, we omit the operator indices in G>

Ô1Ô2
(t, α0) when no

confusion arises.

B. Reconstruction of the correlation function on the real axis

The second step of the method consists in reconstructing
the function on the real axis from the complex time evolved
function G>(t, α0). The crucial balance of our approach is to
go far enough in the complex plane to reduce the rank (or
bond dimension) of the MPS, but to stay close enough to the
real axis to reconstruct the final result efficiently and to high
precision.

A natural possibility would be to use an analytical contin-
uation technique, such as MAXENT [56], as G> is related to
the spectral function as discussed in Appendix A. However,
because analytic continuation is in general an ill-conditioned
inversion problem, we prefer to use a more controlled recon-
struction technique in this paper.

We consider the perturbative expansion of G> in powers of
(−α0) starting from the complex contour α0 > 0 and evaluate
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it on the real axis α0 = 0. Formally, we have

G>(t, 0) = G>(t, α0) +
∑
n�1

(−α0)n

n!
∂n
α0

G>(t, α0). (6)

The terms of this series can be straightforwardly computed
from the auxiliary quantities:

φ(n)(t, α0) ≡ 〈ψg|Ô1Ĥn|ψ (t, α0)〉. (7)

The relation between the perturbative series and φ(n) can be
explicitly derived from a simple chain rule, with more details
given in Appendix B. The left hand side ĤnÔ†

1|ψg〉 can be
obtained by representing Ĥ as an MPO and using MPO-MPS
multiplication.

In this expansion, we expect the zeroth-order term
G>(t, α0) to mainly capture the low-energy features of the
spectra. The higher-order terms ∂n

α0
G>(t, α0), which are linear

combinations of φ(l�n)(t, α0), contain transitions between the
ground state |ψg〉 and higher-energy states generated by pow-
ers of the Hamiltonian Ĥ . We therefore expect those terms to
reconstruct the high-energy features of the spectral function.
In practice, one should choose α0 as small as possible, given a
maximum acceptable bond dimension, to minimize the num-
ber of terms required to converge the Taylor series (6) and
thereby the number of iterated powers of the Hamiltonian.

III. BENCHMARK ON THE SINGLE-IMPURITY
ANDERSON MODEL

A. Model

In this section, we benchmark our approach on the one-
band SIAM. Its Hamiltonian reads

Ĥ = Ĥloc + Ĥbath,

Ĥloc = εd

∑
σ=↑,↓

n̂dσ + Un̂d↑n̂d↓, (8)

Ĥbath =
Nb−1∑

b=0
σ=↑,↓

εbn̂bσ +
Nb−1∑

b=0
σ=↑,↓

(vbĉ†
bσ d̂σ + H.c.)

where d̂σ and ĉbσ are respectively the electron annihilation op-
erators at the impurity site and bath site b with spin σ =↑,↓.
The corresponding density operators are n̂dσ and n̂bσ . The bath
parameters {εb, vb} are determined by uniformly discretizing
a hybridization function (ω) with a semielliptic spectrum
− 1

π
Im(ω) = 2

πD

√
1 − ( ω

D )2 of half bandwidth D into Nb

intervals. We use the “natural orbital” basis, which was shown
to greatly reduce the required computational cost [57–59].

We compute the retarded Green’s function at zero
temperature:

GR
σσ ′ (t ) = −iθ(t )〈ψg|{d̂σ (t ), d̂†

σ ′ }|ψg〉. (9)

Results presented in this section are obtained using the two-
site TDVP for time evolution with time step dt = 0.1/D
and truncation weight tw = 10−11. To generate Hn|ψ (t, α0)〉,
we use the zip-up algorithm to apply Ĥn [60], setting a
maximum bond dimension of χmax = 1000. All computa-
tions are conducted while preserving the global U (1)charge

and U (1)Sz symmetries. Unless otherwise noted, the complex

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
ω/D

0

1

2

π
D
A(

ω
)

(a)

Ref.

χ = 20

χ = 30

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
ω/D

0

1

2

π
D
A(

ω
)

(b)

Ref.

χ = 20

χ = 30

χ = 150

χ = 200

χ = 300

χ = 500 −0.05 0.00 0.05

1.9

2.0

−0.05 0.00 0.05

1.9

2.0

FIG. 2. Spectral functions obtained from (a) complex and (b) real
time evolution with different bond dimensions χ . The spectral func-
tion from real time evolution with χ = 700 is shown as a reference in
both panels. The complex time evolution is performed with α0 = 0.1
and the spectra expanded up to order n = 4. For all spectra, we set
Nb = 59, U = 2D, and Dtmax = 90. Insets shows zoom of region
around ω = 0.

time evolution is performed with α0 = 0.1, and the spectra are
reconstructed up to order n = 4. The NRG data presented in
this paper were obtained in a state-of-the-art implementation
[61–66] based on the QSPACE tensor library [67], using a
symmetric improved estimator for the self-energy [68].

B. Results

From the retarded Green’s function on the real time axis,
one can compute the spectral function:

Aσσ ′ (ω) = − 1

π
Im

∫ +∞

0
dt eitω GR

σσ ′ (t ). (10)

We show the spectral function obtained by the complex time
evolution and series extrapolation, along with ordinary real
time evolution, in Fig. 2. As a reference, we show the result of
real time evolution with a large bond dimension χ = 700. The
complex time result reproduces the entire spectrum with bond
dimensions χ ≈ 20, including both the low-energy Kondo
resonance and the high-energy Hubbard satellite structures.
In particular, the Friedel sum rule [69,70], which dictates that
A(0) = 2/(πD), is satisfied within an error of less than 0.3%
for χ = 30. In sharp contrast, the pure real time evolution
requires a much larger χ ≈ 500 to converge, especially for
low-energy properties.

Let us now focus on the low-energy part of the spectrum,
for various U . Figure 3 shows the evolution of the spectral
function and self-energy at low frequency with increasing U
values. For U > D, the real time results show strong devia-
tions around ω = 0, which increase with U (in particular a
violation of the Friedel sum rule and a loss of spectral weight).
On the other hand, the complex time results satisfy the Friedel
sum rule for all U values. Furthermore, we can extract the
Kondo energy scale kBTK , defined here as the half width at
half maximum of the Kondo peak. It decreases exponentially
with U as expected in the Schrieffer-Wolff limit [72], with
TK/D ≈ 1.88

√
D/U exp(−π UD

16 ), as shown in the inset of
Fig. 3(a). It is also in excellent agreement with previous results
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FIG. 3. Low-energy (a) spectra and (b) self-energy obtained from
complex (solid lines) and real (dashed lines) time evolutions for
U = D to 4D. The inset in panel (a) shows the Kondo energy scale
(blue open circles) extracted from complex time spectra, and its
fitting to the Schrieffer-Wolff limit (gray dashed line). Stars in panel
(a) indicate the Kondo energy determined from DDMRG [71]. As
a reference, the NRG self-energies are plotted (transparent lines) in
panel (b) [68]. All results are calculated with Nb = 399, χ = 80, and
Dtmax = 240(480) for U � 2D (U > 2D). A Lorentzian broadening
with η = 0.01D is applied during the Fourier transformation of real
time data, while no broadening is used for the complex time data.

obtained using DDMRG [71], as shown by the frequency
values labeled by stars in Fig. 3(a). Finally, the Fermi liquid
low-energy behavior −Im�(ω) ∼ (ω/D)2 is recovered, with
a high precision agreement with the NRG results [68]. In
contrast, purely real time evolution is unable to obtain the
Fermi liquid self-energy to such a high precision.

C. Discussion

Let us now study more in detail the contribution of the var-
ious terms in the Taylor expansion (6) to the spectral function:

A(ω) =
∑
n=0

A(n)(ω). (11)

In Fig. 4, we show A(n)(ω) up to n = 5 for α0 = 0.1. We
observe that A(0)(ω) gives the largest contribution, especially

FIG. 4. Contribution from each expansion order to the spectral
function, A(n)(ω). Inset: Cumulative spectral weight error I (n) up to
order n for different α0 values. Nb = 59, U = 2D, χ = 500, and
Dtmax = 90.
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FIG. 5. (a) Energy, (b) entanglement entropy between the impu-
rity and first bath site, and (c) two-site TDVP truncation error (at
fixed χ = 500) of the time evolved state |ψ (t, α0)〉 as a function of
time t for various α0 values. The initial state is |ψ (0, α0)〉 = d†

↑|ψ0〉.
Nb = 59 and U = 2D.

for small ω, followed by the first-order expansion A(1)(ω). For
n � 2, A(n)(ω) contributes mainly to the high-energy features.
A closer look at the contributions around the Hubbard bands
ω/D ≈ ±1.55 reveals a monotonic decrease in A(n)(ω) as the
expansion order n increases.

The convergence of the Taylor series naturally depends
on the value of α0. The larger is α0, the more orders are
needed. Note that the radius of convergence of the series also
depends on α0. This is illustrated in the inset in Fig. 4, which
shows the difference between the cumulative spectral function
up to the expansion order n and the reference data used in
Fig. 2:

I (n) =
∫

dω

∣∣∣∣∣
n∑

m=0

A(m)(ω) − Aref(ω)

∣∣∣∣∣. (12)

In order to achieve a precision of 10−2, we need n = 2 for
α0 = 0.1, n = 4 for α0 = 0.2, and n = 5 for α0 = 0.3.

The effect of the complex time evolution is further docu-
mented in Fig. 5. In Fig. 5(a), we present the energy E (t ) =
〈ψ (t, α0)|Ĥ|ψ (t, α0)〉/〈ψ (t, α0)|ψ (t, α0)〉. As expected, for
α0 = 0 it remains constant, but decreases with t for α0 > 0,
faster for larger α0, as the complex time evolution projects
to the low-energy manifold. In Fig. 5(b), we present the en-
tanglement entropy between the impurity and the first bath
site S(t ). Its growth at long time is strongly reduced by α0.
This typically results in a smaller MPS bond dimension χ

when working on the same level of accuracy. Consistently,
the two-site TDVP truncation error ε shown in Fig. 5(c) is
significantly reduced at large α0. These results illustrate the
fact that complex time evolution of |ψ (t, α0)〉 is easier to
compute with MPS (i.e., require a lower bond dimension χ ).

Regarding the computational cost of our method, as with
real time evolution, the most computationally demanding part
is to compute the time-evolved state |ψ (t, α0)〉 over the time
range [0, tmax]. The cost of MPS-based time-evolution meth-
ods, such as TDVP used in this paper, scales with MPS rank or
bond dimension as χ3. We find that to reach the same accuracy
per time step, a much smaller χ is needed along the complex
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contour versus real time. Additionally, the number of Krylov
steps needed inside the TDVP algorithm is fewer. Finally, for
a small enough α0 ≈ 0.1, the Taylor series reconstruction of
the real time results converges rapidly with just a few orders
(i.e., n � 4). See Appendix C for further discussion of these
points.

IV. CONCLUSION

In summary, the combination of a complex time evolution
of tensor network states and a perturbative reconstruction of
the real time result is an efficient approach to compute the
spectral function on real frequencies. We have shown this
approach can deliver very high-precision results at low en-
ergy, comparable to NRG, using detailed benchmarks for the
one-band SIAM model. The complex time evolution succeeds
in capturing the whole spectrum of the model, including the
exponentially small Kondo and Fermi liquid energy scale,
while real time evolution struggles in the long-time dynam-
ics, hence at low frequency, and requires a relatively large
broadening.

Our approach can be extended to various tensor network
states [59,73,74] where efficient time evolution is feasible.
When applied to complicated systems characterized by an
MPO representation of the Hamiltonian with large bond di-
mension, efficiently computing the higher-order expansion
coefficients could however become challenging. We empha-
size however that the Taylor series expansion presented here
is only one possibility of extrapolating the function from finite
α0 to α0 = 0. Another possibility could be extrapolating from
a few finite values of α0 down to α0 = 0.

Recently there have been a number of new methods pro-
posed to efficiently access long-time dynamics using tensor
networks. The strategies used range from novel truncations of
the quantum state [75–77], compression of the process ten-
sor or influence functional capturing bath dynamics [78–87],
compression of high-order perturbative series [88,89], or
controllably introducing dissipation [90–92]. While our ap-
proach has some conceptual similarity with the dissipation
approaches, it has important practical advantages. It is
straightforward to implement for any type of system, does
not rely on special bath properties, offers controlled schemes
to reconstruct the real time dynamics, and delivers high-
precision results. Moreover, it could be blended with the other
methods above.

We leave for future work the question of multiorbital quan-
tum impurity models. A key question is whether complex time
evolution will reach a similar accuracy in the low frequency
self-energy for larger systems. This would open a route to a
high precision real-frequency solutions for five and more or-
bitals, which are currently out of reach of the NRG algorithm.
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APPENDIX A: COMPLEX TIME CONTOUR
AND ITS ASSOCIATED KERNEL

The Green’s function in complex time G>(t, α0) and its
spectral function A>(ω) are related by

G>(t, α0) =
∫

dωA>(ω)e−iz(t,α0 )ω. (A1)

However, computing A from G> is an ill-conditioned problem
for finite α(t ). To be concrete, consider discretizing Eq. (A1)
uniformly with Nt time points and Nw frequency points. The
kernel connecting G(t, α0) and A(ω) can now be interpreted
in a matrix-vector format as

G = K · A, (A2)

where each kernel matrix element is simply given by Ki j =
e−iziω j dω. Let us consider three exemplary complex time con-
tours f (t ) as depicted in Fig. 6(a): a contour with a constant
angle fC (t ) = 1(blue line), a contour with increasing angle
fI (t ) = 1 − e−tω0 (orange line), and a contour with decreasing
angle fD(t ) = e−tω0 (green line). Here, ω0 = 2π/tmax is the
lowest energy one can resolve for a time duration up to tmax.
Figure 6(b) shows their corresponding contour in the complex
time plane with α0 = 0.3. As depicted in Fig. 6(c), for all
contours, the kernel rank rank(K) diminishes rapidly with
the growth of α0. The difficulty of analytical continuation
from complex time to real frequency (including the more
commonly encountered case of imaginary time to real fre-
quency) arises from the reduced rank of K. This ambiguity
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can be alleviated by choosing a small α0, e.g., positioning the
complex contour near the real axis.

The kernel rank does not directly reveal the resolution on
the real frequency axis. A more quantitative understanding
can be drawn from the singular value decomposition of the
kernel as K = U · S · V †. The columns of V † constitute an
orthogonal basis set along the frequency axis, each being
weighed by its respective singular values in S. We define

ϑ (ωi ) =
∑rank(K)

r=1 S2
r |(V †)rωi |∑rank(K)

r=1 S2
r

, (A3)

as a measure of the kernel’s resolution on the real frequency
axis. As shown in Fig. 6(d), in contrast to the uniform resolu-
tion of real time evolution (dash red line), all three contours
with finite α0 values lean towards emphasizing the low-energy
part. Notably, the contour α(t ) = α0 fD(t ) provides the most
substantial emphasis on this region.

The core motivation behind leveraging complex time evo-
lution in the MPS framework is the gradual suppression
of high-energy excitations throughout the time evolution.
This approach works better when long-time states are pre-
dominantly characterized by a limited set of low-energy
excitations, thereby improving its MPS representation. Our
primary goal is that G>(t, α0) mainly encapsulates the low-
energy physics. We therefore choose fD(t ) as the contour for
all the results presented in this paper.

APPENDIX B: EXPANSION IN α0

In this section, we elaborate on the Taylor expansion in
Eq. (6), and explicitly work out the first few expansion terms.
We define

J (n)(t, α0) := −i∂n
α0

z(t, α0)

= −i
∫ t

0

[−i f (t ′)
]n

e−iα0 f (t ′ )dt ′, (B1)

and g(n)(t, α0) := (−α0 )n

n! ∂n
α0

G>(t, α0). Then, the first four
Taylor expansion terms are

g(1) = −α0J (1)φ(1),

g(2) = α2
0

2!
[J (2)φ(1) + (J (1) )2φ(2)],

g(3) = −α3
0

3!
[J (3)φ(1) + 3J (1)J (2)φ(2) + (J (1) )3φ(3)],

g(4) = α4
0

4!
{J (4)φ(1) + [4J (1)J (3) + 3(J (2) )2]φ(2)

+ 6(J (1) )2J (2)φ(3) + (J (1) )4φ(4)}. (B2)

Here, we omit the explicit dependence on t and α0 in
J (n)(t, α0), φ(n)(t, α0), and g(n)(t, α0) for brevity.
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FIG. 7. Comparison of actual or “wall” time for complex and real
time evolution with various interaction strengths and bond dimen-
sions. Wall time for “complex time” includes a full implementation
of our method. For U � 2D, we have tmax D = 120 and tmax D = 240
for U > 2D.

APPENDIX C: COMPUTATIONAL COST

For the proposed method, when employing two-site TDVP
[38,40] for time evolution and the zip-up algorithm to ap-
ply the Hamiltonian [60], the primary computational cost
scales as Nt nkd2kχ3 + nkdχ ′3 + Nt ndχ ′2χ . The first term
stems from the two-site TDVP with maximal bond dimension
χ . The second term arises from applying the Hamiltonian
MPO with bond dimension k on the state with a maximum
bond dimension of χ ′(χ ′ � χ ) n times to generate |φn〉. The
third term arises from evaluating the overlap 〈φn|ψ (t, α0)〉.
Here, d represents the local Hilbert space size (d = 4 for
an electron site), Nt is the number of time-evolution steps,
and nk is the average local Krylov space size required to
exponentiate the local evolution operator[nk ∼ O(10)]. For
small α0, the Taylor series converges rapidly in the expansion
order n (n ≈ 4 for SIAM with α0 = 0.1), and Nt is typically
very large [Nt ∼ O(103)]. Thus, akin to real time evolution,
the most computationally demanding part is calculating the
time-evolved state |ψ (t, α0)〉 on the complex time contour.

As discussed in Sec. II A in the main text, when employing
complex time evolution, high-energy excitations are progres-
sively filtered out, allowing the state to be efficiently and
accurately captured by an MPS over an extended time range.
Therefore, in comparison to real time evolution, a significantly
smaller bond dimension χ can achieve comparable accuracy.
Moreover, since states at long times closely resemble the
ground state, the average local Krylov space size nk is also
reduced relative to real time evolution, further reducing com-
putational costs. For SIAM calculations, we plot the wall time
(actual time) of calculations with various interaction strengths
and bond dimensions in Fig. 7. We note that the complex time
evolution (including the expansion step) is approximately two
to three times faster than the real time evolution when using
identical χ and truncation error tw.
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