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Polarization rotation and exact transverse electromagnetic wave solutions in topological insulators
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In the context of θ electrodynamics we find transverse electromagnetic wave solutions forbidden in Maxwell
electrodynamics. Our results attest to different signatures of the topological magnetoelectric effect in topological
insulators, resulting from a polarization rotation of an external electromagnetic field. Unlike Faraday and Kerr ro-
tations, the effect does not rely on a longitudinal magnetic field, the reflected field, or birefringence. The rotation
occurs due to transversal discontinuities of the topological magnetoelectric parameter in cylindrical geometries.
The dispersion relation is linear, and birefringence is absent. Exact transversality allows electromagnetic waves
to propagate in an optical fiber without successive total internal reflections, diminishing losses, and regardless of
acute bends of the fiber. These results may open other possibilities in optics and photonics by utilizing topological
insulators to manipulate light.
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I. INTRODUCTION

The topological magnetoelectric effect (TME) has been in-
tensely sought after in recent decades as a definitive signal of
quantum states of matter possessing topological order [1–9].
Topological insulators (TIs) are among the most well-known
and studied cases presenting TME. These new quantum
states can be found in heterostructures of elements such
as Bi, Se, Te, Sb, and others [10–14]. They exhibit con-
ducting edge/surface states protected against disorder by
time-reversal symmetry, with properties differing from those
in the bulk of the material, which is gapped as conventional
insulators [15,16].

Due to their microscopic structure, three-dimensional (3D)
TIs have unique electromagnetic (EM) responses that can
be described macroscopically by the axionic θ term Lθ =
(θ/4π )E · B [17]. In the context of TIs, θ = α

π
θTI, where α

is the fine-structure constant and θTI is called the topological
magnetoelectric polarizability (TMEP). Its origin is quantum
mechanical and it encodes the microscopic properties that
characterize TIs. This provides a correct description of the
system if an appropriate time-reversal symmetry breaking per-
turbation is introduced to gap the surface states, which results
in the material (in its bulk and at the surface) becoming an
insulator. The surface, however, is a quantum Hall insulator
rather than a normal one. The latter can be achieved by adding
a magnetic perturbation (applied field and/or film coating)
[18,19], or by using commensurate out-of-plane and in-plane
antiferromagnetic or ferrimagnetic insulating thin films [20].
As a result, θTI becomes quantized in odd-integer values of
π , i.e., θTI = ±(2n + 1)π , where n ∈ Z and the sign is deter-
mined by the time-reversal symmetry breaking perturbation.
This gives a valid description of the EM response of TI pro-
vided h̄ω � Eg, with ω the frequency of the EM field and Eg

the surface gap. Trivial insulators have θTI = 0. In this paper,
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θTI will be taken as a constant parameter characteristic of each
medium. For brevity we will simply write θ and we shall
refer to this theory as θ -electrodynamics (θ -ED) rather than
axion electrodynamics. This model can also describe Tellegen
magnetoelectric media [21–24] and Weyl semimetals when
θ (x, t ) = 2(b · x − b0t ), where b is the separation in momen-
tum space between the Weyl nodes and b0 their separation in
energy [25,26]. Magnetolectric responses due to chirality have
been considered in Ref. [27], however, these are not equivalent
to the ones considered here [28,29]. In this paper, we will
focus on TME signals stemming from the EM response of
TIs following closely the methodology of Refs. [30–32] and
also similar to what has been done, for example, to study
Faraday rotation [33–37], induced magnetic-monopole-like
fields [38], and topologically induced effects in cavities and
slab waveguides [39,40]. On the other hand, whenever a no-go
theorem can be circumvented, a door into new theoretical
and/or experimental possibilities is opened. In Ref. [31] it was
shown that θ -boundary value problems can evade Earnshaw’s
theorem, which implies that transverse EM (TEM) fields can-
not propagate in media with less than two conductors. Hence,
as one of the most striking effects of θ -ED is to modify the
boundary conditions (BCs) that the fields must satisfy, in this
paper we pursue this idea in systems that are heavily reliant
on BCs to find TEM wave solutions that are possible due to
the magnetoelectricity of Tellegen materials, of which TIs are
a particular kind, thus providing observable signatures of the
elusive TME that are different from those previously reported
in the literature. Our findings pave the way to other means of
harnessing light with possible applications in photonics that
are yet to be discovered.

The paper is organized as follows. In Sec. II we review
the basics of θ -electrodynamics. That is to say the field equa-
tions for Maxwell’s Lagrangian appended with the axion term
commented above, emphasizing how the θ term modifies the
boundary conditions that the fields must satisfy at spatial
surfaces where θ is discontinuous. The field equations are
decomposed in longitudinal and transverse components as is
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FIG. 1. In (a) we show a generic cylindrical geometry. Only
three media Mi are shown (each characterized by εi, μi, θi). In this
example θ1 = 0, so �2, located at R2 is the only θ interface and
∇θ = (θ3 − θ2)δ(ρ − R2)ρ̂. In (b) and (c) different ∇θ configura-
tions are shown in which an EM wave propagates in the ẑ direction.
(b) Antiparallel and (c) parallel refer to the directions of ∇θ (red).
The transverse E⊥ fields are shown in blue.

customary for the study of field propagation in waveguides
and/or optical fibers. In Sec. III we present the properties of
the TEM fields, namely, the relation defining the transversality
condition and the general dispersion relation. In this section
we also introduce a rotation of the plane of polarization of the
EM field propagating transversely to ∇θ that is different to
Faraday or Kerr rotations. In Sec. IV we present explicit solu-
tions for the TEM fields inside and outside a single cylindrical
TI with constant θ , impinged upon by an external background
EM field that serves as an asymptotic boundary condition
and comment on the role that different polarizations of the
background EM field would have on the rotating effect of the
TI and on the resulting spatial distribution of the EM field.
Sec. V introduces the idea of considering several θ interfaces
and the possibilities in terms of the possible configurations
depending on the ∇θ at each surface. More specifically, in
Sec. V A we analyze the case of two θ interfaces. This divides
the whole space in three cylindrical regions (a) (0, R1); (b)
(R1, R2); and (c) (R2,∞). For the TMEP of each region we
will choose them in the “antiparallel” configuration as in Fig.
1(b). That is when the gradient of θ at both layers (and in
the same angular direction) are antiparallel, and to simplify
the analysis, we will furthermore choose the inner and outer
regions as topologically trivial, such that the geometry is basi-
cally that of a cylindrical TI shell of finite width. In Sec. V B
we analyze the power transmitted in the different cylindrical
regions defined by the θ interfaces and compare it with the
power that would be transmitted through the same regions but
without the TI. In Sec. V C we elaborate criteria that allow us
to speak of the confining capacity of the cylindrical TI shell on
exact TEM fields that propagate in the TI, acting as an optical
fiber. Finally, in Sec. VI we summarize our results, provide
some context for the relevance of finding TEM solutions,
and elaborate on possible extensions and applications of these
ideas.

Throughout the paper, the equations of θ -ED will be
written in Gaussian units. The coordinates (ρ, φ, z) are the
cylindrical coordinates with z in the direction of the wave
propagation and of the cylindrical surfaces. ρ and φ are the
usual ones related to the Cartesian directions in Fig. 1(a), i.e.,
∇θ points in the radial direction ρ̂, and φ̂ is perpendicular to
the latter, in the anti-clockwise direction.

II. NONDYNAMICAL θ ELECTRODYNAMICS

In θ -ED, the source-free equations do not change, but
Gauss and Ampère-Maxwell laws are

∇ · (εE) = 4πρ − ∇θ · B, (1)

c ∇ × (B/μ) − ∂t (εE) = 4πJ + c∇θ × E + θ̇ B. (2)

We will consider monochromatic harmonic EM fields,
E(r, t ) = E(r⊥)ei(kz−wt ) and similar for B(r, t ), propagating
in cylindrical media with coaxial symmetry, and axis along ẑ
as in Fig. 1(a). Coaxial cylindrical surfaces � separate each
medium, such that ∇θ = θ̃iδ(ρ − Ri )ρ̂, where θ̃i ≡ θi+1 − θi,
θi being the value of the TMEP in the ith medium and Ri

defines the interface �i. TIs of cylindrical geometry have
received considerable attention theoretically [32,40–43] and,
despite possibly challenging, even experimentally [44]. We
will consider all media with the same ε and μ. Decomposing
vectors in directions longitudinal and transverse to the wave
vector [45], the vacuum field equations that receive a θ -term
modification read

ε∇⊥ · E⊥ + [θ̃Bρ] = −ikεEz, (3)

ickB⊥ − iεμω ẑ × E⊥ = c∇⊥Bz − cμ[θ̃Ezρ̂], (4)

c(∇⊥ × B⊥)z − cμ[θ̃Eφ] = −iεμωEz, (5)

where ∂zθ and θ̇ terms vanish. Given ∇θ has support at the
radial interfaces only, we have put e.g., ∇θ · B⊥ = [θ̃Bρ].

III. TEM WAVE SOLUTIONS AND POLARIZATION
ROTATION AS A TOPOLOGICAL MAGNETOELECTRIC

SIGNATURE

Due to the [θ̃Bρ] and [θ̃Eφ] terms, the equations of θ -ED
[i.e., Eqs. (3)–(5) together with those that do not acquire θ

modifications] admit nontrivial TEM wave solutions for the
EM fields, i.e., E⊥ �= 0, B⊥ = √

εμ ẑ × E⊥, and Ez = 0 = Bz,
provided ck = ω

√
με and

√
εi+1μi+1 = √

εiμi, where i and
i + 1 represent adjacent media. With this choice of θ , the
fields propagate with a continuous wave number and without
birefringence, as free TEM waves in an (ε, μ, θ ) medium.
Henceforth we will drop the subscript ⊥ and assume all media
as nonmagnetic, so μ = 1 for all media, thus εi+1 = εi = ε.
The ∇θ interface produces a discontinuity of E that results
in a rotation of the polarization of the field. This situation is
depicted in Figs. 1(b) and 1(c). At any given point of the θ

interface, the directions of the E satisfy

tan γi+1 = tan γi(1 + 2Zθ tan γi )
−1, (6)

where Z = √
μ/ε is the impedance, Zθ ≡ θ̃Z/2, and γi, γi+1

are the angles between the normal to the i th interface and E
on either side of it. This rotation is an interesting signature of
the TME that differs radically from Faraday and Kerr rotation
effects, which have also been predicted in the context of TIs
as signals of the TME [33,36,37,46–51]. The rotation found
here is not caused by a component of B along the direction
of propagation, neither is it due to birefringence, nor is it a
property of the reflected field. This prediction leads to another
way to observe the TME, and it is a consequence of exact
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(a)

(b)

(c)

(d)

FIG. 2. Density plots of the relative Poynting vector in the inte-
rior and exterior regions relative to that of the background EM field.
The streamlines are the total E-field lines. The contour plots show
contours of constant relative Poynting vector. (a)–(d) correspond to
Z = 1 and θ = 3π , 11π , 19π , 27π , respectively.

TEM wave solutions that had not been possible up until now
and are certainly very vehemently sought after [52–56]. With
several layers the cumulative effect is different for the parallel
and antiparallel configurations of Figs. 1(b) and 1(c), because
the effect is sensitive to θ̃ .

IV. ONE CYLINDRICAL θ INTERFACE IN AN EXTERNAL
MONOCHROMATIC PLANE WAVE

Consider an infinitely long TI cylinder of radius R, charac-
terized by θ in a homogeneous medium, both with the same
Z . We seek solutions that asymptotically away from the TI
tend to a plane wave with linear polarization (LP), say, in
the ŷ direction, i.e., limρ→∞ E(ρ, φ, z, t ) = E0 ei(kz−ωt ) ŷ. The
TEM fields that solve the θ -ED equations in each media Mi,
for i = 1, 2, are Ei = E0ŷ + E0Eθ

i , where

Eθ
1 = −κ (x̂ + Zθ ŷ), (7)

Eθ
2 = κ�2[(Zθ sin φ + cos φ)ρ̂ + (sin φ − Zθ cos φ)φ̂], (8)

where κ = Zθ /(1 + Z2
θ ) and � = R/ρ. Since B is determined

by E, henceforth we will mostly refer to E. If θ̃ = 0 there is no
interface and the interior and exterior solutions are identical
to E0 ei(kz−ωt ) ŷ. If E0 = 0, there is no solution at all, so our
solution is reliant on the background field. But, if θ̃ �= 0 and
E0 �= 0, a total TEM solution exists in all space that cannot
be obtained with all-dielectric materials or otherwise, and it
acquires different and nontrivial features that are attributable
to θ alone leading to other observable signatures of the TME.

A. Polarization rotation and field spatial distribution

Figure 2 shows E-field streamlines, the spatial distribution,
and the contour plots of the temporal average of the Poynt-

ing vector (relative to that of the background field: 〈Sz0〉 =
cE2

0 /8πZ). Inside the TI, E is uniform, and, due to Eq. (6), the
polarization rotates by a fixed amount. This rotation is given
by

cos ϕint = Ê1 · ŷ = (1 + Z2
θ )−1/2. (9)

For Z = 1 and θTI = 3π , 11π , 19π , and 27π , respectively,
this implies a rotation of the polarization plane of 0.63◦, 2.30◦,
3.97◦, and 5.63◦, respectively, that is entirely due to the TMEP
of the TI, differs from Faraday or Kerr rotations, and is within
present-day experimental sensitivity.

The relative Poynting vectors Sθ
z (ρ, φ) ≡ 〈Szθ 〉/〈Sz0〉 in

each region are given by

Sθ
z1 = 1 − κZθ , (10)

Sθ
z2 = 1 + κ[Zθ �

4 + 2�2(sin 2φ − Zθ cos 2φ)]. (11)

Away from the TI’s surface, the power per unit area varies
as an anisotropic term that goes as ρ−2, and by an isotropic
term that goes as ρ−4. We observe that Sθ

z (ρ, φ) = Sθ
z (ρ, φ +

nπ ) for n = 1, 2, . . . and also Sθ
z (ρ, φ) − Sθ

z (ρ,−φ) =
4κ�2 sin 2φ = Sθ

z (ρ, φ) − Sθ
z (ρ, π − φ). Also, the relative

Poynting, as a function of φ, has maxima and minima defined
by the directions φ± = arctan(Zθ ±

√
1 + Z2

θ ), respectively,
corresponding to the lines (not drawn) in Fig. 2 of ex-
tremal intensities. In fact, |Sθ

z (R, φ+) − 1| > |Sθ
z (R, φ−) −

1|, however, with respect to the extremal directions, the rela-
tive Poynting is indeed symmetric, namely, Sθ

z (ρ, φ± + α) =
Sθ

z (ρ, φ± − α). This asymmetric field distribution can be un-
derstood self-consistently, order-by-order in θ , in terms of
the induced topological surface charge densities. The jump
in θ across the boundary times the B-field normal to the
cylinder generates a discontinuity of the E-field that acts as
a topological surface charge density σθ (�) = − 1

4π
(θ̃B · ρ̂)|� .

Along with it, there is an induced (topological) surface current
density Kθ (�) = c

4π
(θ̃ ρ̂ × E)|� [57]. The total electric field

Eθ
1,2 (and the corresponding Bθ

1,2) can be understood as an
infinite superposition of the fields induced by these topologi-
cal surface charge densities and currents. The infinite sum, in
fact converges and lead precisely to the fields in Eqs. (7)–(8).
Further details in [58].

B. The role of the polarization of the background field

If the background field has right-handed or left-handed
circular polarizations (RCP/LCP), the amount of the polar-
ization rotation inside the TI is the same and in each case
it rotates in the same sense the background field does. At a
given time and for appropriate initial conditions (or phase)
the structure for the CP background field and the patterns of
the Poynting vector are the same as for the LP. The temporal
averages differ considerably, though. For the CP background
field, the pattern of the external Poynting is isotropic only with
a ∼θ̃2ρ−4 dependence [59].

To understand this, we realize that the Poynting has an
interaction term 2E0ŷ · E0Eθ∗ in either regions interior and
exterior to the TI. Going back to our discussion of the induced
topological polarization charges, for a CP background field,
these σθ will also tend to redistribute following the direction
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of the E field, which is rotating itself so there is no misalign-
ment between the background field and that produced by the
induced charges, thus they remain orthogonal to each other at
all times.

V. SEVERAL COAXIAL CYLINDRICAL θ INTERFACES IN
AN EXTERNAL MONOCHROMATIC PLANE WAVE

The precise form of the repeated effects with several coax-
ial cylindrical θ interfaces depend on the different radii at
which the θ interfaces lie, on ∇θ at each layer and possibly on
the polarization of the background EM field. With respect to
the directions of ∇θ there are several possible configurations.
We will focus on the antiparallel configuration depicted in
Fig. 1(b). The study of more θ -interfaces is left for elsewhere
[58]. For simplicity we analyze the case of two θ interfaces.

A. Two coaxial θ interfaces in antiparallel configuration

Consider two θ interfaces in antiparallel configuration as
depicted in Fig. 1(b), with the same background EM field
as above. The geometry is as in Fig. 1(a), with θ = θ2 �= 0
for R1 � ρ < R2 and zero elsewhere. In regions i = 1, 2, 3
the total electric field is indeed TEM, can be written as Ei =
E0ŷ + E0 �χ Eθ

i , and the θ contributions are

Eθ
1 = −Y θ2 ŷ, (12)

Eθ
2 =

[
2

R2
1

ρ2
(cos φρ̂ + sin φφ̂) + 2x̂ − Y θ2ŷ

]
, (13)

Eθ
3 = Y R2

2

ρ2

[
sin φ

(
θ2ρ̂ − 2φ̂

Z

)
− cos φ

(
2ρ̂

Z
+ θ2φ̂

)]
,

(14)

where χ = R1/R2, Y = Z (1 − χ2), and �χ = Zθ2/(4 +
Y Zθ2

2 ). Despite the value of θ2, the field in region 1 is uniform,
with the same polarization as the asymptotic background
field and χ determines how much is the intensity diminished
in there. In Figs. 3(a) and 3(b) we show the density plots
of the temporal average of the Poynting vector relative to
the background, and E-field streamlines, corresponding to
Eqs. (12)–(14), for Z = 1 and θ2 = 27π . In Fig. 3(a), χa =
0.45, and in Fig. 3(b), χb = 0.82, respectively. For smaller
θ the same effects arise, but fainter. In either case, in the
TI’s bulk the field is similar in its asymmetric quadrupolarlike
distribution, as for one θ layer, but it is inverted with respect
to the exterior region.

B. Transmitted power in each region, as a function of θ and the
geometry of the system

In Fig. 3(c), for different values of θ , we compare the
power transmitted in region 1,

Pθ2
1 (χ ) =

∫ R1

0
〈Szθ 〉ds⊥, (15)

to the power transmitted in that same region by the back-
ground field, Pθ2=0

1 (in solid black line). For fixed χ , we see
that Pθ2

1 is smaller for higher values of θ and, for a given θ , Pθ2
1

scales with R1 (which is rather trivial as the bigger/smaller
R1, the bigger/smaller the area pierced by the Poynting). The

FIG. 3. In all cases Z = 1. In (a), (b) θ1 = 0 = θ3 and θ2 = 27π

inside the TI. In (a) χ = 0.45 and in (b) χ = 0.82. (c) and (d) show
the power transmitted through regions 1 and 2, Pθ2

1 and Pθ2
2 , respec-

tively, for R2 = 10 µm. For θ2 = 0, the corresponding powers, Pθ2=0
1,2 ,

are shown in the solid black line. For θ2 = 27π , the inset of (c) shows
�P1. The vertical lines are χa = 0.45 which defines the geometry of
the configuration in (a), and χ1M that maximizes the difference. The
inset of (d) shows �P2 and the values χ∗

2 and χ2M .

differences �Pi(χ ) ≡ Pθ2
i − Pθ2=0

i for i = 1, 2 quantify how
much of the θ contribution to the EM field is trapped or
“confined” in region i. The quantities Pθ,0

2 (χ ) correspond to
the transmitted power by the EM field through the region R1 �
ρ � R2 with TI (θ ) and without (0), respectively, namely.

Pθ2
2 (χ ) =

∫ R2

R1

〈Szθ 〉ds⊥ . (16)

Their χ dependence allows to find optimal configurations,
e.g., for any given θ2, there is a critical χ1M (θ2) that minimizes
�P1. The inset to Fig. 3(c) shows this difference and the
values χa and χ1M (27π ). Rather surprisingly, in the R1 → R2

limit, a radial and anisotropic electric field residing only at
ρ = R2 remains while in regions 1 and 3 the total electric field
is exactly equal to the background field.

C. Geometry optimization and confinement of the TEM field
inside the TI

Similarly, in Fig. 3(d), for different values of θ , we
compare the power transmitted in region 2, Pθ2

2 (χ ), to that
transmitted in the same region by the background field, Pθ2=0

2
(in the solid black line). For every given θ2 �= 0, there exists
a χ∗

2 (θ2) such that �P2(χ∗
2 ) > 0, i.e., for which the power

transmitted in the TI’s bulk exceeds that in the same region
if the TI were absent. This occurs when the θ2 �= 0 curves
cross the solid black line (θ2 = 0). Regardless the value of
θ2 such an intersection always occurs, but it is more evident
for larger values of θ2 (compare the red (dashed) curve to the
blue (dotted-dashed) or green (smaller dotted-dashed) curves.
The bigger the θ2, the larger the gain, however, the closer χ

must be to 1, i.e., higher yields occur for higher θ and through
thinner TI sheaths. Furthermore, for that given θ2, there
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exists a χ2M (θ2) with χ∗
2 < χ2M < 1 that maximizes �P2.

In Fig. 3(d), we chose χ = χ2M for which Pθ2=27π
2 (χ2M ) =

max[Pθ2=27π
2 (χ )] = 1.01Pθ2=0

2 (χ2M ).
A priori, one could have expected that for a given θ2 that

configuration that minimizes the power transmitted through
region 1 (inner vacuum core) is the same configuration that
maximizes the power transmitted through region 2 (inside
the TI). Namely, the expectation that the power gain through
the TI is at the expense of the loss of power in the inner
vacuum core, as if the TI sucked power from the inner shells
only. Rather surprisingly, this is not the case. In fact, for
θ1 = 0 we can show that there is no χ that minimizes Pθ2

1 and
simultaneously maximizes Pθ2

2 , implying that both geometry
optimization procedures described are in fact independent.
To contrast the explanation above, the physical reason for
this would then be that not only does the TI confines the
EM field in its bulk by depleting the EM field in the inner
vacuum, but does so with the field exterior to the TI too. This
is why the density plot of the Poynting distribution, for a fixed
angular direction and fixed external radius R < ρ, is fainter in
Fig. 3(b) than it does in Fig. 3(a).

VI. SUMMARY AND CONCLUSIONS

As mentioned, in θ -ED, Earnshaw’s theorem no longer
applies [60], thus enlarging the space of solutions. In fact,
due to the TMEP of the TI, here we find nontrivial TEM
wave solutions confined inside the TI that are impossible
in ordinary Maxwell theory. Hosting TEM waves in optical
fibers is highly prized in optics and photonics. The exact
TEM wave solutions have a linear dispersion relation, thus
waves propagate without cutoff frequencies. Losses are re-
duced by having no conductors and because the EM waves
propagate in an exact transverse manner. This contrasts TE
or TM propagation, in which the field undergoes successive
internal reflections suffering losses at each reflection and fur-
thermore, the incident angle cannot exceed the critical one
above which the EM field no longer reflects but rather gets
refracted outside the fiber. This attribute is highly appealing
for miniaturized devices, as it allows the TI-optical fiber to be
bent in any angle.

In summary, we found exact TEM waves propagating
along the axis of cylindrical media that are impossible except
for Tellegen materials and, in particular, for TIs. The afore-
mentioned surface charge and current densities are induced at
the θ interfaces and oscillate in time such that the boundary
conditions are satisfied at every instant of time. These TEM
fields propagate both outside the cylindrical TIs as asymptotic
free solutions and inside each of the geometries, with a lin-

ear dispersion relation as in a free medium, without cutoff
frequencies and without birefringence. Finite discontinuities
of the TMEP at the interface between each layer result in a
rotation of the polarization plane of the EM field. This rotation
is different from Faraday or Kerr rotations for TIs, attesting to
a different observable signature of the TME. In the case of
a single θ layer the field exhibits an asymmetric quadrupo-
lar distribution in the plane perpendicular to the TI. Most
TIs known have ε �= 1. Their dielectric function is typically
described by an oscillatorlike model leading to material dis-
persion ε(ω), with characteristic oscillator strengths, resonant
frequency, and damping coefficient, usually negligible with
respect to the latter (see, e.g., Ref. [61]). For TlBiSe2 with
θTI = 11π and ε = 4 as reported in Ref. [62] and for Bi2Se3

with θTI = π and ε = 16 as reported in Ref. [36], the rotations
of the plane of polarization inside the cylindrical TI are 20.07
and 0.91 mrad, respectively. For the nontopological magneto-
electric TbPO4, with θ = 0.22 and ε = 3.5 [63], the rotation
would be of 58.7 mrad. For the case of two θ layers, the
field propagates along the TI’s bulk as in an optical fiber. Its
confinement can be improved varying χ and θ , though ε must
be the same for all media. TEM wave solutions are possible
at the expense of not being able to vary the permittivities as is
usually done to improve the confinement of the EM fields in
all-dielectric and metamaterial waveguides. Our results point
towards other directions for light manipulation purposes and
for studying different manifestations of the TME. We have
put Z = √

μ/ε = 1, as in Ref. [35], to focus on the depen-
dence on ∇θ �= 0. As our predictions are proportional to Z θ̃ ,
real TIs with 1 < ε (say, ∼16) would diminish the effects,
but increasing θ (say, from π to 5π ) could compensate for
this. Lastly, analytical solutions with several TI cylinders are
cumbersome. Preliminary numerical calculations indicate that
an ad hoc array of several parallel TI cylinders would result
in a considerable gain of observable signatures of the TME,
due to an enhancement of the Poynting vector by means of
superposition. These and other open questions will be dealt
with in Ref. [58].
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