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Interplay between Haldane and modified Haldane models in α-T3 lattice: Band structures,
phase diagrams, and edge states
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We study the topological properties of the Haldane and modified Haldane models in α-T3 lattice. The band
structures and phase diagrams of the system are investigated. Individually, each model undergoes a distinct
phase transition: (i) the Haldane-only model experiences a topological phase transition from the Chern insulator
(C = 1) phase to the higher Chern insulator (C = 2) phase; while (ii) the modified-Haldane-only model expe-
riences a phase transition from the topological metal phase to the higher Chern insulator phase with identical
Chern number C = 2, indicating that C is insufficient to characterize this system because of the indirect band gap.
By plotting the Chern number and C phase diagram, we show that in the presence of both Haldane and modified
Haldane models in the α-T3 lattice, the interplay between the two models manifests three distinct topological
phases, namely the C = 1 Chern insulator (CI) phase, C = 2 higher Chern insulator (HCI) phase, and C = 2
topological metal (TM) phase. These results are further supported by the α-T3 Hall conductance, zigzag, and
armchair edge states calculations. This work elucidates the rich phase evolution of the Haldane and modified
Haldane models as α varies continuously from 0 to 1 in an α-T3 model, thus suggesting α-T3 lattice as a versatile
condensed matter platform for studying topological phase transitions.
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I. INTRODUCTION

Nontrivial topological states of matter in two-dimensional
(2D) systems [1,2] have garnered enormous research interest
since the theoretical prediction of the quantum anomalous
Hall insulator (QAHI) by the Haldane model [3] and its later
experimental observations [4–11]. QAHIs are also known as
Chern insulators (CIs) because their topological phases are
defined by an integer called the Chern number, C [12]. Orig-
inally, the QAHIs experimentally observed were only limited
to C = 1. Subsequently, QAHIs with C � 2 were theoretically
proposed [13,14] and experimentally realized [15,16]. Such
states are termed higher Chern insulators (HCIs).

Recently, it is demonstrated that the modified Haldane
model [17] can lead to antichiral edge states, copropagating
edge states along the two parallel edges. The antichiral edge
states are in stark contrast to the chiral edge states in QAHIs
where the edge states are counterpropagating along the two
parallel edges. The antichiral edge states are achieved by
modifying the Haldane mass term [3] so that it acts as a
pseudoscalar potential to break the time-reversal symmetry
and shift the energies of the two Dirac points in opposite
directions. Alternatively, it has also been shown that the
antichiral edge states can be realized via electron-phonon
interaction [18,19] and by combining two subsystems based
on the original Haldane model with opposite chirality [20].
These edge states must be accompanied by counterpropagat-
ing gapless bulk states to ensure an equal number of left- and
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right-moving modes. As such, they can exist in topological
metals (TMs), conducting materials hosting the coexistence
of in-gap bulk states and edge states [21]. The AB-stacked
bilayer structure of the modified Haldane model is demon-
strated theoretically to result in a higher Chern insulator
(C = ±2) [22]. Various experimental platforms have been
proposed [23–27] to realize the antichiral edge states, and
have been experimentally observed in a microwave-scale gy-
romagnetic photonic crystal [28], a topological circuit [29], a
3D layer-stacked photonic metacrystal [30] and a magnetic
Weyl photonic crystal [31]. Remarkably, it has also been
shown that the optical phase diagram of the modified Haldane
model reveals correlations between pseudospin, perfect cir-
cular dichroism, and valley polarization, which can be tuned
independently by varying the Fermi energy [32].

There is a strong interest in studying topological phases
in different lattice structures, such as honeycomb [3,33,34],
Lieb [35–39], dice/T3 [40–46], checkerboard [47], kagome
[48–51], honeycomb kagome [52], square [53], diamond [54],
and α-T3 lattices [55,56]. The discovery of new topological
phases in various lattices not only enriches the understanding
of condensed matter physics, but also fuels potential techno-
logical applications [57,58]. The α-T3 lattice [59] represents
a particularly interesting lattice due to two prominent char-
acteristics, namely a dispersionless zero-energy flat band and
α-dependent Berry phase, which leads to interesting phenom-
ena, such as super-Klein tunneling [60,61] and unconventional
quantum Hall effect [62,63]. The α-T3 lattice is an extension
of the graphene honeycomb lattice. In addition to the honey-
comb A and B sites, an additional C site is introduced in the
center of each hexagon, which couples to either the A or B
sublattice via the coupling strength, αt . Here, α (0 � α � 1)
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FIG. 1. (a) Schematic of the α-T3 lattice with zigzag and armchair edges. δn and δ′
n (n = 1, 2, 3, 4, 5, 6) denote the nearest-neighbor (NN)

and next-nearest-neighbor (NNN) vectors pointing from the B sites, respectively, as defined in Table I. Schematic of the (b) Haldane and
(c) modified Haldane NNN hoppings. The A, B, and C sites are colored in red, blue, and green respectively.

acts as a tuning parameter and t is the A-B hopping term.
As such, the α-T3 lattice serves as an interpolation between
the graphene honeycomb (α = 0) and dice/T3 (α = 1) lat-
tices. Its low-energy dispersion consists of a Dirac cone and
a dispersionless zero-energy flat band. At a critical doping,
Hg1−xCdxTe can be mapped onto the α-T3 lattice with α =
1/

√
3 [64]. α-T3 lattice can also be realized on optical plat-

forms [59,65]. Various aspects of the α-T3 lattice have been
studied such as electromagnetotransport properties [66–68],
thermoelectric properties [69,70], Andreev reflection [71],
Josephson effect [71], Floquet engineering [72–78], strain
engineering [79], and the effect of Rashba spin-orbit coupling
[80].

The Haldane model [3] in a honeycomb lattice gives rise
to the Chern insulator phase while in a dice lattice, such
model yields higher Chern insulator phases [40,41,81] with
C = ±2 [40]. The α-T3 lattice, which interpolates between the
honeycomb and dice lattices, provides an interesting system
to understand how the Haldane and modified Haldane terms
affect the topological phases when α is tuned continuously
from the honeycomb limit at α = 0 to the dice limit at α = 1.
How the two models jointly influence the topology of the
α-T3 lattice when α is tuned continuously remains an open
question.

In this work, we study the possible topological phases in
the α-T3 lattice that could emerge from the interplay between
the Haldane and modified Haldane terms. We first demon-
strate the topological properties of the individual cases by
determining the Chern number, direct (�EDirect), and indi-
rect (�EIndirect) band gaps. We argue that C is insufficient to
characterize the modified Haldane model by showing that C
remains unchanged before and after the system undergoes a
phase transition. From the Chern number phase diagram, Hall
conductance, and α-T3 edge states, we show that the interplay
between the two models in the α-T3 lattice manifests three
distinct topological phases, namely the C = 1 Chern insulator
(CI) phase, C = 2 higher Chern insulator (HCI) phase, and

C = 2 topological metal (TM) phase. Our work elucidates
the possible phases of the α-T3 lattice in the presence of the
Haldane and modified Haldane terms, and sheds light on the
phase evolution of each model as α varies continuously from
the honeycomb limit (α = 0) to the dice limit (α = 1).

The remainder of this paper is organized as follows. In
Sec. II, the formulation is presented, which includes the pro-
tocols of the Haldane and modified Haldane models in the
α-T3 lattice, topological invariant, and Hall conductance. In
Sec. III, the results are presented, which include the bulk
band structures, phase diagrams, Hall conductance, and edge
states. Lastly, in Sec. IV, this paper is concluded with a brief
summary of our results.

II. MODEL AND FORMALISM

A. Model

The α-T3 lattice with both Haldane and modified Haldane
terms as illustrated schematically in Fig. 1 is described by the
following Hamiltonian:

H = H0 + HH + HMH, (1)

where the first term

H0 = −
∑
〈i j〉

tc†
i c j −

∑
〈 jk〉

αtc†
j ck + H.c., (2)

describes the nearest-neighbor (NN) hoppings between the B
and A (C) sites with strength t (αt). The second and third
terms

HH = tH

3
√

3

⎡
⎣∑

〈〈i j〉〉
e−ivi jφc†

i c j + α
∑
〈〈 jk〉〉

e−iv jkφc†
j ck

⎤
⎦ + H.c.,

(3)
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TABLE I. Definitions of the nearest-neighbor (NN) and next-
nearest-neighbor (NNN) vectors pointing from the B sites.

NN Vector Definition NNN Vector Definition

δ1

(√
3

2 a, 1
2 a

)
δ′

1 (
√

3a, 0)

δ2 (0, a) δ′
2

(√
3

2 a, 3
2 a

)
δ3

(− √
3

2 a, 1
2 a

)
δ′

3

(− √
3

2 a, 3
2 a

)
δ4

(− √
3

2 a, − 1
2 a

)
δ′

4 (−√
3a, 0)

δ5 (0, −a) δ′
5

(− √
3

2 a, − 3
2 a

)
δ6

(√
3

2 a, − 1
2 a

)
δ′

6

(√
3

2 a, − 3
2 a

)

and

HMH = tMH

3
√

3

⎡
⎣∑

〈〈i j〉〉
e−iμivi jφ

′
c†

i c j + α
∑
〈〈 jk〉〉

e−iμ jv jkφ
′
c†

j ck

⎤
⎦

+ H.c., (4)

are the Haldane and modified Haldane terms with strengths
tH and tMH as well as phases φ and φ′, respectively. Here,
c†

i (ci) is the spinless fermionic creation (annihilation) op-
erator acting at the ith site, the summation of 〈i j〉 (〈〈i j〉〉)
runs over all the nearest (next-nearest)-neighbor sites, H.c.
denotes the Hermitian conjugate, vi j = +1 (−1) denotes the
anticlockwise (clockwise) hopping and μi = +1 (−1) denotes
the next-nearest-neighbor (NNN) hoppings for A-A or C-C
(B-B) sites. The definition of the NN and NNN vectors are
shown in Table I.

In contrast to the honeycomb lattice where an electron
crosses from one sublattice to the other to hop to an NNN site
(e.g., the path undertaken by an electron hopping from a B
site to another B site is B-A-B), there are instead two possible
paths for an electron to hop from a B site to another B site in
the α-T3 lattice (i.e., B-A-B and B-C-B with hopping strengths
tH and αtMH, respectively). All possible Haldane and modified
Haldane NNN hopping paths are illustrated in Figs. 1(b) and
1(c), respectively. Here, the B-A-B modified Haldane NNN
hopping [blue arrows in the leftmost Fig. 1(c)] is discussed as
an example to demonstrate the rules more clearly. Since it is a
B-B hopping in a clockwise manner, vi j = μi = −1, tMHe−iφ′

is obtained. Conversely, if it occurs in an anticlockwise man-
ner, then vi j = +1 and we obtain tMHeiφ′

which is the result
obtained in Ref. [17].

The resulting k-space Hamiltonian in the sublattice basis,
(|Ak〉, |Bk〉, |Ck〉)� obtained via the Fourier transformation of
Eq. (1) is presented as follows:

Ĥ(k) =
⎡
⎣G−− f †(k) 0

f (k) G+− + αG−+ α f †(k)
0 α f (k) αG++

⎤
⎦, (5)

where

f (k) = −t
5∑

n=1,3

eik·δn , (6)

results from the conventional B-A NN hopping whereas

Gγ β = 1

3
√

3
[tHg(k, γ φ) + tMHg(k, βφ′)], (7)

g(k, ζ ) =
6∑

n=1

ei[(−1)nζ+k·δ′
n], (8)

results from the Haldane and modified Haldane NNN hopping
terms with ζ = φ or φ′, k = (kx, ky) and indices γ , β = ±1.
The competition between the terms shall govern the possible
phases of the system, which are revealed directly by the bulk
band structure obtained by solving the eigenvalue problem of
Eq. (5) numerically.

On the other hand, as to be demonstrated in Sec. II B,
the physics around the K ′ = (−4π/3

√
3a, 0) and K =

(4π/3
√

3a, 0) points is also focused on where the states are
described by the following Dirac-like Hamiltonian:

Hη(q) =

⎡
⎢⎣

Lη
++ q̃ 0
q̃† Lη

−+ + αLη
+− αq̃

0 αq̃† αLη
−−

⎤
⎥⎦, (9)

where η = +1 (−1) represents the K (K ′) valley with q =
(qx, qy) = k − K (k − K ′ ), q̃ = h̄v f (ηqx − iqy), h̄v f = 3at/2
and

Lη

γβ = tH√
3

[− cos φ + η
√

3 sin (γφ)]

+ tMH√
3

[− cos φ′ + η
√

3 sin(βφ′)], (10)

serves as the Dirac mass term determining the bulk spectral
gap.

The low-energy dispersion of Eq. (9) can be solved for
analytically via the secular equation, det[Hη(q) − Eη(q)] = 0,
which is, however, too complex to be presented in its full form
here. For convenience, the three bands and their correspond-
ing wave functions are labeled as Eη

m(q) and ψη
m, respectively.

The subscript, m = −1, 0, and +1 denote the valence, mid-
dle, and conduction bands, respectively. For our work, we let
φ = φ′ = π/2 to ensure the Haldane and modified Haldane
NNN hoppings are purely imaginary [40].

At the K ′ and K points (q̃ = 0), Eq. (9) becomes a diagonal
matrix. Since a topological phase transition is usually related
to a band gap closing-reopening process, we can define both
the direct and indirect band gaps of our system in terms of the
diagonal elements as follows:

�EDirect = |(Lη
−+ + αLη

+−) − αLη
−−|, (11a)

�EIndirect = |(L+1
−+ + αL+1

+−) − αL−1
−−|. (11b)

Equation (11a) and (11b) represents the energy gap be-
tween the conduction and valence band edges in the same
valley (across different valleys).

B. Topological invariant

Typically, topological phases are associated with topolog-
ical invariant, which, for our system, is the Chern number, C,
which is

C = CK + CK ′ , (12)
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where CK (K ′ ) is the so-called valley-dependent Chern number
defined as

Cη = 1

2π

∫∫
K (K ′ )

�η(q) dq, (13)

with the integration of Berry curvature

�η(q) = i
∑

m=0,1

Im
(〈
ψ

η

−1

∣∣vx

∣∣ψη
m

〉〈
ψη

m

∣∣vy

∣∣ψη

−1

〉)
(
Eη

−1 − Eη
m
)2 , (14)

of the occupied band (m = −1) over the vicinity of each
valley with v = ∂Hη(q)/∂q.

C. Hall conductance

The topological phases indicated by the Chern numbers are
revealed in the Hall conductance in the unit of σ0 = e2/(2πh),
which is [82,83]:

σxy

σ0
= lim

ε→0+

∑
n �=m

∫∫
BZ

( fk,n − fk,m)Im(〈ψk,n|∂kx Ĥ(k)|ψk,m〉〈ψk,m|∂ky Ĥ(k)|ψk,n〉)

(Ek,n − Ek,m)(Ek,n − Ek,m + iε)
dkxdky, (15)

where fk,n = {1 + exp[(Ek,n − EF )/(kBT )]}−1 is the Fermi-
Dirac distribution of the states with energy Ek,n, Fermi energy
EF at a temperature T . The summation runs over all three
bands indexed by n, m ∈ {−1, 0, 1}. The integration is per-
formed over the first Brillouin zone (BZ) and |ψk,n〉 is the nth
eigenvector of Hamiltonian Ĥ(k) given by Eq. (5).

III. RESULTS AND DISCUSSION

Hereafter, the NN hopping strength, t serves as the energy
unit (t = 1) and the phases of the NNN hoppings, φ and φ′ are
fixed at π/2 [40]. Each bulk band structure is plotted along
the kx axis at ky = 0, that is along the path joining the high-
symmetry K ′, M, and K points. The unit of kx is k0 = 4π/

√
3a

where a is the graphene lattice constant taken to be 1.

A. Bulk spectral and topological properties

By setting the NNN hopping strengths, (tMH, tH) =
(0, 0.2)t and solving the eigenvalue problem of Eq. (5) numer-
ically, we obtain the Haldane bulk band structure comprising
three bands, namely the conduction, middle, and valence
bands. Figure 2(a) depicts its evolution with respect to α

where it experiences a direct band gap opening-closing-
reopening process. At α = 0, akin to the graphene case,
spectral gaps open at the K ′ and K points due to the Haldane
NNN hopping term, tH but the middle band remains flat owing
to the presence of localized electrons at the C sites. The
middle band then becomes dispersive when α �= 0 due to the
interaction between the B and C sublattices, which causes the
spectral gaps to shrink. As the value of α increases, the disper-
sive nature of the middle band becomes more prominent until
it closes the spectral gaps at α = 0.5. By further increasing α

to 1, the middle band returns to being dispersionless and the
spectral gaps are recovered.

The plot of the Chern number, C and direct band gap,
�EDirect against α is depicted in Fig. 2(b). Here, the blue and
red regions represent the C = 1 and C = 2 topological phases,
respectively. Both a jump from C = 1 (CI) to C = 2 (HCI)
and �EDirect = 0 at α = 0.5 are observed, indicating that the
topological phase transition corresponds to the closing of the
direct band gap at α = 0.5.

Similarly, by setting (tMH, tH) = (0.2, 0)t , we obtain the
modified Haldane bulk band structure. Figure 2(c) depicts its
evolution with respect to α where it experiences an indirect

band gap opening-closing-reopening process. At α = 0, the
bulk band structure is gapless and the band-touching points
are shifted vertically in opposite directions due to the pres-
ence of the modified Haldane NNN hopping term, tMH. The
middle band becomes dispersive and spectral gaps open at the
K ′ and K points when α �= 0 as a result of the interaction
between the B and C sublattices. In contrast to the Haldane
model, the middle band becomes less dispersive as the value
of α increases and it shrinks the indirect spectral gaps until
they are closed at α = 0.5. Again, the middle band returns to
being dispersionless and the spectral gaps are recovered when
α = 1.

The plot of the Chern number, C and indirect band gap,
�EIndirect against α is depicted in Fig. 2(d). Unlike the pre-
vious case, no jump in the value of C is observed. Instead,
for infinitesimal values of α (α → 0) C is ill defined due
to the gapless spectrum. The sharp increase is not captured
perfectly by Fig. 2(d) for want of computational accuracy. As
α continues to increase, C attains a definite value of 2. On
the other hand, �EIndirect indeed becomes zero at α = 0.5.
Therefore, this system only experiences a phase transition
from C = 2 (TM) to C = 2 (HCI) at α = 0.5 as represented by
the green and red regions of Fig. 2(d), respectively. Its topol-
ogy remains unchanged. This shows that the Chern number is
insufficient to characterize this particular system. The reason
is that when the modified Haldane term is present, it generates
valley-dependent shifts to the Dirac cones, therefore there is a
local gap and a well-defined Chern number at each valley but
there will be no global band gap due to the shifts. Instead, the
system now has an indirect band gap. Consequently, for every
isoenergy surface, there is at least one band (upper, middle,
or lower) involved, which gives the system a metallic feature.
The nonzero Chern number for the TM phase (α < 0.5) only
implies the number of edge states but fails to indicate whether
the bulk state is insulating or metallic. The Chern number,
C results presented in Figs. 2(b) and 2(d) agree with those
obtained using the full Hamiltonian.

Next, we consider three cases for the combined Haldane
models in the α-T3 lattice: (i) Case I - tH > tMH, (ii) Case II
- tH = tMH, and (iii) Case III - tH < tMH where (tMH, tH) =
(0.1, 0.2)t , (0.2, 0.2)t , and (0.2, 0.1)t , respectively. They are
shown in Figs. 3(a)–3(c) accordingly. In Case I, we obtain
the spectral gaps at the K ′ and K points due to tH, and also
their opposite vertical shifts due to tMH as shown in Fig. 3(a)
at α = 0. Moreover, the presence of tMH leads to the system
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FIG. 2. Evolution of the bulk band structures of the (a) Haldane and (c) modified Haldane models in the α-T3 lattice with respect to α. The
conduction, middle, and valence bands are colored in red, green, and blue, respectively. (b) Chern number, C and direct band gap, �EDirect vs
α. (d) Chern number, C and indirect band gap, �EIndirect vs α. The yellow dots denote the values of C, �EDirect and �EIndirect at α = 0, 0.4, 0.5,
0.6, and 1. For (a) and (b), (tMH, tH) = (0, 0.2)t and φ = φ′ = π/2. For (c) and (d), (tMH, tH) = (0.2, 0)t and φ = φ′ = π/2.

experiencing a topological phase transition from C = 1 (CI)
to C = 2 (HCI) at α = 0.25 instead of 0.5 [Fig. 2(a)]. The
opposite manner occurs for Case III. Here, we do not only
obtain the shifts at the K ′ and K points due to tMH but also
the spectral gaps due to tH as shown in Fig. 3(c) at α = 0.
Similarly, the presence of tH causes the system to experience a
phase transition from C = 2 (TM) to C = 2 (HCI) at α = 0.25
instead of 0.5 [Fig. 2(c)]. On the other hand, as exemplified
by Case II [Fig. 3(b)], the system is gapless [remains at
C = 2 (HCI)] at α = 0 (α �= 0) whenever tH = tMH. At α = 1,
Figs. 3(a)–3(c) appear similar, which can be explained by
solving the eigenvalue problem of Eq. (9) as follows:

Hα=1
η (q) =

⎡
⎣� q̃ 0

q̃† 0 q̃
0 q̃† −�

⎤
⎦, (16)

where � = η(tH + tMH) and the resulting eigenvalues are

E0 = 0; Eη

±1 = ±
√

|q̃|2 + �. (17)

The Chern number, C phase diagram further demonstrates the
interplay between tH, tMH and α as depicted in Fig. 4(a) for the
specific case of α = 0.2. Here, the combined Haldane models
in the α-T3 lattice manifests a total of three phases, namely the
C = 1 (CI) phase, C = 2 (HCI) phase, and C = 2 (TM) phase.
For instance, at tH = 0.2t , increasing tMH from 0.05t to 0.4t
[going from the left to right in Fig. 4(a)] causes the system to
first experience the CI phase, followed by the HCI phase, and
finally the TM phase. The CI-HCI and HCI-TM phase bound-
aries are determined by the closing of the direct and indirect
band gaps, respectively. Figure 4(a) exhibits fluctuations at the
bottom left region, indicating C is ill defined due to the system
being gapless.
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FIG. 3. Evolution of the bulk band structure of the combined
Haldane models in the α-T3 lattice with respect to α for (a) Case
I - tH > tMH, (b) Case II - tH = tMH, and (c) Case III - tH <

tMH. The values of the parameters are (tMH, tH) = (0.1, 0.2)t for
Case I, (tMH, tH) = (0.2, 0.2)t for Case II, (tMH, tH) = (0.2, 0.1)t
for Case III, and φ = φ′ = π/2 for all three cases. Each panel
is labeled with its respective Chern number, C. The conduction,
middle, and valence bands are colored in red, green, and blue
respectively.

The variation of the CI-HCI and HCI-TM phase boundaries
with respect to α is depicted in Fig. 4(b), which satisfy the

FIG. 4. (a) Chern number, C phase diagram with respect to
tH and tMH at α = 0.2 and φ = φ′ = π/2. Here, CI, HCI, and
TM denote the terms Chern insulator, higher Chern insulator, and
topological metal, respectively. The three yellow dots denote the
values of C at (tMH, tH) = (0.05, 0.2)t , (0.25, 0.2)t , and (0.4, 0.2)t .
(b) The variation of the CI-HCI (dashed blue) and HCI-TM (solid
red) phase boundaries with respect to α for α = 0, 0.2, 0.4,
and 0.5.

following relations:

tH = tMH

1 − 2α
, (18a)

tH = (1 − 2α)tMH, (18b)

respectively. The relations are derived by equating
Eqs. (11a) and (11b) to zero. As a result, at α = 0, the phase
boundaries are degenerate, restoring the graphene case [17].
As α increases, the slopes of the CI-HCI and HCI-TM phase
boundaries increases and decreases, respectively, opening the
C = 2 HCI phase regime, which eventually dominates the
entire phase diagram when α � 0.5.

B. Hall conductance

This section relates the topological phases of the system to
its Hall conductance. For the CI (HCI) phase with C = 1 (2),
σxy/σ0 exhibits quantization at 1 (2) when EF lies within
the direct band gap [Figs. 5(a) and 5(b)] corresponding to
the width of the conductance plateau. However, there is no
quantization of σxy/σ0 in the TM phase even if C = 2 because
of the in-gap state’s quantized conductance in one valley and
the bulk states’ contribution in the other valley [Fig. 5(c)].
Therefore, the three topological phases are distinguishable by
using the Hall conductance within the band gap.

Next, we discuss the effect of temperature on the Hall con-
ductance. Figure 6 depicts the Hall conductance with respect
to tMH corresponding to the horizontal line of Fig. 4(a) for
various temperatures at EF = 0.08t and α = tH/t = 0.2. At
low T (pink curve), σxy/σ0 jumps from 1 to 2 at tMH = 0.12t ,
corresponding to the CI-HCI boundary and decays from 2 at
around tMH = 0.33t , corresponding to the HCI-TM bound-
ary. Therefore, the HCI and TM phases can be distinguished
clearly via the respective presence and absence of the quan-
tization at 2. Remarkably, they are only distinguishable at
low T . As T increases (green and blue curves), the thermal
energy is comparable to the band gap and some of the elec-
trons below the Fermi level are excited into higher bands,
thereby reducing the Hall conductance. As a result, the dis-
tinctive Hall conductance of the three phases becomes less
prominent [84].

C. Edge states

The concept of the bulk-edge correspondence (BEC) states
that topological phases possess localized edge states protected
by nontrivial bulk topological invariants [85–88]. Therefore,
the evolutions of the Chern numbers as well as the phases
correspond to that of the edge states of the system.

To plot the zigzag (armchair) edge states, the band struc-
ture of the α-T3 zigzag (armchair) nanoribbon [89,90] is
obtained by considering periodic boundary condition along
the direction with zigzag (armchair) edges and open boundary
condition along the perpendicular direction. The sites along
the perpendicular direction are labeled as A1, B1, C1, A2, B2,
C2, . . ., AN, BN, CN, etc. A schematic of the α-T3 nanoribbon
with zigzag and armchair edges is illustrated in Fig. 1(a).

Figure 7 depicts the crossings of the zigzag edge states
with the Fermi level. For the case of the Haldane model
in the α-T3 lattice, initially, there is one edge state in each
edge propagating in opposite directions [Fig. 7(a)], which is
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FIG. 5. (a)–(c) Bulk band structures and Hall conductances, which correspond to the three yellow dots in Fig. 4(a). The conduction, middle
and valence bands are colored in red, green, and blue, respectively. The thermal energy, kBT is set at 10−6t .

consistent with C = 1 (one chiral edge state), signifying the
Chern insulator (CI) phase. After the critical point (α = 0.5),
there are two edge states in each edge propagating in op-
posite directions [Fig. 7(b)], which is consistent with C = 2
(two chiral edge states), signifying the higher Chern insulator
(HCI) phase. For the case of the modified Haldane model
in the α-T3 lattice, before α = 0.5, there are two edge states
in each edge propagating in opposite directions accompanied
by bulk states [Fig. 7(c)]. This coexistence of the in-gap bulk
states and edge states satisfies the definition of the topological
metal (TM) phase [21]. C = 2 (two chiral edge states) does not
encode information regarding the bulk states. After α = 0.5,
the Fermi level does not cross the bulk states and only the two
chiral edge states remain (C = 2) [Fig. 7(d)], indicating the
higher Chern insulator (HCI) phase. There are no antichiral
edge states in the model concerned in the current work, except
for the case when α = 0, which is exactly the graphene case
demonstrated in Ref. [17]. The reason is that the additional
middle quasiflat band couples with the upper and lower bands
when α �= 0 and subsequently opens a gap creating additional
edge states in the system. Therefore, although the edge states
are preserved in the system, the antichirality (copropagating
edge states) are destroyed.

Figures 7(e)–7(g) visualize the topological phases man-
ifested by the combined Haldane models as the C phase
diagram of Fig. 4(a) is traversed horizontally to the right.
At (0.05, 0.2)t , we first obtain one edge state in each edge

FIG. 6. Hall conductance vs tMH for three values of T . Both
values of α and tH/t are fixed at 0.2 whereas EF is fixed at 0.08t .
The dashed lines indicate the phase boundaries corresponding to
Fig. 4(a).

propagating in opposite directions corresponding to C = 1
(one chiral edge state) [Fig. 7(e)], indicating the CI phase.
Next, at (0.25, 0.2)t , we obtain two edge states in each edge
propagating in opposite directions corresponding to C = 2
(two chiral edge states) [Fig. 7(f)], indicating the HCI phase.
Finally, at (0.4, 0.2)t , we obtain two chiral edge states (C = 2)
and bulk states, indicating the TM phase.

Next, we discuss the zigzag edge state distribution. Fig-
ure 8 depicts the probability distributions and localization
lengths of the zigzag edge states. Generally, the wave func-
tion of the edge states is expected to be in the form of
exp(−x/λ) cos(bx), where b is determined by the Fermi
wave number and λ is the localization length [83]. In
principle, λ can be numerically extracted via a discrete
Fourier transform analysis, which is difficult to achieve. Here,
we alternatively approximate the localization length as the
minimum number of sites (nmin) such that the following con-
dition is satisfied: (|ψnmin+1(y)|2 − |ψnmin (y)|2)/|ψnmin (y)|2 ×
100% < 90%. Overall, there are two pairs of edges in the
TM and HCI phases and one of them has larger localization
lengths than the other and the pair in the CI phase, because of
the narrower band gap. Additionally, there are also bulk states
accompanying the four edge states in the TM phase.

The band structure and edge state distribution of the α-T3

armchair nanoribbon are presented in Figs. 9 and 10, respec-
tively. For the Haldane model, the Fermi level crosses one
(two) chiral edge state(s) before (after) α = 0.5, signifying
the CI (HCI) phase [Figs. 9(a) and 9(b)]. For the modified
Haldane model, when α < 0.5, the Fermi level seems to only
cross one chiral edge state. This is because the presence of the
other chiral edge state and accompanying in-gap bulk states
as indicated by the orange and green dots in the center of
Fig. 9(c) is shielded from view by the conduction bulk states
[Figs. 7(c) and 10(c)]. Nevertheless, the manner of appearance
does not affect the overall system topology owing to the bulk-
edge correspondence. Hence, Fig. 9(c) still indicates the TM
phase. When α > 0.5, the Fermi level crosses two chiral edge
states [Fig. 9(d)], indicating the HCI phase.

Figures 9(e)–9(g) depict the topological phases manifested
by the horizontal line of Fig. 4(a). At (0.05, 0.2)t , (0.25, 0.2)t ,
and (0.4, 0.2)t , we obtain the CI, HCI, and TM phases respec-
tively [Figs. 9(e), 9(f) and 9(g)].

Similar to the zigzag case, all the edge states are localized
differently. However, in contrast to the zigzag case [Figs. 8(c)
and 8(g)], the armchair in-gap bulk states and edge states for
the TM phase are overlapped [Figs. 10(c) and 10(g)].
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FIG. 7. The band structure of the Haldane model applied to the α-T3 zigzag nanoribbon at (a) α = 0.4 and (b) α = 0.6. The values of
the parameters are (tMH, tH) = (0, 0.2)t and φ = φ′ = π/2. The band structure of the modified Haldane model applied to the α-T3 zigzag
nanoribbon at (c) α = 0.4 and (d) α = 0.6. The values of the parameters are (tMH, tH) = (0.2, 0)t and φ = φ′ = π/2. (e)–(g) The band
structures of the combined Haldane models applied to the α-T3 zigzag nanoribbon corresponding to the three yellow dots in Fig. 4(a). The
zigzag chain contains N = 50 AB sites. The star denotes the appearance of the topological metal (TM) phase.

Thus, we conclude that the results related to the bulk
properties such as the topological phases and their Chern
numbers do not depend on the type of termination chosen for

the system (i.e., zigzag and armchair nanoribbons). Based on
the Chern numbers and edge states, we demonstrate that in the
α-T3 lattice, the Haldane (modified Haldane) model manifests

FIG. 8. Probability distributions of the zigzag edge states corresponding to the cases in Fig. 7. The numbers placed on top of the arrows
signify the localization lengths of the edge states.
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FIG. 9. The band structure of the Haldane model applied to the α-T3 armchair nanoribbon at (a) α = 0.4 and (b) α = 0.6. The values of the
parameters are (tMH, tH) = (0, 0.2)t and φ = φ′ = π/2. The band structure of the modified Haldane model applied to the α-T3 armchair
nanoribbon at (c) α = 0.4 and (d) α = 0.6. The values of the parameters are (tMH, tH) = (0.2, 0)t and φ = φ′ = π/2. (e)–(g) The band
structures of the combined Haldane models applied to the α-T3 armchair nanoribbon corresponding to the three yellow dots in Fig. 4(a).
The armchair chain contains N = 80 AB sites.

both the CI and HCI (TM and HCI) phases as summarized
in Table II accompanied by the honeycomb (α = 0) [3,17]

and dice (α = 1) [41] lattices as specific cases of our phase
results.

FIG. 10. Probability distributions of the armchair edge states corresponding to the cases in Fig. 9. The numbers placed on top of the arrows
signify the localization lengths of the edge states. For (c) and (g), the black-colored probability distribution represents both the bulk and edge
states of the topological metal (TM) phase.
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TABLE II. Topological phases of Haldane and modified Haldane
models in the honeycomb, dice, and α-T3 lattices.

Haldane Model Modified Haldane Model

Lattice Phase(s) Ref(s) Phase(s) Ref(s)

Honeycomb CI [3] TM [17]

Dice HCI [40,41] HCI Current Work

α-T3 CI & HCI Current Work TM & HCI Current Work

IV. CONCLUSION

In summary, we study the topological properties of the
Haldane and modified Haldane models in the α-T3 lattice,
both individually and collectively. First, we demonstrate that
each model manifests a distinct phase transition. The Haldane
model experiences a topological phase transition at α = 0.5
from the Chern insulator (C = 1) phase to the higher Chern
insulator (C = 2) phase. For the modified Haldane model,
it experiences a phase transition from the topological metal
(C = 2) phase to the higher Chern insulator (C = 2) phase at
α = 0.5. The fact that C remains 2 indicates that the Chern
number is insufficient to characterize the modified Haldane

model. From the Chern number C phase diagram, we show
that the interaction between the Haldane and modified Hal-
dane parameters realizes three distinct topological phases,
namely the C = 1 Chern insulator (CI) phase, C = 2 higher
Chern insulator (HCI) phase, and C = 2 topological metal
(TM) phase. Furthermore, we investigate how the tuning pa-
rameter, α influences the phases. At α = 0, the system only
has the CI and TM phase regimes, which is the graphene case.
As α increases, the HCI phase regime is created and domi-
nates the entire phase diagram at α � 0.5. The Chern numbers
and phases of the aforementioned cases are supported by
calculations of the Hall conductance and edge states. Finally,
we remark that we can include more effects into our current
model such as the intrinsic [55] and Rashba [80] spin-orbit
couplings (SOCs), Floquet engineering [72,74–78,91,92], and
strain engineering [79,93] in order to potentially realize new
possible topological phases.
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