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Quantum degeneracy in mesoscopic matter: Casimir effect and Bose-Einstein condensation
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The ground-state phonon pressure is an analog to the famous Casimir pressure of vacuum produced by
zero-point photons. The acoustic Casimir forces are, however, many orders of magnitude weaker than the
electromagnetic Casimir forces, as the typical speed of sound is 100 000 times smaller than the speed of light.
Because of its weakness, zero-point acoustic Casimir pressure was never observed, although the pressure of
artificially introduced sound noise on a narrow aperture has been reported. However, the magnitude of Casimir
pressure increases as 1/L3 with the decrease of the sample size L, and reaches piconewtons in the submicron
scales. We demonstrate and measure the acoustic Casimir pressure induced by zero-point phonons in solid helium
adsorbed on a carbon nanotube. We have also observed Casimir-like “pushing out” thermal phonons with the
decreasing temperature or the length. We also show that all thermodynamic quantities are size dependent, and
therefore in the mesoscopic range L � h̄c/(kBT ) quadruple points are possible on the phase diagram where four
different phases coexist. Due to the smallness of solid helium sample, temperature of Bose-Einstein condensation
(BEC) of vacancies is relatively high, 10 − 100 mK. This allowed us to experimentally discover the BEC in a
system of zero-point vacancies, predicted more than 50 years ago.
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I. INTRODUCTION

Casimir effect is one of the most striking manifestations
of quantum mechanics applied to electromagnetic fields. It
was first formulated by Lars Casimir [1] as a pressure of
vacuum, i.e., of empty space containing no material parti-
cles. According to Casimir, zero-point fluctuations related to
electromagnetic modes between two parallel plates lead to
attractive force between the plates. Equivalently, zero-point
fluctuations for other excitations, e.g., phonons, can lead to
Casimir-like effects.

In general, there exists three different types of Casimir-like
effects. First, the ordinary Casimir force, which is a quantum
mechanical effect due to zero-point photons/phonons. The
predictions for electromagnetic Casimir effect were verified
in beautiful experiments in 1997 [2]. Second, Casimir effect
in which thermal excitation of modes plays an important role,
and the Casimir force scales with temperature [3]. Third,
Casimir-like phenomena, which are generated by broad band
noise that is not able to propagate to sections of interest in
the studied geometry. Acoustic Casimir effect has so far been
only demonstrated using external noise [4]. In fact, this kind
acoustic noise Casimir pressure has been found almost 200
years ago by noticing the attraction of two closely placed
ships [5]. However, genuine acoustic analog of the zero-point
Casimir pressure has never been observed prior to our study.
Our measurements indicate Casimir pressure due to zero-
point motion of quasi-one-dimensional phonons in solid 3He
on a carbon nanotube.

The acoustic zero-point Casimir pressure is many orders
of magnitude tinier than the electromagnetic Casimir pressure
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because of the smallness of speed sound compared to speed
of light. However, the Casimir forces rapidly increase with
the decrease of the length of the sample. Fortunately, helium
adsorbed on a carbon nanotube (CNT) represents a sample,
which is small enough for Casimir forces to be significant, and
still large enough to be measured. Similar to the degeneracy of
phonons, which becomes observable due to the small length of
the sample, another quantum phenomenon, Bose degeneracy
of vacancies (i.e., supersolidity) may be observed at finite
temperature as predicted by Gordillo et al. [6].

II. EXPERIMENTAL

We have studied mechanical resonances of a suspended
carbon nanotube (CNT) with adsorbed sub-monolayer of
3He. The CNTs were synthesized in the gas phase with the
floating catalyst chemical vapour deposition growth method
(FC-CVD) followed by the direct thermophoretic deposi-
tion onto prefabricated chips [7]. Radius of the tube r0 =
0.8 nm and length LCNT = 700 nm has been measured with
electron microscope. The type of the nanotube was not de-
termined directly in our experiments. However, on the basis
of the separately measured manufacturing statistics, and tak-
ing into account the resistance of 100 k�, we anticipate that
our device was chiral single-walled tube with diameter ap-
proximately 1.6 nm [8]. Electromechanical scheme of the
measurements is described in the Appendix. After a detailed
electrical characterization of the suspended CNT along with
its mechanical resonance properties in vacuum, 3He atoms
were gradually added to the sample chamber. As a single
nanotube can adsorb only very little amount of 3He, 1–10
thousands atoms, we used a grafoil ballast [9] with the surface
area 10 m2. Using grafoil, we were able to control the cover-
age of the adsorbed 3He with the accuracy of 0.03 nm−2.
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After each addition of 3He atoms, we waited for 10–20
hours and, subsequently, performed temperature sweeps up
and down at a rate of 10 . . . 30 mK/h. Typically, the T sweep
at each coverage was repeated at least once, sometimes several
times. The coverage of helium ρ was determined by measur-
ing the shift of the resonance frequency when helium was in
fluid phase at high enough temperature, see Fig. 7 below.

In constructing our coverage scale

�F

F0
= − MHe

2MC
= −ρHe

8ρC
(1)

we have assumed that the change in the elastic state (stiffness)
of the tube can be neglected in fluid phases at high tempera-
tures, and that the frequency shift is governed by the total mass
of helium atoms MHe on the CNT compared with the mass of
the carbon lattice MC . The 2D particle density of helium ρHe

is therefore found as the relative frequency shift (determined
at temperature T � 0.25 K) multiplied by eight times 2D
particle density of carbon lattice ρC = 13.8 nm−2. At high T ,
besides being in the fluid phase, the distance between helium
atoms and the substrate is the largest, which minimizes the
influence of helium atoms on the elastic properties of the
CNT. Upon localization of the atoms when entering solid
phases, the free surface energy becomes lowered, leading to
a change in the spring constant of the tube as observed in the
experiments as a frequency shift [10]. Generally, there are two
major contributions from adsorbed helium to the resonance
frequency of the nanotube. The first one is the decrease of
the frequency due to the extra mass, the effect of which is
present whether helium is in the gas, liquid, or solid phase.
The second effect is the increase of the resonant frequency
due to stiffness of the solid phase and the additional tension
due to inner pressure.

In our experiments the change of tension (pressure) in
the helium layer was attributed to Casimir forces, while the
change of the effective mass is considered as a manifestation
of the supersolidity of the helium sample with delocalized
defects. The exact picture of decoupling of the helium mass
from the oscillating tube has never been calculated, to our
knowledge, and seems to present a complicated theoretical
problem. Nevertheless, we may naively suggest that one mode
of such decoupling would be the superflow of vacancies in the
direction of the motion of the wire while atoms tend to stay at
rest due to the inertia. Redistribution of helium atoms along
the tube due to superflow is also possible. Another possible
manifestation of the superflow is temperature-dependent vari-
ation of dissipation as helium becomes less and less involved
to the oscillations of the tube in the limit T → 0.

III. SPECTROSCOPY OF PHONONS: CASIMIR
EFFECT AND THE FATE OF THERMODYNAMICS

IN MESOSCOPIC MATTER

Similar to the pressure of vacuum due to zero-point pho-
tons, there is a pressure in condensed matter due to zero-point
phonon modes. As in the Casimir effect, this pressure depends
on the size of the sample, because the larger the sample, the
longer wavelengths are allowed. Owing to the presence of
long-wave photons (phonons), which do not fit the smaller
volume, the larger volume has a higher pressure compared

with the small one. Helium adsorbed on the nanotube is a
perfect model system to investigate the size dependence of
zero-point pressure, a full analog of the Casimir force. We
assume that phonons have a linear spectrum, ω = ck, as was
seen in helium on grafoil [11] and in our previous paper [10].
The lack of the phonon zero-point energy in the sample of
the length L is due to the absence of the phonons with the
wavelength λ > L,

�E0 = −mh̄

2

π/L∑
kn=π/L

ckn = −mh̄c

2

L/L∑
n=1

π

Ln = −πmh̄cL
4L2

,

(2)

where the long wavelength cutoff L ≈ 10 cm is the charac-
teristic size of helium layer outside the nanotube. As helium
on nanotube is not a true 1D system but has 20–25 atoms on
its cross-sectional circumference, we include a corresponding
multiplicity m for each longitudinal phonon mode. The acous-
tic Casimir effect differs from the traditionally considered
electromagnetic Casimir effect because of the existence of
the short wavelength cutoff (interatomic distance), and the
long wavelength cutoff (size of the sample) for phonons. This
results in convergence for the total sum of phonon energies,
in contrast to the photon case and, consequently, in a different
analytical form of the Casimir energy.

At T = 0 the Casimir force acting on the tube is found
simply as

FC = ∂�E0

∂L
= πmh̄cL

2L3
. (3)

The power L−3 instead of the L−2 in ordinary 1D Casimir
force [3] is due to the finite cutoffs in the case of phonons,
while there is no cutoffs for photons. 1D pressure P of helium
adsorbed on the tube, which is the force acting on the circum-
ference at the boundary, contributes directly to the tension F0,
F = F0 + P. Indeed, 1D pressure of adsorbed helium is the
line energy density, P = dEHe/dL, whilst the line tension of
the tube is the elastic energy density, F0 = dECNT /dL. Phys-
ically, it can be understood as the force produced on the tube
by reflection of individual (quasi)particles from boundaries.
Casimir force reduces the pressure of helium on the tube and,
accordingly, the tension, F = F0 + P − FC. By measuring
the resonant frequency F0 = (1/2L)

√
F/μ we can therefore

detect the Casimir force. Due to the smallness of the tube, the
phonon modes are mostly in the ground state up to temper-
ature TZP(L) = π h̄c/L ≈ 20 mK for L = 700 nm, and up to
higher temperatures for smaller solid fractions.

Historically, the term “acoustic Casimir effect” was in-
troduced for the effect of mutual force between two closely
placed plates under the sound noise generated in the chamber
by a microphone [4,12]. Depending on the spectrum of the
generated noise, the force could be attractive or repulsive. In
contrast, in our experiment we deal with a complete analog of
the Casimir pressure: the pressure is due to acoustic vacuum,
to which only ground-state phonons with energy h̄ω/2 con-
tribute. The contribution of thermal phonons in the tube is neg-
ligible at T � 10 mK. Pressure of thermal phonons in the sur-
rounding bath FBath = πmk2

BT 2/12h̄c � 10−17 N is also neg-
ligible. The effect is achieved by reducing the phonon phase
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FIG. 1. Phase diagram of submonolayer 3He on carbon nanotube
[10]. Arrows show coverages corresponding to 1/3 solid phase,
ρ1/3 = 6.4 nm−2, and to 2/5 dimer solid phase, ρ2/5 = 7.6 nm−2.

space using a small sample, which is exactly along the lines
of experiments targeting the original Casimir pressure [2].

Figure 2 shows the dependence of the central frequency
F0 on the density of helium at the lowest temperature T =
10 mK after subtracting the linear trend due to additional mass
�F = −2.98 MHz/nm−2ρ according to Eq. (1) with F0 =
351.7 MHz. With the increase of density, the helium layer
transforms from liquid below ρL = 4.1 nm−2 to the so-called
soft 2/5 solid, through a mixture of solid 1/3 phase and liquid
up to ρ1/3 = 6.4 nm−2. At average densities ρL < ρ < ρ1/3

the 1/3 solid phase occupies only a part of the tube with
the length L1/3 = LCNT (ρ − ρL )/(ρ1/3 − ρL ), while the rest is
liquid with low density ρL, see Fig. 1. At larger coverages
ρ > ρ1/3, the formation of the dimer 2/5 solid is anticipated
[10], as illustrated in the right insert in Fig. 2. Although this
structure was not proven explicitly, we have shown in our
previous paper that it is neither 1/3 nor incommensurate solid
phase [10]. We will call this phase “2/5” throughout the paper,

FIG. 2. Resonance frequency shift �F0 due to 1D pressure
(force) of zero-point phonons (T < 20 mK) as a function of atomic
coverage per nm2 (lower axis) and the corresponding length occupied
by the 1/3 solid, L1/3 = LCNT (ρ − ρL )/(ρ1/3 − ρL ) (higher axis).
Contribution of helium mass subtracted. Curve displays the contri-
bution of the Casimir force, FC = 50h̄cπL/L3, see text for details.
Raw data can be found in Ref. [10].

but one has to keep in mind that it could be another, more com-
plicated dimer phase. Similarly, 2/5 phase occupies only part
of the tube while the rest is liquid, or incommensurate solid.
This configuration seems to be energetically more favorable
than the domain-walls solid, suggested in Refs. [13–15].

In the liquid phase, the pressure is obviously zero as it
is in contact with exponentially diluted gas, as shown in the
leftmost insert in Fig. 2. Indeed, the length of the 1/3 solid
shown on the top axis has a dramatic effect on phonon pres-
sure, which is illustrated by the solid curve FC = mh̄cπL/L3

using the multiplicity m = 50 and an offset corresponding
to the additional tension produced by solid helium in the
limit of large samples, L → ∞. This offset tension of long
samples, at densities close to ρ → ρ1/3 = 6.4 nm−2, is set by
the attraction of the adsorbed helium atoms to neighboring
carbon atoms [10]. The value of the offset was fitting pa-
rameter. The opposite limit, L → 0 is not realized physically
as it corresponds to a negative effective pressure due to the
Casimir force (see above, P − FC becomes <0), which is not
stable. Liquid phase at ρ < ρL = 4.1 nm−2 is in contact with
strongly rarefied gas, and thus has zero pressure. Therefore,
when 1/3 solid starts to form on the tube, it has zero pressure
at ρ = ρL � 4.8 nm−2, which increases at larger average den-
sities. In the range 4.1 nm−2 < ρ < 4.8 nm−2, there appears
a gap in the phase diagram, which can be assigned to the
described negative pressure instability. Indeed, during the ex-
periment we could not fill this domain of coverages, while we
were able to fill neighboring areas with steps in coverage less
than 0.05 nm−2. Alternatively, the reason for the gap in filling
could be a phase transition in helium on the grafoil ballast.

The abrupt drop at ρ = ρ1/3 indicates a quantum phase
transition to the soft 2/5 solid (ρ2/5 = 7.6 nm−2). Mobile
defects have very low zero-point energy, of the order of
h̄2/(2mL2) ∼ 1 µK, with vanishing contribution to pressure
at low temperatures. Zero-point pressure of a commensurate
solid phase is thus due to zero-point phonons. In our previous
paper we have shown that the high-density phase, presumably
2/5 phase, does not support phonons [10]. The possible reason
is the high mobility of delocalized vacancies that release the
stress gradients inside solid. Hence, at ρ > ρ1/3 a mixture of
2/5 phase and incommensurate solid is realized. As pressure
must be constant over the tube, density of the incommensurate
phase tunes by the unique pressure of the 2/5 phase.

At finite temperatures thermal phonons are created, in ad-
dition to zero-point phonons. However, the small size of the
sample restricts greatly the amount of thermal phonons. In the
limit L � π h̄c/T the free energy F , entropy S, energy E , and
pressure P of 1D phonons with multiplicity m of each mode
are written as

F = mLkBT

2πc

∫ ∞

πc/L
ln [1 − e−h̄ω/kBT ]dω

= −mLk2
BT 2

2π h̄c

∫ ∞

π h̄c/LkBT
ln [1 − e−x]dx

= −mLk2
BT 2

2π h̄c

∫ ∞

π h̄c/LkBT

xdx

ex − 1

� −mLk2
BT 2

2π h̄c

∫ ∞

π h̄c/LkBT
xe−xdx
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FIG. 3. (a) Prefactor A of the fit of the resonant frequency shift �F0 = AT 2 as a function of coverage/length of 1/3 phase. Red curve is a
quadratic fit. (b) Smoothed data on pressure of thermal phonons (in terms of frequency shift �F0 with color scale on the right) as a function
of the length/coverage (horizontal axes) and temperature. Quadratic fits P = AT 2 were used, with the prefactor A fitted as in panel (a). Red
hyperbola is the onset of thermal excitation of phonons, Tph = π h̄c/kBL. Note that thermal phonons contribute by order of magnitude less than
zero-point phonons shown in Fig. 2.

= −mLk2
BT 2

2π h̄c

(
1 + π h̄c

2LkBT

)
e−π h̄c/LkBT ,

S = −dF

dT

∣∣∣∣
L

� m

(
Lk2

BT

π h̄c
+ 3kB

4
+ π h̄c

4LT

)
e−π h̄c/LkBT ,

E = F + T S � m

(
Lk2

BT 2

2π h̄c
+ kBT

2
+ π h̄c

4L

)
e−π h̄c/LkBT ,

P = −dF

dL

∣∣∣∣
T

� m

(
k2

BT 2

2π h̄c
+ kBT

2L
+ π h̄c

4L2

)
e−π h̄c/LkBT . (4)

As expected, at LkBT � h̄c all thermodynamic potentials
are exponentially small. Practically, this means that there are
no phonons except for zero-point ones, and energy and pres-
sure in the sample are temperature independent.

We demonstrate vanishing of phonons in our solid helium
samples by measuring temperature dependence of pressure in
the low temperature domain below the melting transition, see
Fig. 3(b). Indeed, the pressure is zero in small samples, and it
appears only when the product LT exceeds the onset condition
given by π h̄c/kB. Note that, to reach a similar depletion of
thermal phonons in a sample of 1-mm size, a cool down to
microKelvin temperatures would be required, which is not
possible yet.

With increasing temperature (or, length), phonons start to
enter the sample one by one, and thermodynamics should be
revised, as number of phonons is so small. For instance, the
pressure, which is the derivative of energy over the length,
is essentially zero at most of the lengths except for spe-
cial points L = π h̄c/kBT, 2π h̄c/kBT, 3π h̄c/kBT etc., where
the pressure becomes formally infinite. In small samples,
obviously, energy can not be considered as a good thermo-
dynamic potential, as its density is size dependent. Moreover,
the energy is not additive: when two samples join together,
total energy becomes more than the sum of energies of the

original samples, due to the appearance of additional long
wave phonon modes. With further increase in length (temper-
ature), thermodynamics reaches its classical form, P = AT 2.

Lacking better representation, we assume that the low-
temperature dependence P(T ) is quadratic, P = AT 2, with
the prefactor A dependent on the length L. Accordingly, we
have fitted temperature dependence of the central frequency
as �F0 = A(L)T 2, and the results of the fit are shown in the
Fig. 3(a). As one can see, the prefactor A is increasing by
many orders of magnitude with the increase of length of the
1/3 phase. We interpret this as an expansion of the phase space
of phonons.

IV. SIZE-DEPENDENT STATISTICAL PHYSICS

The system to be considered is an elastic solid medium
with particles fixed at the boundaries. In this system at
low temperatures only acoustic phonons are allowed with
the spectrum ω = ck and wavevectors k = n(π/L). We will
restrict ourselves to the one-dimensional case for brevity;
however, the results can be easily generalized for higher di-
mensions. Due to elasticity of the CNT, the length L of the
sample may slightly vary depending on temperature, pressure,
and coverage.

In Eqs. (4), we have estimated thermodynamic quantities
in the domain LkBT � π h̄c and shown that they are expo-
nentially vanishing in this regime. Here we calculate exact
expressions for the principal thermodynamic functions in the
whole range of L and T . We start from the statistical sum of a
single phonon mode k,

zk =
∑

v

e−Ev/(kBT ) =
∑

v

e−h̄ωk (v+1/2)/(kBT ) = e−h̄ωk/(2kBT )

1 − e−h̄ωk/(kBT )
,

(5)
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where v is the occupation quantum number of kth mode
[16]. Free energy of a single mode is thus fk = −kBT ln zk =
h̄ωk/2 + kBT ln (1 − eh̄ωk/kBT ), and the whole free energy of
the sample supporting m modes is

F = mh̄

2

π/a∑
k=π/L

ωk + mkBT
π/a∑

k=π/L

ln (1 − eh̄ωk/kBT )

= mh̄c

2

π/a∑
k=π/L

k + mkBT L

π

∫ π/a

π/L
ln (1 − eh̄ck/kBT ) dk

∼= mπ h̄cL

4a2
− mLk2

BT 2

2π h̄c

∫ ∞

π h̄c/LkBT

tdt

et − 1
, (6)

where a is the interatomic distance that sets up a minimum
possible wavelength of phonons λmin = 2a.

In macroscopic thermodynamics, no more than three
phases can coexist. It follows from the equalities of chemi-
cal potentials for the phases μ1(P, T ) = μ2(P, T ) = μ3(P, T ),
which are two equations with two unknowns, P and T . One
cannot add another phase to the coexistence point because
there will be three equalities and only two unknowns, which
can be satisfied only accidentally. However, in the mesoscopic
domain, T � π h̄c/L, thermodynamics becomes more rich be-
cause here emerges an additional thermodynamic parameter,
the length (volume) of the sample. Chemical potential, as
all other thermodynamic potentials, is now a function of L,
μ = μ(P, T, L). As we add one more variable, three equalities
can be satisfied simultaneously, μ1(P, T, L) = μ2(P, T, L) =
μ3(P, T, L) = μ4(P, T, L), and correspondingly four different
phases may coexist at a quadruple point.

The differential of the chemical potential should now be
written as dμ = vdP − sdT + v(∂P/∂L)dL where the term
∂P/∂L is found as

S = −∂F

∂T
= mLk2

BT

π h̄c

∫ ∞

u

tdt

et − 1
+ mkB

2

u

eu − 1
,

E = F + T S = πmh̄cL

4a2
+ mkBT

2

u

eu − 1

− mLk2
BT 2

2π h̄c

∫ ∞

u

tdt

et − 1
,

P = −∂F

∂L
= mkBT

2L

u

eu − 1
+ mk2

BT 2

2π h̄c

∫ ∞

u

tdt

et − 1
,

∂P

∂L
= mπ h̄c

2L3

eu(u − 1) + 1

(eu − 1)2
, (7)

where u ≡ π h̄c/(LkBT ) is the universal thermodynamic fac-
tor reflecting mesoscopic effects. At u → 0 (L → ∞ or
T → ∞), the temperature-dependent free energy in Eq. (6)
simplifies to the standard macroscopic 1D expression F =
−(πLk2

BT 2)/(12h̄c). However, the pressure P acquires an
additional term proportional to temperature, which is yet a
small correction. It is easy to show that eu(u − 1) + 1 > 0 at
any positive u, and therefore the derivative ∂P/∂L is always
positive. Note that the pressure calculated in Eq. (7) is not the
Casimir pressure calculated in the first section but the pressure

FIG. 4. Possibility of a quadruple point on the phase diagram.
(a) A segment of the phase diagram of 3He on a nanotube [10]
including liquid, 1/3 solid, 2/5 mobile solid, and high density (HD)
solid. (b) Sketch of three-dimensional phase diagram. Increase of the
sample length shifts the liquid–HD solid coexistence curve towards
HD solid due to increasing pressure in the solid, see text for details.
At a certain length the melting curve reaches the 1/3 – 2/5 mobile
solids coexistence curve forming a quadruple point (red diagram).
Our measured phase diagram corresponds to the black diagram on
the sketch.

inside the sample, while the Casimir pressure is the difference
between the pressure of the surrounding bath and that of the
sample.

Taking into account the additional thermodynamic pa-
rameter L, the phase diagram becomes three-dimensional as
illustrated in the Fig. 4(b). To be specific, we show phases
observed in helium on nanotube: 1/3 solid, 2/5 mobile solid
with delocalized vacancies, high density (HD) solid, and liq-
uid [10]. With the increase of the length of the tube, the
pressure in HD solid phase increases as discussed above.
Therefore, the chemical potential of HD solid phase also
increases, and the melting curve shifts to the right towards
higher densities where pressure in the liquid is also larger. At
certain length, the melting curve reaches the 1/3 – 2/5 mobile
solid coexistence line forming a quadruple point.

V. BOSE-EINSTEIN CONDENSATION

At large densities, ρ > 6.4 nm−2, a more dense solid starts
to form. This solid has been proposed to consist of bosonic
dimers [10] and its lattice structure has topologically stable
vacancies, which arise owing to mismatch between the most
symmetric helium structures and the carbon lattice. These
vacancies exist even at zero point and should Bose condense
at low enough temperatures [17–20].

The transversal motion of an individual vacancy around the
tube has a characteristic energy εφ = h̄2l2/(2Mr2) where l
is the angular momentum quantum number. The first excited
state with l = 1 and M ∼ 2m3 has an energy of the order of
100 mK, and therefore at lower temperatures the transversal
motion is frozen, and the system of vacancies becomes truly
one dimensional. One can estimate the Bose-Einstein con-
densation temperature of a system of vacancies by adapting
the standard approach for ideal bosonic gas (see, for instance
Ref. [21]) to the one-dimensional case. The number of par-
ticles will be given by a Bose-distribution integral with zero
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FIG. 5. (a) Evidence for the Bose-Einstein condensation of vacancies. The width of the resonance �/2π increases substantially when
temperature of mobile solid decreases below 25 mK. Data taken with coverage 8.8 nm−2 corresponding to the length of the 2/5 mobile solid
phase L2/5 = LCNT (ρinc − ρ )/(ρinc − ρ2/5) = 460 nm (density of the incommensurate phase is ρinc = 11.0 nm−2). Insert illustrates the relative
motion of helium (green) and the tube (brown). Thickness of helium layer represents the surface density. (b) Possible onset temperature T ∗ of
Bose condensation of delocalized vacancies as a function of the length L2/5 occupied by the 2/5 solid phase, see text for details. Solid curve
represents Eq. (9) with mass M = 2m3 for the theoretical estimation of BEC transition. Inserts: Sketches of the 2/5 phase (on the right) and of
the incommensurate phase (on the left); horizontal bar illustrate partial occupation of the surface of the tube by the 2/5 and incommensurate
solid.

chemical potential,

N = L

2π h̄

∫
dp

exp ε/T − 1
= L

√
MT√

8π h̄

∫ ∞

εmin/T

dz√
z(exp z − 1)

,

(8)

where L is the length of the sample. Note that, in con-
trast to the 3D case, the integral diverges at low energies
as z−1/2, and the integration should start from the cutoff
εmin/T = h̄2(2π/L)2/(2M ). The integral I = ∫ ∞

εmin/T z−1/2dz/
(exp z − 1) in Eq. (8) can be crudely estimated as fol-
lows: if z � 1, it can be approximated as

∫ ∞
εmin/T z−3/2dz =

(1/2)
√

T/εmin. However, when z is of the order of 1 and
larger, the integrand is significantly smaller than z−3/2, and
we may take I ∼ √

T/εmin = √
2MT L/(2π h̄), which yields

TBEC ∼ 4π2 h̄2nvac

ML
, (9)

where nvac = N/L is the linear density of vacancies. For the
2/5 solid shown in Fig. 5(b), nvac = 1/(3a/2) = 4.7 nm−1.
With the length of our system L = 700 nm, the condensation
temperature would be in the range 10–20 mK depending on
the effective mass M of the vacancies. We emphasize that
Bose-Einstein condensation is possible in one-dimensional
sample only due to the finiteness of the length L: in infinitely
long 1D sample temperature of the condensation is zero.

At an arbitrary 3He coverage, a mixture of different phases
is realized. However, two different commensurate phases can-
not coexist as they have different internal pressure. Indeed,
density of commensurate phase cannot be changed at given
temperature, therefore, pressure also is fixed, and mechan-
ical equilibrium is not possible. At coverages 4.0 nm−2 <

ρ < 6.4 nm−2 = ρ1/3 the commensurate 1/3 solid is coexist-
ing with fluid. At higher coverages the dimer solid appears
and coexists either with fluid or with incommensurate solid,
depending on the filling factor. Clusters of different coex-
isting phases have smaller length than the length LCNT of
the nanotube. In such reduced-size clusters of gliding solid,

delocalized vacancies will Bose condense even at higher tem-
peratures, according to Eq. (9), forming a supersolid.

The expected BEC transition would manifest itself by even
stronger dissipation � in the gliding solid phase at the lowest
temperatures. Indeed, most of the measured �(T ) traces show
significant increase of the dissipation when lowering temper-
ature of the gliding solid (see Fig. 5).

The length of the “gliding” solid phase in contact with
the incommensurate phase can be calculated using the
fact that pressure remains constant, as density of com-
mensurate phase cannot be changed with filling. Therefore,
density of incommensurate phase also does not change
with filling and equals to maximum first layer coverage,
ρinc = ρmax � 11.0 nm−2 [10,22]. With the known den-
sity of both phases it is easy to calculate the lengths
of both phases for a particular filling. For example, 1:3
mixture of 2/5 “gliding” solid and incommensurate solid
is realized at the coverage ρ = ρ2/5ρinc/[(x(ρinc − ρ2/5) +
ρ2/5] = 9.9 nm−2 (ρ2/5 = 7.64 nm−2, x = 0.25). The cluster
of 2/5 solid would have a length L2/5 = xρincLCNT /[(x(ρinc −
ρ2/5) + ρ2/5] = 240 nm, and the Bose-Einstein condensation
temperature of 45 mK.

Because of a lag of helium motion behind the oscillating
nanotube, friction occurs resulting in an additional dissipa-
tion. This additional dissipation is proportional to the mobility
μ of helium, similarly to an electrical circuit in which the
current I and the power dissipation P are proportional to the
conductance G, I = GU , P = GU 2. The high dissipation in
the low-temperature phase at elevated coverages is one of the
strongest arguments for the model of “gliding” solid [10].
However, when mobility increases further, to infinity in the
supersolid case, dissipation should drop again because the
relaxation time will become much longer than the oscillation
period.

The motion of helium in front and in the back of the oscil-
lating tube does not give significant drag force. Nevertheless,
helium on the sides of the moving tube slides along the surface
of the tube and provides a drag force. As almost all helium
film has a projection to the direction of the motion of the tube,
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FIG. 6. Dissipation (open circles) and central frequency (filled
circles) of the resonance with the sample of the length L2/5 = 210 nm
(ρ2/5 = 6.74 nm−2). The curve is of fit of the dissipation � using
Eq. (11) and mvac/M = 2(�max − �b)/2πF0 = 5.1 × 10−4 (see text).
Increase of the central frequency at lowest temperatures by 0.55 MHz
corresponds to the relative mass decoupling mHe/M = 3.2 × 10−3.

most of the helium atoms move with respect to the tube and
thus participate in the drag. Exact hydrodynamic calculation
of the drag force is out of the scope of this paper, and we
restrict our consideration by a statement that about half of the
helium has relative motion with respect to the oscillating tube
and therefore dissipates oscillation energy. The lag of helium
due to inertial forces is illustrated in the insert to Fig. 5(a),
where the thickness of helium film represents the surface
density.

After the above reservation we write the drag force fd =
(ẋCNT − ẋHe)/μ = mHeẍHe where xCNT = X exp iωt and
xHe = x exp iωt , and mHe is effective mass of helium. Ampli-
tude of oscillations of adsorbed helium turns out to be always
smaller than the amplitude of the tube, x = X/(1 + iωmHeμ).
Average dissipation due to the drag is found as

P = fd · (ẋ − Ẋ ) = mẍ(ẋ − Ẋ ) = 1

2

m2
HeX 2ω4μ

1 + (ωmHeμ)2
.

Energy of the oscillating nanotube is E = Ekin + Epot =
2Ekin = (1/2)MX 2ω2, and the dissipation rate is therefore

� = P/E = (mHe/M ) · ω2τ/(1 + ω2τ 2) (10)

where τ = mHeμ is the relaxation time of helium on nanotube.
The case of short τ corresponds to a solid phase in which
helium is frozen to the carbon lattice. Dissipation due to
mutual motion of helium and nanotube is minimal as there
is no or very small mutual friction. When helium melts to a
fluid, the relaxation time increases together with the dissipa-
tion rate. More interesting is the case of mobile zero-point
vacancies in the range ρ > 6.4 nm−2 where three regimes are
possible. At temperatures above 0.1 K vacancies are localized
[10], and solid helium behaves as normal stiff crystal, which
oscillates in phase with the tube and has therefore low dis-
sipation (τ → 0), see Fig. 6. When temperature is lowered
below 0.1 K, vacancies becomes delocalized providing a finite
mobility and relaxation time of solid. This so-called “gliding
solid” is lagging behind the nanotube, which provides even
higher dissipation � than in the liquid. On further cooling,

FIG. 7. Determination of helium coverage on the suspended car-
bon nanotube at 0.25 K. The shift of the resonance is due to increase
in the mass of the oscillating nanotube, while the additional stiffness
can be ignored because helium is in a fluid phase.

dissipation increases even more, which we attribute to partial
Bose-Einstein condensation of vacancies. Indeed, vacancies
condensed into the ground state are superfluid, and effective
mobility increases. However, at T → 0 where the condensa-
tion of vacancies is nearly complete, mobility and relaxation
time go to infinity, and, according to Eq. (10), the dissipation
also goes to zero; in this regime vacancies are not moving at
all.

From the above analysis it follows that there must be
a maximum of dissipation rate � at ωτ = ωmμ = 1 where
helium and the nanotube oscillate in counterphase. Therefore,
the increase of dissipation at T < 40 mK seen in Fig. 5 should
change to a decrease when significant part of vacancies will
be in the ground state. Observation of such a bump in tem-
perature dependence of the dissipation is an evidence of the
Bose-Einstein condensation of vacancies.

Generally, in 1D case the number of vacancies in the ex-
cited state is proportional to temperature, nex/nvac = T/TBEC.
In the normal state, T � TBEC, the relaxation time τ is finite
and determined by the friction coefficient m0/τ0 of individual
vacancies: mvac/τnorm = Nvacm0/τ0. Below TBEC, vacancies
in the condensate don’t contribute to the friction, and fric-
tion coefficient decreases correspondingly 1/τ = Nex/τ0 =
(Nex/Nvac)Nvac/τ0 = (T/TBEC)/τnorm. After substituting this
scaling relation to Eq. (10), we obtain the desired expression
for the dissipation rate of the resonance below TBEC,

�(T ) − �b = ω
mvac

M

ωτnorm(TBEC/T )

1 + ω2τ 2
norm(TBEC/T )2

, (11)

where �b/2π is the width of the resonance of the bare nan-
otube. In the Fig. 6 we show the temperature dependence of
the linewidth at density 6.74 nm−2 (L2/5 = 206 nm). The fit
of the experimental data with the Eq. (11) is excellent and
gives reasonable values of the relaxation time, τ = 0.22 ns,
and of the relative mass of vacancies mvac/M = 5.1 × 10−4.
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Deep in the BEC state, vacancies decouple solid he-
lium from the tube, and the effective mass of the resonator
decreases with a corresponding increase in the central fre-
quency, �F0 = (F0/2)(mHe/M ). The shift of the resonance
at ρ = 6.74 nm−2 is about 0.55 MHz, which corresponds
to relative decoupled mass mHe/M = 3.2 × 10−3. As 2/5
solid consists of dimers, we assume that the mass of sin-
gle vacancy is twice the mass of helium atom, which gives
the concentration of vacancies in the dimer 2/5 solid as
nvac = (mvac/M )/(mHe/M ) = 16%. Assuming one vacancy
per period of the 2/5 solid along the tube, and 4–5 periods per-
pendicular to the axis of the tube [see insert to Fig. 5(b)], we
have one vacancy per 8–10 dimer sites, which gives the con-
centration of zero-point vacancies about 10–15%, perfectly
matching the value obtained from the fits [23]. In this short,
L = 210 nm, sample the condensation temperature was rela-
tively high, T ∗ ≈ 80 mK so that we were able to go deep into
supersolid state and observe first an increase of the dissipation
followed by a fast decrease at T � T ∗. In most of the other
carefully studied samples, however, the condensation temper-
ature was lower, and we only observed increase of dissipation
but could not cool well below to observe a decrease.

The BEC of vacancies and the acoustic Casimir effect have
very much in common. Indeed, both particles obey Bose-
statistics and have certain minimum thermal energy due to
the restricted geometry. Both systems therefore become de-
generate, when the length of the sample decreases. In the
case of vacancies, Bose-Einstein condensation temperature is
inversely proportional to the length L, see Eq. (9). On their
part, phonons condense in the ground state at temperature
TC ≈ π h̄c/L, which differs, besides numerical factors, by the
ratio c/(h̄nvac/M ). Note that the combination h̄nvac/M has a
meaning of average zero-point velocity of vacancy. Indeed,
according to Heisenberg uncertainty principle, characteristic
momentum of the particle is p ∼ h̄/δx where uncertainty of
the coordinate is of the order is an inverse linear density,
δx ∼ 1/nvac. After dividing by mass of vacancy M we end
up with the velocity of vacancy. Thus, the degeneracy in
both systems, phonons and vacancies, has inherently the same
origin: it happens when temperature decreases below lowest
possible frequency in the system, T < h̄ωmin ∼ h̄(v/L).

Indeed quite analogously, there exists zero-point energy of
vacancies and zero-point energy of phonons in our experimen-
tal object. The statistics of the two systems is identical, and
the number of (quasi-)particles is conserved in both systems:
number of vacancies is set by the topological invariant of the
mismatch between the carbon lattice and helium superlattice
[10], while the number of phonon modes is set by the number
of helium atoms and the geometry of the tube.

Helium on nanotube is therefore a unique setting, which
is small enough to manifest mesoscopic thermodynamics al-
ready at temperatures below 100 mK, which are available in a
regular dilution cryostat. It would be extremely interesting to
cool the 3He-on-nanotube system further towards lower tem-
peratures to investigate the fully condensed state of zero-point
vacancies. Intriguingly, the second layer of helium on CNT

promises various new phases as it is very weakly coupled to
the carbon lattice. The proposed length-dependent quadruple
point could be demonstrated for the first time using 3He on
nanotube. Furthermore, subatomic layers of 4He on carbon
nanotube could prove very interesting objects to study as
zero-point vacancies in this case are lighter than in the dimer
3He solid, so that their Bose-condensation is expected to take
place at even higher temperatures. As a final note, both the
acoustic Casimir effect and the Bose-Einstein condensation
of vacancies do not, in fact, depend on the details of the
particular structure of helium on nanotube.
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APPENDIX: ELECTROMECHANICAL SCHEME
AND MEASUREMENTS OF COVERAGE

When RF voltage �U = URF cos �t is applied to
the tube, it starts to oscillate because of the oscil-
lating electrical field �E = �U/H , where H denotes
the distance between back gate and the CNT. With
gate-induced charge Q, the oscillating electrical force
F = Q · �E will produce mechanical motion h = H − Heq

of the tube from the equilibrium position Heq, governed by
the equation of motion CUgateURF cos �t/(r0 log 2H/r0) =
M∂2h/∂t2 + γ ∂h/∂t + kh, where C = 2πε0L/ log (2H/r) is
the capacitance of the suspended tube, Ugate is the DC gate
voltage, and M is the effective mass of the tube. The conduc-
tance G(E ) of the tube also oscillates at the same frequency,
as it is field dependent. As a result, the current through the
tube I = �UG ∝ cos2 �t has a constant term, which is pro-
portional to the amplitude of the mechanical oscillations [24].
If the RF frequency is modulated by a much lower frequency
ω ∼ 1 kHz, � = � + δ cos ωt , the current will have a com-
ponent at low frequency,

〈I〉ω ∝ d

d�

1

�2
0 − �2 + 2π iΓ �

, (A1)

which can be detected using a low-frequency lock-in ampli-
fier. Here �0 = 2πF0 is the central circular frequency and �

is the dissipation. In the method described in Ref. [24], only
the real part of the differentiated Lorentzian in Eq. (A1) is
considered. In the more general case, due to finite capacitance
of the tube and the electrodes, there is a phase shift between
the voltage and conductance, and the uncertainty in the phase
of the Lorentzian response needs to be taken into account.
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