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Superfluidity of total angular momentum
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Spontaneous symmetry breaking of a U(1) symmetry in interacting systems leads to superfluidity of a
corresponding conserved charge. We generalize the superfluidity to systems with U(1) symmetries acting on both
matter fields and 2D spatial coordinates. Such systems can be effectively realized in easy-plane ferromagnetic
systems with spin-orbit coupling where the conserved charge is a total angular momentum. We clarify that under
a steady injection of spin angular momentum, the superfluid of the total angular momentum shows spacetime
oscillations of the spin density and geometry-dependent spin hydrodynamics. We also demonstrate that the
steady spin injection destabilizes the superfluid of total angular momentum, causing a dissipation effect in its
spin hydrodynamic properties. Although a stability analysis shows that the superfluid under the spin injection is
nonideal, the unique spin-transport features persist with weak dissipation of the spin angular momentum. Our
study broadens the comprehension of superfluidity and sheds new light on the interplay between symmetries and
phases of matter.
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I. INTRODUCTION

The discovery of superfluidity [1–3] is a milestone in the
history of physics. Exotic macroscopic quantum phenomena
in superfluids are explained by the condensation of bosonic
atoms [4,5] or neutral Cooper pairs [6]. Spontaneous symme-
try breaking (SSB) of a U(1) global gauge symmetry leads to
Goldstone modes with gapless and linear dispersions [7–9],
which enables dissipationless mass currents. By alternative
U(1) symmetries, the superfluidity can be generalized to
spin [10–17] and excitonic [18–23] currents.

General relations between Goldstone modes and SSB of
continuous symmetries are derived in the literature [24–27],
while they mostly considered continuous internal symme-
tries that transform only field operators locally. Spacetime
symmetries act on both field operators and spacetime coor-
dinates [28], and the symmetries bring about fundamental
physical consequences such as the relativistic spin-orbit cou-
pling (SOC). The continuous spacetime symmetries can be
spontaneously broken in spinful superfluids in cold-atom sys-
tems [29–34]. Nonetheless, it remains largely unexplored how
the SSB of the continuous spacetime symmetries affects the
hydrodynamic transport of “charges” associated with the bro-
ken spacetime symmetries.

In this paper, we generalize the concept of superfluidity to
the SSB of continuous spacetime symmetries. As a physical
system, we consider the superfluidity of total angular momen-
tum, where a joint U(1) rotational symmetry of an in-plane
spin vector and two-dimensional (2D) spatial coordinates is
spontaneously broken. The superfluid of total angular momen-
tum is nothing but a spin superfluid [10–17] in the presence of
the SOC. It can be effectively realized in a ferromagnet and a
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spin-triplet exciton condensate [35–37] with easy-plane spin
anisotropy.

We derive an effective field theory of a Goldstone mode
in the total-angular-momentum superfluid and solve its clas-
sical equation of motion in the presence of a steady injection
of spin. We find that the total-angular-momentum superfluid
shows spacetime oscillations of spin density and current under
the spin injection, which contrasts with conventional spin
superfluid without SOC [10–17]. We also uncover unique
geometry dependence and nonreciprocity in its hydrodynamic
spin transport, which are absent in systems only with discrete
internal rotational symmetry [13,19,38]. Especially, when the
system is in a circular geometry with finite curvature, the
spin hydrodynamics depends on the direction of the spin flow
as well as the curvature of the system. The proposed spatial
and temporal spin textures can be experimentally detected
by magnetic force microscopy [39,40] and x-ray pump-probe
microscopy [41], respectively.

We also show that unlike in the conventional spin
superfluid, the steady spin injection destabilizes the total-
angular-momentum superfluid. Landau argued that uniform
superfluids moving slower than a critical velocity realize
states at local minima of energy, so the superfluidity is pro-
tected from any dissipative perturbation [13,42–44]. Based on
the same spirit as Landau’s argument, we demonstrate that
the total-angular-momentum superfluid is not an energy-local-
minimum state in the presence of the spin injection and decay
processes to lower energy states bring about a dissipation
effect in the spin hydrodynamic properties of the superfluid.
Nonetheless, we show that the qualitative behavior of the
hydrodynamic spin transport remains unchanged and distinct
from a nonsuperfluid [13].

The structure of the remaining part of the paper is as
follows. In Sec. II, we introduce the field theory with the
U(1) spacetime symmetry and offer possible realizations of
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the theory in two microscopic models. In Sec. III, we show
spin and orbital parts of Noether’s current corresponding to
the U(1) spacetime symmetry. In Sec. IV, we propose a
spin-injection model with different geometries. The spacetime
distribution of a Goldstone mode of the theory are proposed
from a classical solution of the mesoscopic model under a
steady injection of spin current. In Sec. V, we demonstrate
the possibility of energy dissipation by a stability analysis
against a local deformation. Thereby, we show that the energy
of the classical solution can be further lowered by local de-
formations, indicating a decay process to lower energy states.
The effect of the dissipation on the classical motion of the
Goldstone mode is also discussed. Section VI is devoted to a
summary.

A number of Appendices are offered to help understand the
main text of the paper. In Appendix A, we provide detailed
derivations of the field theory from the microscopic models
proposed in Sec. II. Detailed derivations and solutions for
Secs. III and IV are displayed in Appendices B and C, re-
spectively. Appendices D and E provide instrumental details
of Sec. V, where we thoroughly discuss the possibility of the
dissipation proposed in Sec. V and its effects on the equa-
tion of motion (EOM). In Appendix F, we discuss solutions
of the spin-injection model at some special parameter points.
In Appendix G, we use the same stability analysis as in Sec. V
and derive the Landau criterion of a conventional superfluid.
We use this classic and simple example to demonstrate the
validity of our stability analysis in Sec. V. In Appendix H, we
present how to construct the local deformation of the classical
solution of the EOM.

II. MODEL

Consider a complex bosonic field φ ≡ φx + iφy in three
dimensions (3D), where the 2D real and time-reversally-odd
vector field (φx, φy) and two of three spatial coordinates (x, y)
transform under a joint U(1) rotation around z direction,

φ → φeiε, x + iy → (x + iy)eiε . (1)

The vector field here stands for a spin vector in physical
systems. In the presence of the time-reversal symmetry, φ →
−φ†, t → −t , i → −i, the SSB of the joint U(1) symmetry is
characterized by a real-time field theory of φ,

Lφ = η2
1

2
(∂tφ

†)(∂tφ) − η2
1c2

⊥
2

(∂ jφ
†)(∂ jφ)

− η2
1c2

z

2
(∂zφ

†)(∂zφ) − αη2
1c2

⊥
4

[(∂−φ)2 + (∂+φ†)2]

− U

2
(φ†φ − ρ0)2, (2)

where ∂± ≡ ∂x ± i∂y, j = x, y. A global phase of φ is properly
chosen so that α is real and positive. α ∈ R and α > 0. We
assume 0 < α < 1 for the stability of the theory. Ground
states for ρ0 > 0 break the U(1) symmetry by uniform field
configurations φ = √

ρ0eiθ0 .
The joint nature of the rotational symmetry results from

spin-orbit locking in solid-state materials with SOC. An ex-
ample of the joint rotational symmetry breaking is in the XY
ferromagnet phase on a 3D trigonal or hexagonal lattice. A

localized spin model for spin-orbit coupled magnets generally
comprises symmetric and antisymmetric exchange interac-
tions,

Hspin = 1

2

∑
i, j

∑
μ,ν=x,y,z

(Ji j,μν + Di j,μν )Si,μS j,ν , (3)

with lattice sites i ≡ (i⊥, iz ), j ≡ ( j⊥, jz ), spin operators Si,μ

(μ = x, y, z), Ji j,μν = Ji j,νμ, and Di j,μν = −Di j,νμ. i⊥ and
iz are xy and z coordinates of the lattice site i on the lat-
tices, respectively. For i = j, Dii,μν = 0 while Jii,μν gives an
single-ion spin anisotropy energy. Suppose that Hspin has an
easy-plane spin anisotropy in the XY spin plane and under-
goes a quantum phase transition of ferromagnetic ordering of
the XY spins, �Si,⊥ ≡ (Si,x, Si,y). When Hspin belongs to a point
group of C3i, D3d , C3v , C3h, C6h, C6v , D3h, or D6h, spin hy-
drodynamics of the XY spin near the ferromagnetic transition
point is described by Eq. (2), where φ(ri ) ≡ Si,x + iSi,y and a
2 by 2 symmetric matrix comprised of Ji j,μν (μ, ν = x, y) de-
termines the strength of the α term. Specifically, for each bond
(i, j), the 2 by 2 matrix Ji j,μν has real eigenvalues λi j,m and
eigenvectors t i j,m (m = 1, 2). Defining �λi j ≡ λi j,1 − λi j,2,
ai j,⊥ ≡ |i⊥ − j⊥|, � as the total volume of the material, and
εi j,⊥ as an angle between t i j,1 in the XY spin plane and
i⊥ − j⊥ in the xy coordinate plane, α in Eq. (2) is given by
a sum of �λi j with a phase e2iεi j,⊥ over all the bonds (see
Appendix A 1),

αη2
1c2

⊥ = 1

8�

∑
i, j

a2
i j,⊥�λi j e2iεi j,⊥ . (4)

The antisymmetric exchange interactions Di j,μν do not con-
tribute to the spin hydrodynamic equation near the critical
point. Note that the joint rotational symmetry in solid-state
materials with periodic lattices must be discrete due to the
lattices. In fact, Lφ for the XY ferromagnet on the hexagonal
lattices generally acquires additional hexagonal easy spin axes
within the XY spin plane in the form of c̃6φ

6 + H.c. The sym-
metries also allow α̃6φ

3(∂2
+φ) + H.c. in the action Lφ . Near

the ferromagnetic transition point, however, the additional
term becomes effectively negligible compared to the α term in
a hydrodynamic regime with an intermediate crossover length
scale (see Appendix A 1).

Another example of Eq. (2) can be found in the triplet
exciton condensate phase in semiconductors with Rashba
spin-orbit interaction. We consider a 2D model for simplicity.
It may be regarded as an effective model of 3D systems.
Suppose that electron energy bands near the conduction-band
bottom and valence-band top in the semiconductors can be ap-
proximated by a model with continuous rotational symmetry
(h̄ = 1),

Hex =
∫

d2ra†

[(
− ∂2

i

2m0
+ εg0

)
σ0 + ξR0(−i∂yσx + i∂xσy)

]
a

+
∫

d2rb†

[(
∂2

i

2m′
0

− εg0

)
σ0 + ξ ′

R0(i∂yσx − i∂xσy)

]
b

+
∫

d2r(�t a†σ0b + �∗
t b†σ0a)
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(a)

(b) (c)

FIG. 1. A spin-injection model. A steady spin current j0 is injected from a spin injector (red) to the total-angular-momentum superfluid
(blue). The spin current passes through the superfluid (blue) and flows into a spin nonsuperfluid (yellow). The direction of the dc component
of the current is indicated by black arrows. (a) A straight geometry. (b) A contour plot of s(�, t ) in a circular geometry with a positive current
j0 = 4. (c) A contour plot of |s(�, t )| in a circular geometry with a negative current j0 = −4. χ = χ ′ = Ds = 1, T ′

1 = 4, βt = 2, r = 1, L = 4,
α = 0.1 are used in the contour plots.

+ gs0

2

∑
σ,σ ′=↑,↓

∫
d2r(a†

σ a†
σ ′aσ ′aσ + b†

σ b†
σ ′bσ ′bσ

+ 2ξ1a†
σ b†

σ ′bσ ′aσ ), (5)

with i = x, y, z, a ≡ (a↑, a↓) and b ≡ (b↑, b↓) for spin- 1
2 elec-

trons in conduction and valence bands, respectively. In the
presence of the Rashba interactions (ξR,0, ξ ′

R,0) and spin-
less inter-band coupling (�t , �∗

t ), an attractive interaction
gs0 between conduction electrons and valence holes induces
a condensation of the XY components of the real part of
the s-wave exciton pairing, Oμ ≡ 〈b†σ ja〉 ( j = x, y) (see
Appendix A 2). Thereby, the spin hydrodynamics of the XY -
components can be well described by Eq. (2) with φ ∝
ReOx + iReOy, where α is determined by the Rashba inter-
actions (Appendix A 2).

III. CLASSICAL MOTION AND CONSERVED CURRENT

Motivated by these physical realizations, we study classical
motion around the ground states. Taking φ = √

ρ0 + δρeiθ ,
integrating a gapped amplitude mode δρ, and neglecting fluc-
tuations along z, we obtain a 2D effective field theory for a
Goldstone mode θ in the SSB phase,

L = 1
2 (∂tθ )2 − 1

2 (∂xθ )2[1 − αcos(2θ )]

− 1
2 (∂yθ )2[1 + αcos(2θ )] + α(∂xθ )(∂yθ )sin(2θ ). (6)

We set η1 = c⊥ = ρ0 = 1 without loss of generality. For a
given ground state φ = √

ρ0eiθ0 , the dispersion of a phase
fluctuation δθ = θ − θ0 is gapless with a linear dispersion,
where velocities are anisotropic and depend on θ0. Note that
the joint U(1) symmetry generally allows higher-order terms
in derivatives or fields in the effective theory Eq. (2), while
they do not affect the hydrodynamic transport of low-energy
excitations near the ground states.

According to Noether’s theorem [28,45], the U(1) contin-
uous spacetime symmetry endows the classical motion with a
conserved current of total angular momentum, which can be

divided into a spin part ( js
μ) and an orbital part ( jl

μ),

js
μ = ∂L

∂ (∂μθ )
�θ,

jl
μ =

[
δμνL − ∂L

∂ (∂μθ )
(∂νθ )

]
�xν, (7)

with μ, ν ∈ {t, x, y}, �xν ∈ {�t,�x,�y}, �θ = 1, and
(�t,�x,�y) = (0,−y, x). The two parts are not conserved
by themselves, ∂μ js

μ = −∂μ jl
μ = G, where a spin torque G

can be defined by the divergence of the spin current. The
spin torque (G), spin currents ( js

x, js
y), and a spin angular

momentum along z direction ( js
t ) are given by the following

equations (see Appendix B):

G = −α[(∂xθ )2 − (∂yθ )2]sin(2θ ) + 2α(∂xθ )(∂yθ )cos(2θ ),

js
x = −(∂xθ )[1 − αcos(2θ )] + α(∂yθ )sin(2θ ),

js
y = −(∂yθ )[1 + αcos(2θ )] + α(∂xθ )sin(2θ ),

s ≡ js
t = ∂tθ. (8)

Though the orbital part jl
μ is nonlocal [see Eqs. (B13)–(B15)],

the spin torque G as well as the spin part js
μ are local. The

locality of the spin torque results from a continuous spacetime
translational symmetry of L (Appendix B).

IV. SPIN INJECTION AND TRANSPORT

To illustrate observables of a total-angular-momentum su-
perfluid, consider a uniform spin current j0 ( j0 > 0) injected
into one end (x = 0) of the superfluid (0 < x < L). The spin
current passes through the superfluid and flows into a spin
nonsuperfluid at the other end x = L [see Fig. 1(a)] [11,13].
The nonsuperfluid “lead” has diffusive spin transport. Hydro-
dynamic spin transport in the superfluid is determined by a
one-dimensional (1D) EOM of the Goldstone mode θ (x, t ) in
Eq. (6) with ∂yθ = 0,

∂2
t θ − (

∂2
x θ

)
[1 − αcos(2θ )] − α(∂xθ )2sin(2θ ) = 0. (9)
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The EOM (9) will be solved together with proper boundary
conditions. To determine the boundary conditions, note that
spin transport in the nonsuperfluid (x > L) is described by
diffusion equations [11,13],

∂s

∂t
+ ∂ js

x

∂x
= − s

T ′
1

, js
x = −Ds

∂s

∂x
, (10)

with relaxation time T ′
1 and a diffusion coefficient Ds. The

diffusive spin current is caused by the gradient of the spin
density. Due to the relaxation time, the density and current
decay exponentially in space for L > 0,

s(x, t ) ≡
∑
c∈R

sc(x, t ) =
∑
c∈R

aceict e−
√

D−1
s ωcx,

js
x(x, t ) ≡

∑
c∈R

js
x,c(x, t ) =

∑
c∈R

√
Dsωcaceict e−

√
D−1

s ωcx. (11)

From Eq. (11) we get js
x,c = √

Dsωcsc, where js
x,c and sc

are Fourier components of js
x and s with a time periodicity

2πc−1. Here ωc = ic + 1
T ′

1
, ac are complex coefficients, and

the square roots of D−1
s ωc take positive real parts. The spin

current is assumed to be continuous at the junction between
the superfluid and nonsuperfluid, and it is proportional to the
gradient of an effective local magnetic field felt by the spin
density [11],

js
x(x = L−, t )

= js
x(x = L+, t )

= −βt

[
1

χ ′ s(x = L+, t ) − 1

χ
s(x = L−, t )

]
. (12)

Here χ , χ ′ are magnetic susceptibilities at x = L− and x =
L+, respectively, βt is a response coefficient of the junction,
and they are all positive. Equation (12) imposes a boundary
condition (BC) on the spin density and current at x = L− for
each frequency c,

sc(x = L−, t ) = kc js
x,c(x = L−, t ), (13)

with kc ≡ χ

χ ′ [Ds( 1
T ′

1
+ ic)]

− 1
2 + χ

βt
, k−c = k∗

c , and Re(kc) > 0.
The steady injection of spin imposes another boundary con-
dition at x = 0+, js

x(x = 0+, t ) = j0 [11]. In the following,
the EOM (9) is solved for θ (x, t ) such that s(x, t ) and js

x(x, t )
satisfy the BCs.

An analytical solution of θ (x, t ) can be obtained perturba-
tively in the SOC. The solution at the first order consists of
three parts,

θ (x, t ) = θ0(x, t ) + θ1(x, t ) + θ2(x, t ) + O(α2). (14)

θ0 is the zeroth-order solution satisfying the EOM and
BCs [11,13],

θ0(x, t ) = k0 j0t − j0x, (15)

with k0 = χ

χ ′

√
T ′

1
Ds

+ χ

βt
. An oscillation is absent at the zeroth

order due to the BCs with Re(kc) > 0. θ1 and θ2 are at the first
order in α. θ1 is a special solution of an inhomogeneous linear
differential equation,

∂2
t θ1 − ∂2

x θ1 = − α
(
∂2

x θ0
)
cos(2θ0) + α(∂xθ0)2sin(2θ0). (16)

θ2 is a solution of a homogeneous linear differential equa-
tion such that θ satisfies the BCs at the first order in α,

∂2
t θ2 − ∂2

x θ2 = 0. (17)

The solution at the first order oscillates with two spatial wave
numbers, 2 j0 and 2k0 j0, and one temporal frequency 2k0 j0
(see Appendix C 1),

θ (x, t ) = j0(k0t − x) − α

4
(
k2

0 − 1
) sin[2 j0(k0t − x)]

− α
(
2k2

0 − 1
)

4
(
k2

0 − 1
) cos(2k0 j0t )sin(2k0 j0x)

+ αIm(η)cos(2k0 j0t )cos(2k0 j0x)

+ αRe(η)sin(2k0 j0t )cos(2k0 j0x) + O(α2). (18)

η is a constant depending on k0, kc=2k0 j0 , and 2 j0L [see
Eqs. (C29) and (C22)]. The two spacetime frequencies
(2 j0, 2k0 j0) and (2k0 j0, 2k0 j0) come from θ1 and θ2 re-
spectively, and are determined by the BCs. Note that the
perturbative solution is divergent and fails near a “resonant”
point k0 = 1 [46] (see Appendix F). The divergence can be
resolved by adding a finite dissipation term, −T −1

1 ∂tθ , to
EOM (9).

Higher-order solutions can be systematically obtained by
the perturbative iteration, where the spin density and current
have the same periodicity in time as the first-order solution,
π (k0 j0)−1. The time periodicity can be detected by a time-
resolved measurement of the spin density in the nonsuperfluid
“lead,” which depends on the injected spin current ( j0) and
properties of the junction (k0). The higher-order solution has
no spatial periodicity in general, while its Fourier transform in
space has two major peaks at 2 j0 and 2k0 j0 as in the first-order
solution. The two major wave numbers can be observed by a
local measurement of the spin density in the superfluid.

The spin hydrodynamics under the spin current has a
unique geometric effect in a geometry with a finite curvature
[Figs. 1(b) and 1(c)]. To demonstrate this, suppose that the
width of the junction in the circular geometry is small enough
that the radius of the junction is taken as a constant r and
the field depends only on time and a 1D angular coordinate ϑ .
With (x, y) = r(cosϑ, sinϑ ), Eq. (6) leads to a 1D Lagrangian
(see Appendix C 2),

L = 1

2
(∂tθ )2 − 1

2
(∂�θ )2

[
1 + αcos

(
2θ − 2

r
�

)]
, (19)

where � ≡ rϑ . The corresponding EOM under the injected
spin current j0 together with the junction parameter k0 has a
zeroth-order solution, θ0(�, t ) = k0 j0t − j0�, and a first-order
solution, θ0(�, t ) + θ1(�, t ) + θ2(�, t ). Here θ1 is a special so-
lution of an inhomogeneous differential equation,

∂2
t θ1 − ∂2

� θ1 = −α j0

(
j0 + 2

r

)
sin

[
2k0 j0t − 2

(
j0 + 1

r

)
�

]
.

(20)

θ1 and θ2 introduce two wave numbers, 2 j0 + 2
r and 2k0 j0,

in the observables, respectively, where the wave number
of θ1 acquires a linear curvature ( 1

r ) dependence. Due
to the curvature dependence, two injected spin currents
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with opposite signs [ j0 ≡ j0 from Fig. 1(b) and j0 = −j0
from Fig. 1(c)] lead to different spatial distributions of the
observables (nonreciprocal spin hydrodynamics, see Ap-
pendix C 2). The nonreciprocity in the curved geometry
contradicts neither the time-reversal symmetry nor an inver-
sion at the origin (r = 0), as a uniform circular spin current is
even under those symmetries.

When the discreteness of the lattice rotational symmetry
becomes relevant, the Lagrangian and EOM acquire Zn terms,
where the U(1) spacetime symmetry reduces to the Zn space-
time symmetry (see Appendix A 1). The Zn theory leads to
a gapped ground state at equilibrium, whose low-energy spin
transport is characterized by the dynamics of domain walls. A
Zn term c̃n sin(nθ ) also gives rise to similar spacetime oscilla-
tions in the observables under the spin injection [11,13,20,38],
while there is no geometric dependence. On the contrary, as
described above, the spacetime oscillations induced by the
SOC (α) have nonreciprocal and curvature-dependent hydro-
dynamics in the curved geometry.

V. DISSIPATION EFFECT

In the presence of the Galilean covariance, a uniform su-
perfluid moving slower than the velocity of its Goldstone
mode achieves a local energy minimum so that it is stable
against dissipation by local perturbations, e.g., elastic scat-
tering by disorder [13]. To see the stability of a supercurrent
state with the broken U(1) spacetime symmetry, we compare
classical energies of the 1D solution θ (x, t ) and its local
deformation θ (x, t ) + δθ (x, t ). The deformation δθ (x, t ) is
induced by local perturbations, so the spacetime derivatives
of δθ do not contain any uniform component in spacetime.
θ (x, t ) + δθ (x, t ) as well as θ (x, t ) is a classical solution of
Eq. (9), while they do not necessarily share the same bound-
ary conditions. The classical energy in the 1D model can be
evaluated from a Hamiltonian,

H[θ ] =
∫

dx

{
1

2
(∂tθ )2 + 1

2
(∂xθ )2[1 − αcos(2θ )]

}
. (21)

As the classical energies are independent of time, for simplic-
ity, we compare time averages of the energies (with k0 �= 1)
over a large period of time T (see Appendix D),

�J ≡ lim
T →∞

1

T

(∫ T

0
dtH[θ + δθ ] −

∫ T

0
dtH[θ ]

)
= lim

T →∞
1

T

∫ T

0
dt

∫
dx{(∂tθ )(∂tδθ ) + (∂xθ )(∂xδθ )

× [1 − αcos(2θ )] + α(∂xθ )2sin(2θ )(δθ )} + O((δθ )2)

= 2

T
lim

T →∞

∫ T

0
dt

∫
dx(∂xθ2)(∂xδθ0) + O(α2δθ, (δθ )2),

(22)

with θ + δθ = θ0 + δθ0 + O(α). Terms oscillating in space
or time vanish after the spacetime integrals. δθ0, as well as
θ2, is a solution of Eq. (17), and both are given by linear
superpositions of eiq(t−x) and eiq(x+t ) over q. Thus the right-
hand side of Eq. (22) indicates that for a given θ2 �= 0, one
can always choose δθ0 with �J < 0. This means that the
supercurrent state is classically unstable toward other states,

and energy always dissipates by the local perturbations. The
instability results from the absence of the Galilean covariance.
The superflow state is distinct from the ground state by the
spacetime oscillation feature, and the energy of the superflow
state can be lowered by excitations δθ0 which match the oscil-
lation periodicity.

The dissipation effect on the spin hydrodynamics can be
phenomenologically studied through addition of the simplest
time-reversal breaking term, −T −1

1 ∂tθ , into the classical EOM
(see Appendix E). With finite T −1

1 , the zeroth-order solution
of spin current acquires linear spatial decay [11,13], which
contrasts with the exponential decay in the nonsuperfluid [13].
Thereby, the hydrodynamic feature of spin transport survives
against dissipation. When a phase accumulation γ due to the
spatially dependent current is small, a double expansion in α

and γ enables a perturbative solution of θ systematically (see
Appendix E). The lowest-order solution suggests that the spin
density and current remain periodic in time, and they show
nonreciprocal and curvature-dependent spin transport in the
curved geometry.

VI. SUMMARY

In this paper, we generalize the U(1) internal symmetry
in conventional superfluid theories into the U(1) spacetime
symmetry. Due to the joint symmetry, the supercurrent state
shows geometry-dependent spacetime oscillations, and it is
unstable against the dissipation effect. Note that in the spin
and excitonic systems, the orbital angular momentum density
jl
t has much smaller coupling with local magnetic probes

than the spin angular momentum density js
t , because both the

spin and exciton are charge neutral, and their motions have
no direct coupling with a magnetic field. For this reason, we
expect that the local measurements of spin angular momentum
density in the proposed physical systems are experimentally
feasible. Our study paves the way for further exploration of
multiple spacetime symmetries and their coupling with inter-
nal symmetries.
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APPENDIX A: MICROSCOPIC MODELS

In this Appendix, we discuss physical realizations of the
U(1) spacetime symmetry in two physical models; (i) an XY
spin model for spin-orbit coupled magnets near a critical
point, and (ii) a triplet excitonic model for semiconductors.
The U(1) spacetime symmetry is a joint continuous rotational
symmetry that acts on both matter field and 2D spatial co-
ordinates. The joint nature of the symmetry results from a
locking between the rotation of the matter field and that of the
spatial coordinate. Such locking is ubiquitous in solid-state
materials with relativistic spin-orbit interaction, where spin
or an interband component of spin forms the matter field. In
solid-state materials with periodic lattices, the spatial rotation
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must be discrete due to the lattices, so the joint rotation sym-
metry is also discrete; the U(1) spacetime symmetry cannot
be an exact symmetry and it is valid only approximately.
Nonetheless, for some solid-state systems, the approximation
becomes effective where the difference between discrete and
continuous joint rotations becomes irrelevant.

1. Easy-plane ferromagnetic spin model

To see the effectiveness of the U(1) theory in magnetic
systems, let us consider a XY ferromagnetic spin system in
3D lattices that is symmetric under Cn rotation around a z
axis (n = 3, 4, 6, . . . ) and time reversal. We will first impose
a spatial inversion symmetry; at the end of this section, we
will show that the inversion symmetry is not necessary to
derive the U(1) theory for some cases. We suppose that the
spin system is a spin-orbit coupled magnet with an easy-plane
spin anisotropy (an XY plane being the easy plane), and it
undergoes a continuous phase transition from a disordered
phase to a ferromagnetic ordered phase of XY components of
spins, Si,x and Si,y. In this section, we will discuss the effective
symmetry of spin hydrodynamics near the phase transition
point.

The second-order phase transition in the XY ferromagnet
with the Cn rotation can be described by a partition function
Zn (n = 3, 4, 6, . . . ) with a Ginzburg-Landau (GL) action for
a 2D complex variable φ(x) (h̄ = 1),

Zn =
∫

DφDφ† exp[−Sn,φ],

Sn,φ =
∫

d3r
∫ 1/kBT

0
dτ sn[φ(r, τ )]. (A1)

Here the internal field φ(r) is a spatial average of Si,x + iSi,y

with respect to a lattice site i over some hydrodynamic
volume element. i is the complex unit. r is a spatial coordinate
of the hydrodynamic volume element. The transition can
happen either at the zero-temperature T = 0 critical point
(quantum critical point) or at finite-temperature T �= 0 critical
point (classical critical point). In this Appendix, we consider
the spin hydrodynamics near the T = 0 quantum critical
point. The time-reversal symmetry means the absence of an
external magnetic (Zeeman) field in the spin model, and the
ferromagnetic order breaks the symmetry spontaneously. The
time-reversal symmetry in the model requires the dynamical
exponent z at the quantum critical point to be one, z = 1 (see
below).

For n = 4, the spin system is defined on a 3D tetragonal
lattice with a C4 rotational symmetry around the z axis, such as
a layered square lattice. For n = 3 or 6, the system is defined
on a 3D trigonal or hexagonal lattice with a C3 or C6 rotation,
e.g., layered honeycomb or triangle lattices. In the following,
we first employ a symmetry argument to determine the form
of the GL action sn[φ] for n = 4, 3, and 6 and show that
for the n = 3 or 6 case, the U(1) joint rotational symmetry
is an effective symmetry of the GL action for the xy spins
near the critical point, while for the n = 4 case, the effective
symmetry remains discrete (a Z4 joint rotational symmetry).
To this end, note that under the Cn rotation around the z axis,
the complex field φ(r) of the xy spins, and the 3D spatial coor-
dinate, r ≡ (x, y, z), are rotated together due to the spin-orbit

locking,

r → r′ = (x′, y′, z), x′ + iy′ = e
2π
n (x + iy),

φ(r) ≡ Sx(r) + iSy(r) → φ′(r′) = φ(r)ei 2π
n . (A2)

The spatial inversion changes the sign of the coordinate vec-
tor, while the time-reversal changes the sign of φx, φy, and
i. These symmetries constrain forms of the actions for the φ

field.

a. GL action for XY ferromagnets with C4 rotation

The symmetries of the joint C4 rotation around z and time
reversal allow the following terms and their complex conju-
gates in the GL action,

|φ|2 ≡ φ†φ, i[φ†∂zφ − (∂zφ
†)φ], (∂mφ

†)(∂mφ),

φ∂2
−φ, φ∂

2
+φ, (|φ|2)2, φ4, . . . , (A3)

with m = x, y, z, and ∂± ≡ ∂x ± i∂y. Higher-order terms in φ,
higher-order spatial gradient terms, and total-derivative terms
are omitted as “. . . ”. The higher-order φ terms are irrelevant
near the critical point where the amplitude of φ becomes
smaller. The higher-order spatial gradient terms are irrelevant
in the hydrodynamic regime where the volume element over
which the spin operator is averaged becomes larger. Here
the time reversal forbids odd-order terms of φ. The spatial
inversion further forbids i[φ†∂zφ − (∂zφ

†)φ] from the action.
Accordingly, the GL functional form allowed by the symme-
tries is given by

Zn=4 =
∫

DφDφ† exp[−Sn=4,φ],

Sn=4,φ ≡
∫

d3r
∫ h̄/kBT

0
dτ

{
η2

1

2
(∂τφ

†)(∂τφ)

+ η2
1c2

⊥
2

(∂ jφ
†)(∂ jφ) + η2

1c2
z

2
(∂zφ

†)(∂zφ)

+ η2
1c2

⊥
4

[α(∂−φ)2 + α∗(∂+φ†)2

+ β(∂+φ)2 + β∗(∂−φ†)2] + U

2
(φ†φ − ρ0)2

+ 1

2
[c̃4φ

4 + c̃∗
4(φ†)4] + · · ·

}
, (A4)

with j = x, y, imaginary time τ , real numbers ρ0, η1, c, U , and
complex numbers α, β, c̃4. Here the first-order time-derivative
of φ, such as φ†∂τφ, is forbidden by the time reversal sym-
metry. The second-order time-derivative term is induced by
an integration of the z-component spin. To be specific, one
can start from a path integral of a spin Lagrangian with a
Wess-Zumino term that ensures correct commutation rela-
tions between spin operators. In the presence of easy-plane
anisotropy, the out-of-plane component of spin (Sz) is gapped,
and one can integrate out the gapped degree of freedom,
leading to an effective field theory of φ = Sx + iSy. In the
effective field theory, the leading-order time-dependent term

allowed by time-reversal symmetry is η2
1

2 (∂τφ†)(∂τφ). Note
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that the dynamical exponent z around the T = 0 quantum
critical point becomes one, namely z = 1.

A partition function Zn=4 describes the phase transition
from the disordered phase (ρ0 < 0) to the ordered phase of the
xy spins (ρ0 > 0). In the ordered phase, a phase of φ is locked
into four minima determined by the c̃4 term. At the quantum
critical point, the terms with higher-order gradient and/or φ

terms become irrelevant in the long-wavelength limit, and the
effective symmetry of the GL action at the critical point is
determined by a gapless free theory part,

Sn=4,φ ≡
∫

d3r
∫ h̄/kBT

0
dτ

{
η2

1

2
(∂τφ

†)(∂τφ)

+ η2
1c2

⊥
2

(∂ jφ
†)(∂ jφ) + η2

1c2
z

2
(∂zφ

†)(∂zφ)

+ η2
1c2

⊥
4

[α(∂−φ)2 + α∗(∂+φ†)2

+ β(∂+φ)2 + β∗(∂−φ†)2]

}
. (A5)

Importantly, though the α term in the second line is symmet-
ric under the U(1) spacetime symmetry, ∂± → ∂ ′

± = e±iε∂±,
φ → φ′ = eiεφ for ∀ε, the β term is symmetric only under
the joint Z4 rotational symmetry,

∂± → ∂ ′
± = e±i π

2 ∂±, φ → φ′ = ei π
2 φ,

φ† → (φ′)† = e−i π
2 φ†. (A6)

Due to the β term, the effective symmetry at the critical point
remains discrete for the n = 4 case.

b. GL action for XY ferromagnets with C3 or C6 rotation

For the hexagonal crystal family, on the contrary, the joint
C3 or C6 rotational symmetry forbids the β term, so the cor-
responding gapless free theory does have the U(1) spacetime
symmetry. To this end, we analyze the terms allowed in the
action. The symmetries of the C6 rotation around z, spatial
inversion, and time reversal allow the following terms and
their complex conjugates in the action,

|φ|2, (∂mφ
†)(∂mφ), φ∂2

−φ, (|φ|2)2, φ3∂2
+φ, φ

6, . . . , (A7)

with m = x, y, z. When the C6 rotation is substituted by the C3

rotation, Eq. (A7) also exhausts all symmetry-allowed terms
apart from higher-order φ terms, higher-order spatial-gradient
terms, and total derivative terms. In fact, the C3 rotational
symmetry alone allows φ3 and φ∂+φ, while the φ3 term is
prohibited by the time-reversal symmetry and φ∂+φ is a total
derivative term. Thus the partition function Zn=3,6 near the
critical point is given by

Zn=3,6 =
∫

DφDφ† exp[−Sn=3,6,φ]

Sn=3,6,φ ≡
∫

d3r
∫ h̄/kBT

0
dτ

{
η2

1

2
(∂τφ

†)(∂τφ)

+ η2
1c2

⊥
2

(∂ jφ
†)(∂ jφ) + η2

1c2
z

2
(∂zφ

†)(∂zφ)

+ η2
1c2

⊥
4

[α(∂−φ)2 + α∗(∂+φ†)2 + α̃6φ
3(∂2

+φ)

+ α̃∗
6 (φ†)3(∂2

−φ
†)] + U

2
(φ†φ − ρ0)2

+ 1

2
[c̃6φ

6 + c̃∗
6(φ†)6] + · · ·

}
, (A8)

where ρ0 > 0 and ρ0 < 0 correspond to ordered and disor-
dered phases, respectively. Importantly, a gapless free theory
part Sn=3,6,φ of the action,

Sn=3,6,φ ≡
∫

d3r
∫ h̄/kBT

0
dτ

{
η2

1

2
(∂τφ

†)(∂τφ)

+ η2
1c2

⊥
2

(∂ jφ
†)(∂ jφ) + η2

1c2
z

2
(∂zφ

†)(∂zφ)

+ η2
1c2

⊥
4

[α(∂−φ)2 + α∗(∂+φ†)2]

}
, (A9)

is symmetric under the U(1) spacetime symmetry,

∂± → ∂ ′
± = e±iε∂±, φ → φ′ = eiεφ,

φ† → (φ′)† = e−iεφ†, for ∀ε. (A10)

This contrasts with the free theory for the n = 4 case which is
symmetric only under the joint discrete rotational symmetry.

In the ordered phase (ρ0 > 0) for the C6 case, a phase of φ
is locked into six minima by the c̃6 term. The c̃6 and α̃6 terms
reduce the symmetry of the whole action into a joint discrete
(Z6) rotational symmetry,

∂± → ∂ ′
± = e±i π

3 ∂±, φ → φ′ = ei π
3 φ,

φ† → (φ′)† = e−i π
3 φ†. (A11)

In the ordered phase for the C3 case, the phase of φ is locked
into three minima by the c̃6 term and other higher-ordered
terms omitted as “. . . ” in Eq. (A8). Nonetheless, unlike the
β-term in Zn=4, α̃6 and c̃6 terms as well as the higher-order
terms are irrelevant in the long-wavelength limit at the quan-
tum critical point, since their scaling dimensions at the critical
point are all negative.

The scaling dimensions of α̃6 and c̃6 terms at the critical
point, yα6 and yc6 , can be evaluated from a dimensional analy-
sis of the gapless free theory part at T = 0; yα6 = 2 − D = −2
and yc6 = 6 − 2D = −2 with D = 3 + 1. Scaling dimensions
of the higher-order φ terms and higher-order spatial gradient
terms are also negative and smaller than yα6 and yc6 . When the
hydrodynamic volume element becomes larger, the terms with
negative scaling dimensions get smaller at the critical point.
Thanks to their irrelevance at the critical point, the GL action
respects effectively the U(1) spacetime symmetry in the long-
wavelength limit. In other words, the spin hydrodynamics at
the critical point becomes U(1) spacetime symmetric more
effectively for larger hydrodynamic volume element. The hy-
drodynamic regime with the effective U(1) symmetry has a
lower crossover boundary in its length scale; in order that the
hydrodynamics has the effective U(1) spacetime symmetry,
the length scale � of the volume element should be greater
than a certain crossover length �c,1,

� � �c,1. (A12)

The crossover length scale is dependent on c̃6, α̃6, and other
higher-order terms that manifest the joint discrete rotational
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symmetries. In the C6 case, for example, �c,1 is primarily
dependent on c̃6, α̃6 and their scaling dimensions with the
following scalings,

�c,1 ∝ |c̃6|
1

|yc6 | or |α̃6|
1

|yα6 | . (A13)

When the system is in the ordered phase but close to the
critical point (ρ0 � 0), the hydrodynamics regime with the
effective U(1) symmetry has also an upper bound in its length
scale,

�c,2 � � � �c,1. (A14)

The upper bound is because the ground state for ρ0 > 0
breaks the joint rotational symmetry spontaneously, and in this
sense, c̃6, α̃6, and the other higher-order terms manifesting
the discrete symmetry are dangerously irrelevant. In typical
renormalization group (RG) flow trajectory, they get smaller
around a saddle-point fixed point for the critical point upon
the increase of the length scale, while in the very long wave-
length limit, they become larger again around another fixed
point that describes an ordered phase with broken joint U(1)
symmetry (a Nambu-Goldstone fixed point). The upper bound
�c,2 defines a length scale for this upturn behavior of the
dangerously irrelevant scaling variables. Generally, �c,2 has
a complicated scaling form of ρ, as it also depends on scal-
ing of the coupling constants around the Nambu-Goldstone
fixed point. Nonetheless, �c,2 is always greater than the lower
bound, �c,2 � �c,1, for smaller ρ0. In the C6 case, for exam-
ple, �c,2 � �c,1 is sastified when ρ0, c̃6, and α̃6 are in the
following regimes:

ρ

|yc6 |
yρ0

0 � 1

|c̃6| , ρ

|yα6 |
yρ0

0 � 1

|α̃6| . (A15)

Here yρ0 is the scaling dimension of ρ0 around the critical
point; yρ0 = 2.

c. Continuum limit of generic XY ferromagnetic spin models
in the 3D hexagonal crystal family

The above argument is solely based on the symmetry and
scaling arguments, suggesting that any XY ferromagnetic spin
models with the C3 or C6 rotational, spatial inversion, and time
reversal symmetries has the effective U(1) spacetime sym-
metry near the quantum critical point, if the models undergo
the continuous phase transition of the ferromagnetic ordering.
In the following, we will argue this by deriving explicitly a
continuum limit of generic XY ferromagnetic spin models
with the symmetries.

Exchange interactions in spin-orbit coupled magnets
generally comprise of symmetric part Ji j,μν = Ji j,νμ and

antisymmetric part Di j,μν = −Di j,νμ [Eq. (3)],

Hspin = 1

2

∑
i, j

∑
μ,ν

Si,μ(Ji j,μν + Di j,μν )S j,ν , (A16)

with spin vector Si ≡ (Si,x, Si,y, Si,z ). We first consider that
the spins live on the 3D hexagonal lattice with C6 rotational
and spatial inversion symmetries, namely the lattice belongs
to either C6h or D6h point group. Further discussion of other
possibilities of point groups will be provided below. Here, the
exchange interactions are not only limited to those between
the nearest neighboring sites on the lattice, but they can also
be between further neighboring sites.

Near the transition point of the ferromagnetic ordering of
the XY spins, the Z component of the spins fluctuates rapidly
in space and time, so that one can legitimately integrate out
the Z component, yielding effective spin models for the XY
spins,

H eff = 1

2

∑
i, j

∑
μ,ν=x,y

Si,μ(Ji j,μν + Di j,μν )S j,ν

= 1

2

∑
i, j

{
(Si,x Si,y)

(
Ji j,xx Ji j,xy

Ji j,yx Ji j,yy

)(
S j,x

S j,y

)

+ Di j,xy[Si,xS j,y − Si,yS j,x]

}
, (A17)

with 2 by 2 symmetric and antisymmetric interactions,
Ji j,μν = Ji j,νμ and Di j,μν = −Di j,νμ for μ, ν = x, y. The ef-
fective exchange interactions in Eq. (A17) as well as the
exchange interactions in Eq. (A16) respect the joint C6 rota-
tional symmetry and inversion symmetry. In the following, we
show that due to the C6 rotational symmetry, the continuum
limit of the symmetric exchange interactions in the effective
spin models always take the same form as in Eq. (A8),

1

2

∑
i, j

∑
μ,ν=x,y

Si,μJi j,μνS j,ν

�
∫

dr3

{
r

2
|φ|2 + η2

1c2
z

2
∂zφ

†∂zφ + η2
1c2

⊥
2

∑
i=x,y

∂iφ
†∂iφ

+ η2
1c2

⊥
4

[α(∂−φ)2 + α∗(∂+φ†)2] + · · ·
}
. (A18)

To see this, note first that any bond of two spin sites, (i, j),
in a sum of Eq. (A17) has 5 other bonds in the sum that
are derived from the first bond (i, j) by the C6 rotation, i.e.,
(Cn

6 (i),Cn
6 ( j)) (n = 1, 2, . . . , 5). Due to the joint C6 rotation

symmetry, JCn
6 (i)Cn

6 ( j),··· and Ji j,··· are related by the C6 spin
rotation around z;

(
JC6(i)C6( j),xx JC6(i)C6( j),xy

JC6(i)C6( j),yx JC6(i)C6( j),yy

)
=

(
cos π

3 sin π
3

− sin π
3 cos π

3

)(
Ji j,xx Ji j,xy

Ji j,yx Ji j,yy

)(
cos π

3 − sin π
3

sin π
3 cos π

3

)
. (A19)

Then, by using a gradient expansion, S j,μ = Si,μ + ( j − i)λ∂λSi,μ + 1
2 ( j − i)λ( j − i)ε∂λ∂εSi,μ + · · · , one can explicitly show

that a sum of the symmetric exchange interactions over the six bonds reduce to the same form of the continuum limit as Eq. (A18)
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up to the second order in the gradient expansion;

1

2

∑
n=0,1,...,5

(
SCn

6 (i),x SCn
6 (i),y

)(JCn
6 (i)Cn

6 ( j),xx JCn
6 (i)Cn

6 ( j),xy

JCn
6 (i)Cn

6 ( j),yx JCn
6 (i)Cn

6 ( j),yy

)(
SCn

6 ( j),x

SCn
6 ( j),y

)

� 3

2
(λi j,1 + λi j,2)φ†φ + 3a2

i j,⊥
16

{
2(λi j,1 + λi j,2)φ†

(
∂2

x + ∂2
y

)
φ

+
∑

m=1,2

λi j,me2i(ϕi j,⊥−ψi j,⊥,m )φ(∂x − i∂y)2φ + c.c.

}
+ 3a2

i j,z

4
(λi j,1 + λi j,2)φ†∂2

z φ + · · · (A20)

Here φ on the right-hand side is from φ(ri ) ≡ Si,x + iSi,y in
Eq. (A17), and the higher-order derivative and total deriva-
tive terms are omitted. We also regard that i and Cn

6 (i) (n =
1, . . . , 5) are the same for the argument of φ, because their dif-
ferences (if exist) can be controlled by the microscopic length.
ai j,⊥ and ai j,z are the spatial length of the bond (i, j) within
the xy plane and along z axis, respectively; ai j,⊥ ≡ |i⊥ − j⊥|,
ai j,z ≡ |iz − jz|, with i = (i⊥, iz ) and j = ( j⊥, jz ). ϕi j,⊥ is the
angle between j⊥ − i⊥ and the x axis. λi j,m and t i j,m are real-
valued eigenvalues and eigenvectors of the 2 by 2 symmetric
matrix Ji j (m = 1, 2). ψi j,⊥,m is the angle between t i j,m and the
x-axis in the xy plane. As t i j,1 and t i j,2 are orthogonal to each
other, ψi j,2 = ψi j,1 + π/2 and

∑
m=1,2 λi j,me2i(ϕi j,⊥−ψi j,⊥,m ) =

(λi j,1 − λi j,2)e2i(ϕi j,⊥−ψi j,⊥,1 ). A sum of Eq. (A20) over differ-
ent types of bonds leads to Eq. (A18), where α is simply
given by the sum of a2

i j,⊥
∑

m=1,2 λi j,me2i(ϕi j,⊥−ψi j,⊥,m ). Note
that in the absence of the spin-orbit interaction, Ji j are always
proportional to the unit matrix, where λi j,1 = λi j,2, (λi j,1 −
λi j,2)e2i(ϕi j,⊥−ψi j,⊥,1 ) = 0 for any bond (i, j), and α vanishes.

The continuum limit of the antisymmetric exchange inter-
action yields the first-order spatial gradient terms,

Di j,xy(Si,xS j,y − Si,yS j,x )

= iDi j,xy(i − j)μ(φ†∂μφ − (∂μφ
†)φ) + O(∂3). (A21)

In the presence of the spatial inversion, they are canceled by
its inversion symmetric counterpart;

DI (i)I ( j),xy(SI (i),xSI ( j),y − SI (i),ySI ( j),x )

= −iDi j,xy(i − j)μ(φ†∂μφ − (∂μφ
†)φ) + O(∂3) (A22)

with DI (i)I ( j),xy = Di j,xy. Thus the antisymmetric interaction
gives only higher-order gradient terms in the continuum limit
for the GL action; they are all irrelevant in the sense that their
scaling dimensions around the critical point are negative.

Near the quantum critical point of the ferromagnetic order
of the xy spin, the systems effectively have the U(1) spacetime
symmetry. Note that apart from the C6h and D6h point groups,
the hexagonal crystal family (including the trigonal crystal
system and the hexagonal crystal system) has 10 other point
groups: C3, C3i, D3, C3v , D3d from the trigonal crystal system
and C6, C3h, D6, C6v , D3h from the hexagonal crystal system.
The GL action for C3, D3, C6, and D6 has an additional term,
iγ [φ†∂zφ − (∂zφ

†)φ], that comes from the antisymmetric ex-
change interaction in Eq. (A21). Such a term is prohibited

for C3i, D3d , C6h, and D6h because there is the inversion
symmetry. The term is also prohibited for C3v , C3h, C6v , and
D3h. Although there is no inversion symmetry, for C3v , C6v ,
and D3h, there is a vertical mirror symmetry that reflects only
one component of the in-plane spin vector; for C3h and D3h,
there is a horizontal mirror symmetry which makes the term
opposite. In conclusion, a continuum limit of generic XY spin
models in the hexagonal crystal family with a spatial inver-
sion or rotoinversion symmetry as well as the time-reversal
symmetry is described by Eq. (A8). For the C3, D3, C6, and D6

cases, the first-order z-derivative term can be eliminated by re-
definitions of φ and ρ0; φnew = e−izAzφold and −U (ρ0)new =
−U (ρ0)old − (η2

1c2
z A2

z )/2 with γ = η2
1c2

z Az/2. If Az is com-
mensurate to the phase locking by the c̃6 term, 3Azaz = Zπ

with an integer Z (ai j,z = az), the partition function has no
magnetic frustration and it describes the continuous phase
transition from a disordered phase (ρ0 < 0) to the XY fer-
romagnetic order phase with a spin-helix along z (ρ0 > 0).
As the first-order z-derivative term also respects the U(1)
spacetime symmetry, the systems near the transition point
have also the effective U(1) spacetime symmetry for these
cases.

d. Hydrodynamics in an intermediate length scale
near the quantum critical point

An analytic continuation of Eq. (A8) at T = 0 (τ → it)
leads to the following real-time complex field theory L̃φ :

L̃φ = η2
1

2
(∂tφ

†)(∂tφ) − η2
1c2

⊥
2

(∂iφ
†)(∂iφ)

− η2
1c2

4
[α(∂−φ)2 + α∗(∂+φ†)2]

− η2
1c2

4
[α̃6(∂+φ)2φ2

+ α̃∗
6 (∂−φ†)2(φ†)2] − U

2
(φ†φ − ρ0)2

− 1

2
[c̃6φ

6 + c̃∗
6(φ†)6], (A23)

where we take classical solutions of φ independent of z, so
the term of (∂zφ

†)(∂zφ) is negligible. Here, for simplicity, let
us take α, α̃6 and c̃6 to be real, and assume that a coupling
between the phase mode θ and the amplitude mode ρ = φ†φ

can be neglected. Then, we obtain an effective theory of the
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phase mode θ ,

L̃ = η2
1ρ0

2
(∂tθ )2 − η2

1c2
⊥ρ0

2
(∂xθ )2

× [
1 − αcos(2θ ) − α̃6ρ

2
0 cos(4θ )

]
− η2

1c2
⊥ρ0

2
(∂yθ )2[1 + αcos(2θ ) + α̃6ρ0cos(4θ )]

+ η2
1c2

⊥ρ0(∂xθ )(∂yθ )[αsin(2θ ) − α̃6ρ0sin(4θ )]

− c̃6ρ
3
0 cos(6θ ). (A24)

As in Eq. (A8), terms with higher-order derivatives or higher
order in ρ0 are neglected in Eq. (A24). Equation (A24) is
symmetric under the joint Z6 rotation,

θ → θ + nπ

3
,(

x
y

)
→

(
cos

(
nπ
3

) − sin
(

nπ
3

)
sin

(
nπ
3

)
cos

(
nπ
3

) )(
x
y

)
, (A25)

while in the absence of α̃6 and c̃6, it is symmetric under the
joint U(1) rotation;

θ → θ + ε,

(
x
y

)
→

(
cos ε − sin ε

sin ε cos ε

)(
x
y

)
, (A26)

for ∀ε.
The U(1) theory becomes a good approximation theory

for Eq. (A24), when ρ0 approaches zero before ∂μθ (μ =
t, x, y) approach zero. This is the case for the 3D spin model
Eq. (A14) in the intermediate length scale near the quantum
critical point. Thereby, the internal field φ is introduced as a
spatial average of Si,x + iSi,y over some hydrodynamic vol-
ume element. When the length scale of the volume element
increases within the intermediate length scale, �c,1 < � <

�c,2, a scaling of ρ0 and ∂μθ is controlled by the quan-
tum critical point; ρ0 gets small faster than ∂μθ , and the
approximation becomes better. On the other hand, when the
length scale of the element becomes larger than the upper
bound �c,2, another scaling law from the Nambu-Goldstone
fixed point kicks in, and the c̃6 and α̃6 terms become rele-
vant again [47,48]. Besides, for a 2D quantum spin model,
although the c̃6 term is dangerously marginal instead of dan-
gerously irrelevant from simple dimensional counting, as long
as a bare value of c̃6 is small enough, there is still an in-
termediate length scale where the U(1) theory is applicable.
To summarize, the U(1) theory is effective near the quantum
critical point only when θ fluctuates over a length in the
intermediate length scale. When θ fluctuates more slowly than
�c,2, ∂μθ becomes smaller than a small but finite ρ0, and
the c̃6 and α̃6 terms dominate over the others, giving a large
contribution to the EOM.

2. Spin-triplet exciton model

As another example of solid-state materials where the U(1)
theory of spin dynamics is applicable, we consider semi-
conductors with electron excitations near a conduction-band
bottom and hole excitations near a valence-band top around
a high-symmetric k point, e.g., the � point. Near the band

top and bottom, suppose the kinetic-energy bands can be ap-
proximately described by a rotational-symmetric continuous
theory. The theory with relativistic spin-orbit interaction is
expected to have joint continuous rotational symmetry.

To be specific, we consider a condensate of spin-triplet
excitons in a 2D semiconductor model with Rashba-type
spin-orbit interactions. The semiconductor model is given by
[Eq. (5)]

Hex =
∫

d2ra†

[(
− ∂2

i

2m0
+εg0

)
σ0 + ξR0(−i∂yσx + i∂xσy)

]
a

+
∫

d2rb†

[(
∂2

i

2m′
0

− εg0

)
σ0 + ξ ′

R0(i∂yσx − i∂xσy)

]
b

+
∫

d2r(�t a†σ0b + �∗
t b†σ0a) + gs0

2

∑
σ,σ ′=↑,↓

∫
d2r

× (a†
σ a†

σ ′aσ ′aσ + b†
σ b†

σ ′bσ ′bσ + 2ξ1a†
σ b†

σ ′bσ ′aσ ),
(A27)

with i = x, y. Here a and b are spin- 1
2 electron annihilation op-

erators near the � point in the conduction and valence bands,
respectively. We suppose inter-band interaction is smaller than
intraband interaction, namely 0 < ξ1 < 1. Due to the attrac-
tion between electrons and holes (ξ1gs0), the quasiparticles
form bound states inside a band gap (εg0). The bound states
have a spin-singlet component and spin-triplet components.
In the presence of Rashba interaction (ξR0, ξ

′
R0) and interband

“spinless” hopping (�t ), the in-plane component of the spin-
triplet states undergoes Bose-Einstein condensation at q = 0.
In the following, we will show that this condensation is de-
scribed by Eq. (2) (without the cz term).

For simplicity, we take the electron band and the hole band
in a symmetric form, m0 = m′

0, ξR0 = ξ ′
R0, while the derivation

can be generalized into the case with m0ξR0 = m′
0ξ

′
R0. The

derivation can be also applicable to a 3D model with a finite
effective mass along z. Due to the Rashba interaction (ξR0) and
interband tunneling (�t ), the system has only a U(1) rotational
symmetry and a time-reversal symmetry,

a → e−iεσz/2a, b → e−iεσz/2b,(
x
y

)
→

(
cosε −sinε
sinε cosε

)(
x
y

)
, (A28)

a → iσya, b → iσyb, t → −t, i → −i. (A29)

The quadratic part of the Hamiltonian Eq. (A27) is diagonal-
ized,

Hex =
∑

k

{
a†

k,σk

[
(|k| − kR)2

2m0
+ Eg0

]
ak,σk

− b†
k,σk

[
(|k| − kR)2

2m0
+ Eg0

]
bk,σk

}
+

∑
k

[
�t a

†
k,σk

bk,σk + �∗
t b†

k,σk
ak,σk

] + gs

2

∑
σ,σ ′=↑,↓

×
∫

d2r(a†
σ a†

σ ′aσ ′aσ + b†
σ b†

σ ′bσ ′bσ + 2a†
σ b†

σ ′bσ ′aσ ),

(A30)
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where

kR = m0ξR0, Eg0 = εg0 − k2
R

2m0
, (A31)

ak and bk are Fourier transforms of a(r) and b(r), σk denotes up spin along the direction of ẑ × k̂, k̂ ≡ k
|k| . Here we discard

the down-spin bands of the conduction and valence bands, because they are higher in energy and they do not constitute low-
energy exciton levels. Since excitons are formed by electrons and holes around the � point, we neglect |k| dependence of the
hybridization coefficients of the conduction and valence bands,

aσ = ασ cos� − βσ ei�sin�, bσ = ασ e−i�sin� + βσ cos�, (A32)

where

Eg0 =
√

E2
g0 + |�t |2cos2�, �t =

√
E2

g0 + |�t |2ei�sin2�. (A33)

Taking Eq. (A32) into the interaction term and taking � = 0 for simplicity, we get

gs0(a†
σ a†

σ ′aσ ′aσ + b†
σ b†

σ ′bσ ′bσ + ξ1a†
σ b†

σ ′bσ ′aσ + ξ1b†
σ a†

σ ′aσ ′bσ )

= gs(α
†
σβ

†
σ ′βσ ′ασ + β†

σ α
†
σ ′ασ ′βσ ) + wgs(α

†
σβ

†
σ ′ασ ′βσ + β†

σα
†
σ ′βσ ′ασ ) + wgs(α

†
σα

†
σ ′βσ ′βσ + β†

σ β
†
σ ′ασ ′ασ ) + · · · , (A34)

with

gs = gs0

2
[sin2(2�) + ξ1 + ξ1cos2(2�)], w = (1 − ξ1)sin2(2�)

sin2(2�) + ξ1[1 + cos2(2�)]
, (A35)

and 0 < w < 1. Here we only keep terms in exciton-pairing channels in the basis of α and β, α†
σ β

†
σ ′βσ ′ασ , α†

σα
†
σ ′βσ ′βσ , and

β†
σ β

†
σ ′ασ ′ασ . Neglected terms contain also hybridization between excitons and intraband collective modes, α†

σα
†
σ ′ασ ′βσ , which

in the absence of the time-reversal symmetry leads to an additional cubic term (∂+φ)(φ†)2 in Eq. (2). The hybridization and
other neglected terms can be safely omitted as the intraband collective modes are gapped excitations in the semiconductor. The
Hamiltonian can be rewritten by the new basis,

Hex =
∑

k

{
α

†
k,σk

[
(|k| − kR)2

2m
+ Eg]αk,σk − β

†
k,σk

[
(|k| − kR)2

2m
+ Eg

]
βk,σk

}

+ gs

∑
σ,σ ′=↑,↓

∫
d2r

(
α†
σ β

†
σ ′βσ ′ασ + wα†

σβ
†
σ ′ασ ′βσ + w

2
α†
σα

†
σ ′βσ ′βσ + w

2
β†
σ β

†
σ ′ασ ′ασ

)
, (A36)

where √[
(|k| − kR)2

2m0
+ Eg0

]2

+ |�t |2 ≈
√

E2
g0 + |�t |2 + Eg0√

E2
g0 + |�t |2

(|k| − kR)2

2m0
= Eg + (|k| − kR)2

2m
. (A37)

Exciton operators are defined by Oμ = b†σμa, where μ = 0, x, y, z. In terms of a completeness relation

1

2

∑
μ

(σμ)αβ (σμ)γ δ = δαδδβγ , (A38)

the interaction terms are decomposed as follows:

∑
σ,σ ′

α†
σ β

†
σ ′βσ ′ασ = −

∑
σ,σ ′

α†
σ βσ ′β

†
σ ′ασ = −1

2

∑
μ

O†
μOμ, (A39)∑

σ,σ ′
α†
σ β

†
σ ′ασ ′βσ =

∑
σ,σ ′

α†
σ βσβ

†
σ ′ασ ′ = O†

0O0, (A40)

∑
σ,σ ′

α†
σα

†
σ ′βσ ′βσ ∼ −

∑
σ,σ ′

α†
σ βσ ′α

†
σ ′βσ +

∑
σ,σ ′

α†
σ βσα

†
σ ′βσ ′ = −1

2

∑
μ

O†
μO†

μ + O†
0O†

0. (A41)
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In Eq. (A41), we decompose the interaction in two different channels, so we do not divide the result by two. Adding Eqs. (A39)–
(A41) together, we get

gs

∑
σ,σ ′

(
α†
σ β

†
σ ′βσ ′ασ + wα†

σ β
†
σ ′ασ ′βσ + w

2
α†
σα

†
σ ′βσ ′βσ + w

2
β†
σ β

†
σ ′ασ ′ασ

)

= gs

⎡⎣−1

2

∑
μ

O†
μOμ + wO†

0O0 − w

4

∑
μ

(O†
μO†

μ + OμOμ) + w

2
(O†

0O†
0 + O0O0)

⎤⎦
= −gs

4

[∑
r

(2O†
r Or + wO†

r O†
r + wOrOr ) + (2 − 4w)O†

0O0 − wO†
0O†

0 − wO0O0

]

= −gs

2

[∑
r

(1 + wcos2qr )P2
r + (1 − 2w − wcos2q0)P2

0

]
, (A42)

where r = x, y, z, Oμ ≡ Pμeiqμ . Note that due to w, the U(1) symmetry of the four-component exciton field reduces to a Z2

symmetry. Since 0 < w < 1, q0 = ±π
2 and qr = 0, π are preferred by the interaction. Fluctuations of qμ around the minima are

gapped excitations, so they can be safely neglected. This leads to

gs

∑
σ,σ ′

(
α†
σ β

†
σ ′βσ ′ασ + wα†

σ β
†
σ ′ασ ′βσ − w

2
α†
σα

†
σ ′βσ ′βσ − w

2
β†
σ β

†
σ ′ασ ′ασ

)

= −gs

2

[∑
r

(1 + w)P2
r + (1 − w)P2

0

]

= −gs

2

⎡⎣∑
r

(1 + w)

(
Or + O†

r

2

)2

+ (1 − w)

(
O0 − O†

0

2i

)2
⎤⎦. (A43)

By the Hubbard-Stratonovich transformation, we can introduce real exciton fields φμ,

exp

{∫
dτd2r

gs

2

[∑
r

(1 + w)P2
r + (1 − w)P2

0

]}

=
∫

Dφμexp

{
−

∫
dτd2r

[
−

∑
r

φr (O†
r + Or ) − i φ0(O†

0 − O0) +
∑

r

2

gs(1 + w)
φ2

r + 2

gs(1 − w)
φ2

0

]}
, (A44)

where φr and φ0 have the physical meanings of gs (1+w)
2 〈Pr〉 and gs (1−w)

2 〈P0〉, respectively. Since 0 < w < 1, the interaction term
[Eq. (A43)] favors the triplet excitons (φr) over the singlet excitons (φ0). The quadratic part of Eq. (A36) also lifts the four-fold
degeneracy of φμ, while mass terms for φx and φy remain degenerate.

Due to the adjustment of the conduction band and valence band, m0ξR0 = m′
0ξ

′
R0, one can expect that momentum-energy

dispersions of the exciton bands have minima at q = 0, so condensation of the exciton fields happen at the zero momentum. In
the following, we keep track of all the four components, φμ (μ = 0, x, y, z), in the derivation of Eq. (2), to see whether and when
φx and φy achieve the lowest energy (smallest mass at q = 0) among others. Fermion fields can be integrated out,∫

D[a†, b†, a, b]exp

[
− (a† b†)G−1

(
a
b

)]
= det(G−1) = eTrln(G−1 ), (A45)

where

G−1 = G−1
0 + Gφ, (A46)

G0 =
(

ga
0,kPσk 0

0 gb
0,kPσk

)
≡

⎛⎝[ − iωn + (|k|−kR )2

2m + Eg
]−1 σ0+σ ẑ×k̂

2 0

0
[ − iωn − (|k|−kR )2

2m − Eg
]−1 σ0+σ ẑ×k̂

2

⎞⎠, (A47)

Gφ =
(

0 − ∑
r φrσr − iφ0σ0

− ∑
r φrσr + iφ0σ0 0

)
. (A48)
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G−1
0 and Gφ are block-diagonal in the momentum-frequency space and the coordinate space, respectively. G0 is diagonal in spin

along ẑ × k̂ and its diagonal element is zero for the down spin,

Pσk = 1
2 (σ0 + σ ẑ×k̂) = 1

2 (σ0 − σxsinθ̂k + σycosθ̂k). (A49)

The integration leads to an effective theory of the exciton fields,

Sφ[φμ] = −Trln(1 + G0Gφ ) + 2

gs

∫
dτd2r

(∑
r

1

1 + w
φ2

r + 1

1 − w
φ2

0

)
, (A50)

−Trln(1 + G0Gφ ) = 1

2
Tr(G0GφG0Gφ ) + 1

4
Tr(G0GφG0GφG0GφG0Gφ ) + · · · (A51)

Note that “Tr” stands for traces over both spacetime and spin indices, while “tr” is trace over only spin indices (see below). To

determine the form of the effective theory, we use the following relations:

PσkσzPσk = 0, (A52)

PσkσxPσk = Pσk (σ k̂cosθ̂k − σ ẑ×k̂sinθ̂k)Pσk = −sinθ̂kPσkσ ẑ×k̂ = −sinθ̂kσ ẑ×k̂Pσk , (A53)

tr
(
Pσkσ0Pσkσ0

) = tr
(
P2

σk

) = tr
(
Pσk

) = 1, (A54)

tr
(
PσkσxPσk+qσx

) = 1
4 tr(σxσx ) + 1

4 tr(σ ẑ×k̂σxσ ẑ×̂k+qσx ) = 1
2 + 1

4 tr[(−sinθ̂kσx + cosθ̂kσy)σx(−sinθ̂k+qσx + cosθ̂k+qσy)σx]

= 1
2 (1 + sinθ̂ksinθ̂k+q − cosθ̂kcosθ̂k+q) = 1

2 [1 − cos(θ̂k + θ̂k+q)], (A55)

tr
(
PσkσyPσk+qσy

) = 1
2 [1 + cos(θ̂k + θ̂k+q)], (A56)

tr
(
PσkσxPσk+qσy

) = 1
4 tr(σ ẑ×k̂σxσ ẑ×̂k+qσy) = 1

4 tr[(−sinθ̂kσx + cosθ̂kσy)σx(−sinθ̂k+qσx + cosθ̂k+qσy)σy]

= − 1
2 (sinθ̂kcosθ̂k+q + cosθ̂ksinθ̂k+q) = − 1

2 sin(θ̂k + θ̂k+q), (A57)

tr
(
PσkσyPσk+qσx

) = − 1
2 sin(θ̂k + θ̂k+q), (A58)

tr
(
PσkσxPσkσxPσkσxPσkσx

) = tr
[(

PσkσxPσk

)4] = tr
[(

Pσkσ ẑ×k̂σ ẑ×k̂Pσk

)2]
sin4θ̂k = tr

(
Pσk

)
sin4θ̂k = sin4θ̂k. (A59)

As the exciton field φμ(q) [Fourier transform of φμ(r)] at the zero momentum (q = 0) is expected to have the smallest energy, we
expand the effective theory in terms of small q. The zeroth order in q gives the mass (Mμ) and the quartic term (U ) from the first
and the second terms in Eq. (A51), respectively. Let us first calculate the masses for the four exciton components (μ = 0, x, y, z),

1

2
Tr(G0GφG0Gφ ) ⊃

∑
μ

∫
dτd2rφ2

μ

[
1

βL2

∑
k

ga
0,kgb

0,k tr
(
PσkσμPσkσμ

)]

=
∫

dτd2rφ2
0

(
1

βL2

∑
k

ga
0,kgb

0,k

)
+ 1

2

∫
dτd2r

(
φ2

x + φ2
y

)( 1

βL2

∑
k

ga
0,kgb

0,k

)
, (A60)

where we used Eqs. (A52) and (A54)–(A56) and
∑

k cos(2θ̂k) = ∑
k sin(2θ̂k) = 0. Taking Eqs. (A50) and (A60) together, we

get

1

2

∑
μ

Mμφ
2
μ = 2

gs

(∑
r

1

1 + w
φ2

r + 1

1 − w
φ2

0

)
− D0

2

(
φ2

x + φ2
y + 2φ2

0

)
, (A61)

where

D0 = − 1

βL2

∑
k

ga
0,kgb

0,k = − 1

βL2

∑
n,k

1

iωn − ξk

1

iωn + ξk
= − 1

L2

∑
k

nF (ξk) − nF (−ξk)

2ξk
=

∫
d2k

(2π )2

tanh
(

1
2βξk

)
2ξk

> 0,

(A62)

ξk ≡ (|k| − kR)2

2m
+ Eg, nF (ξk) ≡ 1

eβξk + 1
, (A63)

β is the inverse of temperature. So we have

Mz = 4

gs(1 + w)
> 0, M0 = 4

gs(1 − w)
− 2D0, Mi = 4

gs(1 + w)
− D0, (A64)
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where i = x, y. Mi < 0 < M0 is realized by

1

1 + w
<

1

4
gsD0 <

1

2(1 − w)
. (A65)

Given that w > 1
3 , the condition can be realized by proper gs, β, and Eg. Given that the condition is satisfied, we henceforth

consider the effective theory only of φ = φx + iφy and neglect the other exciton components as they are gapped modes.
Equation (2) takes the following form in the imaginary-time representation:

Lφ,E = η2
1

2
(∂τφ

†)(∂τφ) + η2
1c2

⊥
2

(∂iφ
†)(∂iφ) + η2

1c2
⊥

4
[α(∂−φ)2 + α∗(∂+φ†)2] + U

2
(φ†φ − ρ0)2, (A66)

where the mass term was already obtained,

2Uρ0 = Mi = D0 − 4

gs(1 + w)
. (A67)

To determine U , we calculate the quartic term in φx from the second term of Eq. (A51), using Eq. (A59) and
∑

k sin4 θ̂k = 3
8

∑
k,

1

4
Tr[(G0Gφ )4] ⊃ 1

βL2

∑
q1,q2,q3

φx(q1)φx(q2)φx(q3)φx(−q1 − q2 − q3)

{
1

2βL2

∑
k

(
ga

0,kgb
0,k

)2
tr
[(

Pσkσx
)4]}

=
∫

dτd2rφ4
x

{
1

2βL2

∑
k

(
ga

0,kgb
0,k

)2
tr
[(

Pσkσx
)4]} = 3

8

∫
dτd2rφ4

x

[
1

2βL2

∑
k

(
ga

0,kgb
0,k

)2

]
. (A68)

Thus U is given by

U = 3

8βL2

∑
k

(
ga

0,kgb
0,k

)2 = 3

8

∫
d2k

(2π )2

{
d

dz

[
1

eβz + 1

1

(z − ξk)2

]∣∣∣∣
z=−ξk

+ d

dz

[
1

eβz + 1

1

(z + ξk)2

]∣∣∣∣
z=ξk

]

= 3

8

∫
d2k

(2π )2

1

(2ξk)2

[
tanh

(
1
2βξk

)
ξk

− β

1 + cosh(βξk)

]
> 0. (A69)

To determine the coefficients of the lowest-order gradient terms, we define σ± = 1
2 (σx ± iσy), φ = φx + iφy, φ† = φx − iφy, and

set φ0 = φz = 0 in Gφ in Eq. (A48). Note also that

Gφ =
(

0 −(φσ− + φ†σ+)

−(φσ− + φ†σ+) 0

)
, (A70)

tr
(
Pσkσ+Pσk+qσ−

) = 1

8
[1 − cos(θ̂k + θ̂k+q) + 1 + cos(θ̂k + θ̂k+q)] = 1

4
, (A71)

tr
(
Pσkσ+Pσk+qσ+

) = 1

8
[1 − cos(θ̂k + θ̂k+q) − 1 − cos(θ̂k + θ̂k+q) − isin(θ̂k + θ̂k+q) − isin(θ̂k + θ̂k+q)] = −1

4
ei(θ̂k+θ̂

k+q
)
,

(A72)

tr
(
Pσkσ−Pσk+qσ−

) = −1

4
e−i(θ̂k+θ̂

k+q
)
. (A73)

In terms of Eq. (A70), the first term of Eq. (A51) is given by

1

2
Tr(G0GφG0Gφ ) = 1

2βL2

∑
k,q

(
ga

0,kgb
0,k+q + gb

0,kga
0,k+q

)[
φ†

qφqtr
(
Pσkσ+Pσk+qσ−

) + φ−qφqtr
(
Pσkσ−Pσk+qσ−

)] + H.c. (A74)

By an expansion of small q ≡ (q, iωm), we get

η2
1 = − 1

4βL2
∂2

iωm

∣∣∣∣
q=0

∑
k

(
ga

0,kgb
0,k+q + ga

0,k+qgb
0,k

) = − 1

2βL2
∂2

iωm

∣∣∣∣
q=0

∑
k

ga
0,k− q

2
gb

0,k+ q
2
, (A75)

η2
1c2 = 1

4βL2
∂2

qx

∣∣∣∣
q=0

∑
k

(
ga

0,kgb
0,k+q + ga

0,k+qgb
0,k

) = 1

2βL2
∂2

qx

∣∣∣∣
q=0

∑
k

ga
0,k− q

2
gb

0,k+ q
2
, (A76)

η2
1c2α = 1

4βL2
∂2

qx

∣∣∣∣
q=0

∑
k

(
ga

0,kgb
0,k+q + ga

0,k+qgb
0,k

)
e−i(θ̂k+θ̂

k+q
) = 1

2βL2
∂2

qx

∣∣∣∣
q=0

∑
k

ga
0,k− q

2
gb

0,k+ q
2
e
−i(θ̂

k− q
2
+θ̂

k+ q
2

)
, (A77)
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where we used ∑
k

ga
0,kgb

0,k+q =
∑

k

ga
0,k−qgb

0,k =
∑

k

ga
0,k− q

2
gb

0,k+ q
2
. (A78)

Equivalently, we can also use∑
k

1

2

(
ga

0,k

)′′
gb

0,k =
∑

k

1

2
ga

0,k

(
gb

0,k

)′′ =
∑

k

[
1

8

(
ga

0,k

)′′
gb

0,k + 1

8
ga

0,k

(
gb

0,k

)′′ − 1

4

(
ga

0,k

)′(
gb

0,k

)′
]
, (A79)

or ∑
k

(
ga

0,k

)′′
gb

0,k =
∑

k

ga
0,k

(
gb

0,k

)′′ = −
∑

k

(
ga

0,k

)′(
gb

0,k

)′
. (A80)

Here primes and double primes denote first-order and second-order derivatives with respect to one of the spacetime components
of k. Note that Eqs. (A78) and (A80) are valid given that associated integrals vanish or are sufficiently small in the ultraviolet
regime (large k region). Using them, we can determine η1 and η1c⊥ as follows:

η2
1 = 1

2βL2

∑
k

(
∂iωm

∣∣
q=0ga

0,k+q

)(
∂iωm

∣∣
q=0gb

0,k+q

)
= 1

2βL2

∑
k

1

(iωn − ξk)2

1

(iωn + ξk)2
= 1

2βL2

∑
k

(
ga

0,kgb
0,k

)2 = 4U

3
> 0, (A81)

η2
1c2

⊥ = − 1

2βL2

∑
k

(
∂qx

∣∣
q=0ga

0,k+q

)(
∂qx

∣∣
q=0gb

0,k+q

)
= 1

2βL2

∑
k

1

(iωn − ξk)2

1

(iωn + ξk)2

(|k| − kR)2k2
x

m2|k|2

= 1

2

∫
d2k

(2π )2

1

(2ξk)2

[
tanh

(
1
2βξk

)
ξk

− β

1 + cosh(βξk)

]
(|k| − kR)2

2m2
> 0. (A82)

To determine the coefficient of the spin-coordinate coupling term (η2
1c2

⊥α), We can use a similar trick as Eqs. (A78) and (A80)
to simplify Eq. (A77),

η2
1c2

⊥α = − 1

2βL2

∑
k

∂qx

∣∣
q=0

[
ga

0,k+qe−iθ̂
k+q

]
∂qx

∣∣
q=0

[
gb

0,k+qe−iθ̂
k+q

]
, (A83)

where

∂qx

∣∣
q=0e−iθ̂

k+q = −ie−iθ̂k∂qx

∣∣
q=0arctan

ky

kx + qx
= ie−iθ̂k

ky

k2
x + k2

y

= ie−iθ̂k
sinθ̂k

|k| . (A84)

Then we have

η2
1c2α = − 1

2βL2

∑
k

[
− (

ga
0,k

)2 (|k| − kR)cosθ̂k

m
+ iga

0,k

sinθ̂k

|k|
][(

gb
0,k

)2 (|k| − kR)cosθ̂k

m
+ igb

0,k

sinθ̂k

|k|
]

e−2iθ̂k

= − 1

2βL2

∑
k

[
− (

ga
0,k

)2 |k| − kR

2m
+ ga

0,k
1

2|k|
][(

gb
0,k

)2 |k| − kR

2m
+ gb

0,k
1

2|k|
]

= − 1

8βL2

∑
k

{
− (

ga
0,kgb

0,k

)2 (|k| − kR)2

m2
+ ga

0,kgb
0,k

1

|k|2 + [
ga

0,k

(
gb

0,k

)2 − (
ga

0,k

)2
gb

0,k

] |k| − kR

m|k|
}
, (A85)

where

∑
n

[ga
0,k

(
gb

0,k

)2 − (
ga

0,k

)2
gb

0,k] =
∑

n

[
1

−iωn + ξk

(
1

−iωn − ξk

)2

−
(

1

−iωn + ξk

)2 1

−iωn − ξk

]

= (iωn + ξk) − (iωn − ξk)

(iωn + ξk)2(iωn − ξk)2
=

∑
n

2ξk
(
ga

0,kgb
0,k

)2
, (A86)

|k| − kR

m|k|
[

2ξk − (|k| − kR)|k|
m

]
= |k| − kR

m|k|
[

2Eg − (|k| − kR)kR

m

]
. (A87)
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In terms of Eqs. (A62), (A69), (A86), and (A87), we finally determine η2
1c2α as follows:

η2
1c2

⊥α = 1

2

∫
d2k

(2π )2

{
tanh

(
1
2βξk

)
2ξk

1

4|k|2 + 1

(2ξk)2

[
tanh

(
1
2βξk

)
ξk

− β

1 + cosh(βξk)

][
(|k| − kR)kR

m
− 2Eg

] |k| − kR

4m|k|
}
. (A88)

To evaluate α and c⊥, note first that the omission of the down-spin bands in Eq. (A30) is justified when

1 � βEg � β
k2

R

2m
. (A89)

The condition also implies that when the temperature is low enough, electrons and holes are excited only around kR. This
naturally lets us introduce an “ultraviolet” cutoff kg in the integral over |k| in Eqs. (A82) and (A88),

η2
1c2

⊥ =
∫

d2k
(2π )2

1

16ξ 3
k

(|k| − kR)2

m2
=

∫ kR+kg

kR−kg

dk

2π

k

16ξ 3
k

(k − kR)2

m2
, (A90)

η2
1c2

⊥α =
∫

d2k
(2π )2

1

16ξ 3
k |k|2

{
kR|k|(|k| − kR)2

2m2
− Eg|k|(|k| − kR)

m
+

[
(|k| − kR)2

2m
+ Eg

]2}

=
∫ kR+kg

kR−kg

dk

2π

1

16ξ 3
k k

{
(k − kR)2

(
k2 + k2

R

)
4m2

− EgkR(k − kR)

m
+ E2

g

}
. (A91)

The cutoff kg satifies that kg = O(
√

2mEg) � kR. Note also that without the cutoff the integral in Eq. (A88) has the logarithmic
divergence at k = 0. With the cutoff, We finally obtain

η2
1c2

⊥Eg =
∫ kg

−kg

dk

2π

(kR + k)Eg

16

(
k2

2m
+ Eg

)−3 k2

m2
=

∫ kg

0

dk

π

kREg

16

(
k2

2m
+ Eg

)−3 k2

m2
= O

(
kR

kg

)
, (A92)

αη2
1c2

⊥Eg =
∫ kg

−kg

dk

2π

(kR + k)−1Eg

16

(
k2

2m
+ Eg

)−3{k
[
(kR + k)2 + k2

R

]
4m2

− EgkRk

m
+ E2

g

}
= 1

2
η2

1c2
⊥Eg + O(1) <

1

2
η2

1c2
⊥Eg +

∣∣∣∣O(
kR

kg

)∣∣∣∣. (A93)

A comparison between Eqs. (A92) and (A93) suggests that |α| = 1
2 < 1 in the limit of Eq. (A89). α = O(1) is due to the

large spin-orbit-coupling limit, while α � O(1) for smaller spin-orbit coupling. Nonetheless, the competition between different
components of excitons will be more complicated in the smaller spin-orbit coupling case. η2

1c2
⊥Eg � 1 is consistent with the

physical picture of Eq. (A89). In the large spin-orbit coupling limit, We can also simplify Eqs. (A62) and (A81) and all the
coefficients in Eq. (2),

D0 = 4

gs(1 + w)
+ 2Uρ0 =

∫
d2k

(2π )2

1

2ξk
=

∫ kg

0

dk

π

1

2

(
k2

2m
+ Eg

)−1

, (A94)

η2
1 = 4U

3
=

∫
d2k

(2π )2

1

8ξ 3
k

=
∫ kg

0

dk

π

1

8

(
k2

2m
+ Eg

)−3

. (A95)

To summarize, the U(1) theory of Eq. (2) can be derived as an effective theory for the spin-triplet exciton condensate phase in
semiconductors with Rashba spin-orbit interaction. Thereby, the spinless inter-band mixing (�t ,�

∗
t ) and an attractive interaction

gs between electrons in the conduction band and holes in the valence band induces a condensation of the XY component of

224518-16



SUPERFLUIDITY OF TOTAL ANGULAR MOMENTUM PHYSICAL REVIEW B 109, 224518 (2024)

the real part of the excitonic pairing, φ ∝ ReOx + iReOy with Oj ≡ 〈b†σ ja〉 ( j = x, y). Physically reasonable values of the
coefficients in the U(1) theory are obtained within certain limits.

APPENDIX B: DERIVATION AND CONSERVATION OF NOETHER’S CURRENT

In this Appendix, we derive the spin ( js
μ) and orbital ( jl

μ) parts of Noether’s current in Eqs. (7) and (8) and verify that the total
angular momentum is conserved. We start with the classical effective theory Eq. (6),

L = 1
2 (∂tθ )2 − 1

2 (∂xθ )2[1 − αcos(2θ )] − 1
2 (∂yθ )2[1 + αcos(2θ )] + α(∂xθ )(∂yθ )sin(2θ ). (B1)

The theory has a U(1) spacetime symmetry,

θ → θ + ε�θ = θ + ε, x → x + ε�x = x − εy, y → y + ε�y = y + εx, t → t + ε�t = t . (B2)

With the continuous symmetry Eq. (B2), Noether’s theorem gives a conserved current,

jμ = ∂L
∂ (∂μθ )

�θ +
[
δμνL − ∂L

∂ (∂μθ )
(∂νθ )

]
�xν = ∂L

∂ (∂μθ )
�θ + Tμν�xν, (B3)

where μ, ν ∈ {t, x, y}, �xν ∈ {�t,�x,�y}. Tμν ≡ δμνL − ∂L
∂ (∂μθ ) (∂νθ ) is a stress-energy tensor. The conserved current obeys

∂μ jμ = 0 as long as an EOM is satisfied,

∂μ

[
∂L

∂ (∂μθ )

]
− ∂L

∂θ
= 0. (B4)

The EOM is given by

∂2
t θ − (

∂2
x θ

)
[1 − αcos(2θ )] − 2α(∂xθ )2sin(2θ ) − (

∂2
y θ

)
[1 + αcos(2θ )] + 2α(∂yθ )2sin(2θ )

+ 2α(∂x∂yθ )sin(2θ ) + 4α(∂xθ )(∂yθ )cos(2θ ) + α[(∂xθ )2 − (∂yθ )2]sin(2θ ) − 2α(∂xθ )(∂yθ )cos(2θ )

= ∂2
t θ − (

∂2
x θ

)
[1 − αcos(2θ )] − (

∂2
y θ

)
[1 + αcos(2θ )] + 2α(∂x∂yθ )sin(2θ )

− α[(∂xθ )2 − (∂yθ )2]sin(2θ ) + 2α(∂xθ )(∂yθ )cos(2θ )

= 0. (B5)

The theory has spatial and temporal translational symmetries, which imposes a conservation rule on the stress-energy tensor,

∂μTμν = ∂μ

[
δμνL − ∂L

∂ (∂μθ )
(∂νθ )

]
= 0. (B6)

The total angular momentum current of Eq. (B3) can be divided into spin angular momentum current js that does not depend on
Tμν , and orbital angular momentum current jl that depends on Tμν .

js
μ = ∂L

∂ (∂μθ )
�θ, jl

μ =
[
δμνL − ∂L

∂ (∂μθ )
(∂νθ )

]
�xν . (B7)

Let us focus on the spin part. Spin angular momentum density is

s = js
t = ∂tθ, (B8)

and corresponding spin currents are

js
x = −(∂xθ )[1 − αcos(2θ )] + α(∂yθ )sin(2θ ), (B9)

js
y = −(∂yθ )[1 + αcos(2θ )] + α(∂xθ )sin(2θ ). (B10)

The spin density and current are zero at equilibrium, js
μ = 0. The spin angular momentum is not conserved,

∂μ js
μ = G = −∂μ jl

μ. (B11)

Local sources of the spin angular momentum are given by spin torque G. The torque represents the mutual conversion between
orbital and spin angular momenta. Taking EOM (B5) into Eqs. (B8)–(B10), we get the spin torque as follows:

G = ∂μ js
μ = ∂2

t θ − (
∂2

x θ
)
[1 − αcos(2θ )] − (

∂2
y θ

)
[1 + αcos(2θ )] − 2(∂xθ )2αsin(2θ ) + 2(∂yθ )2αsin(2θ )

+ 2α(∂x∂yθ )sin(2θ ) + 4α(∂xθ )(∂yθ )cos(2θ )

= −α[(∂xθ )2 − (∂yθ )2]sin(2θ ) + 2α(∂xθ )(∂yθ )cos(2θ ). (B12)
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The orbital-angular-momentum density and current are given by

l = jl
t = y(∂tθ )(∂xθ ) − x(∂tθ )(∂yθ ), (B13)

jl
x = −y

{
1
2 (∂tθ )2 − 1

2 (∂yθ )2[1 + αcos(2θ )] + 1
2 (∂xθ )2[1 − αcos(2θ )]

} + x{(∂xθ )(∂yθ )[1 − αcos(2θ )] − α(∂yθ )2sin(2θ )},
(B14)

jl
y = x

{
1
2 (∂tθ )2 − 1

2 (∂xθ )2[1 − αcos(2θ )] + 1
2 (∂yθ )2[1 + αcos(2θ )]

} − y{(∂xθ )(∂yθ )[1 + αcos(2θ )] − α(∂xθ )2sin(2θ )}.
(B15)

The orbital angular momentum density and current depends explicitly on spatial coordinates, and they depend on a choice of the
origin for the spatial coordinates. Besides, EOM (B5) gives ∂2

t θ instead of ∂tθ , while js
t as well as ∂t js

t contains ∂tθ . Nonetheless,
we can verify the continuity equation Eq. (B11) directly, using Eqs. (B5) and (B13)–(B15). ∂μ jl

μ is formally given by a term that
has no explicit dependence on x and y, and terms that depend explicitly and linearly on the spatial coordinates. The latter terms
vanish thanks to Eq. (B5);

∂
(
∂μ jl

μ

)
∂y

∣∣∣∣
x,θ,∂μθ

= (
∂2

t θ
)
(∂xθ ) + (∂tθ )(∂x∂tθ ) − (∂tθ )(∂x∂tθ ) + (∂yθ )(∂x∂yθ )[1 + αcos(2θ )] − α(∂yθ )2(∂xθ )sin(2θ )

− (∂xθ )
(
∂2

x θ
)
[1 − αcos(2θ )] − α(∂xθ )2(∂xθ )sin(2θ ) − (∂xθ )

(
∂2

y θ
)
[1 + αcos(2θ )]

− (∂x∂yθ )(∂yθ )[1 + αcos(2θ )] + 2α(∂xθ )(∂yθ )2sin(2θ ) + 2α(∂xθ )(∂x∂yθ )sin(2θ ) + 2α(∂xθ )2(∂yθ )cos(2θ )

= (
∂2

t θ
)
(∂xθ ) − (∂xθ )

(
∂2

x θ + ∂2
y θ

) + α(∂xθ )sin(2θ )[(∂yθ )2 − (∂xθ )2 + 2(∂x∂yθ )] + α(∂xθ )cos(2θ )[(∂xθ )2

− (∂yθ )2 + 2(∂xθ )(∂yθ )]

= 0, (B16)

∂
(
∂μ jl

μ

)
∂x

∣∣∣∣
y,θ,∂μθ

= −(
∂2

t θ
)
(∂yθ ) − (∂tθ )(∂y∂tθ ) + (∂tθ )(∂y∂tθ ) − (∂xθ )(∂x∂yθ )[1 − αcos(2θ )]

− α(∂xθ )2(∂yθ )sin(2θ ) + (∂yθ )
(
∂2

y θ
)
[1 + αcos(2θ )] − α(∂yθ )2(∂yθ )sin(2θ ) + (∂yθ )

(
∂2

x θ
)
[1 − αcos(2θ )]

+ (∂x∂yθ )(∂xθ )[1 − αcos(2θ )] + 2α(∂yθ )(∂xθ )2sin(2θ ) − 2α(∂yθ )(∂x∂yθ )sin(2θ ) − 2α(∂yθ )2(∂xθ )cos(2θ )

= −(
∂2

t θ
)
(∂yθ ) + (∂yθ )

(
∂2

x θ + ∂2
y θ

) + α(∂yθ )sin(2θ )[(∂xθ )2 − (∂yθ )2 − 2(∂x∂yθ )]

+ α(∂yθ )cos(2θ )[(∂yθ )2 − (∂xθ )2 − 2(∂xθ )(∂yθ )] = 0. (B17)

The former term is nothing but −G,

∂μ jl
μ − ∂

(
∂μ jl

μ

)
∂x

∣∣∣∣
y,θ,∂μθ

− ∂
(
∂μ jl

μ

)
∂y

∣∣∣∣
x,θ,∂μθ

= (∂xθ )(∂yθ )[1 − αcos(2θ )] − α(∂yθ )2sin(2θ )

− (∂xθ )(∂yθ )[1 + αcos(2θ )] + α(∂xθ )2sin(2θ )

= α[(∂xθ )2 − (∂yθ )2]sin(2θ ) − 2α(∂xθ )(∂yθ )cos(2θ ). (B18)

Thus the total angular momentum is indeed conserved,

∂μ jl
μ = α[(∂xθ )2 − (∂yθ )2]sin(2θ ) − 2α(∂xθ )(∂yθ )cos(2θ ) = −G. (B19)

APPENDIX C: SOLUTIONS FOR THE
SPIN-INJECTION MODEL

In this Appendix, we solve θ (x, t ) in the spin-injection
model, Eq. (9), together with the boundary condition, Eq. (12),
and js

x(x = 0, t ) = j0. We consider a general junction pa-
rameter k0 except k0 = 1 (straight geometry), k2

0 = (1 + 1
j0r )2

(circular geometry), and k0 = 0, while leaving discussions
about solutions at these special parameter points for Ap-
pendix F.

1. Straight geometry without curvature

For the straight geometry without the curvature [Fig. 1(a)],
let us consider the EOM in the 1D system,

∂2
t θ = (

∂2
x θ

)
[1 − αcos(2θ )] + α(∂xθ )2sin(2θ ). (C1)

The boundary conditions are given by

js
x(0, t ) = j0, (C2)

sc(L, t ) = kc js
x,c(L, t ), (C3)
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with kc ≡ χ

χ ′ [Ds( 1
T ′

1
+ ic)]

−1/2 + χ

βt
. Here “c” stands for the

frequency of spin density and current at x = L, and Eq. (C3)
is imposed for each frequency component of the density and
current. The density and current are given by θ (Eq. (8)),

s = ∂tθ, js
x = −(∂xθ )[1 − αcos(2θ )],

js
y = α∂xθsin(2θ ), G = −α(∂xθ )2sin(2θ ). (C4)

We solve the EOM by a perturbative expansion of α. With
θ (x, t ) = θ0(x, t ) + O(α), the zeroth order is

∂2
t θ0 = ∂2

x θ0. (C5)

The general solution of Eq. (C5) is

θ0(x, t ) = At + Bx + F0 +
∑

c∈R,c �=0

[Fceic(t−x) + F ′
c eic(t+x)],

(C6)

where A,B,Fc,F ′
c are constants. Eq. (C2) leads to

θ0(x, t ) = At − j0x + F0 +
∑

c∈R,c �=0

2Fccos(cx)eict . (C7)

Since Re(kc) > 0, Eq. (C3) requires Fc = 0 for c �= 0, and the
zeroth order takes the following form:

θ0(x, t ) = s(x, t )t − js
x(x, t )x + F (0)

= k0 j0t − j0x + F0. (C8)

Here F0 can be absorbed by a time translation so we take F0 =
0. Note that without the spin-orbit coupling (α = 0), the spin
density and current are static,

js
x(0 < x < L) = j0 + O(α),

s(0 < x < L) = k0 j0 + O(α). (C9)

Upon a substitution of Eq. (C9) into Eq. (C1) and an expan-
sion of Eq. (C1) in α, the first-order correction to the solution
is given by an inhomogeneous linear differential equation.
Thereby, the first-order solution has two parts, θ1 and θ2,

θ (x, t ) = θ0(x, t ) + θ1(x, t ) + θ2(x, t ) + O(α2), (C10)

and θ1 is a special solution of the inhomogenous equation,

∂2
t θ1 − ∂2

x θ1 = −α
(
∂2

x θ0
)
cos(2θ0) + α(∂xθ0)2sin(2θ0)

= α j2
0 sin(2k0 j0t − 2 j0x). (C11)

θ2(x, t ) is a solution of the homogeneous differential equation,

∂2
t θ2 − ∂2

x θ2 = 0. (C12)

With θ1(x, t ) and θ2(x, t ), the spin density and current should
satisfy the BCs up to the first order in α.

Thanks to the linear x and t dependence of θ0(x, t ) and
k0 �= 1, we can find a special solution,

θ1(x, t ) = − α

4
(
k2

0 − 1
) sin(2k0 j0t − 2 j0x). (C13)

θ2(x, t ) takes the same form as Eq. (C6). With these solutions,
the spin density and current are given by the following up to

the first order in α,

s = k0 j0 − k0 j0α

2
(
k2

0 − 1
)cos(2k0 j0t − 2 j0x) + ∂tθ2 + O(α2),

(C14)

js
x = j0 − α j0cos(2k0 j0t − 2 j0x)

− j0α

2
(
k2

0 − 1
)cos(2k0 j0t − 2 j0x) − ∂xθ2 + O(α2)

= j0 − j0α
(
2k2

0 − 1
)

2
(
k2

0 − 1
) cos(2k0 j0t − 2 j0x) − ∂xθ2 + O(α2).

(C15)

In order that Eqs. (C14) and (C15) satisfy the BCs, θ2(x, t )
must have the same frequency as θ1(x, t ),

θ2(x, t ) = αge2ik0 j0(t−x) + αg′e2ik0 j0(t+x) + c.c. (C16)

Here g and g′ are complex constants. By the same reasoning
as in the text below Eq. (C7), other frequency components in
θ2(x, t ) vanish. This leads to

s = 1

2
k0 j0 + αk0 j0e2ik0 j0t

[
2ige−2ik0 j0x − e−2i j0x

4
(
k2

0 − 1
)]

+ 2iαk0 j0g′e2ik0 j0(t+x) + O(α2) + c.c., (C17)

js
x = 1

2
j0 + α j0e2ik0 j0t

[
2ik0ge−2ik0 j0x −

(
2k2

0 − 1
)
e−2i j0x

4
(
k2

0 − 1
) ]

− 2iαk0 j0g′e2ik0 j0(t+x) + O(α2) + c.c. (C18)

The boundary conditions Eqs. (C2) and (C3) require

α j0

[
2ik0g − 2k2

0 − 1

4
(
k2

0 − 1
)]

− 2iαk0 j0g′ = 0, (C19)

α j0

[
2ik0ge−2ik0 j0L − e−2i j0L

4
(
k2

0 − 1
)]

+ 2iα j0k0g′e2ik0 j0L

= kα j0

[
2ik0ge−2ik0 j0L −

(
2k2

0 − 1
)
e−2i j0L

4
(
k2

0 − 1
) ]

− 2ikαk0 j0g′e2ik0 j0L, (C20)

with

k0 = χ

χ ′

(
Ds

T ′
1

)− 1
2

+ χ

βt
, (C21)

k ≡ k2k0 j0 = χ

χ ′

[
Ds

(
1

T ′
1

+ 2ik0 j0

)]− 1
2

+ χ

βt
, (C22)

and k−c = (kc)∗ for a real number c. Equations (C19)
and (C20) can be simplified,

2ik0(g − g′) = 2k2
0 − 1

4
(
k2

0 − 1
) , (C23)

2ik0(ge−2ik0 j0L + g′e2ik0 j0L ) − 2ikk0(ge−2ik0 j0L − g′e2ik0 j0L )

= 1 − (
2k2

0 − 1
)
k

4
(
k2

0 − 1
) e−2i j0L. (C24)
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The two equations Eqs. (C23) and (C24) determine the two coefficients, g and g′,(
1 −1

(1 − k)e−ik0βL (1 + k)eik0βL

)(
g
g′

)
= 1

8ik0
(
k2

0 − 1
)(

2k2
0 − 1(

1 − (
2k2

0 − 1
)
k
)
e−iβL

)
, (C25)

where βL ≡ 2 j0L. The solution of the equations is

g =
(
2k2

0 − 1
)
(1 + k)eik0βL + [1 − (

2k2
0 − 1

)
k]e−iβL

(1 + k)eik0βL + (1 − k)e−ik0βL

1

8ik0
(
k2

0 − 1
) , (C26)

g′ =
[
1 − (

2k2
0 − 1

)
k
]
e−iβL − (

2k2
0 − 1

)
(1 − k)e−ik0βL

(1 + k)eik0βL + (1 − k)e−ik0βL

1

8ik0
(
k2

0 − 1
) . (C27)

From Eqs. (C8), (C10), (C13), and (C16), we obtain

θ (x, t ) = j0(k0t − x) − α

4
(
k2

0 − 1
) sin[2 j0(k0t − x)] + 2αRe(g + g′)cos(2k0 j0t )cos(2k0 j0x)

+ 2αRe(g − g′)sin(2k0 j0t )sin(2k0 j0x) − 2αIm(g + g′)sin(2k0 j0t )cos(2k0 j0x)

+ 2αIm(g − g′)cos(2k0 j0t )sin(2k0 j0x) + O(α2). (C28)

The solution has one frequency (2k0 j0) in time and two wave numbers (2 j0, 2k0 j0) in space. According to Eqs. (C23), (C26),
and (C27), Eq. (C28) is nothing but Eq. (18) with

η ≡ 2i(g + g′) =
(
2k2

0 − 1
)
[(1 + k)eik0βL − (1 − k)e−ik0βL ] + 2[1 − (

2k2
0 − 1

)
k]e−iβL

4k0
(
k2

0 − 1
)
[(1 + k)eik0βL + (1 − k)e−ik0βL ]

. (C29)

Higher-order solutions can be obtained by the same perturbative iteration method. In the solution, the spin density and current
have the same periodicity in time as the first-order solution, π (k0 j0)−1. This is because the inhomogeneous terms at every order
keep the same discrete time translational symmetry as that for the first order. For irrational k0, the solution is not periodic in the
space coordinate x because of the superpositions of the two wave numbers. Nonetheless, the Fourier-transform in the space has
two major peaks at 2 j0 and 2k0 j0.

2. Circular geometry with curvature

For the 1D circular geometry with a finite radius r of the curvature [insets of Figs. 1(b) and 1(c)], the Lagrangian is generalized
as follows:

L = 1

2
(∂tθ )2 − 1

2r2
(∂ϑθ )2 + α

2r2
(∂ϑθ )2[cos(2θ )(sin2ϑ − cos2ϑ ) − 2sin(2θ )sinθcosθ ]

= 1

2
(∂tθ )2 − 1

2
(∂�θ )2

[
1 + αcos

(
2θ − 2

r
�

)]
, (C30)

with a 1D coordinate � ≡ rϑ , and

∂rθ (x, y) ≡ ∂r (rcosϑ, rsinϑ ) = 0, ∂x = −1

r
(sinϑ )∂ϑ, ∂y = 1

r
(cosϑ )∂ϑ . (C31)

The Lagrangian gives the classical EOM in the 1D system,

∂2
t θ − (

∂2
� θ

)[
1 + αcos

(
2θ − 2

r
�

)]
+ 2α(∂�θ )sin

(
2θ − 2

r
�

)[
(∂�θ ) − 1

r

]
− α(∂�θ )2sin

(
2θ − 2

r
�

)
= ∂2

t θ − (
∂2
� θ

)[
1 + αcos

(
2θ − 2

r
�

)]
+ α(∂�θ )

[
(∂�θ ) − 2

r

]
sin

(
2θ − 2

r
�

)
= 0, (C32)

and the spin density and current,

s = ∂tθ, js
� = −(∂�θ )

[
1 + αcos

(
2θ − 2

r
�

)]
. (C33)

The boundary conditions are imposed on the spin density and current,

js
�(0, t ) = j0, sc(L, t ) = kc js

�,c(L, t ). (C34)

The boundary condition at � = L is imposed on every frequency (c) component of the density and current, and kc = χ

χ ′ [Ds( 1
T ′

1
+

ic)]
−1/2 + χ

βt
.
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The zeroth-order solution of the EOM that satisfies the BCs is given by

θ0(�, t ) = k0 j0t − j0�. (C35)

In the perturbative iteration method, the first-order solution comprises of θ1(�, t ) and θ2(�, t ). θ1(�, t ) is a special solution of the
inhomogeneous linear differential equation, Eq. (20), while θ2(�, t ) is a solution of the homogeneous linear differential equation.
For k2

0 �= (1 + 1
j0r )2, we find the special solution,

θ1(�, t ) =
α
(
1 + 2

j0r

)
4
[
k2

0 − (
1 + 1

j0r

)2] sin
[
2k0 j0t − 2

(
j0 + 1

r

)
�
]
, (C36)

together with

θ2(�, t ) = At + B� + F0 +
∑

c∈R,c �=0

[Fceic(t−�) + F ′
c eic(t+�)]. (C37)

A substitution of θ = θ0 + θ1 + θ2 + O(α2) into Eq. (C33) leads to

s = k0 j0 +
k0 j0α(1 + 2

j0r )

2
[
k2

0 − (
1 + 1

j0r

)2]cos

[
2k0 j0t − 2

(
j0 + 1

r

)
�

]
+ ∂tθ2 + O(α2), (C38)

js
� = j0 + α j0

2

2k2
0 − 2

(
1 + 1

j0r

)2 + (
1 + 1

j0r

)(
1 + 2

j0r

)
k2

0 − (
1 + 1

j0r

)2 cos

[
2k0 j0t − 2

(
j0 + 1

r

)
�

]
− ∂xθ2 + O(α2)

= j0 +
j0α

[
2k2

0 − (
1 + 1

j0r

)]
2
[
k2

0 − (
1 + 1

j0r

)2] cos

[
2k0 j0t − 2

(
j0 + 1

r

)
�

]
− ∂xθ2 + O(α2). (C39)

In order that Eqs. (C38) and (C39) satisfy the BCs, θ2(�, t ) must have the same frequency as θ1(�, t );

θ2(�, t ) = αge2ik0 j0(t−�) + αg′e2ik0 j0(t+�) + c.c. (C40)

The complex constants, g and g′, are determined by(
1 −1

(1 − k)e−ik0βL (1 + k)eik0βL

)(
g
g′

)
= 1

8ik0
[
k2

0 − (
1 + 1

j0r

)2]
(

2k2
0 − (

1 + 1
j0r

){
1 + 2

j0r − [
2k2

0 − (
1 + 1

j0r

)]
k
}
e−i(1+ 1

j0r )βL

)
, (C41)

where k is given by Eq. (C22).

θ1(�, t ) vanishes when j0 = − 2
r . Even when θ1(�, t ) = 0,

θ2(�, t ) �= 0 in general. The nonzero θ2(�, t ) comes from
an O(α) contribution of js

� in Eq. (C33). For j0 = − 2
r and

k0 = 1
2 , both θ1(�, t ) and θ2(�, t ) reduce to zero, and θ0(�, t )

becomes an “exact” solution satisfying the BCs. However,
the exactness is not protected by the symmetry of the theory,
and there will be a finite θ1(�, t ) when higher-order expansion
terms are considered in Eq. (6).

Besides, Eqs. (C25) and (C41) always have unique solu-
tions for g and g′, because

(1 + k)eik0βL + (1 − k)e−ik0βL = 0 (C42)

or

k = e−ik0βL + eik0βL

e−ik0βL − eik0βL
= i

tan(2k0βL )
(C43)

contradicts with Re(k) > 0. The solutions of Eqs. (C25)
and (C41) are divergent at k0 = 1 (straight) and k2

0 = (1 +
1

j0r )2 (circular), respectively. Physically, the divergence could
be avoided by finite dissipation time T1. A more detailed
discussion on the divergence is given in Appendix F.

The radius (r) dependence of θ (�, t ) leads to the nonre-
ciprocity of the hydrodynamic spin transport. We show the

nonreciprocity in insets of Figs. 1(b) and 1(c). The nonre-
ciprocity is essentially from θ1(�, t ), as the spatial wavelength
of θ1(�, t ) depends on the radius r; it also comes from θ2(�, t )
as θ2(�, t ) is different for two opposite currents to satisfy the
boundary conditions. From the figures, we can see that θ (�, t )
is periodic along t because θ1(�, t ) and θ2(�, t ) share the same
temporal frequency; the structure of θ (�, t ) along � is more
complicated because θ1(�, t ) and θ2(�, t ) give two different
spatial wave numbers. To show the spatial structure of θ (�, t )
more clearly, we plot them in a larger range of � (see Fig. 2),
although physically � should not be greater than L, and L
should not be greater than 2πr.

APPENDIX D: POSSIBILITY OF DISSIPATION

In this Appendix, we study the stability of the superfluid
state with a finite supercurrent in the U(1) spacetime theory.
The Lagrangian Eq. (6) leads to a classical EOM, Eq. (B5). A
solution of the EOM was obtained under boundary conditions
of a finite current (Sec. III). The solution characterizes the
supercurrent state. To study the stability of the supercurrent
state, we compare the classical energy of the solution θ (x, y, t )
with the energy of other solutions of the EOM with different
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FIG. 2. Contour plots of θ (�, t ) in a larger spatial range of � with the same parameters in insets of Figs. 1(b) and 1(c). (a) and (b) above
correspond to Figs. 1(b) and 1(c), respectively.

BCs, say θ (x, y, t ) + δθ (x, y, t ). Here, we consider that δθ is a
deformation induced by spatially local perturbations. Thus the
spacetime derivatives of δθ (x, y, t ) do not contain any uniform
component in spacetime. The classical energy is evaluated by
a Hamiltonian that corresponds to the Lagrangian Eq. (6),

H[θ ] =
∫

d2r
{

1

2
(∂tθ )2 + 1

2
(∂xθ )2[1 − α cos(2θ )]

+ 1

2
(∂yθ )2[1 + α cos(2θ )] − α(∂xθ )(∂yθ ) sin(2θ )

}
.

(D1)

The solution for the supercurrent state with broken U(1)
spacetime symmetry depends on time, e.g., Eq. (18), while
the Hamiltonian of θ and θ + δθ are conserved, i.e., time-
independent. Thus, for clarity of calculation, we compare the
“time averages” of the classical energies over a large period
of time T ,

�J = lim
T →∞

1

T

( ∫ T

0
H[θ + δθ ]dt −

∫ T

0
H[θ ]dt

)
. (D2)

When the classical energy of θ is lower than θ + δθ for
arbitrary small δθ , the supercurrent state of θ (x, t ) is stable
against the local perturbation. If it is not for some δθ , the
supercurrent state is no longer stable, and it must experience
energy dissipation. Effects of the energy dissipation can be
included as finite relaxation time into the classical EOM (see
Appendix E). To demonstrate the validity of our method used
in this Appendix, we also apply the same method to a con-
ventional superfluid moving at a finite velocity and derive its
Landau criterion (see Appendix G).

As explained above, δθ is a deformation induced by the
local perturbations and the spacetime derivatives of δθ are
considered to be always zero on average. The locality of δθ

is crucial in the following argument. For example, a finite av-
erage of the space derivative of δθ changes a uniform current,
and such δθ should be excluded from the local deformation.
This is because even for the conventional superfluid, the clas-
sical energy with a smaller velocity of the supercurrent will
always decrease. In the derivation of the Landau criterion in
Appendix G, only single excitations with (k, ω) are consid-
ered; perturbation that lowers the average velocity is excluded
implicitly.

In this Appendix, we apply the stability analysis to
the total-angular-momentum superfluid in the spin-injection

model. We consider a general value of the junction parameter
k0, except for k0 = 1 (straight geometry), k2

0 = (1 + 1
j0r )2 (cir-

cular geometry), and k0 = 0, while leaving discussions about
some of these points for Appendix F. In the following, let us
study the straight geometry case.

In the 1D spin injection model, θ depends only on x and t ;
θ (x, t ) and θ (x, t ) + δθ (x, t ). The energy difference between
θ and θ + δθ will be evaluated order by order in powers of the
SOC (α). To this end, we expand θ and δθ in powers of α,

θ = θ0(x, t ) + θ ′
1(x, t ) + O(α2), (D3)

δθ (x, t ) = δθ0(x, t ) + δθ1(x, t ) + O(α2), (D4)

where

θ ′
1(x, t ) = θ1(x, t ) + θ2(x, t ), (D5)

δθ1(x, t ) = O(α). δθ0(x, t ), θ0(x, t ), and θ2(x, t ) are solutions
of Eq. (C5). Since the spacetime derivatives of δθ (x, t ) is
not uniform, δθ0(x, t ), as well as θ2(x, t ), is given by linear
superpositions of eiq(x−t ) and eiq(x+t ) over q, e.g.

δθ0(x, t ) = 1√
L

∑
q

[δdqeiq(x−t ) + δd ′
qeiq(x+t )], (D6)

with the system length L. In Appendix H, we give a pertur-
bation theory in the SOC (α) that determines the higher order
corrections (e.g., δθ1) for a given δθ0 in the form of Eq. (D6).

Given the α-expansions of θ and θ + δθ , we now evaluate
their energy difference order by order in the power of α. We
expand �J in Eq. (D2),

�J = δJ + 1
2δ

2J + O((δθ )2). (D7)

Here δJ and δ2J are at the first and second order in δθ ,
respectively. The first-order variation is, i.e., Eq. (22)

δJ = 1

T

∫ T

0
dt

∫
dx{(∂tθ )(∂tδθ ) + (∂xθ )(∂xδθ )

× [1 − αcos(2θ )] + α(∂xθ )2sin(2θ )(δθ )}

= 1

T

∫ T

0
dt

∫
dx[(∂tθ0)(∂tδθ0) + (∂tθ

′
1)(∂tδθ0)

+ (∂tθ0)(∂tδθ1) + (∂xθ0)(∂xδθ0) + (∂xθ
′
1)(∂xδθ0)

+ (∂xθ0)(∂xδθ1) − α(∂xθ0)(∂xδθ0)cos(2θ0)

+ α(∂xθ0)2sin(2θ0)(δθ0)] + O(α2)
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= 1

T

∫ T

0
dt

∫
dx{(∂tθ

′
1)(∂tδθ0) + (∂xθ

′
1)(∂xδθ0)

+ α[(∂2
x θ0) cos(2θ0) − (∂xθ0)2 sin(2θ0)]δθ0} + O(α2)

= 1

T

∫ T

0
dt

∫
dx[(∂tθ

′
1)(∂tδθ0) + (∂xθ

′
1)(∂xδθ0)

+ (−∂2
t θ1 + ∂2

x θ1)δθ0] + O(α2)

= 2

T

∫ T

0
dt

∫
dx(∂xθ2)(∂xδθ0) + O(α2), (D8)

where we neglect boundary contributions in the right-hand
side, e.g.,

1

T

∫ T

0
dt (∂tθ0)(∂tδθ1) = k0 j0

T

∫ T

0
dt (∂tδθ1) = O(T −1),∫

dx(∂xθ0)(∂xδθ1) = − j0

∫
dx(∂xδθ1)

= O(1) � O(L). (D9)

From the third to the fourth line, we use Eq. (C11). From the
fourth line to the last line, we neglect terms that contain θ1 and
δθ0, because for k0 �= 1, θ1 and δθ0 have different velocities
(ratios between the frequency and wave number), and their
product must vanish under the spacetime integral. The second-
order variation is

1

2
δ2J = 1

T

∫
dtdx

{
1

2
(∂tδθ )2 + 1

2
(∂xδθ )2[1 − αcos(2θ )]

− α(δθ )2[(∂xθ )2cos(2θ ) + (
∂2

x θ
)
sin(2θ )]

}
= 1

T

∫
dtdx

{
1

2
(∂tδθ )2 + 1

2
(∂xδθ )2 − α

2
(∂xδθ0)2cos(2θ0)

− α(δθ0)2
[
(∂xθ0)2cos(2θ0) + (

∂2
x θ0

)
sin(2θ0)

]}
+ O(α2)

= 1

T

∫
dtdx

{
1

2
(∂tδθ )2 + 1

2
(∂xδθ )2 − α

2
(∂xδθ0)2cos(2θ0)

− α(δθ0)2(∂xθ0)2cos(2θ0)

}
+ O(α2). (D10)

Note that 1
2δ

2J � 0 at O(α). This is because the leading-order
term [O(1) term] is positive semidefinite, and negative contri-
butions come from O(α) terms. Besides, under the spacetime
integral, the O(α) terms can be nonzero only if δθ0 in Eq. (D6)
comprises of (more than) two Fourier components, q1, q2,
. . . , and an oscillation function from (δθ0)2 and that from
cos(2θ0) = cos(2 j0k0t − 2 j0x) cancel each other, e.g.,

q1 − q2 = ± j0k0, q1 + q2 = ± j0. (D11)

In the presence of such components in δθ0, however, the
leading-order term is positive definite.

δθ0, as well as θ2, is a solution of Eq. (C5); both are given
by linear superpositions of eiq(t+x) and eiq(t−x) over q. Thus, for
given θ2 �= 0, one can always choose δθ0 such that the space-
time integral of (∂xθ2)(∂xδθ0) remains nonzero and negative,

δJ < 0. This suggests that the superflow state is stable only
when θ2(x, t ) = 0, while it is not stable when θ2(x, t ) �= 0.

The same conclusion holds true in the spin-injection model
with the circular geometry. In the 1D spin-injection model
with finite curvature, the Hamiltonian is given by

H =
∫

d�

{
1

2
(∂tθ )2 + 1

2
(∂�θ )2

[
1 + αcos

(
2θ − 2

r
�

)]}
,

(D12)

where θ and θ + δθ depend only on � and t . Their energy
difference �J can be expanded in the powers of small local
deformation δθ . The first- and second-order variations of the
energy in δθ are

δJ = 1

T

∫ T

0
dt

∫
d�

{
(∂tθ )(∂tδθ ) + (∂�θ )(∂�δθ )

×
[

1 + αcos

(
2θ − 2

r
�

)]
− α(∂�θ )2sin

(
2θ − 2

r
�

)
(δθ )

}
, (D13)

1

2
δ2J = 1

T

∫ T

0
dt

∫
d�

{
1

2
(∂tδθ )2 + 1

2
(∂�δθ )2

+ α(∂�δθ )2cos

(
2θ − 2

r
�

)
+ α(δθ )2

{[
(∂�θ )2

− 2

r
(∂�θ )

]
cos

(
2θ − 2

r
�

)
+ (

∂2
� θ

)
sin

(
2θ − 2

r
�

)}}
,

(D14)

respectively. Equations (D13) and (D14) have a similar struc-
ture as Eqs. (D8) and (D10), respectively. For k2

0 �= (1 + 1
j0r )2

(resonance point), one can use the α expansion of θ and
δθ , and the expressions support the same conclusion in the
circular geometry case; δJ < 0 for some δθ0 and 1

2δ
2J � 0.

In summary, contrary to the conventional superfluid with
θ1 = θ2 = 0, the supercurrent state with the broken U(1)
spacetime symmetry is classically unstable toward other
states, and it must experience the energy dissipation by local
perturbation. Physically speaking, the difference in the sta-
bilities between these two types of superfluids comes from
the fact that the spin-injection boundary condition does not
break the U(1) symmetry of the conventional superfluid, but
it breaks the U(1) spacetime symmetry of the total-angular-
momentum superfluid; under the U(1) spacetime rotation, the
whole junction should also be rotated. Effects of the energy
dissipation can be included as finite relaxation time T −1

1 ,
while the motion of θ with vanishing or small T −1

1 can be
realized only in a superclean limit.

A conventional superfluid described by a nonrelativistic
complex field has a critical velocity given by the Landau
criterion. Below the critical velocity, a supercurrent is stable.
The Landau criterion should be derived from a theory of the
complex field instead of an effective theory of a Goldstone
mode. This is because when the velocity approaches the crit-
ical value, a low-energy condition is already violated. Our
analyses only study the stability in the low-energy limit where
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a nonrelativistic complex field and a relativistic complex field
both lead to a Goldstone mode with linear dispersion.

APPENDIX E: EFFECTS OF DISSIPATION
IN THE CLASSICAL EOM

Note first that the classical equation, Eq. (B5), as well as
its 1D descendants, Eqs. (C1) and (C32), are all invariant
under the time-reversal operation; t → −t , and θ → θ + π .
In the previous Appendix, we demonstrate that the classical
energy of the spin supercurrent state is higher than other
states due to the finite α. This suggests that the supercur-
rent state decays into other states with lower energy. Such
an energy-nonconserving decay process generally breaks the
time-reversal symmetry of the classical equation. To study
the effect of the decay process into the spin hydrodynamics
predicted in Sec. V, we include the simplest time-reversal-
breaking term, ∂tθ , into the classical equation;

∂2
t θ − (

∂2
x

)
θ [1 − α cos(2θ )] − (

∂2
y θ

)
[1 + α cos(2θ )]

+ 2α(∂x∂yθ ) sin(2θ ) − α[(∂xθ )2 − (∂yθ )2] sin(2θ )

+ 2α(∂xθ )(∂yθ ) cos(2θ )

= − 1

T1
∂tθ. (E1)

From the symmetry point of view, one could also add other
time-reversal breaking terms that respect the U(1) spacetime
symmetry but breaks the time-reversal symmetry, e.g.,

· · · = − 1

T1
∂tθ − 1

T2
∂tθ × (

∂2
x θ + ∂2

y θ
) − 1

T3
∂tθ

× {(
∂2

x θ − ∂2
y θ

)
cos(2θ ) + 2∂x∂yθ sin(2θ )

} + · · ·
(E2)

Nonetheless, the first term on the right-hand side always
dominates the others in the hydrodynamic regime, since the
physical variable θ changes much more slowly than any mi-
croscopic length scales in the hydrodynamic regime, and in
this sense, the other terms in Eq. (E2) are higher-order spatial
gradient terms than the first term in Eq. (E2). In this Ap-
pendix, we will solve Eq. (E1) or its 1D descendant in the
spin-injection model with the straight geometry,

∂2
t θ − (

∂2
x θ

)
[1 − α cos(2θ )] − α(∂xθ )2 sin(2θ ) = − 1

T1
∂tθ.

(E3)

θ0(x, t ) with the dissipation term was previously solved by
Refs. [11,13]. It satisfies

∂2
t θ0 + 1

T1
∂tθ0 = ∂2

x θ0. (E4)

The general solution (up to a constant F0) of Eq. (E4) is

θ0(x, t ) = At + A

2T1
x2 + Bx

+
∑

c∈R,c �=0

[Fceict−iκcx + F ′
c eict+iκcx], (E5)

where A,B,Fc,F ′
c are constants and

κc =
√

c2 + i
c

T1
. (E6)

The boundary conditions Eqs. (C2) and (C3) are satisfied by

B = − j0, A = −k0

(
A

T1
L + B

)
, Fc = F ′

c = 0, (E7)

which leads to

A =
(

1 + k0L

T1

)−1

k0 j0. (E8)

This gives the zeroth-order solution of the EOM with the BCs,

θ0(x, t ) = T1k0 j0
T1 + k0L

t − j0

[
1 − k0x

2(T1 + k0L)

]
x

≡ k̃0 j0t − j0h(x)x, (E9)

js
x(0 < x < L) = T1 + k0(L − x)

T1 + k0L
j0 + O(α),

s(0 < x < L) = T1k0 j0
T1 + k0L

+ O(α). (E10)

In the conventional spin superfluid with T −1
1 �= 0, the spin

density and the spin current are static. Different from the dissi-
pationless case (T −1

1 = 0), the spin current decreases linearly
in the 1D coordinate x, while the spin density is uniform in x.

Due to nonlinear x dependence of θ0(x, t ), the perturbative
analyses in the SOC (α) becomes harder. To obtain the solu-
tion of the EOM analytically, we consider a limit that a phase
accumulation γ is small when the spatial dependence of the
current is small,

γ ≡
[

− dh(x)

dx
L

]
j0L = k0 j0L2

2(T1 + k0L)
� 1. (E11)

The small γ limit can be achieved by a small dissipation term
or a short propagation distance. The zeroth-order solution in
the small γ and α limit is

θ0(x, t ) = k̃0 j0

(
1 − k0L

T1

)
t − j0h(x)x

= k̃0 j0t − j0x + O(γ ). (E12)

We will solve θ (x, t ) up to the first order in α or in γ , namely
O(α, γ ). Thereby, we keep the zeroth order of θ0(x, t ) when
solving θ1(x, t ) and θ2(x, t ). Equation (C11) is slightly modi-
fied and becomes

∂2
t θ1 + 1

T1
∂tθ1 − ∂2

x θ1 = α j2
0 sin(2k̃0 j0t − 2 j0x)

= α j2
0

2i
e2ik̃0 j0t−2i j0x + c.c. (E13)

Equation (E13) has a special solution,

θ1(x, t ) = α j2
0 e2ik̃0 j0t−2i j0x

2i
( − 4k̃2

0 j2
0 − 2i

T1
k̃0 j0 + 4 j2

0

) + c.c.

= − α j0T1e2ik̃0 j0t−2i j0x

8i j0T1
(
k̃2

0 − 1
) + 4k̃0

+ c.c.

≡ αg0e2i j0 (k̃0t−x) + c.c., (E14)
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where

g0 = − j0T1

8i j0T1
(
k̃2

0 − 1
) + 4k̃0

. (E15)

Equation (C16) holds true, while Eqs. (C17) and (C18) are modified,

s = 1

2
k̃0 j0 + αk̃0 j0e2ik̃0 j0t

[
2ige−2ik̃0 j0x − j0T1e−2i j0x

4 j0T1
(
k̃2

0 − 1
) − 2ik̃0

]
+ 2iαk̃0 j0g′e2ik̃0 j0(t+x) + O(α2, γ 2, αγ ) + c.c., (E16)

js
x = 1

2
j0 + α j0e2ik̃0 j0t

[
2ik̃0ge−2ik̃0 j0x − j0T1e−2i j0x

4 j0T1
(
k̃2

0 − 1
) − 2ik̃0

− e−2i j0x

2

]
− 2iαk̃0 j0g′e2ik̃0 j0(t+x) + O(α, γ , γ j0L) + c.c.

= 1

2
j0 + α j0e2ik̃0 j0t

{
2ik̃0ge−2ik̃0 j0x −

[
j0T1

(
2k̃2

0 − 1
) − ik̃0

]
e−2i j0x

4 j0T1
(
k̃2

0 − 1
) − 2ik̃0

}
− 2iαk̃0 j0g′e2ik̃0 j0(t+x) + O(α2, γ 2, αγ ) + c.c. (E17)

The boundary conditions Eqs. (C2) and (C3) leads to the following secular equation [cf. Eq. (C25)]:(
1 −1

(1 − k)e−ik̃0βL (1 + k)eik̃0βL

)(
g
g′

)
= 1

8ik̃0 j0T1
(
k̃2

0 − 1
) + 4k̃2

0

(
j0T1

(
2k̃2

0 − 1
) − ik̃0

( j0T1 − j0T1
(
2k̃2

0 − 1
)
k + ik̃0k)e−iβL

)
. (E18)

The solution of Eq. (E18) is

g =
[

j0T1
(
2k̃2

0 − 1
) − ik̃0

]
(1 + k)eik̃0βL + [

j0T1 − j0T1
(
2k̃2

0 − 1
)
k + ik̃0k

]
e−iβL

[(1 + k)eik̃0βL + (1 − k)e−ik̃0βL ]
[
8ik̃0 j0T1

(
k̃2

0 − 1
) + 4k̃2

0

] , (E19)

g′ =
[

j0T1 − j0T1
(
2k̃2

0 − 1
)
k + ik̃0k

]
e−iβL − [

j0T1
(
2k̃2

0 − 1
) − ik̃0

]
(1 − k)e−ik̃0βL

[(1 + k)eik̃0βL + (1 − k)e−ik̃0βL ]
[
8ik̃0 j0T1

(
k̃2

0 − 1
) + 4k̃2

0

] . (E20)

Similar to Eq. (C28), the solution of θ (x, t ) is

θ (x, t ) = k̃0 j0t − j0

[
1 − k0x

2(T1 + k0L)

]
x + 2αRe(g0)cos[2 j0(k̃0t − x)] − 2αIm(g0)sin[2 j0(k̃0t − x)]

+ 2αRe(g)cos[2k̃0 j0(t − x)] + 2αRe(g′)cos[2k̃0 j0(t + x)] − 2αIm(g)sin[2k̃0 j0(t − x)]

+ 2αIm(g′)sin[2k̃0 j0(t + x)] + O(α2, γ 2, αγ ), (E21)

where g0, g, g′ are given by Eqs. (E15), (E19), and (E20). k0,
k, and k̃0 are given by Eqs. (C21), (C22), and (E9). Compared
to Eqs. (C25) and (C41), Eqs. (E19)–(E21) have no divergence
due to finite T1. The situation is analogous to periodically
driven harmonic oscillators, where the dissipation removes
divergence due to resonance [46]. Note also that the solution
Eq. (E21) has a periodicity in time, π (k̃0 j0)−1, and two char-
acteristic wavelengths, 2 j0, and 2k̃0 j0. A solution at higher
order in γ has all spatial Fourier components, while it is still
periodic in time with the same periodicity.

APPENDIX F: SPECIAL PARAMETER POINTS
IN THE SPIN-INJECTION MODEL

In this Appendix, we study some special parameter points
in the spin-injection model without the spin relaxation term,
where solutions in Appendix C do not apply directly and need
careful investigations.

1. k0 = 1 (straight geometry)
and k2

0 = (1 + 1
j0r )2 (circular geometry)

Consider k0 = 1 in the straight geometry and k2
0 = (1 +

1
j0r )2 in the circular geometry. Naive substitutions of k0 =
1 into Eqs. (C13) and (C25) and of k2

0 = (1 + 1
j0r )2 into

Eqs. (C36) and (C41) lead to divergences in θ1 and θ2,
respectively. It seems that the divergences in θ1 and θ2 can-
cel each other. For example, Eqs. (C29) and (18) at k0 = 1
become

η|k0=1 = [(1 + k)eiβL − (1 − k)e−iβL ] + 2(1 − k)e−iβL

4
(
k2

0 − 1
)
[(1 + k)eiβL + (1 − k)e−iβL ]

= 1

4
(
k2

0 − 1
) , (F1)

θ (x, t )|k0=1 = j0(t − x) − α

4
(
k2

0 − 1
) sin[2 j0(t − x)]

− α

4
(
k2

0 − 1
)cos(2 j0t )sin(2 j0x)

+ α

4
(
k2

0 − 1
) sin(2 j0t )cos(2 j0x) + O(α2)

= j0(t − x) + O(α2), (F2)

respectively, where the final result of θ (x, t ) is apparently
finite. However, Eq. (F2) is not a solution to EOM (C1). In
fact, with light-cone coordinates

ξ = t − x, ζ = t + x, (F3)
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Eq. (C11) at k0 = 1 becomes

[(∂ξ + ∂ζ )2 − (∂ξ − ∂ζ )2]θ1 = 4∂ξ ∂ζ θ1 = α j2
0 sin(2 j0ξ ).

(F4)

Equation (F4) has a special solution which is not consistent to
Eq. (F2),

θ1 = −αζ

16
cos(2 j0ξ ) = −α(t + x)

16
cos[2 j0(t − x)]. (F5)

Note that |θ1| in Eq. (F5) is not bounded for large ζ = t + x.
This indicates that the perturbation with respect to α becomes
invalid at k0 = 1, leading to the discrepancy. The divergences
at k0 = 1 can be regarded as the resonance of the inhomoge-
neous linearized differential equation [46], and one can expect
that the SOC has nonperturbative effects around k0 = 1.

To understand the origin of the nonperturbative effect of
α, let us consider a set of solutions of Eq. (C1) that depends
on x and t only through x − vt . For the later comparison to a
special solution developed in Appendix C, θ0 + θ1 + O(α2),
let v to be k0,

θ (x, t ) = θ (x − k0t ), θ ′ ≡ ∂xθ = − 1

k0
∂tθ. (F6)

Here, the prime denotes an x derivative. Eq. (C1) effectively
becomes an ordinary differential equation,(

k2
0 − 1

)
θ ′′ = −αθ ′′cos(2θ ) + αθ ′2sin(2θ ). (F7)

To solve this equation, use its analogy to 1D classical mechan-
ics, where the phase θ (x) as a function of x corresponds to a
1D coordinate as a function of time. The classical mechanics
for the 1D coordinate has a Lagrangian whose variation gives
Eq. (F7) as a classical EOM,

L1D = 1

2

(
k2

0 − 1
)
θ ′2 + α

2
θ ′2cos(2θ ). (F8)

The classical mechanics has a canonical momentum conjugate
to the coordinate,

π = ∂L1D

∂θ ′ = (
k2

0 − 1
)
θ ′ + αθ ′cos(2θ ), (F9)

as well as a conserved Hamiltonian,

H1D = πθ ′ − L1D = 1

2

(
k2

0 − 1
)
θ ′2 + α

2
θ ′2cos(2θ ). (F10)

Utilizing the x independence (“time”-independence) of H1D,
we can solve the EOM from Eq. (F10),

dθ

dx
= ±

√
2H1D

k2
0 − 1 + αcos(2θ )

. (F11)

Its formal solution is given by

±(x − x0) =
∫ θ (x)

θ (x0 )

√
k2

0 − 1 + αcos(2θ )

2H1D
dθ. (F12)

With Eq. (F6), we get a set of (1 + 1)-dimensional solutions,

±(x − k0t − C0) =
∫ θ (x,t )

θ (x0,t0 )

√
k2

0 − 1 + αcos(2θ )

2H1D
dθ, (F13)

where C0 = x0 − k0t0.

Equation (F13) is inclusive of those perturbative solutions
in Sec. III that depend on x and t only through x − k0t , i.e.,
θ0 + θ1 given by Eqs. (C8) and (C13). Namely, when α �
|k2

0 − 1|, we can apply an expansion in α,

± (x − k0t − C0)

=
∫ θ (x,t )

θ (x0,t0 )

√
k2

0 − 1

2H1D

[
1 + α

2
(
k2

0 − 1
)cos(2θ )

]
dθ + O(α2).

(F14)

From this, we obtain

θ (x, t ) = ±
√

2H1D

k2
0 − 1

(x − k0t − C′
0)

− α

4
(
k2

0 − 1
) sin(2θ ) + O(α2)

= θ0 − α

4
(
k2

0 − 1
) sin(2θ0) + O(α2), (F15)

where

θ0 = ±
√

2H1D

k2
0 − 1

(x − k0t − C′
0), (F16)

C′
0 = C0 ∓

√
k2

0 − 1

2H1D

{
θ (x0, t0) + α

4
(
k2

0 − 1
) sin[2θ (x0, t0)]

}
.

(F17)

Note that due to the absence of θ2(x, t ) in its α expansion,
Eq. (F15) does not satisfy the boundary conditions in the spin-
injection model in general.

Nonetheless, Eq. (F13) is still useful to see that the ex-
pansion in α is invalid when |k2

0 − 1| < O(α). Take k0 = 1
in Eq. (F13) as an example. Thereby, the sign of cos(2θ ) is
conserved from Eq. (F10). Then, the integral of Eq. (F13)
gives

±
√

2H1D

α
(x − k0t − C0) = E (θ (x, t ), 2) − E (θ (x0, t0), 2),

(F18)

where E (θ,m) is the elliptic integral of the second kind. This
special solution can be made independent from α because
α can be absorbed into another parameter H1D. The α inde-
pendence as well as the conserved sign of cos(2θ ) are not
consistent with θ0(x, t ) + θ1(x, t ) in Eqs. (C8) and (C13). This
suggests that the expansion in α is invalid, particularly at
k0 = 1.

2. k0 = 0 (straight geometry)

Another special parameter point is k0 = 0. k0 = 0 is a limit

where χ in Eq. (C21) is much smaller than χ ′
√

Ds
T ′

1
and βt , and

kc goes to zero for any c;

kc ≡ χ

χ ′

√
1

Ds
(

1
T ′

1
+ ic

) + χ

βt
→ 0. (F19)

We first consider k0 = 0 in the straight geometry (r−1 = 0).
θ0 at k0 = 0 has no time dependence in Eq. (C8), so that
the phase F0 in Eq. (C8) cannot be absorbed into the time.
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Meanwhile, s(x = L−) = 0 because kc = 0 for any c, and
s(x) ≡ ∂tθ = 0 can be always satisfied by a time-independent
θ . Thus we have only to make Eqs. (C8) and (C10) with an
additional F0 to satisfy the other boundary condition, js

x(x =
0+) = j0. Firstly, let us choose θ0 = − j0x + F0 that satisfies
the boundary condition. The substitution into Eq. (C11) gives
θ1 = α

4 sin(−2 j0x + F0). To satisfy the boundary condition up
to the 1st order in α [see also Eq. (C4)],

js
x(x = 0+) = j0 − j0α

2
cos(2F0) − ∂xθ2 + O(α2) = j0,

(F20)
we have

θ2(x) = − j0α

2
cos(2F0)x. (F21)

Here, |θ2(x)| for large x is not bounded, where the perturbation
in α breaks down. An alternative way to get a consistent
perturbative solution is to require θ2(x) = 0 and take θ0(x) =
− j̃0x + F0 where j̃0 �= j0. Then we have

js
x(x = 0+) = j̃0 − j̃0α

2
cos(2F0) − ∂xθ2 + O(α2) = j0.

(F22)
From this, we get

j̃0 = j0

[
1 − α

2
cos(2F0)

]−1

= j0

[
1 + α

2
cos(2F0)

]
+ O(α2).

(F23)
At O(α), this solution is equivalent to absorbing θ2(x) in
Eq. (F21) into θ0(x). Note also that from Eq. (D8), θ2(x) = 0
implies that the steady (but not uniform) current without spin
accumulation has no energy dissipation. However, a higher-
order calculation in α suggests that δJ can be nonzero and
negative. This is because δθ1 and θ1 can share identical Fourier
components [see Eq. (H35) in Appendix H].

3. k0 = 0 (circular geometry)

Let us next consider the circular geometry with k0 = 0.
We take θ2(�) = 0 and θ0(�) = − j̃0� + F0 with j̃0 �= j0. Then,
similar to Eq. (20), we obtain

−∂2
� θ1 = −α j̃0

(
j̃0 + 2

r

)
sin

(
− 2 j̃0� − 2

r
� + 2F0

)
. (F24)

When j̃0 �= − 1
r , Eq. (F24) leads to

θ1(�) = α j̃0
(

j̃0 + 2
r

)
4
(

j̃0 + 1
r

)2 sin

(
2 j̃0� + 2

r
� − 2F0

)
. (F25)

Note that when j̃0 = − 2
r , θ1(�) = 0, and θ (�) = 2�

r + F0

(F0 ∈ R) becomes an “exact” solution of Eq. (C32). The solu-
tion is not exact in the presence of higher-order derivatives in
the model Eq. (6).

From Eq. (F25) and θ2 = 0, the boundary condition at � =
0+ reads

js
�(� = 0+) = j0 = j̃0 + α j̃0cos(2F0)

− α j̃0
(

j̃0 + 2
r

)
2
(

j̃0 + 1
r

) cos(2F0) + O(α2)

= j̃0 + α j̃2
0

2
(

j̃0 + 1
r

)cos(2F0) + O(α2). (F26)

So we have

j̃0 = j0 − α j̃2
0

2
(

j̃0 + 1
r

)cos(2F0) + O(α2). (F27)

As in the previous case, the steady current without spin accu-
mulation has an energy dissipation.

a. k0 = 0, j̃0 = − 1
r (circular geometry)

When j̃0 = − 1
r , Eq. (F24) leads to

θ1 = −�2

2
α j̃0

(
j̃0 + 2

r

)
sin(2F0) = �2α

2r2
sin(2F0). (F28)

When F0 �= N
2 π , the perturbation of α becomes invalid for

larger �, where |θ1(�)| is not bounded. When F0 = N
2 π ,

θ1(�) = 0, and the boundary condition requires

j0 = j̃0[1 + α(−1)N ] = −1

r
[1 + α(−1)N ]. (F29)

This solution (θ (�, t ) = �
r + Nπ

2 ) can exist only at k0 = 0,
while it is not continuously connected to a solution at finite
small k0 (see below).

b. k0 → 0, j0 = − 1
r + O(α) (circular geometry)

To see that the solution Eq. (F29) is not continuously con-
nected to a perturbative solution at finite small k0, let us keep a
finite k0 and choose j0 = − 1

r + O(α); θ0(�) = 1
r (k0t − �) +

O(α). In the perturbation theory, we should neglect O(α2)
contributions to θ1, so θ1 is not affected by the O(α) com-
ponent in j0. Then Eq. (20) becomes

∂2
t θ1 − ∂2

� θ1 = − α

r2
sin

(
− 2k0

r
t

)
, (F30)

which leads to a solution,

θ1 = − α

4k2
0

sin

(
2k0

r
t

)
. (F31)

When k0 → 0, the solution has the divergence. Physically
speaking, when k0 → 0, F0 changes slowly with respect to
time, so we cannot fix the phase F0 in Eq. (F28).

APPENDIX G: DERIVATION OF THE LANDAU
CRITERION

In this Appendix, we use the same framework as in Sec. V
and Appendix D and derive the Landau criterion. A similar
argument can be found in Ref. [13], while the derivation here
is more formal than Ref. [13]. We begin with a 1D superfluid
model,

L̃φ = ih̄φ†∂tφ − h̄2

2m
(∂xφ

†)(∂xφ) − U

2
(φ†φ)2 + μφ†φ,

(G1)

with its classical EOM,

ih̄∂tφ =
(

− h̄2

2m
∂2

x + Uφ†φ − μ

)
φ. (G2)
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Thanks to the Galilean covariance of the Lagrangian Eq. (G1),
our discussion will be easier than Sec. V, and we do not
need to expand the variation of the motion as in Sec. V.
Namely, using the Galilean covariance, we can directly obtain
two motions that are close to each other, and compare their
energies from the corresponding Hamiltonian,

H̃φ[φ] =
∫

dx

[
h̄2

2m
(∂xφ

†)(∂xφ) + U

2
(φ†φ)2 − μφ†φ

]
.

(G3)

Consider a steady flow φ0(x, t ),

φ0(x, t ) = √
ρ0 exp

[
i

h̄

(
mvx − mv2

2
t

)]
. (G4)

Let us assume that the following motion φ(x, t ), as well as
φ0(x, t ), satisfies the EOM, Eq. (G2),

φ(x, t ) = φ′(x′, t ′) exp

[
i

h̄

(
mvx − mv2

2
t

)]
= φ′(x − vt, t ) exp

[
i

h̄

(
mvx − mv2

2
t

)]
, (G5)

with x′ = x − vt and t ′ = t . Here |φ′(x′, t ′) − √
ρ0| �√

ρ0 and φ(x, t ) is close to φ0(x, t ). Using a Galilean
transformation,

x′ = x − vt, t ′ = t, (G6)

∂x = ∂x′ , ∂t = ∂t ′ − v∂x, (G7)

we can see that φ′(x′, t ′) must satisfy a similar equation as
Eq. (G2),(

ih̄∂t + 1

2
mv2

)
φ′(x′, t ′)

=
[

1

2m
(−ih̄∂x + mv)2 + Uφ′†φ′ − μ

]
φ′(x′, t ′), (G8)

or equivalently,

ih̄∂t ′φ′(x′, t ′) =
(

− h̄2

2m
∂2

x′ + Uφ′†φ′ − μ

)
φ′(x′, t ′). (G9)

Now we compare the energies of φ(x, t ) and φ0(x, t ). The
energy of φ0(x, t ) is,

H̃φ[φ0] =
∫

dx

[
h̄2

2m
(∂xφ

†
0 )(∂xφ0) + U

2
(φ†

0φ0)2 − μφ
†
0φ0

]
= E0 + 1

2
mv2Q0, (G10)

where

E0 =
∫

dx

(
U

2
ρ2

0 − μρ0

)
= −μ

2

∫
dxρ0,

Q0 =
∫

dxρ0. (G11)

The energy of φ(x, t ) is

H̃φ[φ] =
∫

dx

[
h̄2

2m
(∂xφ

†)(∂xφ) + U

2
(φ†φ)2 − μφ†φ

]

=
∫

dxφ′†(x − vt, t )

[
1

2m
(−ih̄∂x + mv)2

+ U

2
φ′†φ′ − μ

]
φ′(x − vt, t )

=
∫

dxφ′†(x, t )

[
1

2m
(−ih̄∂x + mv)2

+ U

2
φ′†φ′ − μ

]
φ′(x, t )

=
∫

dxφ′†(x, t )

[
− h̄2

2m
∂2

x − ivh̄∂x + 1

2
mv2

+ U

2
φ′†φ′ − μ

]
φ′(x, t )

= H̃φ[φ′] + vPφ[φ′] + 1

2
mv2Qφ[φ′], (G12)

where

Pφ[φ′] =
∫

dxφ′†(x, t )(−ih̄∂x )φ′(x, t ),

Qφ[φ′] =
∫

dxφ′†(x, t )φ′(x, t ). (G13)

Thus the energy difference between φ(x, t ) and φ0(x, t ) is

�Eφ[φ, φ0] = H̃φ[φ] − H̃φ[φ0]

= (H̃φ[φ′] − E0) + vPφ[φ′]

+ 1
2 mv2(Qφ[φ′] − Q0). (G14)

For φ′ that satisfies EOM (G9), energy Hφ[φ′], momentum
Pφ[φ′], and U(1) charge Qφ[φ′] must be all conserved. This is
because from Eq. (G9), φ′(x, t ) is a solution of Eq. (G2).

The average velocity of φ(x, t ) is not small, while φ′(x, t )
can be assumed at the near-equilibrium limit [44]. In this limit,
the EOM of φ′ = √

ρ0 + δρ ′eiθ ′
can be described by a wave

equation of δρ ′ and θ ′,

∂2
t θ

′(x, t ) − ρ0U

m
∂2

x θ
′(x, t ) = 0, (G15)

δρ ′(x, t ) = − h̄

U
∂tθ

′(x, t ). (G16)

Thereby, θ ′(x, t ) is given by a superposition of oscillations,

θ ′(x, t ) = 1√
L

∑
q

[ fqeiq(x−vct ) + f ′
qeiq(x+vct )],

vc =
√

ρ0U

m
. (G17)

In the near-equilibirum limit of φ′, we evaluate the energy
difference in the leading order in small fq and f ′

q,

H̃φ[φ′] − E0 =
∫

dx

[
h̄2ρ0

2m
(∂xθ

′)2 + U

2
(δρ ′)2

]
=

∫
dx

[
h̄2ρ0

2m
(∂xθ

′)2 + h̄2

2U
(∂tθ

′)2

]
= h̄2ρ0

m

∑
q

q2(| fq|2 + | f ′
q|2), (G18)
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Pφ[φ′] =
∫

dxh̄δρ ′(∂xθ
′) = − h̄2

U

∫
dx(∂tθ

′)(∂xθ
′)

= h̄2ρ0

mvc

∑
q

q2(| fq|2 − | f ′
q|2), (G19)

Qφ[φ′] − Q0 =
∫

dxδρ ′ = 0. (G20)

Taking Eqs. (G18)–(G20) into Eq. (G14), we have

�Eφ = h̄2ρ0

m

∑
q

q2

[(
1 + v

vc

)
| fq|2 +

(
1 − v

vc

)
| f ′

q|2
]
.

(G21)

To make �Eφ � 0 for any (small) fq and f ′
q, we obtain the

Landau criterion,

|v| � vc =
√

ρ0U

m
. (G22)

APPENDIX H: LOCAL DEFORMATIONS
OF CLASSICAL SOLUTIONS OF THE EOM

The superfluid state with a finite supercurrent is charac-
terized by the solution θ (x, t ) of the classical EOM in the
1D spin-injection model (e.g., with the straight geometry). In
Sec. V, we introduced its local deformation θ (x, t ) + δθ (x, t )
as another solution of the EOM with different boundary con-
ditions. We regarded that δθ (x, t ), as well as θ (x, t ), can be
determined perturbatively in the SOC (α). At the zeroth order
in SOC, θ + δθ , as well as θ , is a solution of ∂2

t θ − ∂2
x θ = 0,

and so is δθ . Since δθ (x, t ) is a local deformation and its
spacetime derivatives should not contain any uniform com-
ponents in space, the zeroth order of δθ (x, t ) must be given by
Eq. (D6);

δθ0(x, t ) = 1√
L

∑
q

[δdqeiq(x−t ) + δd ′
qeiq(x+t )]. (H1)

In this Appendix, for a given form of Eq. (D6) as the zeroth or-
der, we will show how to determine the first order of δθ (x, t );

δθ (x, t ) = δθ0(x, t ) + δθ1(x, t ) + O(α2). (H2)

We first give a general framework to determine δθ . θ + δθ ,
as well as θ , is a local minimum of the action, S = ∫

d3rL ≡∫
dtd2rL, and δθ is infinitesimally small. Thus we take a δθ

variation of S;

S[θ ] ≡ Sxx[θ ] + Syy[θ ] + Sxy[θ ] + 1

2

∫
d3r(∂tθ )2, (H3)

Sxx ≡ −1

2

∫
d3r(∂xθ )2[1 − α cos(2θ )],

Syy ≡ 1

2

∫
d3r(∂yθ )2[1 + α cos(2θ )], (H4)

Sxy ≡ α

∫
d3r(∂xθ )(∂yθ ) sin(2θ ).

The first-order variation just gives EOM (B5),

δS = δSxx + δSyy + δSxy −
∫

d3r(δθ )
(
∂2

t θ
)
, (H5)

δSxx ≡
∫

d3r(δθ )
{(

∂2
x θ

)
[1 − αcos(2θ )]

+ α(∂xθ )2sin(2θ )
}
, (H6)

δSyy ≡
∫

d3r(δθ )
{(

∂2
y θ

)
[1 + αcos(2θ )]

− α(∂yθ )2sin(2θ )
}
, (H7)

δSxy ≡ −2α
∫

d3r(δθ )[(∂x∂yθ )sin(2θ )

+ (∂xθ )(∂yθ )cos(2θ )]. (H8)

δS vanishes since θ is an extremum or a saddle point of S. The
second-order variation δ2S determines small deformation δθ

in such a way that θ + δθ is an extremum or a saddle point of
S. Sxx gives

δ2Sxx =
∫

d3r(δθ )
{(

∂2
x δθ

)
[1 − αcos(2θ )]

+ 2α
(
∂2

x θ
)
sin(2θ )(δθ ) + 2α(∂xθ )(∂xδθ )sin(2θ )

+ 2α(∂xθ )2cos(2θ )(δθ )
}

= −
∫

d3r
[
(∂xδθ )2 + αcos(2θ )(δθ )∂2

x (δθ )

− 2αsin(2θ )
(
∂2

x θ
)
(δθ )2 − 2α(∂xθ )(δθ )(∂xδθ )sin(2θ )

− 2α(∂xθ )2cos(2θ )(δθ )2
]
, (H9)

where∫
d3rαcos(2θ )(δθ )∂2

x (δθ )

= −
∫

d3rα∂x[cos(2θ )(δθ )](∂xδθ )

=
∫

d3r[2αsin(2θ )(∂xθ )(δθ )(∂xδθ ) − αcos(2θ )(∂xδθ )2].

(H10)

Taking Eq. (H10) into Eq. (H9), we get

δ2Sxx = −
∫

d3r
{
(∂xδθ )2[1 − αcos(2θ )] − 2α(δθ )2

× [
cos(2θ )(∂xθ )2 + sin(2θ )

(
∂2

x θ
)]}

. (H11)

Similarly, we get

δ2Syy = −
∫

d3r
{
(∂yδθ )2[1 + αcos(2θ )]

+ 2α(δθ )2
[
cos(2θ )(∂yθ )2 + sin(2θ )

(
∂2

y θ
)]}

. (H12)

Sxy gives

δ2Sxy = −2α
∫

d3r(δθ )[(∂x∂yδθ )sin(2θ )

+ 2(δθ )cos(2θ )(∂x∂yθ ) + (∂xδθ )(∂yθ )cos(2θ )

+ (∂yδθ )(∂xθ )cos(2θ ) − 2(δθ )sin(2θ )(∂xθ )(∂yθ )],

(H13)
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where

−α

∫
d3r(δθ )(∂x∂yδθ )sin(2θ ) = α

∫
d3r(∂yδθ )[(∂xδθ )sin(2θ ) + 2(δθ )cos(2θ )(∂xθ )]

= α

∫
d3r(∂xδθ )[(∂yδθ )sin(2θ ) + 2(δθ )cos(2θ )(∂yθ )]. (H14)

Taking Eq. (H14) into Eq. (H13), we get

δ2Sxy = 2α
∫

d3r{(∂xδθ )(∂yδθ )sin(2θ ) + 2(δθ )2[sin(2θ )(∂xθ )(∂yθ ) − cos(2θ )(∂x∂yθ )]}. (H15)

Besides, we have

−δ

∫
d3r(δθ )(∂2

t θ ) =
∫

d3r(δ∂tθ )2. (H16)

Combining Eqs. (H11), (H12), (H15), and (H16) together, we obtain the second-order variation of S with respect to
small δθ ,

Sδθ = 1

2
δ2S =

∫
d3r

{
1

2
(∂tδθ )2 − 1

2
(∂xδθ )2[1 − αcos(2θ )] − 1

2
(∂yδθ )2[1 + αcos(2θ )] + α(∂xδθ )(∂yδθ )sin(2θ )

+ α(δθ )2{2sin(2θ )(∂xθ )(∂yθ ) + cos(2θ )[(∂xθ )2 − (∂yθ )2] + sin(2θ )
(
∂2

x θ − ∂2
y θ

) − 2cos(2θ )(∂x∂yθ )}
}
. (H17)

Here θ is a solution of the classical EOM. Given such θ , we have only to find those δθ that makes δSδθ [δθ ] = 0.
In the following, we focus on the 1D solution (∂yθ = ∂yδθ = 0) for simplicity, and neglect the integral over y, while the

following derivation can be generalized to ∂yδθ �= 0. The action becomes in the 1D model

K ≡ Sδθ |∂yθ=∂yδθ=0

=
∫ ∞

−∞
dt

∫
L

dx

{
1

2
(∂tδθ )2 − 1

2
(∂xδθ )2[1 − αcos(2θ )] + α(δθ )2

[
(∂xθ )2cos(2θ ) + (

∂2
x θ

)
sin(2θ )

]}
. (H18)

We substitute into K a perturbative solution of θ in α, e.g., Eq. (18), and expand K in powers of α. This gives

K = K0 + K1 + K2 + O(α3), (H19)

where Kn = O(αn). K is a quadratic function of δθ . In terms of a Fourier transform of δθq,ω,

δθq,ω = 1√
L

∫
L

dx
∫ ∞

−∞
dt δθ (x, t )e−iqx+iωt , (H20)

the quadratic function can be characterized by matrix elements among wave number q and frequency ω;

K = 1

L

∑
q,q′

∫
dω

2π

∫
dω′

2π
δθ†

q,ωKq,ω;q′,ω′[θ ]δθq′,ω′ . (H21)

Let us take a solution θ (x, t ) for the spin-injection model with the straight geometry as an example. We first take a part of
θ (x, t ) with only one spatial wavelength from Eqs. (C8) and (C13),

θ (x, t ) = θ0(x, t ) + θ1(x, t ) + O(α2), (H22)

θ0(x, t ) = − j0x + j0k0t,

θ1(x, t ) = α

4
(
k2

0 − 1
) sin(2 j0x − 2 j0k0t ). (H23)

An inclusion of θ2(x, t ) shall be given later. The zeroth order of K is given by

K0 = 1

2

∫
dt

∫
L

dx [(∂tδθ )2 − (∂xδθ )2]

= 1

2

∑
q

∫
dω

2π
δθ†

q,ω(ω2 − q2)δθq,ω. (H24)
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A substitution of Eq. (H23) into O(α) terms in Eq. (H18) gives K1 and K2,

α

2
(∂xδθ )2cos(2θ0 + 2θ1) + α(δθ )2(∂xθ0 + ∂xθ1)2cos(2θ0 + 2θ1) + α(δθ )2

(
∂2

x θ0 + ∂2
x θ1

)
sin(2θ0 + 2θ1)

= α

2
(∂xδθ )2cos(2θ0) + α(δθ )2(∂xθ0)2cos(2θ0) − α(∂xδθ )2sin(2θ0)θ1 − 2α(δθ )2(∂xθ0)(∂xθ1)cos(2θ0)

− 2α(δθ )2(∂xθ0)2sin(2θ0)θ1 − α(δθ )2
(
∂2

x θ1
)
sin(2θ0) + O(α3)

= α

2
(∂xδθ )2cos(2 j0x − 2k0 j0t ) + α j2

0 (δθ )2cos(2 j0x − 2 j0k0t ) + α2(∂xδθ )2

4
(
k2

0 − 1
) sin2(2 j0x − 2 j0k0t )

− α2 j2
0 (δθ )2

k2
0 − 1

cos2(2 j0x − 2 j0k0t ) + α2 j2
0 (δθ )2

2
(
k2

0 − 1
) sin2(2 j0x − 2 j0k0t ) + α2 j2

0 (δθ )2

k2
0 − 1

sin2(2 j0x − 2 j0k0t ) + O(α3). (H25)

Equivalently, we have

K1 = α

∫
dt

∫
L

dx

[
1

2
(∂xδθ )2cos(2 j0x − 2 j0k0t ) + j2

0 (δθ )2cos(2 j0x − 2 j0k0t )

]

= α

∫
dt

∫
L

dx

[
1

4L

∑
q,q′

∫
ω,ω′

qq′δθ†
q,ωδθq′,ω′ + j2

0

2L

∑
q,q′

∫
ω,ω′

δθ†
q,ωδθq′,ω′

]
e−iqx+iωt eiq′x−iω′t e2i j0x−2i j0k0t + H.c.

= α

4

∑
q

∫
ω

δθ
†
q+2 j0,ω+2 j0k0

δθq,ω
[
q(q + 2 j0) + 2 j2

0

] + H.c. = α

4

∑
q

∫
ω

δθ
†
q+ j0,ω+ j0k0

δθq− j0,ω− j0k0

(
q2 + j2

0

)
e−2i j0k0t + H.c.,

(H26)

K2 = α2
∫

dt
∫

L
dx

{
(∂xδθ )2

8
(
k2

0 − 1
) [1 − cos(4 j0x − 4 j0k0t )] − j2

0 (δθ )2

k2
0 − 1

cos(4 j0x − 4 j0k0t ) + j2
0 (δθ )2

4
(
k2

0 − 1
) [1 − cos(4 j0x − 4 j0k0t )]

}

= α2

8
(
k2

0 − 1
) ∑

q

∫
dω

2π
δθ†

q,ωδθq,ωq2 + α2 j2
0

4
(
k2

0 − 1
) ∑

q

∫
dω

2π
δθ†

q,ωδθq,ω

− α2

16
(
k2

0 − 1
) ∑

q

∫
dω

2π

{
δθ

†
q+2 j0,ω+2 j0k0

δθq−2 j0,ω−2 j0k0

[(
q2 − 4 j2

0

) + 8 j2
0 + 2 j2

0

]
e−4i j0k0t + H.c.

}
= α2

8
(
k2

0 − 1
) ∑

q

∫
dω

2π
δθ†

q,ωδθq,ω
(
2 j2

0 + q2
) − α2

16
(
k2

0 − 1
) ∑

q

∫
dω

2π

[
δθ

†
q+2 j0,ω+2 j0k0

δθq−2 j0,ω−2 j0k0

(
q2 + 6 j2

0

) + H.c.
]
.

(H27)

Taking Eqs. (H24), (H26), and (H27) into Eq. (H20), we obtain the matrix elements,

1

2π
Kq+p,ω+ν;q−p,ω−ν = (ω2 − q2)δp,0δ(ν) + α

(
q2 + j2

0

)
2

(
δp, j0δ(ν − j0k0) + δp,− j0δ(ν + j0k0)

)
− α2

8
(
k2

0 − 1
) [− 2

(
2 j2

0 + q2
)
δp,0δ(ν)+ (

q2 + 6 j2
0

)(
δp,2 j0δ(ν − 2 j0k0) + δp,−2 j0δ(ν + 2 j0k0)

)] + O(α3).

(H28)

To find δθ that satisfies δSδθ [δθ ] = 0, we only have to find an eigenmode of K in Eq. (H21) that belongs to zero eigenvalue
(“eigenenergy”). At the zeroth order in α, eigenmodes of K are characterized by q and ω, and the “zero-energy” eigenmodes
are obtained by setting ω to be q (on-shell condition). When α is included perturbatively, eigenmodes at q and ω hybridize with
eigenmodes at q ± 2 j0 and ω ± 2 j0k0 as well as eigenmodes at q ± 4 j0 and ω ± 4 j0k0 in terms of off-diagonal mixing terms.
Due to the off-diagonal mixing terms, eigenmodes of K are characterized by q and ω modulo 2 j0 and 2 j0k0 respectively, and
(q, ω) ∈ [− j0, j0] × [−k0 j0, k0 j0] plays a role of a first Brillouin zone. In the Brillouin zone, eigenmodes at the same (q, ω) are
distinguished by a band index n,

K = 1

2

∑
n∈N

∑
− j0�q< j0

∫ k0 j0

−k0 j0

dω

2π
δϕ†

q,ω,n�q,ω,nδϕq,ω,n + O(α3), (H29)
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with

δθq+2 j0m1,ω+2k0 j0m2 =
∑
n∈N

cq,ω,n;m1,m2δϕq,ω,n, (H30)

m1 ∈ Z, m2 ∈ Z. Here, cq,ω,n;m1,m2 is analogous to the periodic part of a Bloch wave function in the band theory. From Eq. (H28)
Kq,ω;q,ω′ is real symmetric, so that cq,ω,n;m1,m2 are real. An eigenstate of the lowest energy, say δϕq,ω,n=0, must approach δθq,ω in
the limit of α → 0. Such lowest eigenmode (n = 0) is calculated up to the first order in α as follows:

cq,ω,0;m1,m2 = δm1,0δm2,0 − α
[ (q+ j0 )2+ j2

0
2

]
(ω + 2 j0k0)2 − (q + 2 j0)2 − ω2 + q2

δm1,1δm2,1

− α
[ (q− j0 )2+ j2

0
2

]
(ω − 2 j0k0)2 − (q − 2 j0)2 − ω2 + q2

δm1,−1δm2,−1 + O(α2)

= δm1,0δm2,0 − α
1 + O(q, ω)

4
(
k2

0 − 1
) δm1,1δm2,1 − α

1 + O(q, ω)

4
(
k2

0 − 1
) δm1,−1δm2,−1 + O(α2). (H31)

A corresponding “eigenenergy” is calculated up to the second order,

�q,ω,0 = ω2 − q2 + α2
(
2 j2

0 + q2
)

4
(
k2

0 − 1
) − α2

[ (q + j0 )2 + j2
0

2

]2

(ω+ 2 j0k0)2 − (q + 2 j0)2 − ω2 + q2
− α2

[ (q− j0 )2+ j2
0

2

]2

(ω − 2 j0k0)2 − (q − 2 j0)2 − ω2 + q2
+O(α3)

= ω2 − q2 + α2(2 j2
0 + q2)

4
(
k2

0 − 1
) − α2

(
2 j2

0 + 2q j0 + q2
)2

4
[
4 j2

0

(
k2

0 − 1
) + 4q j0 − 4ω j0k0

] − α2
(
2 j2

0 − 2q j0 + q2
)2

4
[
4 j2

0

(
k2

0 − 1
) − 4q j0 + 4ω j0k0

] + O(α3), (H32)

namely,

�q,ω,0 = ω2 + α2 j2
0

2

1

k2
0 − 1

− q2

[
1 − α2

4
(
k2

0 − 1
)]

− α2

16 j2
0

(
k2

0 − 1
)(

4 j4
0 + 8q j3

0 + 8q2 j2
0

)[
1 − q − ωk0

j0
(
k2

0 − 1
) + (q − ωk0)2

j2
0

(
k2

0 − 1
)2

+ O((q + ωk0)3)

]
− α2

16 j2
0

(
k2

0 − 1
)(

4 j4
0 − 8q j3

0 + 8q2 j2
0

)[
1 + q − ωk0

j0
(
k2

0 − 1
) + (q − ωk0)2

j2
0

(
k2

0 − 1
)2 + O((q + ωk0)3)

]
+ O(α3)

= ω2 + α2 j2
0

2

1

k2
0 − 1

− q2

[
1 − α2

4
(
k2

0 − 1
)]

− α2 j2
0

2
(
k2

0 − 1
) + O(α2ω2, α2q2, α2ωq, α3)

= ω2 − q2

[
1 − α2

4
(
k2

0 − 1
)]

+ O(α2ω2, α2q2, α2ωq, α3). (H33)

The lowest energy band indicates that δθ evaluated on shell, �q,ω,0 = 0, behaves like a gapless classical wave. This is because
the original theory, Eq. (6), has a spacetime translational symmetry. Thus, for any θ , one can choose δθ as a translation of θ , and
such δθ does not change the Lagrangian. For a general k0 (off the resonance point; k0 �= 1), α can be treated perturbatively, and
the classical wave up to the second order in α has a well-defined (i.e., real-valued) velocity v,

1 − α2

4
(
k2

0 − 1
) = 1 + O(α2) ≡ v2 > 0. (H34)

By evaluating the eigenmode on shell (|ω| = |q| + O(α2)|q|), we finally determine the first-order δθ1 for an arbitrary form of
δθ0 given by Eq. (H1),

δθ1(x, t ) = 1√
L

|q|< j0∑
q

∫ k0 j0

−k0 j0

dω[δ(q − ω)dq + δ(q + ω)d ′
q]

[
− α

1 + O(q)

4
(
k2

0 − 1
)ei(q+2 j0 )x − i(ω+ 2 j0k0 )t

− α
1 +O(q)

4
(
k2

0 − 1
)ei(q−2 j0 )x−i(ω−2 j0k0 )t

]
. (H35)

Finally, let us include θ2(x, t ) into Eq. (H22),

θ (x, t ) = θ0(x, t ) + θ1(x, t ) + θ2(x, t ) + O(α2), (H36)

θ2(x, t ) = 2αRe(g)cos[2k0 j0(t − x)] + 2αRe(g′)cos[2k0 j0(t + x)] − 2αIm(g)sin[2k0 j0(t − x)] − 2αIm(g′)sin[2k0 j0(t + x)].
(H37)
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Equation (H27) has an additional O(α2) contribution,

�K2 =
∫

dtdx
[ − α(∂xδθ )2sin(2θ0)θ2 + 2α(δθ )2(∂xθ0)(∂xθ2)cos(2θ0) − 2α(δθ )2(∂xθ0)2sin(2θ0)θ2 + α(δθ )2(∂2

x θ2
)
sin(2θ0)

]
.

(H38)

For k0 �= 1, �K2 contributes only to off-diagonal matrix elements of Kq,ω;q,ω, so that it changes neither Eq. (H33) nor Eq. (H35)
at their respective subleading order.
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