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Emergence of surface superconductivity through interference in proximitized topological insulators
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Proximitized topological insulators (PTIs) have received significant research attention over the past two
decades. In this paper, we demonstrate that a low-dimensional PTI in the topologically nontrivial phase (TP)
exhibits interference-induced surface superconductivity (SSC) at the system ends/edges with the critical tem-
perature Tcs significantly higher than Tcb deep inside the system (low-dimensional bulk). Such an SSC is built due
to the interference of the scattering quasiparticle states, rather than the presence of the topological bound states
(TBSs). As the system delves deeper into the TP, a nontrivial competition between the scattering quasiparticles
and TBSs at the surface leads to a crossover from the interference- to TBS-induced phase, where the SSC is
governed by the TBSs. Our paper unveils a substantial variation in the maximal Tcs along this crossover, attaining
values being twice the maximal Tcb of the PTI. Beyond shedding light on the nature of the SSC in PTIs, our paper
introduces a tangible method for experimentally manipulating their critical superconducting temperatures.

DOI: 10.1103/PhysRevB.109.224514

I. INTRODUCTION

Proximitized topological insulators (PTIs) have been stud-
ied intensively in the past two decades, due to the exotic
behavior of decoherence-immune topological bound states
(TBSs) under various superconducting interactions [1–6].
The point of common interest in the context of PTIs is the
Majorana quasiparticles considered as a solid candidate for
qubits [7]. It has been predicted that they can appear in the
core of an s-wave superconducting vortex [1–3,8], at the nodes
of unconventional order parameters [9,10] or at the ferromag-
net topological insulator/superconductor interface [11,12].
Moreover, besides Majorana states, the PTIs exhibit an
unconventional Josephson effect [13], odd-frequency super-
conductivity (SC) [14], and coexistence of the TBSs and SC
in bismuth and stanene ultrathin films [15,16], etc.

The superconducting properties of PTIs have been inves-
tigated in many works [17–23]. In particular, the suppression
of the condensate at a PTI interface has been reported [18–21]
and confirmed by the observed Andreev spectra [24]. Such
a suppression assumes a drop in the superconducting critical
temperature Tc. However, the dynamical mean-field theory
has shown that a two-dimensional attractive (s-wave) Hubbard
model with Rashba spin-orbital coupling and a Zeeman field
exhibits an enhanced Tc [25]. Further studies are warranted to
reconcile these contradictory findings regarding Tc in PTIs and
advance our understanding, paving the way for controllable
manipulations of Tc in PTIs.

Recently, an exotic interference-induced surface SC (SSC)
in the absence of magnetic fields has been predicted within
an s-wave superconducting Hubbard model with a trivial
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lattice [26–28], where the surface condensate survives be-
tween the bulk Tcb and surface Tcs critical temperatures (Tcs >

Tcb) due to interference of scattering (nonlocalized) quasipar-
ticles. The SSC enhancement τ = |Tcs − Tcb|/Tcb can go up to
about 70% [29,30]. Notice that here, the term “interference”
refers to the enhancement of the SSC resulting from the super-
position of states spread throughout the whole system, rather
than being localized near the boundaries. Then, the following
questions arise: Can interference-induced SSC exist in PTIs?
If so, does it appear only in the topologically trivial regime, or
can it coexist with TBSs? This is of particular importance for
low-dimensional PTIs due to pronounced proximity effects.

In the present paper, based on the one-dimensional Su-
Schrieffer-Heeger (SSH) model at the half filling [4,5,31–
35], we demonstrate that a robust interference-induced SSC
can occur in low-dimensional PTIs. Strikingly, it is mi-
nor in the topologically trivial phase (TTP) of the SSH
chain but extremely pronounced in the topological phase
(TP) in the presence of the TBSs. The complex interplay
(competition/cooperation) of the interference- and TBS-
induced contributions to the SSC can be tuned by the
staggering parameter δt . In the TP, the interference-induced
SSC predominates as δt approaches zero, while for δt → −1
the TBS-induced SSC prevails. Our results reveal that the
maximal Tcs in the interference- and TBS-induced regimes
of the SSC surpasses the maximal low-dimensional bulk Tcb

(taken deep in the chain for the standard Hubbard model with
δt = 0) by factors of 1.9 and 2.5, respectively.

II. THEORETICAL MODEL

We investigate the SSH chain deposited on top of
an s-wave superconductor [see Fig. 1(a)]. The model
Hamiltonian includes the normal SSH term (without
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FIG. 1. (a) A proximitized SSH chain. (b) The topological invariant ν as a function of δt without superconducting correlations. (c) The
surface (end) and bulk pair potentials, �s = �(i0 = 1) and �b = �(i0 = N/2), vs δt . (d)–(l) The spatial pair potential �(i) together with the
single-electron and quasiparticle energies ξα and εα for δt = −0.4, 0, and 0.2 at T = 0. Only the quasiparticles with εα � 0 (i.e., α � 301) are
physical and contribute to �(i), as displayed in Eq. (2).

pairing) [4,5] H0 = −∑
jσ (t + δt )c†

Ajσ
cBjσ − ∑

jσ (t −
δt )c†

Aj+1σ
cBjσ − ∑

jσ μ(c†
Ajσ

cAjσ + c†
Bjσ

cBjσ ) and the effective
proximitized interaction HSC = −g

∑
i ni↑ni↓. Here, the

indices i(= 1, . . . , N ) and j(= 1, . . . , N/2) enumerate
the chain and sublattice A(B) sites, and an odd (even) i
corresponds to the A(B) sublattice; cA(B) jσ and c†

A(B) jσ
are the

annihilation and creation operators of an electron with the spin
σ on the sites A(B) j ; niσ is the site-dependent electron number
operator, t ± δt are the hopping amplitudes in a unit cell and
between neighboring unit cells, μ is the chemical potential,
and g(>0) is the effective coupling. We recall that the
normal SSH chain in the TP with δt < 0 hosts TBSs and two
scattering branches E± = ±

√
2[t2 + δt2 + (δt2 − t2)cosk],

with k being the dimensionless wave number [5]. For δt > 0
one gets the TTP with the same E± but excluding the TBSs.
Our consideration follows the phenomenological Fu-Kane
model [1] where the Cooper-pair tunneling is taken into
account by including the s-wave pairing term HSC.

Applying the mean-field approximation H ′
SC =∑

j [�(Aj )c
†
Aj↑c†

Aj↓ + �(Bj )c
†
Bj↑c†

Bj↓ + H.c.] and diago-
nalizing the effective Hamiltonian Heff = H0 + H ′

SC [36], one
gets the Bogoliubov–de Gennes (BdG) equations

εαuα (i) =
∑

i′
Hii′uα (i′) + �(i)vα (i), (1a)

εαvα (i) = �∗(i)uα (i) −
∑

i′
H∗

ii′vα (i′), (1b)

where {εα, uα (i), vα (i)} are the quasiparticle energies
and wave functions, with α enumerating the states
in the energy ascending manner, Hii′ = −∑

η=±1[t −
(−1)isgn(η)δt]δi′,i+η − μδii′ , and the pair potential �(i)
obeys the the s-wave self-consistency relation

�(i) = g〈ci↑ci↓〉 = g
∑

εα�0

uα (i)v∗
α (i)[1 − 2 f (εα )], (2)

with fα = f (εα ) the Fermi-Dirac function. At the half filling
n̄e = ∑

i ne(i)/N = 1, with ne(i) the electron density. This is
guaranteed by the self-consistent calculation of the chemi-
cal potential μ according to ne(i) = 2

∑
α [ fα|uα (i)|2 + (1 −

fα )|vα (i)|2]. Finally, to investigate surface (end) effects, the
open boundary conditions are employed for uα (i) and vα (i).

Here we note that the mean-field approximation is well
justified in our paper, as the SSH chain is coupled to the
stable three-dimensional bulk condensate. In this case severe
one-dimensional superconductive fluctuations are suppressed
by this coupling, as it has been demonstrated in the previous
works [37–39].

Below, the energy-related quantities, such as �(i), δt , εα ,
and g, are given in the units of the hopping parameter t , while
T is in the units of t/kB, with kB the Boltzmann constant.
The following parameters are used in our calculations: n̄e = 1,
g = 2, and N = 300. The self-consistency convergence accu-
racy for �(i) is 10−12.

III. RESULTS AND DISCUSSIONS

A. Interference-induced SSC

To begin the discussion of our numerical results, we con-
sider the effects of varying the hopping staggering parameter
δt at T = 0. The topological invariant ν (the winding num-
bers) is shown versus δt in Fig. 1(b) for �(i) = 0. The
topological phase transition occurs at δt = 0 in the normal
SSH model [5] at n̄e = 1 so that the system is in the TP with
TBSs for δt < 0, and in the TTP without TBSs for δt > 0. The
SC in the TP and TTP phases is reflected in the crucial depen-
dence of the pair potential on δt [see Fig. 1(c)], where the
end �s = �(i = 1, N ) and bulk �b = �(i = N/2) are shown
versus δt at T = 0. One can see that the superconducting
correlations disappear when the system goes deep in the TTP
while they survive (at the ends) deep in the TP.
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Usually, it is believed that only the surface of a PTI is
superconducting, so one could expect that the pair potential
in the proximitized SSH chain is nonzero only near the chain
ends. However, surprisingly, we find that �b can be tuned
by δt , as seen from Fig. 1(c). The curve for �b exhibits a
dome structure symmetric with respect to the point δt = 0.
We obtain �b = 0 for |δt | � δtc = 0.18 while the maximum
of the bulk �b,max = 0.34 is reached at δt = 0, with the ratio
�b,max/δtc = 1.89. This symmetry of �b is directly related
to the symmetry of E± with respect to the sign change of
δt [see discussions above the BdG Eqs. (1)]. At n̄e = 1 the
chemical potential μ is located in the gap between E+ and
E−, which results in large quasiparticle energies εα . When |δt |
increases, the gap increases together with εα , which results in
reducing �b. Finally, it vanishes at |δt | = δtc. The behavior
of �s is remarkably different. For δt > 0, �s also disappears
at δt � δtc. However, for δt < 0, the dependence of �s on
δt changes dramatically due to the appearance of the TBSs
affecting the interference of the scattering states near the ends.

Further details about the dependence of our results
on δt can be obtained from Figs. 1(d)–1(l). In partic-
ular, in Figs. 1(d)–1(f) one can see the site-dependent
pair potential �(i) calculated at T = 0 for δt = −0.4, 0,
and 0.2, respectively. In Figs. 1(g)–1(i) one can see the
normal-SSH single-particle energy calculated as [40,41] ξα =∑

ii′ u∗
α,0(i′)Hii′uα,0(i) + v∗

α,0(i′)Hii′vα,0(i) and shown versus
α, where uα,0(i) and vα,0(i) correspond to g = 0. Our results
of ξα match E± (the chemical potential is zero), when tak-
ing k = ( α

N − 1)π . Finally, the corresponding quasiparticle
energies εα are given in Figs. 1(j)–1(l). Figures 1(d), 1(g),
and 1(j) show the results for δt = −0.4, deep in the TP regime.
We find �s = 0.924 while �b is zero. One can see that the
single-particle spectrum ξα contains two branches (E±) and
four TBSs with α = 299, 300, 301, and 302. However, only
the states with positive εα (i.e., the states with α � 301) are
physical and should be taken into account in Eq. (2).

When δt becomes zero, as shown in Figs. 1(e), 1(h),
and 1(k), the proximitized SSH model degenerates into the
attractive Hubbard model [27,29,30,42]. Here, �b goes up to
0.340 while �s drops to 0.544, and, the gap in the single-
particle spectrum ξα is closed. Finally, deep in the TTP at δt =
0.2, as shown in Figs. 1(f), 1(i), and 1(l), the site-dependent
superconducting correlations disappear both in bulk and at the
ends of the chain, and εα approaches ±|ξα| (i.e., E±). The
single-particle spectrum ξα in Figs. 1(g)–1(i) demonstrates
signatures of the topological phase transition, including the
opening of the band gap and the appearance of the zero-
energy TBSs. However, there are no zero-energy states in the
quasiparticle spectrum, as the SSH system with the on-site
attraction is not a topological superconductor.

Now, to go into more detail, we investigate the quasiparti-
cle contributions to the end pair potential �s at both the left
(i = 1) and right (i = N) sides of the system. By taking δt =
−0.4 as an example, Fig. 2 illustrates the single-species quasi-
particle contributions �α (i = 1, N ) to �s at T = 0, utilizing
the definition �α (i) = guα (i)v∗

α (i)[1 − 2 f (εα )]. Figures 2(c)
and 2(d) are the zoom-in plots of Figs. 2(a) and 2(d), re-
spectively. The quasiparticle state of α = 302 gives the max-
imal contribution to the SSC at i = 1: �302(i = 1) = 0.494
with the percentage ωT = �302(i = 1)/�(i) = 53.5%. The

FIG. 2. (a), (b) Single-species quasiparticle contributions �α (i =
1, N ) as functions of α for δt = −0.4 and T = 0. The insets and
panels (c) and (d) are zoomed-in views of (a) and (b).

single-species contributions of the other states are tiny, e.g.,
the second largest one comes from the state with α = 380,
being 0.29%. A similar picture takes place near the right end.
The only difference is that the maximal contribution comes
from the state with α = 301 [see Fig. 2(b)].

It is important to recall that the states with α = 301 and 302
for δt = −0.4 and T = 0 have zero single-particle energy, as
shown in Fig. 1(g). One can find from Fig. 3 that the wave
functions of these states are localized near the chain ends.
Thus, the quasiparticles with α = 301 and 302 are indeed
related to the TBSs of the SSH model. Their inputs to the pair
potential �α=301,302(i) are localized near the chain ends [see
Figs. 3(a) and 3(d)], so that these states contribute only to the
SSC. The remaining quasiparticle states are not bound near
the ends, being the scattering states. For example, one can see

FIG. 3. (a)–(f) �α (i), uα (i), and vα (i) of the topological bound
states (TBSs) with α = 301 and 302 for δt = −0.4 at T = 0. (g)–(i)
The same but for the scattering state with α = 380.
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FIG. 4. (a) The contribution percentages of the TBSs and scatter-
ing states to �(i = 1), i.e., ωT and ωI , as functions of δt at T = 0.
(b) The phase diagram of the system in the T -δt plane. The curve
with red spheres represents Tcs vs δt , and the curve with wine-color
stars corresponds to the δt-dependent Tcb. The dashed vertical line
(δt = 0) marks the boundary between the TP and TTP.

from Figs. 3(g)–3(i) that the quasiparticle wave functions and
the single-species quasiparticle contribution to the pair poten-
tial for the state with α = 380 are spread all over the chain,
with no sign of any localization. However, the constructive
interference of all such scattering states produces a significant
contribution to the end pair potential [ωI = 1 − ωT = 46.5%,
as seen in Fig. 2(c)] while their destructive interference results
in the suppression of �b (see Refs. [27,29,30,42]).

The competition between the interference- and TBS-type
contributions to the SSC (i.e., ωI versus ωT ) is highly sensitive
to δt . Figure 4(a) shows ωI and ωT as functions of δt for g = 2
at T = 0. Both the TBS- and interference-type contributions
vary significantly with changing δt . For example, ωT drops
from 100% at δt = −1 to nearly 1% at δt = −0.22 while
ωI increases from 0% to almost 99% in the same δt range.
Therefore, the interference-induced SSC predominates for
δt � −0.22. Near δt = −1, the system shows the well-known
TBS-type SSC. The crossover intermediate regime, with the
competing TBS- and interference-induced contributions, is
realized for −0.9 < δt < −0.22.

B. Tunable critical temperatures and phase diagram

Now, we study the upper (surface) and lower (bulk) criti-
cal temperatures of the proximitized SSH chain, i.e., Tcs and
Tcb defined by the conditions �s(T � Tcs) = 0 and �b(T �
Tcb) = 0. Figure 4(b) shows Tcs (red spheres) and Tcb (wine-
color stars) as functions of the hopping staggering parameter
δt . The dependencies of Tcs and Tcb on δt are similar to those
of �s and �b at T = 0 in Fig. 1(c). This implies that the
ratios γs,b = �s,b(T = 0)/kBTcs,b are not very sensitive to δt .
In particular, we find that γb ≈ 1.73, which is close to the
case of the conventional BCS superconductors 1.76. In turn,
γs slightly increases from 2.00 at δt = −1 to 2.23 at δt = 0.
One can also learn from Fig. 4(b) that Tcs and Tcb can be
controlled and fine tuned by changing δt . In particular, Tcs

is about 0.50 at δt = −1, decreases with increasing δt , and

vanishes at δt = δtc. In turn, Tcb is equal to zero for |δt | � δtc
while reaching its maximum 0.20 at δt = 0.

As seen in Fig. 4(b), the Tcs and Tcb curves, together with
the dashed vertical line δt = 0 (above the Tcs), divide the
T -δt plane into four domains with different quantum phases.
The nonsuperconducting TTP and TP appear at δt > 0 and
δt < 0 above the Tcs curve, respectively. In these two phases,
�(i) equals zero in the entire system, including the bulk
and surface regions. The bulk SC phase is located below
the Tcb curve about δt = 0 (the dark green region). Finally,
the domain of the SSC phase is located between the Tcs

and Tcb curves, where �(i) is nonzero only near the chain
edges. Three subdomains can be classified: For ωI � 99% we
have the interference-induced SSC (the light blue region with
δt � −0.22); the TBS-induced SSC corresponds to ωI � 1%
(the red region with δt � −0.9); the intermediate (crossover)
SSC is defined by 1 < ωI < 99% (the yellow region with
−0.9 < δt < −0.22). Thus, we arrive at the main conclusion
of the present paper: the interference-induced SSC plays a
crucial role when the proximitized SSH chain is in the TP
regime. Surprisingly, one cannot explain the SSC properties
in PTIs only by the presence of the TBSs since the surface
constructive interference of the scattering quasiparticles is
significant, as well.

C. Possible experimental realization

To experimentally observe our results, one can employ
an SSH-type material such as conducting polymers [31,32],
e.g., polyacetylene and polythiophene; transition-metal
monochalcogenide nanowires, e.g., M6X6 (M = Mo and
W; X = S, Se, and Te) [43–46]; artificial atomic dimer
chains made by vacancy sites [47]; and graphene nanorib-
bons [48,49]. The key controlling parameter (δt) for the
SSC crossover and Tcs is associated with the energy gap
(�Emin) between the two non-SC bands of these systems, i.e.,
δt = �Emin/4 [31,32,47], which can be tuned by chemical
synthesis, doping, strain engineering, etc. Furthermore, ac-
cording to our numerical results, it is reasonable to expect
that other one- and two-dimensional topological insulators
under the s-wave superconducting proximity may also exhibit
interference-induced SSC and enhanced Tcs if the energies of
the TBS-related quasiparticles are nonzero. Recall that the
zero-energy TBS quasiparticles (i.e., Majorana quasiparticles)
are normally hosted in the regions with a suppressed SC.

IV. CONCLUSIONS

The self-consistent numerical BdG calculations for an
s-wave proximitized SSH chain have elucidated the emer-
gence of the SSC through the interference of scattering
quasiparticle states, rather than due to the TBSs local-
ized near the chain edges. The constructive interference of
scattering quasiparticle states results in an enhanced SSC
near the chain edges, whereas their destructive interference
tends to suppress the bulk SC in the chain center. As the
system progresses deeper into the TP by decreasing the hop-
ping staggering parameter, the SSC undergoes a crossover
from the interference-dominated regime to the TBS-induced
regime. In this crossover, the surface critical temperature (Tcs)
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experiences a significant increase, while the bulk critical tem-
perature remains zero. The maximal Tcs coincides with the
transition to the TBS-dominated SSC regime. Our findings
shed light on the nature of the SSC in PTIs and highlight the
potential for experimentally modulating the critical tempera-
tures of these materials.
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