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Quantifying exchange effects in incommensurate solid 4He
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In this paper, we use path-integral Monte Carlo (PIMC) simulations to study how the permutation effect,
a specific quantum exchange phenomenon, affects the stability of incommensurate solid 4He with vacancy
defects. By comparing simulations within Bose and Boltzmann statistics, we isolate the effects of quantum
exchange. We examine the solids with densities from 0.028 to 0.035 Å−3 and vacancy concentrations from
0.55 to 5.55% in the temperature range 0.2–2.0 K. The calculations show that permutations reduce the vacancy
formation energy by up to 19%, especially at lower densities. Vacancies in the studied concentration range
can lead to lattice distortions with a reduction in the local density of 1% to 5% and a compensatory increase
in the neighboring regions. The Bose statistics influence the local atomic arrangement, which is reflected in
the pair-correlation function, with the peaks and valleys changing by about 2% at larger distances. Permutation
effects on the vacancy formation energy show a dependence on density and temperature with “steplike behavior”.
Our results demonstrate that quantum statistics play a significant role in shaping the structure and stability of
solid 4He-containing vacancies.
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I. INTRODUCTION

4He, known for its quantum phenomena, exhibits several
anomalous behaviors that distinguish it from conventional
materials. In particular, it exhibits phenomena such as super-
fluidity and Bose-Einstein condensation (BEC) in the liquid
phase, the ability to remain liquid at absolute zero, and
significant zero-point motion in the solid phase. The conun-
drum becomes even greater when we face the challenge of
solidifying helium at absolute zero, which is only possible
under external pressure, typically around 25 atmospheres.
This necessity arises from the unique properties of helium,
its low atomic mass, its weak interatomic potential, and its
pronounced zero-point motion. The resulting phase diagram
is strongly influenced by quantum effects, making mean-
field theories and perturbation approaches inadequate. Solid
helium thus becomes a ubiquitous system for studying the
properties of quantum solids.

Despite the elusive evidence of solid helium with super-
fluid properties, experimental efforts have revealed remark-
able properties such as giant plasticity and mass flow [1–4].
In recent years, attention has shifted to metastable solid 4He,
a phenomenon that has only been observed relatively recently
[5–7]. Theoretical studies aimed at understanding the stability
limit have been concerned with determining the spinodal pres-
sure of solid hcp 4He, which often deviates significantly from
experimental values due to neglected crystalline defects [8,9].
Crucially, the destabilization pressure of hcp 4He appears to
be related to a heterogeneous nucleation process triggered
by defects. Experimental evidence suggests that the insta-
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bility arises from the repeated application of stresses to the
solid, possibly leading to fatigue and defect propagation. It is
hypothesized that both vacancies and dislocations contribute
to fatigue in metastable states of 4He [5,7].

Solving this complex stability puzzle requires sophisti-
cated computational approaches. However, earlier estimates
of the critical density using the worm algorithm path-integral
Monte Carlo (WAPIMC) method did not agree with the ex-
perimental data [10]. In particular, the calculated critical
pressure for destabilization significantly underestimates the
experimentally observed value of 21 atm [6]. A key factor
influencing the stability of metastable 4He appears to be the
presence of defects, in particular vacancies in the crystal
lattice. These vacancies disrupt the ordered lattice structure
and influence the interaction of the He atoms with each
other. In addition, the significant zero-point motion of the
4He atoms leads to delocalization effects in which the atoms
fluctuate around their lattice positions. This interplay between
vacancies, atomic interactions, and quantum mechanical de-
localization creates a captivating interplay that determines the
stability and unique properties of the material.

In this paper, the intricate interplay between quantum ef-
fects and atomic interactions in metastable solid 4He with
vacancies is investigated using path-integral Monte Carlo
(PIMC) simulations. This approach allows us to accurately
quantify the effects of quantum exchange (permutation) by
comparing simulations performed using Bose and Boltzmann
statistics. We effectively isolate the influence of bosonic statis-
tics on two key aspects: (i) the energy of vacancy formation,
which plays a crucial role in stabilizing vacancies, and (ii)
the crystal lattice distortions caused by the vacancies, which
provide valuable insights into the interactions between de-
fect and structure. Our goal in this study is to improve the
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comprehensive understanding of the role of quantum effects in
shaping the behavior and structure of solid 4He for densities in
the range 0.028–0.035 Å−3. We pay particular attention to the
importance of vacancies and their complex interaction with
bosonic statistics.

II. COMPUTATIONAL APPROACHES AND DETAILS

We use the PIMC method [11,12] in our study. In this
method the quantum density matrix

ρ(R0, RM ; β ) =
∫

dR1...dRM−1 exp

[
−

M∑
m=1

Sm

]
(1)

is evaluated by sampling paths {R0, R1, ...RM−1, RM}, where
Rk is the set of beads {r1,k, ...., rn,k}, and ri,k is a bead rep-
resenting the position of the ith particle in the kth time slice.
The time step is defined as τ = β/M with β = 1/kBT (kB is
the Boltzmann constant and T is the absolute temperature).
The action Sm ≡ S(Rm−1, Rm; τ ) ≡ − ln[ρ(Rm−1, Rm; τ )] is
evaluated using the exact pair action of two bodies within the
matrix squaring method [12–14]. The bosonic nature of the
system is described by a density matrix that takes into account
the summation of all permutations (P) of the particle labels

ρB(R0, RM ; β ) = (N!)−1
∑

P

ρ(R0, PRM ; β ). (2)

The evaluation of both the integral over the paths [Eq. (1)]
and the sum over the permutations [Eq. (2)] is performed
by a generalized Metropolis algorithm using the bisection
sampling technique [12,15].

The Hamiltonian used to describe a system of N atoms of
4He is given by

H = −λ

Na∑
i=1

∇2
i +

∑
i< j

V (ri j ), (3)

where λ = h̄2/2m = 6.059615 Å2 K, m is the 4He mass, and
V is the interatomic helium potential proposed by Aziz and
coworkers [16].

Our PIMC simulations using the UPI code [12] employ a
standard permutation scheme, which is well suited for solid
4He, rather than the worm algorithm [17] for permutation
updates. While the worm algorithm efficiently handles wind-
ing number exchanges in systems with many particles, it is
optimized for quantum fluids, not solids like 4He, which lack
the superfluid characteristics necessary for such exchanges.
Additionally, we have enhanced efficiency by implementing a
selective sampling strategy. This approach prioritizes permu-
tations that are most likely to significantly impact the partition
function, thereby reducing computational overhead and in-
creasing the overall effectiveness of our simulations. Also, the
simulations are performed by using a specifically designed
three-dimensional box with periodic boundary conditions to
accommodate a hexagonal close-packed (hcp) lattice of 180
sites. The hcp 4He crystals under investigation are of densities
in the range 0.028–0.035 Å−3 and temperatures from 0.2 to
2.0 K. The simulation box contains 0 to 10 vacancies, initially
distributed randomly within it. From a large number of sam-
ples obtained through this approach, we strategically select
specific vacancy configurations to gain insights into vacancy

effects. This strategic selection enables a systematic inves-
tigation of general trends that are crucial to understanding
the interplay between vacancies, quantum effects, and crystal
density in Bose systems.

The introduction of vacancies into the 4He crystal distorts
the lattice structure. The extent of this distortion provides
information about the spatial delocalization of the quantum
vacancy within the crystal. To circumvent the complications
arising from the large lattice relaxation and zero-point mo-
tion due to vacancies, we opted for independent PIMC runs
with varying particle number instead of using the more ef-
ficient insertion/removal methods [18]. Although this direct
approach is computationally expensive due to the high ac-
curacy required for energy difference calculations in large
systems, it provides better control over systematic errors.

Checks with a larger system (384 atoms) confirmed re-
sults convergence and no significant deviations from the
smaller system (180 atoms), ensuring reliability. Most of
the calculations achieved converged results within the er-
ror bars employing discretized imaginary time path integrals
with a time step of of τ = 0.0125 K−1, corresponding to
160 imaginary time slices at a temperature of 0.5 K. This
time step size proved sufficient compared to a smaller value
(τ = 0.00625 K−1), ensuring computational efficiency with-
out compromising accuracy. In a typical simulation, at least
4 × 106 PIMC time steps were performed.

III. RESULTS AND DISCUSSIONS

Before examining the permutation effect on vacancy be-
havior, we first validate the accuracy of our PIMC results.
We compare our calculations for the energy cost of creat-
ing a single vacancy in a 4He crystal at densities between
0.028 − 0.035 Å−3 to available theoretical and experimental
results. This approach helps to ensure the reliability of our
calculations. In some crystalline materials, including poten-
tially solid 4He, introduction of a vacancy can lead to a more
stable state (lower overall free-energy state), especially at low
temperatures and low-vacancy densities. This phenomenon
results from the complex interplay between lattice structure,
defect formation, and entropic contributions. To quantify this
energy change, we use the vacancy formation energy Ev ,
which represents the energetic difference between a perfect
crystal and a crystal with a single vacancy. We calculate Ev

using the following definition:

Ev = E (N − 1) − N − 1

N
E (N ), (4)

where E (N ) and E (N − 1) represent the total energies of the
perfect crystal and the crystal with a single vacancy, respec-
tively, at the same density ρ. Both simulation boxes are set
to keep the same density, so the estimated Ev represents the
vacancy formation energy at constant density.

In Fig. 1 we plot the vacancy formation energy Ev as
a function of density ρ at T = 0.5 K. For each calcula-
tion, we consider about 10 samples of the defective system
with a single vacancy in the hcp lattice. The obtained va-
cancy formation energy shows an overall linear dependence
on the density. Notably, a small jump in energy occurs near
ρ = 0.032 Å−3, potentially indicating a lattice restructuring.
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FIG. 1. Vacancy formation energy as a function of the crystal
density. The results from our PIMC calculations are given by the black
dots. Also shown previous theoretical calculations (the green squares
from the SWF calculation [19–21], purple diamonds from PIMC [22],
and red triangles from WAPIMC [23]), experimental results (the blue
dots) and experimental melting density (vertical solid line) from Ref.
[24]. The dashed lines are a linear fit of the data.

Interestingly, data below this density exhibit increased scatter,
possibly due to the complicated interplay between metastabil-
ity and increasing permutation. Our results agree well with
previously published calculations using various methods as
shown in the figure, including those of variational shadow
wave function (SWF) [19–21], WAPIMC [23], and PIMC [22].
Although the trend is consistent with available experimental
data, our calculation yields a larger vacancy formation energy.

A. Permutation effect

At finite temperatures, the statistics become relevant and
significantly influence the internal energy of the system. In
PIMC simulations of solid 4He, we implement Bose statistics
through cyclic permutations of the particle paths, reflecting
the indistinguishability of the atoms. The introduction of a
vacancy in the lattice significantly increases the probability of
such permutations around the defect [22]. This increased oc-
currence offers important insight into the influence of bosonic
exchange on the behavior of defects, particularly on the inter-
action and motion of vacancies in the crystal.

In the following discussion of the obtained thermodynamic
and structural results, we attempt to quantify this permutation
effect, which is crucial for a comprehensive understanding
of the properties of the system. To this end, we perform
separate simulations using both Boltzmann and Bose statis-
tics, explicitly considering the permutations in the latter. By
subtracting the result obtained within the Boltzmann statistics
as a reference, we can isolate the additional contribution of
the Bose statistics, which includes the permutation effects and
any inherent differences in the statistical treatment.

This approach allows us to distinguish the specific role of
permutations from other bosonic effects on vacancy dynamics
and provides valuable insights into the thermodynamic and
structural properties of the solid 4He with vacancy defect.

FIG. 2. Permutation contribution to the vacancy formation en-
ergy as a function of crystal density at T = 0.5 K. The dashed line is
only a guide for the eyes.

1. Thermodynamic analysis

To quantitatively investigate the influence of permutations
on vacancy formation, we examine the energy difference

εx = EBS
v − EBZ

v , (5)

where EBS
v and EBZ

v are the vacancy formation energies calcu-
lated within the Bose and Boltzmann statistics, respectively.

Figure 2 shows that εx has consistently negative values,
indicating that permutations effectively lower the energy of
the vacancy formation in this system. Two different regimes
arise: at higher crystal density (�0.032 Å−3) permutations
contribute −0.9 ± 2.0 K to the formation energy, reflecting a
moderate stabilization effect. On the other hand, permutations
at lower density (�0.032 Å−3) have a stronger impact and
reduce the formation energy by −2.5 ± 1.8 K, indicating a
more significant role in stabilizing the vacancy (a rough esti-
mate of the permutation effect suggests that it is responsible
for about 19% of the total value of Ev in this range of crystal
density). Although the sizable error bars (about 2.0 K) overlap
with the permutation contributions in both density ranges,
highlighting the difficulties in determining precise quantita-
tive nuances, the general trend and quantified values of the
permutation effect provide insight into its density-dependent
influence on the vacancy formation. Clark and Ceperley [22]
found in a single calculation for ρ = 0.02862 Å−3 that the
delocalization caused by turning on the Bose statistics in
a system with vacancies lowers the total energy by about
2 ∼ 3 K, which is consistent with our results. These results
emphasize the density-dependent nature of the permutation
effects on vacancy formation in this bosonic quantum crystal.

The temperature effect on the permutation contribution
to the vacancy formation energy (εx) is analyzed at a fixed
density of 0.02862 Å−3 with a single vacancy nv = 1 (cor-
responding to a vacancy concentration of 0.55%). Figure 3
shows a clear trend that for T � 1.0 K the exchange permu-
tations lower significantly the vacancy formation energy by
about 2.5 K. This trend is also supported by the lower standard
errors in the lower-temperature range 1.8 K in comparison to
2.2 K error at higher temperatures, indicating a potentially
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FIG. 3. Permutation contribution to the vacancy formation en-
ergy as a function of temperature at ρ = 0.02862 Å−3. The dashed
line is only a guide for the eyes.

higher confidence in the PIMC calculations. Interestingly, the
average permutation value drops sharply from −0.4 K to
−2.5 K at the boundary of 0.8 ∼ 1.0 K. This rapid change
could be related to the behavior of vacancies and the presence
of a finite condensation fraction, similar to that observed for
FCC and BCC lattices at similar densities [25]. Notice that in
previous studies [25,26] the condensation fraction of ∼10−3

was estimated at 0.5 K based on a one-body density matrix
analysis. Our rough estimates, based on the hypothesis of
Hyland et al. [27] assuming that above 1.0 K the condensed
fraction vanishes, suggest a condensation fraction of ∼4 ×
10−4 at 0.5 K, approximately one order of magnitude lower
than the reported value for FCC and BCC lattices. Although
further investigation is required for more accurate estimates,
this alignment indicates agreement with the presence of a
finite condensate at lower temperatures.

Following the analysis of the permutation contribution to
vacancy formation energy (Figs. 2 and 3), which showed a
significant decrease at lower temperatures and densities, we
examined permutation cycles in more detail. Permutation cy-
cles quantify the exchange of particles in a system, which is
crucial for understanding the properties of quantum systems
like solid 4He with vacancies.

To quantify the excess number of permutation cycles in-
duced by vacancies, we calculated the average weighted
difference in n-cycles between the vacancy system and the
perfect system, given as

�dn = (d ′
n − dn)wn (6)

with dn = Ncn/n and d ′
n = (N − p)cn/n, the average number

of n-cycles in the perfect and the vacancy systems, respec-
tively, where cn is the cycle distribution for the perfect system
with N atoms and c′

n for the system with p vacancies and
N − p atoms, and wn is the weighting factor for n-cycles.
This analysis was performed for various cycle sizes (includ-
ing 2-cycles, 3-cycles, 4-cycles, and other n-cycles) across
a temperature range from 0.2 to 1.42 K. We focused on 5-
cycle, the most prevalent around the critical temperature range
0.8–1.0 K. For the average, we considered ten samples of the

FIG. 4. Average excess number of 5-cycles induced by a single
vacancy as a function of temperature at ρ = 0.02862 Å−3. The
dashed line is a guide for the eyes.

defective system, and for the weight factor, we used the cycle
size n itself. This calculation involves normalization within
the average number of cycles for each system, ensuring a fair
comparison of cycles across different sizes and allowing us to
compare different samples effectively.

Figure 4 shows the average excess number of cycles (of
size 5) induced by a single vacancy as a function of tem-
perature at ρ = 0.02862 Å−3. At lower temperatures (0.2 −
0.8 K), the average excess cycles are relatively high, indi-
cating pronounced quantum exchange activity. This aligns
with the observation that exchange permutations significantly
lower the vacancy formation energy by about 2.5 K for tem-
peratures below 1.0 K, as discussed earlier. At 0.2 K, the
excess number of cycles is 0.7505, and it decreases to 0.4115
at 0.8 K, indicating a reduction in quantum exchange activity
as temperature increases. At 1.0 K, the average excess cycles
drop further to 0.1366, about one-third of the value at 0.8 K.
This significant decrease corresponds to the observed rapid
drop in the permutation contribution to the vacancy formation
energy, suggesting a critical transition point where quantum
mechanical behavior significantly shifts. As the temperature
increases further (1.25−1.42 K), the average excess cycles
continue to decrease, reaching 0.0118 at 1.42 K. This trend
indicates a diminishing influence of quantum exchange effects
as thermal energy becomes more dominant, leading to clas-
sical vacancy behavior. The steady decline in excess cycles
and low standard errors at higher temperatures confirm the
reduced role of exchange permutations in this regime.

We now investigate how the number of vacancies influ-
ences the permutation effect on the vacancy formation energy
in hcp 4He crystal. As shown in Fig. 5, a linear trend emerges
in which the vacancy formation energy becomes more neg-
ative (stabilizing) as the number of vacancies increases in a
hcp 4He crystal of density of ρ = 0.02862 Å−3 at tempera-
ture T = 0.5 K. The slope of the fitted line is approximately
−0.82 K/vacancy. This means that for each additional va-
cancy the permutation energy becomes, on average, about
0.82 K more negative. The increased disorder caused by
vacancies allows for more favorable permutations of the
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FIG. 5. Permutation contribution to the vacancy formation en-
ergy as a function of vacancy number at ρ = 0.02862 Å−3 and
T = 0.5 K. The dashed line is a linear fit of the data.

remaining atoms and further stabilizes the system. Fur-
thermore, vacancies allow neighboring atoms to relax their
positions, potentially leading to energetically preferred con-
figurations and a stronger stabilizing effect. While the data
point for the number of vacancies nv = 6 is slightly below
and nv = 7 slightly above the fitted line, the deviations are
likely within the margin of error. Interestingly, previous study
by Clark and Ceperley [22] indicates a possible destabilization
of the crystal lattice around this vacancy concentration. This
finding aligns with the observed scatter in our data points
for vacancies 6 and 7. However, the trend breaks down com-
pletely for ten vacancies (not shown in the graph). The data
point for this higher vacancy concentration falls outside the
linear regime, suggesting a strong destabilization of the lattice
structure. This significant deviation warrants further investi-
gation to understand the mechanism behind this behavior at
higher vacancy concentrations. Overall, the data support the
conclusion that a higher vacancy concentration results in a
more negative permutation energy, contributing significantly
to a lower energy cost for vacancy formation in the crystal.

2. Structural analysis

This section aims to quantify the influence of bosonic
statistics on the atomic arrangement in the incommensurate
4He crystal. Introducing just a single vacancy into the perfect
hcp lattice of the 4He crystal can lead to lattice distortion. In
the context of a quantum crystal, where high zero-point mo-
tion is crucial, the vacancy region resembles a missing atomic
density. This missing density is distributed over the crystal
and transforms the vacancy into a delocalized unit within the
4He crystal. In its quantum nature, the delocalized vacancy
is not confined to a single lattice site but exists as a wave-
like function distributed over multiple sites. This property
significantly reduces the vacancy dependence on a specific
position within the lattice. Therefore, in such a regime delo-
calized vacancy interacts with a larger number of surrounding
atoms through its distributed wavefunction. This interaction
mitigates the individual effects of nearest neighbors and local
irregularities throughout the lattice. However, even assuming

(a) (b)

FIG. 6. Pair-correlation function for the solid at
ρ = 0.02862 Å−3 and T = 0.5 K of (a) a perfect crystal and
(b) a crystal with a single vacancy. The results obtained within the
Boltzmann and Bose statistics are given by the black dotted line
the red solid line, respectively. The insets provide a detailed look at
the differences between the pair-correlation functions, highlighting
the influences of the statistics.

that the vacancy is delocalized, it is important to note that the
interaction with the atoms in the neighboring layers can pro-
voke stacking faults in the crystal on the overall arrangement
of the crystal. This nuanced interplay adds more complexity
for understanding the effects of vacancies in the 4He crystal.

Analyzing the pair-correlation function g(r) for perfect
and vacancy-containing systems within both the Boltzmann
and Bose statistics may provide valuable information on the
structure of the 4He crystal. We compute the pair-density dis-
tribution for the crystals of densities from 0.028 to 0.035 Å−3

for temperatures from 0.2 to 2.0 K. By comparing the results
from two different statistics, we can extract the specific con-
tributions due to Bose statistics, such as quantum exchange
and long-range correlations, and quantify their influence on
the crystal structure of solid 4He with vacancy defects.

Figure 6 compares the pair-correlation function g(r) for
perfect and single-vacancy hcp 4He crystals within the Bose
and Boltzmann statistics. It is noticeable that the statistical
effects on the perfect crystal are minimal as shown in Fig. 6(a)
by the almost identical g(r) curves. However, in a crystal with
a single vacancy, the Bose statistics play an important role
as shown in Fig. 6(b), especially for r > 6 Å. In comparison
to the Boltzmann statistics (black-dotted line), we see higher
peak and deeper valley in g(r). The increasing deviation of
g(r) at larger distances reflects the growing role of permu-
tation effects (quantum exchange processes) in the presence
of vacancies. As the distance between atoms increases, the
lower momentum of the helium atoms leads to a larger de
Broglie wavelength, so these exchange paths are more likely
contributing to the pair correlation. While the vacancy pri-
marily affects the local order through distortions, it could also
indirectly affect the longer-range correlation. These combined
effects and the absence of exchange in the Boltzmann simula-
tion lead to the observed changes in the oscillation of the g(r)
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FIG. 7. Pair-correlation function difference for a system with
a single vacancy at ρ = 0.02862 Å−3 and T = 0.5 K using both
Boltzmann and Bose statistics.

function. Such a difference is quantified by

δx(r) = gBS(r) − gBZ(r), (7)

where gBS(r) and gBZ(r) are the pair-correlation functions ob-
tained within the Bose and Boltzmann statistics, respectively,
as shown in the insets of Fig. 6. It evidences the importance of
quantum exchange effects on g(r) obtained within the Bose
statistics for the hcp 4He crystal with vacancy. Notably, in
Fig. 6(b), the peak at 6.5 Å is 1.1% higher and the valley in the
next is 2% lower. Similarly, the third peak at 9 Å increases by
more than 2.5%, emphasizing the influence of the exchange
effects at larger interatomic distances.

In order to show how vacancies affect the arrangement of
the atoms in the hcp 4He crystal, we look at the difference
between the pair-correlation functions of the crystal with va-
cancies and the perfect one without defect, given by

�gv (r) = gv (r) − g0(r) (8)

where gv (r) is the pair-correlation function of the 4He crystal
with vacancies and g0(r) that of a perfect crystal. As can
be seen in Fig. 7, the two curves obtained within different
statistics show a distinct pattern illustrating the influence of
single vacancy (nv = 1) on the crystal structure. When a va-
cancy is introduced into the crystal, it creates a void where an
atom used to be. Surrounding atoms may experience reduced
repulsive forces due to the increased distance between them
and the vacancy site. This reduction in repulsive interaction
leads to a localized decrease in density around the vacancy,
as atoms are not as strongly pushed away from each other as
in the perfect crystal lattice. The �gv (r) function shows this
as valleys, indicating areas of lower atomic density compared
to the undisturbed crystal. On the other hand, in response to
the vacancy, atoms in the crystal may rearrange themselves to
minimize the system’s overall energy. This rearrangement can
lead to localized increases in density as atoms move closer to
fill in the space left by the vacancy or adjust their positions to
achieve a more stable configuration. These areas of increased
density are seen as positive peaks in the �gv (r), signaling
attractive rearrangements of atoms around the vacancy. The

(a)

(b)

FIG. 8. (a) Pair-correlation function difference for a system with
single-vacancy at three different temperatures and (b) the per-
mutation effect on g(r). The calculations are for a density ρ =
0.02862 Å−3.

balance between these repulsive and attractive forces, altered
by the introduction of a vacancy, dictates the new equilibrium
state of the crystal structure. The function �gv (r) captures
these changes, providing insight into how the vacancy influ-
ences the local atomic interactions and overall crystal stability.

At short distances up to about 5 Å, the �gv (r) curve
obtained within the Bose statistics is practically identical
to that within the Boltzmann statistics. At larger distances,
however, the Bose curve shows a remarkable decrease in the
oscillation amplitude in comparison to the Boltzmann one.
This suppression, being more significant for larger interatomic
distance, indicates that in the presence of vacancy defects
the quantum exchange paths in the Bose system weaken the
local correlations at larger distances and reduce amplitudes of
the structural rearrangements. Moreover, a shift of the Bose
peaks to the right enhances the picture of delocalized atoms
exploring a wider range of positions around the vacancy. This
nonlocal influence emphasizes the significant reorganization
of the crystal structure induced by the vacancy, the effects of
which extend beyond its immediate vicinity.

In the following, we pay particular attention to the func-
tion �gv (r) obtained within the Bose statistics [denoted
as �gBSv (r)]. We examine the interplay between temper-
ature, vacancies, and permutations in the system under
study. The pair-correlation function difference �gBSv (r) cal-
culated within the framework of Bose statistics is shown in
Fig. 8(a). The peaks and valleys show how vacancies affect
the crystal structure. Remarkably, these features remain un-
changed in the temperature range 0.5–1.4 K, suggesting that
vacancy-induced distortions are insensitive to these thermal
fluctuations. It emphasizes the persistent role of vacancies in
shaping the 4He crystal structure in this temperature range. To
investigate the dynamical interplay beyond the static vacan-
cies, we examine the permutation effect quantified by δx(r)
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(a)

(b)

FIG. 9. (a) Pair-correlation function difference at three different
vacancy numbers and (b) the permutation effect on g(r). The calcu-
lations are for ρ = 0.02862 Å−3 and T = 0.5 K.

[Eq. (7)] computed as the difference between the g(r) of crys-
tals with single-vacancy. The obtained δx(r) is presented in
Fig. 8(b), illustrating the influence of the permutation caused
by the vacancy. Interestingly, the figure shows a temperature-
dependent permutation effect, which is most pronounced at
larger distances and lower temperatures (0.5 K ∼ 0.8 K). In
this range, permutations increase the g(r) peaks by up to
2%. With increasing temperature (�1.0 K), their influence
suddenly becomes negligible. The observed temperature de-
pendence is consistent with earlier findings on the “steplike
behavior” of the permutation contribution to vacancy forma-
tion energy. This means that the importance of the permutation
effect decreases when the 4He crystal experiences a higher
thermal energy. This underlines the complicated interplay
between temperature, vacancies and quantum effects that de-
termines the behavior of this incommensurate crystal.

We now investigate the permutation effects in the 4He
crystal with increasing vacancy concentration. Figure 9(a)
shows the characteristic peaks and valleys in �gBSv (r) with
vacancy number nv = 1, 4, and 8. The oscillation amplitude of
�gBSv (r) increases with increasing vacancy number, indicating
an enhancement of the bosonic character. Figure 9(b) shows
δx(r) defined in Eq. (7) quantifying the permutation effect in
the incommensurate solid 4He with vacancies. We can see that
at low vacancy concentration (nv = 1), the permutation effect
is more pronounced at larger interatomic distances (�5 Å).
Interestingly, as the number of vacancies increases from 1 to
4, the peaks at larger distances (around 9 Å) are suppressed.
However, the permutation effect persists and manifests itself
in smaller peaks that are more evenly distributed over the
entire range of interatomic distances. This suggests that the
bosonic character is more evenly distributed in the crystal
when there are more vacancies, even if the specific peak at
9 Å is lowered. What is crucial is that the behavior changes

(a)

(b)

FIG. 10. Pair-correlation function difference for a system with
single-vacancy at three different crystal densities (b) the permutation
effect on g(r). The calculations are carried out at T = 0.5 K.

with vacancy number from 4 to 8. The δv
x (r) peaks gradually

become larger, indicating a stronger and more consistent per-
mutation effect over the entire range of interatomic distances.
These peaks also show a size gradient increasing from short
distances (≈3 Å) to larger interatomic distances (≈9 Å). This
suggests that the permutation effect not only becomes stronger
as the number of vacancies increases from 4 to 8, but also be-
gins to affect the system more uniformly across all interatomic
distances.

However, an additional factor that should be considered is
the possible influence of the interaction between vacancies.
Previous studies [22,23] suggest that attractive interaction
between vacancies in solid 4He can lead to the formation
of vacancy clusters at higher concentrations. This clustering
could significantly influence the observed trends in g(r). For
instance, if vacancy clusters tend to have a compact struc-
ture, they could cause an initial decrease in peak heights at
larger distances compared to isolated vacancies, as the in-
teratomic distances within the cluster are reduced. On the
other hand, clusters with a more open structure could allow
exchange paths on different length scales, leading to unex-
pected changes in peak heights and valley depths compared to
the trends observed at lower vacancy concentrations. Further
investigation of the specific nature of vacancy interaction and
clustering in our system is necessary to fully understand their
influence on the bosonic effect. Overall, Fig. 9(b) provides
insights into the complex interplay of vacancy concentra-
tion, interatomic distance, and bosonic effect. The initial
dominance of the bosonic effect at lower concentrations em-
phasizes its sensitivity to spatial arrangement.

Finally, we investigate the influence of crystal density on
vacancy behavior and permutation effects with a single va-
cancy at T = 0.5 K. Figure 10(a) shows �gBSv (r) with nv = 1
for the crystals of different densities. The vacancy signature is
present in the crystal; distinct peaks and valleys characterize it
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and persist with increasing crystal density. The peaks, mainly
the second and third ones, exhibit a leftward shift as the atoms
move closer together due to the denser packing, effectively
“squeezing” them together around the vacancy. This contrac-
tion effect leads to a decrease in peak position by 0.5 Å
between the lowest and highest densities. Furthermore, the
observed valleys indicate a localized decrease in density com-
pared to a perfect crystal, suggesting a complex interplay of
attractive and repulsive forces near the vacancy. Figure 10(b)
shows the permutation effect computed by δv

x (r) using Eq. (7)
with nv = 1, at different crystal densities. As expected, the
permutation effect generally weakens with increasing crystal
density and practically disappears at a density of 0.03500 Å−3.
Interestingly, when the density changes from 0.02862 Å−3 to
0.03000 Å−3, the permutation effect causes a slight increase
in both peak and valley heights, accompanied by a shift to
the left. This unexpected behavior at intermediate densities
(between 0.02862 Å−3 and 0.03000 Å−3) suggests a possible
interplay between density-dependent interatomic interactions
and quantum statistics. This means that the influence of indis-
tinguishability on the vacancy feature decreases as the crystal
becomes denser. In simpler terms, denser packing restricts
the “delocalization” characteristic of Bose statistics, where
identical atoms tend to blur the influence of vacancy. Con-
sequently, the g(r) difference shrinks, indicating a weaker
influence of quantum statistical effects on vacancy behavior
in denser crystals.

IV. CONCLUSIONS

Using path-integral Monte Carlo (PIMC) simulations, we
have studied the effects of permutations in incommensurate
solid 4He by comparing the results with both Boltzmann and
Bose statistics. This approach allowed us to isolate the unique
contributions of the Bose statistics, including permutation ef-
fects and implicit statistical treatment differences. We studied
the solid 4He with densities from 0.028 to 0.035 Å−3 at tem-
peratures from 0.2 to 2.0 K and with vacancy concentrations
from 0.55 to 5.55% (corresponding to 1 to 10 vacancies in 180
lattice sites).

We find that permutation effects significantly reduce the
vacancy formation energy, especially at low densities (e.g.,

19% reduction at 0.02862 Å−3). This effect weakens with
increasing vacancy concentrations. The permutation effects
on the vacancy formation energy show a “steplike behav-
ior” with respect to temperature and density being much less
pronounced at higher temperatures (i.e., for T � 1.0 K) and
higher density. For each additional vacancy, the permutation
effect on the vacancy formation energy contributes, on aver-
age, a reduction of 0.82 K to the vacancy formation energy.

Vacancies induce lattice distortions leading to a local den-
sity reduction and a compensatory increase in the neighboring
regions, which varies from 1 to 5%. The Bose statistics in-
fluence the pair-correlation function at larger distances and
leads to peaks and valleys that are about 2% higher or lower
than that from the Boltzmann simulations. The influence of
Bose statistics and permutation effects on the crystal structure
initially increase with increasing the vacancy concentration,
but become weak at higher concentration due to high disorder.

These obtained results highlight the crucial role of quan-
tum effects on the properties of solid 4He containing
vacancies, especially at lower temperatures and lower va-
cancy concentrations. Moreover, they underscore the need
for further investigation to fully understand the underlying
mechanisms and to quantify the precise influence of these
factors over a wider range of temperatures and vacancy con-
centrations, especially where the “steplike behavior” becomes
more apparent.
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