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Realizing tunable higher-order topological superconductors with altermagnets
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We propose a method for realizing tunable higher-order topological superconductors (TSCs) by coupling
class DIII TSCs with recently discovered altermagnets exhibiting nonrelativistic spin splitting. We exemplify
our approach using d-wave spin splitting and demonstrate the emergence of inversion-protected Majorana zero
modes (MZMs) localized at the corner of the system, i.e., Majorana corner modes. Critically, we show that
manipulating the Néel vector of the altermagnets enables control over the MZM distribution. This constitutes
a crucial step towards achieving non-Abelian braiding of MZMs, a key ingredient for fault-tolerant topological
quantum computation. Finally, we discuss a physical system that implements our proposal.
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I. INTRODUCTION

Majorana zero modes (MZMs), considered fundamental to
topological quantum computation, are a class of quasiparti-
cles characterized by non-Abelian statistical properties [1–5].
Topological superconductors (TSCs) have garnered signifi-
cant interest due to their potential to host MZMs [6–8]. In
seminal work [9], Kitaev proposed that MZMs form at the
endpoints of one-dimensional (1D) p-wave superconductors.
However, the experimental realization of MZMs is hindered
by the rarity of natural p-wave superconductors. Nonethe-
less, researchers are developing alternative approaches to
overcome this obstacle [6,7,10–13]. Two approaches have
been proposed to create MZMs. The first approach exploits
the spin-momentum-locked surface states of 3D topological
insulators (TIs) and induces superconductivity through the
proximity effect, leading to the formation of MZMs in vortices
[10]. The second approach involves constructing a heterojunc-
tion between a superconductor and semiconductor nanowires
with strong spin-orbit coupling and then applying a Zeeman
field [14–17]. This configuration creates an equivalent Kitaev
chain, enabling the generation of MZMs.

Recently, there have been proposals for higher-order topo-
logical states that go beyond the traditional understanding
of the bulk-boundary correspondence [18–48]. Rather than
surface or edge states, these states involve topologically non-
trivial hinge or corner states in 3D or 2D systems [44].
For example, in 2D second-order TSCs, MZMs may appear
at the corners of the system, i.e., Majorana corner modes
(MCMs). Several proposals have been made for the existence
of MZMs in higher-order TSCs, such as the introduction
of electron pairing in 2D TIs [29,30,38], creating π junc-
tions between double-layer Rashba structures [35], applying
Zeeman fields in 2D p-wave superconductors [31], and the
use of twisted systems [47,48]. Experimental evidence for
higher-order TSCs has also been observed [34]. However,
there is still a lack of effective control schemes for MCMs in
this field, which is crucial for achieving non-Abelian braiding
of MZMs [1].

In the field of compensated magnetic materials, an im-
portant discovery has been made that involves a unique
magnetic order known as altermagnetism (AM) [49–67]. The
uniqueness of AM, in contrast to common ferromagnetism
and antiferromagnetism, lies in its momentum-dependent spin
splitting obeying nonrelativistic behavior [60], which has
been experimentally verified [64,65,67]. This intriguing mag-
netic ordering is expected to produce many unique physical
phenomena, including including Andreev reflection [57,58],
the Josephson effect [56,63], and the existence of finite-
momentum copper pairing [59,68]. The discovery of AM
also opens up exciting prospects for the realisation of TSCs
[55,62,66]. A natural question arises: Can altermagnets, with

FIG. 1. (a) A 2D TRS TSC with helical edge states (orange-
arrowed line) protected by time-reversal symmetry and particle-hole
symmetry. (b) A proximitized altermagnet induces altermagnetism in
the 2D TSC and breaks time-reversal symmetry. When the Néel vec-
tor is oriented around the [11] direction, the helical edge states create
a gap with two MZMs localized at the corners, i.e., the MCMs. The
manipulation of these MCMs can be achieved by adjusting the Néel
vector, as indicated by the arrow. The MCMs marked in different
colors indicate that they come from different mirror subspaces.
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their nonrelativistic spin splitting and zero net magnetization,
be used to manipulate MZMs?

In this paper, we give an answer in the affirmative. Specif-
ically, we focus on 2D TSCs with time-reversal symmetry
(TRS) and particle-hole symmetry (PHS), which belong to
the class DIII [69]. As shown in Fig. 1(a), the system has
helical edge states which are secured by TRS and PHS. When
2D TSCs are combined with altermagnets, the absence of net
magnetization in the altermagnets still leads to the breaking of
the TRS. As a result, the gapless helical edge states develop an
energy gap, causing the system to exhibit a trivial first-order
topological phase. However, we show that the appearance
of MZMs at the corners of the system indicates a nontrivial
second-order topology of the system.

Based on edge theory and symmetry analysis, our in-
vestigation has shown that when the Néel vector of the
altermagnets is aligned along the [11] direction, the system
has localized MZMs at the two corners along the [11̄] direc-
tion, which can be likened to a one-dimensional Kitaev chain
[9]. Additionally, as shown in Fig. 1(b), the position of the
MZMs can be changed by rotating the Néel vector. These find-
ings not only demonstrate the potential of altermagnets for the
manipulation of topological quantum states, but also provide
another way to realize non-Abelian statistics of MZMs. Last
but not least, this discovery opens up potential applications for
the recently discovered altermagnets.

II. MODEL

In order to determine the effect of altermagnets on
the boundary state of class DIII topological supercon-
ductors, 2D p ± ip superconductors were selected here.
The Bogoliubov–de Gennes (BdG) Hamiltonian for a 2D
p ± ip superconductor is Ĥ = 1

2

∑
k �

†
kH(k)�k with �k =

(ck,↑, ck,↓, c†
−k,↓,−c†

−k,↑) and

H(k) = ε(k)τz − 2�0(sin kxsx − sin kysy)τx, (1)

where ε(k) = (μ − 2tx cos kx − 2ty cos ky) is kinetic energy,
and τi and s j are Pauli matrices acting on the particle-hole
and spin (↑,↓) degree of freedom, respectively. The 2D
p ± ip superconductors have TRS T = iτ0syK, chiral sym-
metry C = τxsz, and PHS P = τysyK, where K is the complex
conjugation. For gapped odd-parity superconductors in both
2D and 3D, their topological properties are determined by
both the pairing nodes and the Fermi surfaces in the normal
state [70,71]. Nontrivial topological superconductors can be
identified by an odd number of Fermi surfaces enclosing
the time-reversal invariant momentum (without considering
the Kramers degeneracy for time-reversal invariant systems).
Therefore, if the condition μ2 − (2tx + 2ty)2 < 0 is satisfied,
the p ± ip superconductors have a topologically invariant
Z2 = 1. There are Majorana edge states protected by TRS and
PHS, as shown by the blue dashed line in Fig. 2(a).

The altermagnets exhibit spin splitting of opposite sign in
different regions of the Brillouin zone (BZ) [53]. For the pur-
pose of demonstration, we focus in this work on the d-wave
spin splitting, expressed in momentum space as

HAM(k) = 2J0(cos kx − cos ky)s · n̂, (2)

FIG. 2. (a) The edge spectrum for a cylinder geometry. The
blue dotted lines represent the helical Majorana edge states of the
p ± ip superconductors. The red solid lines denote the gapped Ma-
jorana edge states after the altermagnets are included. (b) Inset:
Two in-gap states emerge with the Néel vector along the [11] di-
rection. The real spatial distribution of their wave function is plotted.
(d) Same as (b) except the Néel vector along the [11̄] direction. (c),
(e) The boundary Dirac mass changes with the rotation angle α when
the Néel vector is along the [11] direction and the [11̄] direction,
respectively. The mass terms in the blue and magenta areas have
opposite signs. (f) The tangents L(α), on which we will develop
the generic edge theory, mark different boundaries with the clock-
wise rotation angle α. Common parameters: μ = 3.0, tx = ty = 1.0,
�0 = 1.0, J0 = 0.5.

where n̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) represents the di-
rection of the Néel vector, and J0 indicates the strength of spin
splitting in BZ. Our current research focuses on the in-plane
Néel component (θ = π/2), and the out-of-plane component
is discussed in the Supplemental Material (SM) [72]. We have
calculated the energy spectrum of the cylinder geometry when
the Néel vector is along the [11] direction and is represented
by the red solid line in Fig. 2(a). It is observed that the incor-
poration of altermagnets into the p ± ip superconductor leads
to gapped edge states and the system exhibits a trivial first-
order topology. Instead, the energy spectrum of a finite-size
system is calculated as shown in the inset of Fig. 2(b). There
are two zero-energy states in the boundary gap. By analyzing
the spatial distribution of the wave function corresponding to
these two zero-energy states, we observe that they are local-
ized at the two corners along the [11̄] direction, as shown in
Fig. 2(b). Although the altermagnetism renders the first-order
topology trivial, the localization of the zero-energy states sug-
gests that the system has a nontrivial second-order topology.
Therefore, the altermagnets induce a phase transition at the
boundary, driving the system from a first-order topological
phase to a second-order topological phase [73].

The effect of rotating the in-plane Néel vector on the
MCMs is then investigated. As the Néel vector deviates from
the [11] direction, the localized length of the MCMs becomes
anisotropic along the x and y directions. When the Néel vector
aligns with the [10] direction (ϕ = 0), the cylinder system
has gapless edge states along y, but has gapped edge states
along the x direction. These results are consistent with our
calculations of finite-sized structures in real space, which
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confirm the presence of edge states along the x boundary [72].
Interestingly, aligning the Néel vector along the [11̄] direction
(ϕ = −π/4) reveals the reappearance of MCMs in Fig. 2(c),
but localized at the corners along the [11] direction. These
observations demonstrate the emergence of a second-order
TSCs phase and highlight the possibility of manipulating
MCMs by controlling the Néel vector orientation. Experimen-
tal techniques, such as applying an electric field or a spin-orbit
torque [74–76], can effectively modify and reposition the Néel
vector.

III. EDGE THEORY

To elucidate the relationship between the Néel vector’s
azimuthal orientation and MCM localization, we now turn to
edge theory. The BdG Hamiltonian for 2D second-order TSCs
is HBdG(k) = H(k) + HAM(k). Expanding the Hamiltonian
HBdG(k) at the band inversion point � = (0, 0) to the second
order, we obtain

Heff (k) = (
m + txk2

x + tyk2
y

)
τz − 2�0kxsxτx

+ 2�0kysyτx − J0
(
k2

x − k2
y

)
s · n̂, (3)

where m = μ − 2tx − 2ty. The edge terminations in a 2D
system can be represented as tangent lines to the unit circle
[19,77], as shown in Fig. 2(f). To visualize the anisotropy of
the boundary Dirac mass originating from altermagnets, by
rotating the coordinate system clockwise by an angle α, we
can analyze the dispersion of the arbitrary tangential boundary
L(α). The transformation relating the rotated and original
coordinate systems is expressed as(

kx

ky

)
=

(
cos α − sin α

sin α cos α

)(
k⊥
k‖

)
. (4)

For the rotated coordinate system, under the condition
that the strength of the altermagnetism is smaller than
the bulk gap of the TSCs, the Hamiltonian can be de-
composed into Heff (k⊥, k‖) = H0 + Hp (see details in SM
[72]). Consider a semi-infinite plane x⊥ ∈ (−∞, 0] with
a boundary at x⊥ = 0, where the momentum k⊥ is re-
placed by −i∂⊥. We solve the eigenequation H0ψα (x⊥) =
Eαψα (x⊥) with the boundary condition ψα (0) = ψα (−∞) =
0. For Eα = 0, two solutions can be obtained as ψα (x⊥) =
N⊥ sin(κ1x⊥)eκ2x⊥eik‖x‖χα , where the normalization constant
is given by |N⊥|2 = 4|κ2(κ2

1 + κ2
2 )/κ2

1 |. The eigenvector ξα

satisfies (sin αsx + cos αsy)τyξα = ξα . We choose ξi as ξ1 =
1/

√
2(−eiα, 0, 0, 1)T and ξ2 = 1/

√
2(0, eiα, 1, 0)T . Upon

projecting the perturbation term Hp onto the basis ψ1, ψ2, we
obtain

Hedge(x⊥, k‖) = 2�0k‖ηz + M(α, θ, ϕ)ηy, (5)

the Dirac mass induced by the altermagnets read as

M(α, θ, ϕ) ∼ sin θ cos(2α)(cos ϕ sin α + sin ϕ cos α). (6)

Equation (6) reveals that the Dirac mass depends on both the
azimuthal angle ϕ and the polar angle θ of the Néel vector,
along with the edge direction α. Intriguingly, the boundary
states of 2D p ± ip superconductors are also protected by
an additional mirror symmetry Mz. As a result, the out-of-
plane component (θ = 0) of the Néel vector does not affect

FIG. 3. (a) The mirror-graded winding number is plotted as a
function of the chemical potential μ. The presence of MCMs is
indicated by the light red area in the plot. (b) The Pfaffian is shown
to vary with the chemical potential, where the light green region
indicates that the 1D Kitaev chain is in a nontrivial phase. (c) The
Dirac masses of boundaries III and IV are displayed as a function
of the azimuth angle ϕ. (d) The Dirac masses of boundaries III and
II are plotted. (e) Inset: Two in-gap states emerge with the azimuth
of Néel vector is ϕ = 0.7π . The real spatial distribution of their
wave function is plotted. (f) Same as (e) except the azimuth of Néel
vector is ϕ = 0.3π . Common parameters: μ = 3.0, tx = ty = 1.0,
�0 = 1.0, J0 = 0.5.

the boundary states [72]. In Fig. 2(e), we plot the variation
of the Dirac mass with respect to the boundary direction
α for the case where the Néel vector aligns along the [11̄]
direction. We find that the Dirac mass undergoes a sign re-
versal at specific angles, such as α = 3π/4 and α = 7π/4.
This sign reversal leads to the formation of bound states that
are akin to the Jackiw-Rebbi mode [78]. Likewise, for the
Néel vector oriented along the [11] direction, the Dirac mass
exhibits dependence on the boundary direction α, as shown
in Fig. 2(b). This behavior is consistent with the emergence
of mass domain walls observed numerically at α = π/4 and
α = 5π/4 in Fig. 2(c).

Building upon the connection between MCMs and the
Néel vector’s azimuthal angle (ϕ) established by edge the-
ory, our results demonstrate that MCMs can propagate along
the boundary as ϕ is varied [72]. This finding paves the
way for the precise manipulation of MCMs in experiments
through controlled manipulation of the Néel vector orientation
[75,79,80].

IV. TOPOLOGICAL INVARIANT

To gain a deeper understanding, we focus on the inversion
symmetry I = τzσ0 of the system. This symmetry remains
intact when the altermagnet strength is weak and the band
order is preserved. This preserved inversion symmetry with
a Z2 classification protects the MCMs [28], allowing them to
appear in pairs at the corners of inversion-related domains. To
facilitate the discussion, we consider a square geometry where
each edge is labeled I, II, III, and IV, as shown in Fig. 3(e).
According to edge theory, the boundary Dirac mass is plotted
as a variation of the azimuthal angle ϕ of the Néel vector,
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Eq. (6), as shown in Figs. 3(c) and 3(d). In the colored region,
it is clear that the Dirac mass at the adjacent boundaries has
an opposite sign, resulting in the formation of a mass domain.
As a result, each mass domain wall is associated with an
MCM. A specific set of azimuthal angles, namely ϕ = 0.3π

and ϕ = 0.7π , were used to compute the energy spectrum
of the finite-size system. The energy spectrum is shown in
Figs. 3(e) and 3(f). Within the boundary gap, two zero-energy
bound states emerge, with their wave functions centered at the
inversion-related corners.

Interestingly, when the Néel vector is along the [11]
direction, the Hamiltonian HBdG(k) exhibits an additional re-
flection symmetry Mxy = i

√
2/2(sx − sy), which transforms

the coordinate (kx, ky) into (−ky,−kx ). One can decompose
HBdG(k) into different mirror subspaces at the reflection in-
variant line kx = −ky based on the mirror eigenvalues ±i,

H±i(k) = −(μ − 4t cos k)ηz ± 4�0 sin kηx, (7)

where ηi are Pauli matrices that act on mirror eigenvectors.
In each mirror subspace, the Hamiltonian can be expressed as
H±i = q±i(k) · η, the computed winding numbers are ν+i and
ν−i, respectively. Thus, the mirror-graded winding number is
calculated by νMxy = (ν+i − ν−i )/2 with

ν±i = i

2π

∫
L

dk{Tr[q±i(k)∂kq∗
±i(k)]}. (8)

Our calculations of the mirror-graded winding number νMxy,
shown in Fig. 3(a), reveal a nonzero value for chemical po-
tentials within μ ∈ (−4, 4). This signifies that the system
belongs to the class of second-order topological supercon-
ductors (TSCs) characterized by the presence of in-gap
corner states [81]. Furthermore, when the Néel vector aligns
along the [11̄] direction, the reflection symmetry Mxȳ =
i
√

2/2(sx + sy) maps momenta (kx, ky) to (ky, kx ). Similar
to the [11] case, the existence of MCMs is confirmed by a
nonzero mirror-graded winding number νMxȳ [72]. Through
the implementation of the unitary operation U = eiπ/4ηz , each
Hamiltonian in the mirror subspace reads

H±i(k) = −(μ − 4t cos k)ηz ± 4�0 sin kηy. (9)

Notably, the Hamiltonian of each subspace becomes a one-
dimensional Kitaev chain [9]. This one-dimensional Kitaev
chain can be conveniently expressed in the Majorana basis,
expressed as

H±i = i

4

∑
k

ψ
†
k A

±i(k)ψk, (10)

where ψT
k = (γ1,−k, γ2,−k ) and

A±i(k) =
(

0 ζ±i(k)
−ζ±i∗(k) 0

)
, (11)

where the off-diagonal elements are ζ±i(k) = −μ +
4t cos k ± 4i�0 sin k. A topological phase transition occurs
when the determinant of A±i(k) is equal to zero. Notably,
in more general cases, the matrix A±i(k) can also be off
diagonal. At two time-reversal invariant momentum points
k = 0, π the matrix A±i(k) is antisymmetric, allowing us
to define the Pfaffian [9]. Evaluating the Pfaffian of A(k) at
time-reversal invariant momentum points (k = 0, π ), one can

determine the topological invariant

(−1)ν = sgn[Pf[A(k = 0)]]sgn[Pf[A(k = π )]]

= sgn[−4t − μ]sgn[4t − μ]. (12)

The Kitaev chain exhibits a nontrivial phase characterized by
a topological invariant ν = 1 when |μ| < 4t . In this nontrivial
phase, the system harbors MZMs localized at the endpoints of
the chain. Conversely, the system transitions to a trivial phase
with ν = −1 for |μ| > 4t . This behavior of the topological
invariant ν is depicted in Fig. 3(b). Therefore, if the Néel
vector is aligned along either the [11] or [11̄] direction, the
system can be viewed as a 1D Kitaev chain in each mirror
space. Intuitively, two nontrivial Kitaev chains will contribute
four end states. However, when the Néel vector deviates from
the [11] ([11̄]) direction, the mirror symmetry Mxy (Mxȳ) of the
system is broken, and the gap closure does not occur. Con-
sequently, the system remains in a topological phase with a
Z2 classification [22,28]. Furthermore, the lack of TRS means
that there can only be one stable MCM per corner. As a result,
when the Néel vector is in the [11] ([11̄]) direction, there are
only two MCMs in the system instead of four. Interestingly,
despite the introduction of altermagnets in p ± ip supercon-
ductors and absence of TRS, the system still possesses chiral
symmetry C, and it satisfies

{Mxy(Mxȳ), C} = 0. (13)

According to Eq. (13) it can be concluded that the two MZMs
at the corners belong to different mirror subspaces. Therefore,
although the system is equivalent to 1D Kitaev in each mirror
subspace, chiral symmetry ensures that the MZMs at each
corner come from different mirror subspaces, as shown in
Fig. 1(b) marked by different colors.

V. DISCUSSIONS AND CONCLUSIONS

Our work demonstrates the creation of tunable second-
order TSCs with MCMs by combining a recently discovered
altermagnet with a first-order TSC possessing TRS. Crucially,
by controlling the Néel vector of the altermagnet, we can
manipulate the MCM distribution. This ability to manipulate
the MCMs highlights their topological nature and potential
for applications in topological quantum computing and related
fields. Furthermore, experimental techniques established for
antiferromagnetic materials, such as current, voltage manip-
ulation [75,79], and spin-orbit torques [80], offer promising
avenues for practical applications. These techniques enable
effective control and detection of the Néel vector orienta-
tion. Additionally, the antiferromagnet’s inherent robustness
against external magnetic fields and ultrafast response due to
the absence of a coercive field [82] make them particularly
attractive for braiding MZMs.

Candidates for the realization of the time-reversal symme-
try TSC include a bilayer Rashba with an interlayer interaction
[83] and an s-wave superconducting Josephson junction with
a phase difference φ = π [84], a doped quantum spin Hall
insulator [85], and n-type doped BiH [86]. The low-energy
physics of the above systems can be described as supercon-
ductors with p ± ip pairings. We expect that the introduction
of altermagnets into these systems can lead to second-order
topological superconductors with tunable corner states.
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