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Superconductor-semiconductor hybrid devices, involving quantum dots interfaced with floating and/or
grounded superconductors, have reached a level of complexity, which calls for the development of versatile
and numerically efficient modeling tools. Here, we propose an extension of the surrogate model solver for
subgap states [Phys. Rev. B 108, L220506 (2023)], which is able to handle floating superconducting islands with
finite-charging energy. Upon eliminating all finite-size effects of the computationally demanding Richardson
model approach, we achieve a more efficient way of calculating the subgap spectra and related observables
without compromising their accuracy. We provide a number of benchmarks between the two approaches and
showcase the versatility of the extended surrogate model solver by studying the stability of spin-triplet ground
states in various tunable devices. The methods introduced here set the stage for reliable microscopic simulations
of complex superconducting quantum circuits across all their relevant parameter regimes.
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I. INTRODUCTION

Hybrid superconductor-semiconductor devices combine
the two key qualities of both materials: macroscopic quantum
coherence and electrical tunability [1,2]. This makes them
highly valuable for quantum technological applications like
gatemons [3] and parametric amplifiers [4,5], and they provide
a promising platform for the development of circuit quantum
electrodynamics [6]. At the heart of these devices lies the
act of hybridizing the different super-semi constituents, each
with their respective superconducting correlations and electro-
static charging effects leading to gate-tunable proximity effect
[7–10] and engineering of subgap states [11–14].

From the modeling perspective, one serious challenge
in understanding such hybrids consists in combining super-
conducting correlations with the potentially strong Coulomb
interactions to be expected for confined geometries like
semiconductor quantum dots and superconducting islands or
grains. The subgap physics of quantum dots (QD) proxim-
itized by grounded superconductors is well understood in
terms of Yu-Shiba-Rusinov (YSR) states [15–18]. However,
when also the superconductor has an electrostatic charging
energy and constitutes a floating superconducting island (SI),
the subgap physics may change considerably with states dis-
playing at best a YSR-like character [13,19].

The state-of-the-art approach for tackling SI-QD sys-
tems is based on the charge-conserving Richardson model
[13,19–25], inspired from earlier treatments of superconduc-
tivity in ultrasmall grains [26]. In this context one deals
with a number-conserving pairing Hamiltonian for the SIs
[see Eq. (2) below] without resorting to the BCS mean-
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field approximation for the superconducting condensate. By
preserving the particle number conservation, one may incor-
porate the charge fluctuations and account for the effects of
its Coulomb repulsion effects. In the absence of Coulomb
repulsion, one could safely use a BCS mean-field description
for SIs in present-day hybrid devices, and in fact a large
O(100 − 1000) number of levels have been considered in the
above studies in the attempt to mimic the thermodynamic
BCS limit. The high-computational cost required to solve the
full Richardson model even for simple devices may be traced
back to the large amount of finite-size information that it
carries. Naturally, this has prompted the search for cheaper
alternatives, e.g., the flat-band approximation [22,25], which
may yield results in qualitative agreement with the full model
in certain situations but is otherwise limited in applicability
[23].

While the Richardson model is capable of addressing on
the same footing all parameter regimes of simple QD-SI sys-
tems, other approaches are bound by severe compromises in
this regard. For example, more complex quantum circuits with
several superconducting leads have been recently investigated
in Ref. [27], but only in the simplifying infinite-gap limit.
Whereas the Cooper-pair dynamics might be reasonably well
accounted for, the ability to describe any YSR physics is
completely lost as the normal regions are fully proximitized,
and it is impossible to give any reliable predictions, e.g.,
with respect to their response to quasiparticle poisoning. This
infinite-gap modeling strategy is, however, computationally
lightweight due to its complete disregard of any SI finite-size
effects: A SI is taken into account only minimally through
its proximity effect on a QD and through its 2e charge trans-
lations that serve to compensate the proximity-induced QD
charge fluctuations, resulting in a simple number-conserving
effective pairing Hamiltonian. While this way of restoring
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FIG. 1. Schematic of the generalized surrogate models. A super-
conducting island at strong pairing (blue, left) is coupled to multiple
QDs (green dots), as detailed in Sec. II A. In the first approach (top
right), the SI’s charging term is transferred to the QDs via the particle
number conservation, which then allows the SI to be approximated
by a surrogate model, as in Sec. II B. In the second approach (bottom
right), the SI is modelled as a surrogate model coupled to an auxiliary
site counting the number of Cooper pairs Np in the condensate, as in
Sec. II C. The unitary equivalence between the two approaches is
indicated by a double-headed arrow. Single (double) lines indicate
particle (pair) hopping.

the particle-number conservation (by keeping track of the
SI’s charge translations) has been routinely used to account
for the Coulomb repulsion in SIs that are free of finite-size
effects [28,29], Ref. [19] argues that (a simple version of) this
“charge-counting trick [30,31] is not applicable to a gapped
spectrum”.

In this paper we construct an effective BCS mean-field
description by stripping down the Richardson model of its
finite-size details while maintaining all 1e charging effects
intact. This sets the stage for employing the few-level BCS
surrogate model solver (SMS) [18] to obtain a precise de-
scription of the QD-SI subgap physics. Finally, we restore
the charge conservation by keeping track of the SI’s charge
translations in the presence of the surrogate model space (thus
employing a more sensible version of the “charge counting
trick”). We thus end up with a general approach that is appli-
cable in all parameter regimes while being free of finite-size
effects and thus computationally highly efficient.

The remainder of this paper is organized as follows:
in Sec. II we detail the construction of the generalized
surrogate models, which are then further developed and
benchmarked against the Richardson results in Sec. III and
in the Appendixes. In Secs. III and IV we study several
multi-QD systems using the surrogate models and comment
on their physical interpretation that parallels the proximitized-
nanowire setup. Finally, we draw conclusions in Sec. V.

II. SURROGATE MODEL METHODOLOGY

A. General modeling considerations

We first consider the simplest situation of one SI coupled
to a relatively small system whose modeling can be performed
efficiently without resorting to any further approximation,
e.g., one or a few QDs as represented in Fig. 1. We consider

the generic Hamiltonian

Ĥ = ĤSI,0 + Ec(N̂SI − n0)2 + ĤQD + Ĥtunn, (1)

where Ec, NSI, and n0 are the SI’s charging energy, particle
number and, respectively, the gate voltage applied to the SI
expressed in units of electron number. ĤQD and Ĥtunn are the
QD Hamiltonian (e.g., a collection of Anderson models) and,
respectively, the SI-QD tunnel coupling.

The ĤSI,0 term incorporates the superconducting correla-
tions present in the SI. In Refs. [13,19–24,32], in order to
consistently account for the SI’s considerable charging en-
ergy and the strong even-odd occupancy effects, it has been
taken as the particle-number conserving Richardson model
Hamiltonian,

HSI,0 =
L∑

i=1

∑
σ=↑↓

ξic
†
iσ ciσ − λd

L∑
i, j=1

c†
i↑c†

i↓c j↓c j↑, (2)

where c†
iσ creates an electron with spin σ and energy ξi in the

SI, d = ξi+1 − ξi is the level spacing (assumed constant) and
λ is the BCS coupling constant (e.g., for Al grains its value is
λAl = 0.224 [33]).

Depending on the ratio d/� = 2 sinh(1/λ)/L (see Ref.
[26] and references therein), between the level spacing d and
the bulk superconducting gap �, the Richardson Hamiltonian
(2) has two regimes. On the one hand, the weak-coupling
d/� � 1 scenario, valid for small islands or small couplings
λ, is characterized by strong pairing fluctuations above the
Fermi sea. On the other hand, the ground-state physics in the
strong-coupling regime d/� � 1, valid for large islands (like
the ones in contemporary hybrid devices) or large couplings,
is very well reproduced by the BCS wave function. In the lat-
ter regime one may formulate a surrogate model, provided the
particle-number conservation is effectively taken into account
as to correctly reproduce the charging effects.

B. Surrogate models for a single SI coupled to QDs

For the purposes of computing the subgap spectrum of a
sufficiently large SI with d/� � 1, one should be able to
formulate a model free of any finite-size effects. Then, the
low-energy physics would depend only on the relative differ-
ence between the total number of particles Ntot and the SI’s
induced charge n0: adding one Cooper pair (Ntot → Ntot + 2)
while also adjusting n0 accordingly (n0 → n0 + 2) would
have no observable effect.

To make this symmetry manifest, we use the conservation
of the total number of particles for the SI-QD system,

N̂tot = N̂SI + N̂QD, (3)

to transfer the charging term in Eq. (1) off the SI and onto the
QDs,

Ĥ = ĤSI,0 + Ec[N̂QD − (N̂tot − n0)]2 + ĤQD + Ĥtunn. (4)

The Hamiltonian displays explicitly the physically relevant
difference

ñ0 ≡ Ntot − n0, (5)

which can now be thought of as an independent quantity.
With ñ0 held fixed, one is then free to consider a coherent
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superposition of different numbers of Cooper pairs in the
SI (given that their actual number is irrelevant in the
strong-coupling regime assumed for the SI), which may be
schematically written in a basis of unnormalized particle-
number states as

|BCS〉 =
∑
k∈N

|NSI + 2k; n0 + 2k〉. (6)

Importantly, the components of the BCS state are wavefunc-
tions shifted in both the SI’s particle number NSI and in the
SI induced charge n0 by the same number of pairs k. Thus,
we effectively adopt a standard BCS mean-field description.
Despite the apparent breaking of the particle number conser-
vation, the substitution HSI,0 → HBCS in Eq. (4), with

ĤBCS =
∑

j

∑
σ=↑↓

ξ jc
†
jσ c jσ −

∑
j

(�c†
j↑c†

j↓ + �c j↓c j↑), (7)

and ñ0 of Eq. (5) held fixed, leads to results, which are in
excellent agreement with those of the full Richardson model
regarding the subgap spectrum and QD observables of an
SI-QD system in the strong-coupling regime (up to finite-size
effects), as also shown numerically in the next section.

Within the BCS approach, the results mentioned above
may be efficiently obtained by the standard surrogate model
solver methodology of Ref. [18], briefly summarized below.
In this context, the full BCS model is replaced by a few-level
surrogate whose parameters are optimized as to best repro-
duce the full hybridization function with the QDs.

For the rest of this paper, we assume a constant density of
states, νF = 1/(2D), in a band of half-width D around the su-
perconductor’s Fermi surface, as well as energy-independent
tunneling amplitudes t to each QD. The lead degrees of
freedom are readily integrated out to give rise to the fol-
lowing Nambu tunneling self-energy (hybridization function)
[34,35]:

�T
d (ωn) = −	

(
iωn �

� iωn

)
g(ωn), (8)

with Matsubara frequencies ωn = (2n + 1)πkBT at tempera-
ture T , tunneling rate 	 = πνF |t |2, and the g function defined
as

g(ω) ≡ 1

π

∫ D

−D
dξ

1

ξ 2 + �2 + ω2
= 2

π

arctan
(

D√
�2+ω2

)
√

�2 + ω2
.

(9)

In constructing the simplest discrete effective bath that best
reproduces the subgap states of the full model, we note that
each level with energy ξ contributes a factor of (ξ 2 + �2 +
ω2)−1 to the g function (9). We approximate the latter by
combining only a small number of such factors,

g̃even(ω) ≡ 2
K∑

�=1

γ�

ξ̃ 2
� + �2 + ω2

, L̃ = 2K,

g̃odd(ω) ≡ γ0

�2 + ω2
+ g̃even(ω), L̃ = 2K + 1, (10)

where K denotes the number of pairs of effective levels. Such
a g̃ function may be obtained by integrating out an effective
superconducting bath with the same gap � as the original one

and whose L̃ discrete levels with energies ±|ξ̃�| are coupled
to the QD via a tunneling matrix elements t̃� = √

γ�	. Each
odd-L̃ model involves one extra level at zero energy, ξ̃0 = 0.
The effective bath is thus defined by parameters {γ�, ξ̃�}. We
refer to L̃ as the surrogate bandwidth, and note that the case
of L̃ = 1 corresponds to the so-called zero-bandwidth (ZBW)
model.

The SMS approach detailed in this section is represented
schematically in the top right of Fig. 1, with the explicit SMS
Hamiltonian for one SI coupled to N quantum dots being
given by

H̃ = ĤS̃C +
N∑

α=1

(ĤQD,α + ĤT̃,α ) + Ec

(
N∑

α=1

N̂QD,α − ñ0

)2

,

ĤS̃C =
L̃∑

�=1

∑
σ=↑↓

ξ̃�c†
�σ c�σ −

L̃∑
�=1

(�c†
�↑c†

�↓ + H.c.),

ĤQD,α = Uα (N̂QD,α − να )2,

ĤT̃,α =
L̃∑

�=1

∑
σ=↑↓

√
γ�	α (c†

�σ dασ + H.c.). (11)

Besides renormalizing the individual charging parameters of
each QD, the Ec term is seen to introduce capacitive couplings
between the various QDs. As a technical note, one should re-
member to match the conserved even/odd total fermion parity
of the BCS model with the even/odd total particle number
Ntot of the original model that enters H̃ defined above through
ñ0 = Ntot − n0.

C. Surrogate models for systems with multiple SIs

The methodology introduced in the previous subsection is
limited to the efficient description of only one of the SIs in
the system, as the transfer of the charging term cannot be
done again after adopting the BCS picture. It would thus be
desirable to revert back to a particle-number conserving model
for each SI, while still retaining the computational benefits of
the BCS-based surrogate models.

To achieve this, we introduce an auxiliary degree of free-
dom comprised of the canonically conjugate number and
phase operators N̂p and φ̂, [N̂p, eiφ̂] = eiφ̂ . Physically, N̂p

counts the number of Cooper pairs in the superconducting
condensate, while e±iφ̂ adds/removes one pair from the con-
densate. The auxiliary Hilbert space is spanned by states |p〉
with an integer number of pairs p ∈ Z, obeying N̂p|p〉 = p|p〉
and e±iφ̂ |p〉 = |p ± 1〉.

We use this new degree of freedom in the surrogate Hamil-
tonian of Eq. (11) as a bookkeeping device for the number of
Cooper pairs,

Ĥ (aux)
S̃C

=
L̃∑

�=1

∑
σ=↑↓

ξ̃�c†
�σ c�σ −

L̃∑
�=1

(�c†
�↑c†

�↓e−iφ̂ + H.c.),

(12)
the resulting total Hamiltonian being equivalent with the
original one in Eq. (11) under the unitary transformation
c�σ → c�σ eiφ̂/2.
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The role of the superconducting Hamiltonian (12) is to con-
serve the particle number to which both the surrogate, and the
auxiliary (Cooper-pair condensate) Hilbert spaces contribute,

N̂ (aux)
S̃C

=
L̃∑

�=1

∑
σ=↑↓

c†
�σ c�σ + 2N̂p. (13)

With the resurfaced U (1) conserved charge at hand, we
may now retrace our steps from the previous subsection, and
arrive at

˜̃H = Ĥ (aux)
S̃C

+ Ec
[
N̂ (aux)

S̃C
− n0

]2 +
N∑

α=1

(ĤQD,α + ĤT̃,α ). (14)

The net result of this entire procedure is the effective
replacement

ĤSI,0 + Ec(N̂SI − n0)2 → Ĥ (aux)
S̃C

+ Ec
[
N̂ (aux)

S̃C
− n0

]2
(15)

in the original Hamiltonian of Eq. (1), where no assumptions
about the rest of the system were made, other than the total
particle number conservation. The SMS approach detailed in
this section is represented schematically in the bottom right of
Fig. 1. It thus becomes possible to build surrogate models for
systems with an arbitrary number of superconducting islands
by applying Eq. (15) to each one.

III. BENCHMARKS AND APPLICATIONS

We solve the surrogate models introduced above by the
density matrix renormalization group (DMRG) in the matrix-
product-state formulation [37,38], which is straightforward to
implement with the ITensor library [39,40]. Our numerical
codes are available online [41] and may be run on a standard
laptop or desktop computer.

We show in Fig. 2 an example of a subgap spectrum for the
simplest QD-SI system. It was obtained by solving each of
the L̃ = 1, 3, 5 surrogate models in various particle-number
sectors, selecting the ground-state energy E0 (corresponding
to, say, N0 particles), and plotting the particle-like and hole-
like excitation energies E± = ±(E±1 − E0) of the states with
N0 ± 1 particles. In all cases we find an excellent agreement
with the Richardson model data of Ref. [19] even for a modest
L̃ = 3 surrogate. All surrogates account well for the asymme-
try in the subgap peak positions, which is a direct consequence
of the Coulomb repulsion [at Ec = 0 the spectra are the famil-
iar symmetric eye-shaped loops, see e.g., Fig. 8(a) below].

Additional benchmarks and further generalizations of the
surrogate models are collected in the Appendixes A, B, and
C. They include systems with multiple SIs, with combinations
of SIs and grounded superconducting leads, and with direct
coupling between SIs. Generally, we find a good qualitative
agreement between all the surrogate and Richardson model
results. Insofar as the considered system comprises a single
QD (which may nevertheless be coupled to multiple SIs),
all relevant physical aspects are qualitatively well accounted
for even by the simplest L̃ = 1 (ZBW) surrogate. In this
case, the finite-bandwidth effects of the L̃ � 2 surrogates only
induce small to moderate quantitative differences in the sub-
gap spectrum and related observables. The surrogate picture

FIG. 2. QD-SI subgap excitation spectrum as a function of the
gate voltage applied on the QD, as given by the L̃ = 1, 3, 5 surrogates
(ωc = 10�). The positions E+ = E1 − E0 and E− = E0 − E−1 are
the excitation energies of particle-like (+1) and hole-like (–1) states.
The L = 800 Richardson model results have been read graphically
from Fig. 4 of Ref. [19] using WebPlotDigitizer [36]. The common
parameters are Ec = 0.2�, U = 4�,	 = 0.1U, ν = 1, D = 40�,
and n0 an even integer.

thus supports the adequacy of the flat-band approximation
to the Richardson model [22,25] in such situations, but at
the same time it offers a natural framework to safely model
multiple-QD systems in which finite-bandwidth effects are
known to be important [23].

For the rest of this section, we focus on illustrative
situations where nontrivial finite-bandwidth effects are at
play, such as for the QD-SI-QD setup and its generalizations.
We address, from the SMS perspective, the subtle interplay
between their spin-singlet and triplet ground states and
explore how this is affected by the SI’s charging effects.
The QD-SI-QD system has been recently studied in Ref.
[23], where it was found to undergo a spin-singlet to
spin-triplet phase transition with increasing bandwidth.
Let us first corroborate, within the SMS framework, the
results of Ref. [23] regarding the basic properties of the
QD-SI-QD system. Figure 3(a) shows that the spin triplet
is indeed the ground state for all surrogate models except
the L̃ = 1 (ZBW case), for an even SI occupancy n0 and
if U is large enough such that each dot effectively hosts
a single electron (ν = 1/2). The finite-bandwidth L̃ � 2
surrogates are thus able to account for the basic mechanism
that leads to the spin-triplet ground state, which involves
breaking a Cooper pair and letting one of its members
mediate the interdot ferromagnetic exchange [23,42]. While
a large enough Ec value eventually suppresses all charge
fluctuations and with them the spin-singlet-triplet gap, at
small Ec the spin-singlet charge configuration is penalized
by the SI’s charging term in favor of the spin triplet. For
some intermediate Ec value, the competition between these
two effects leads to a robust maximum of the singlet-triplet
gap, much larger than that corresponding to a grounded
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FIG. 3. (a) QD-SI-QD spin-singlet spin-triplet energy difference
vs the SI’s charging energy Ec, as obtained by the L̃ = 1, 2, 3, 4, 5
surrogates at U = 6�, ν = 1, 	 = �, with n0 an even integer. (In-
set) Average SI spin 〈Sz,SI〉 (in the Stot = Sz,tot = 1 state) versus Ec.
(b) Same as in (a), but for the Stot = 0, 1, 2 states of a SI coupled to
four identical QDs.

superconductor. Similar considerations apply to any
number of dots Ndots, individually and identically coupled to
the same SI leading to an Stot = Ndots/2 ferromagnetically
aligned ground state, cf. Fig. 3(b) below.

The SMS approach allows us to easily and reliably assess
the behavior of even more complex tunable devices. We con-
sider the QD-SI-QD-SI loop shown in Fig. 4(a) inset, which
is threaded by a flux ϕ, treated as a control parameter. In
the small Ec limit, the general behavior may be understood
in terms of QDs coupled to independent linear combinations
of SC orbitals. At ϕ = 0, both QDs effectively couple to the
constructive superposition of the two SCs, while at ϕ = π

each QD forms a singlet with one of the even/odd combina-
tions of SC orbitals (due to the relatively large value of the
hybridization strength considered here). The formation of a
spin-triplet state then requires breaking both singlet bonds,
thus it is an excited state at ϕ = π and small Ec, see Fig. 4(a).
The situation changes dramatically for a larger value of Ec,

FIG. 4. Spin-singlet spin-triplet energy gap for a QD-SI-QD-SI
loop threaded by a flux ϕ, as obtained by the L̃ = 1, 2, 3, 4 surrogates
(ωc = 10�) for a small SI charging energy Ec = 0.1� (a) and for a
larger value Ec = 2� (b). The parameters are the same for all QDs
and SIs, U = 6�, ν = 1, 	 = �, D = 10�, with n0 chosen as an
even integer.

where the strong Ec-induced coupling between the even and
odd combinations of SC orbitals reinstates the spin triplet as
the global ground state of the L̃ � 2 surrogates. As in the sim-
pler QD-SI-QD setup, it is again crucial to take into account
(at least in an minimal L̃ = 2 way) the finite-bandwidth effects
for a sensible ground-state description.

IV. EFFICIENT SMS MODELING OF EPITAXIAL
SUPER-SEMI NANOWIRES

A. General considerations

While for ultrasmall superconducting grains the finite-size
effects play a significant role, the present-day hybrid super-
conducting islands (e.g., realized as epitaxial superconductor-
semiconductor nanowires) show explicitly a dense continuum
of states derived from the metallic superconducting shell
above the bulk gap, and just a small number n∗ of proximitized
semiconductor subgap levels [24]. Instead of using a brute-
force discretization of the above-gap continuum as in the
Richardson approach, we propose to model the proximitized
nanowire in the more efficient SMS fashion.

The generalized SMS approach introduced in this paper
relies crucially on the existence of a dense continuum of
superconducting levels. Given the absence of any finite-size
details, we could still carefully break the U (1) symmetry
while keeping all 1e charging effects intact, which allowed
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FIG. 5. A proximitized nanowire as a surrogate model. The
metallic superconducting shell acts as a Cooper-pair reservoir,
while the proximitized semiconductor states are treated as effective
surrogate levels.

us to build efficient BCS-based particle-number-conserving
surrogate models (see Sec. II). Our SMS approach contrasts
with the Richardson methodology whose built-in finite-size
effects can only be reduced by enlarging considerably the
model space. The increase in computational complexity may
be mitigated within the flat-band approximation, which is,
however, not always applicable.

In the absence of any charging effects, nanowire-base
structures, which also incorporate QDs may be modelled
by tunnel-coupling the n∗ proximitized semiconductor levels
(each with its induced BCS gap �∗

i ) to any relevant QD.
Thinking of this as a surrogate model with L̃ = n∗, we could
invoke all the arguments detailed in Sec. II to safely in-
corporate the charging effects, effectively ending up with a
single extra auxiliary Cooper-pair counter site in the model
space, cf. Fig. 5. This level structure is still much simpler
than in the Richardson case, and it also lifts the need of a
microscopic level-dependent effective pairing interaction, as
used in Ref. [24]. Instead, the only necessary model param-
eters are the values of the induced gap �∗

i for each level
i = 1, . . . , n∗. We find that the SMS-inspired approach is in
excellent agreement with the results of Ref. [24], e.g., re-
garding the stepwise collapse of pairing correlations in an
increasing external magnetic field. When going beyond this
simplistic effective approach and towards more realistic sce-
narios, one could still employ a surrogate description of the
metallic superconducting shell, e.g., if dealing with the details
of the interface mediating the coupling of superconducting
and semiconducting nanowire states.

B. Applications

Let us revisit in this context the QD-SI-QD setup. For
simplicity, we assume for the SI a minimal model with
n∗ = 2 subgap levels interpreted as proximitized semiconduc-
tor states, which are now allowed to couple differently to each
QD. We also neglect any direct tunneling between the QDs,
which would favor the spin-singlet ground state.

The tunnel-coupling dependence of the spin-singlet-triplet
gap shows in Fig. 6 a competition between the two lowest-
lying many-body spin-singlet states. In the vanishing limit
of the QD-SI tunnel-couplings, the two QD spins may be
trivially combined to Stot = 0 or 1, the difference between
the two lowest-lying spin singlets (and spin triplets) being the
presence of a broken Cooper pair with an energy cost of 2Eqp

(the members of the broken pair are free to form spin singlets
together and with the singly occupied QDs). An increasing
tunnel-coupling strength encourages the states with single QD

FIG. 6. QD-SI-QD spin-singlet-triplet energy gaps (for the two
lowest-lying spin singlets) vs the tunnel-coupling strengths for an
L̃ = 2 surrogate at U = 6�, ν = 1, Ec = 2�, with n0 an even
integer.

occupation to hybridize with the SC quasiparticle excitations,
while also allowing for empty/doubly occupied dots. For a
large enough tunneling strength, the lowest-lying spin singlet
inevitably acquires a strong broken-Cooper-pair character.
This is manifest in Fig. 6 where the two lowest-lying spin-
singlet energies cross at some moderately large value of the
coupling, in the left-right symmetric configuration. Breaking
this mirror symmetry leads to a spin-singlet-avoided crossing
and to a reduction of the maximum spin-singlet-triplet gap. In
a highly asymmetric coupling situation, the broken-Cooper-
pair-like singlet eventually overtakes the spin triplet as the
many-body ground state. The previous considerations apply
in the convenient case of constructive interference across all
paths in the system (when flipping the sign of one of the tun-
neling amplitudes, the parameter region with a triplet ground
state is reduced).

We conclude this section by assessing the effects of spin-
orbit interaction (SOI), which is strong in the InAs and InSb
nanowires commonly employed in experiments [43,44] and
which we include here simply as a spin-flip tunneling term,

ĤSO =
2∑

α=1

n∗∑
i=1

tSO;α,i(−1)α (d†
α↑ci↓ − d†

α↓ci↑ + H.c.). (16)

Figure 7(a) shows the evolution of the lowest-lying spin-
triplet-like and spin-singlet-like states with increasing SOI
strength tSO in the symmetric configuration tL = tR = 2�∗,
tSO,L = tSO,R = tSO. Here, the ground state retains a pro-
nounced spin-triplet character up to relatively large values
of tSO, while the two mid-gap excited singlet-like states are
relatively stable in energy and experience a crossing around
tSO/t  0.3. Overall, the spin-triplet-like state experiences a
much slower degradation of its total-spin-1 character with in-
creasing SOI strength than both spin-singlet-like excitations.
In an asymmetrical coupling situation, however, one of the
spin-triplet components starts splitting in energy from the
other two already around tSO/t  0.1, while simultaneously
and gradually losing its total-spin-1 character, cf. Fig. 7(b).
This suggests once again that a rather precise and controlled

224501-6



BCS SURROGATE MODELS FOR FLOATING … PHYSICAL REVIEW B 109, 224501 (2024)

FIG. 7. Total spin squared and excitation energy vs the spin-orbit
tunneling strength tSO for the states of the system in (a). Each QDL,R

couples identically to both SC levels. The parameters are �∗
1,2 = �∗,

ξ1,2 = ±1.3�∗, Ec = 2�∗, tL = tR = 2�∗, tSO,L = tSO,R = tSO, U =
6�∗, ν = 1, with n0 chosen as an even integer. (c) Same as in (b) but
for an asymmetric setup tL = 2�∗, tR = 1.5�∗, tSO,L = 5tSO,R = tSO.

fabrication of the QD-SI-QD is necessary to achieve the
strongly coupled symmetric setup ideal for a robust spin-
triplet unit.

V. CONCLUSIONS

In this paper, we developed a class of charge-conserving
few-level surrogate models for calculating efficiently the
subgap spectrum of hybrid systems involving floating su-
perconducting islands (SIs) and quantum dots (QDs). We
formulated the surrogate methodology around the basic
assumption that the finite-size effects may be safely ne-
glected, as is typically the case for present-day experimental
implementation of SIs, e.g., in epitaxial semiconductor-
superconductor nanowires. This enabled a BCS mean-field
description of the charge-conserving hybrid system that (a)
perfectly accounts for all 1e charging effects and (b) admits a
highly efficient representation in terms of a very small number
of surrogate effective levels [18].

In all benchmarks our surrogates delivered essentially the
same results (but free of finite-size effects) as the well-
established Richardson model, while requiring only a minute

fraction of its computational cost. Thus, we were led to ar-
gue that the surrogate approach is better suited for modeling
the current generation of hybrid devices. Meanwhile, when
looking from the other end of the modeling spectrum, our
surrogate modeling strategy is free of the limitations that
plague other computationally light-weight approaches such as
the zero-bandwidth (flat-band) or infinite-gap approximations.
We are confident that a surrogate-based study would pro-
vide valuable information on the physics of complex circuits
based on multiterminal Josephson-Andreev junctions [27],
e.g., regarding their robustness with respect to quasiparticle
poisoning.

Within the surrogate approach, we discussed the effects of
the charging energy and spin-orbit interaction on the “exotic”
triplet ground state recently predicted for QD-SI-QD based
setups. Our main conclusion is that the spin-singlet-triplet gap
is significantly enhanced by moderately large charging energy
and hybridization strength, and is not affected much by the
spin-orbit interaction in the symmetrically coupled configura-
tion. The triplet ground state is, however, found to be unstable
with respect to disorder in the tunnel couplings. Given that
extended QD-SI-QD chains can be fabricated with enough
regularity, these findings raise the expectations regarding the
physical implementation of a Heisenberg spin-1 chain in a
super-semi hybrid platform. The theoretical investigation of
long QD-SI-QD chains in the SMS framework is reported in
Ref. [45].
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APPENDIX A: ADDITIONAL SMS BENCHMARKS

We collect here additional benchmarks of the surrogate
models against the Richardson solution of the QD-SI and
SI-QD-SI systems. We limit ourselves here to discussing the
way in which the SMS approach relates to the Richardson
model, for in-depth physical discussions regarding the various
systems see Refs. [19,20].

Figure 8 shows the evolution of the QD-SI subgap spec-
trum with increasing SI charging energy Ec. From the familiar
YSR eye-shaped loops at Ec = 0, at large Ec > � the spectra
tend towards straight lines typical of Coulomb blockaded
systems. The SMS spectra are by construction free of the
finite-size effects inherent to the Richardson model [see e.g.,
Fig. 8(f)]. Small quantitative differences between the sur-
rogate and Richardson models are present also in the QD
occupation, QD charge fluctuations and QD-SI spin-spin cor-
relations, as shown in Fig. 9. In most cases such deviations
persist all the way to Ec = 0, which we interpret as being
mainly related to the Richardson model’s finite-level spac-
ing, d = �/10 [19]. This is further supported by the good
agreement (at Sz = 0) between the QD charge fluctuations and
the QD-SI spin-spin correlations for the Richardson model
and the L̃ = 2 surrogate, featuring the largest level spacing
amongst all surrogates. A detailed study of alternative SMS
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FIG. 8. Same as in Fig. 2, for even n0 (a)–(d) and odd n0 (e)–(h) and for various SI charging energies Ec = 0 (a), (e), Ec = 0.2� (b), (f),
Ec = 0.8� (c), (g), Ec = 1.2� (d), (h).

methodologies, which better take into account the finite-level
spacing of small superconducting grains (e.g., by considering
only even-L̃ cases with a minimum level spacing) is left for a
future work.

The SMS retains its fast convergence also for the more
complex SI-QD-SI system shown in Fig. 10. Here, we plot
its subgap spectrum consisting of the lowest-lying spin-singlet
states (S1,2, with n0 + 2 particles) and doublet state (D, with
n0 + 1 particles).

The SI-QD-SI generalizes the SC-QD-SC setup discussed
in detail in Ref. [18]), by including a nonvanishing charging
energy for each superconducting island. For these systems,
we generally find that odd-L̃ surrogates are better fitted
for the weak-tunnel-coupling regime, whereas at strong
coupling it is the even-L̃ models that show a faster conver-
gence. At weak coupling, the even-L̃ surrogates are seen in
Fig. 10(a) to slightly overestimate the excitation energy, as
they lack the screening quasiparticle with energy �. At strong

FIG. 9. QD-SI properties with increasing SI charging energy Ec. Average QD occupancy (a), (d), QD charge fluctuations (b), (e), and QD-SI
spin-spin correlation (c), (f) in the lowest singlet (dashed curves) and doublet (continuous curves) at even n0 (a)–(c) and odd n0 (d)–(f), as given
by the L̃ = 1, . . . , 6 surrogates (ωc = 10�). The L = 800 Richardson model results (black curves with dots) have been read graphically from
Fig. 3 of Ref. [19] using WebPlotDigitizer [36]. The common parameters are U = 4�, 	 = 0.1U, ν = 1, D = 40�.
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FIG. 10. SI-QD-SI subgap excitation spectrum (for particle ad-
dition) as a function of 	 = 	L = 	R (a) and as a function of the
gate voltage ν applied on the QD (b), as given by the L̃ = 1, 2, 3, 4
surrogates (ωc = 10�). The energy of the lowest spin-doublet state
D is taken as the reference value, the curves indicating the lowest-
lying spin singlets S1,2. The L = 200 Richardson model results have
been read graphically from Figs. 3 and 13(b) of Ref. [20] using Web-
PlotDigitizer [36]. The common parameters are U = 30�, Ec;L =
Ec;R = 0.4�, ν = 1, D = 10� for panel (a) and U = 4�, Ec;L =
0.1�, Ec;R = 1.5�, 	L = 0.1U, 	R = U, D = 10� for panel (b),
with n(L)

0 = n(R)
0 chosen as even integers.

coupling, the odd-L̃ surrogates usually struggle to account for
the interplay between the screening and localization effects
in the doublet state, see also the discussion around Fig. 3 in
Ref. [18].

In Fig. 10(b), all surrogates are shown to reproduce well
the pronounced gate dependence (ν) of the subgap states,
including the sweetspot for qubit operation proposed in Ref.
[20] for this SIL-QD-SIR system. This two-level system is
realized in the asymmetric configuration with SIL having a
much larger charging energy and coupling strength to the QD
than the SIR (which acts more as a particle reservoir, see Ref.
[20] for more details).

FIG. 11. SI-QD-SC2 subgap excitation spectrum as a function of
the gate voltage ν applied on the QD for various superconducting
phase differences ϕ = 0, π/2, π , as given by the L̃SI = L̃SC2 = 2
surrogates (ωc = 10�). The energy of the lowest spin-doublet state
D is taken as the reference value, the curves indicating the lowest-
lying spin singlets S1,2. The other parameters are U = 4�, Ec =
1.5�, 	SI = 	SC,1 = 	SC,2 = 0.5�, D = 10�, with n0 chosen as an
even integer.

APPENDIX B: SURROGATES MODELS FOR SYSTEMS
WITH FLOATING AND GROUNDED SUPERCONDUCTING

TERMINALS

The number-conserving surrogates for floating SIs and
number-violating surrogates for grounded BCS terminals may
be seamlessly combined as building blocks of elaborate mod-
els for multiterminal superconducting quantum circuits [27],
capable of addressing sensitive issues such as their robustness
with respect to quasiparticle poisoning.

By combining the surrogate model of Eq. (14) for SIL

with the original surrogate model of Ref. [18] for the right
(grounded) SC terminal, we verified that the qubit sweetspot
of the SI-QD-SI setup survives in the strictly Ec;R = 0 limit.
Furthermore, we found the sweetspot to be present also in a
more complex three-terminal SI-QD-SC2 setup, which gener-
alizes the SI-QD-SC configuration (and effectively reduces to
it for a vanishing phase difference ϕ between the two SCs).
Figure 11 shows that the sweetspot’s characteristics may be
tuned by varying ϕ, and that a similar profile to the SI-QD-SI
one of Fig. 10(b) may be recovered in the moderate coupling
regime of the SI-QD-SC2 setup around ϕ = π .

APPENDIX C: SMS MODELING
OF A JOSEPHSON JUNCTION

While the surrogate models considered above did account
(by construction) for the pair-breaking tunneling processes
induced by the presence of the interacting QD, they may be
easily generalized to describe also the dynamics of Cooper
pairs, e.g., when modeling transmon qubits.

Very recently, the full electronic problem for a com-
bined Andreev spin qubit-transmon qubit system was solved
in Ref. [25] within the flat-band approximation of the full
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FIG. 12. Variance of the particle number difference �NL-R =
NL − NR vs the charging energy Ec, as given by the L̃ = 1, 2, 3, 4 sur-
rogates (ωc = 10�). The other parameters are ν = 0.9, 	L = 	R =
�/4, tp = 0.1�, ϕext = π, D = 10�, with n0 chosen as an even in-
teger. Compare with Fig. 6(d) of Ref. [25].

SIL-QD-SIR Richardson model. For the occasion, the lat-
ter was augmented by a pair-hopping term describing the

Josephson junction with phase difference ϕext,

HJJ = tpeiϕext
1

L

L∑
i=1

c†
Li↑c†

Li↓

L∑
i=1

cR j↓cR j↑ + H.c., (C1)

which may be effectively incorporated into the surrogate
models as a coupling between the auxiliary Cooper-pair con-
densate sites for each SI,

H (aux)
JJ = tp eiϕext eiφ̂L e−iφ̂R + H.c., (C2)

see also the inset of Fig. 12 for the graphical representation of
the full system. Figure 12 shows the suppression of the charge
fluctuations with increasing charging energy by plotting the
variance of the particle number difference �NL-R = NL − NR

between the two SIs. Our surrogate model results are shown to
be in excellent agreement with those of Ref. [25] [see Fig. 6(b)
therein] regarding the two charge-fluctuations regimes ob-
served when increasing Ec. The only quantitative differences
between the various surrogates appear in the moderate to
large Ec regime where the NL = NR state dominates and the
electrostatic effects in the QD become relevant.
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[25] L. Pavešić and R. Žitko, Generalized transmon Hamiltonian for
Andreev spin qubits, Phys. Rev. B 109, 155164 (2024).

[26] J. Dukelsky and G. Sierra, Crossover from bulk to few-electron
limit in ultrasmall metallic grains, Phys. Rev. B 61, 12302
(2000).

[27] F. J. Matute-Cañadas, L. Tosi, and A. L. Yeyati, Quantum
circuits with multiterminal Josephson-Andreev junctions, PRX
Quantum 5, 020340 (2024).

[28] T.-F. Fang, A.-M. Guo, and Q.-F. Sun, Strongly correlated elec-
trons in superconducting islands with fluctuating Cooper pairs,
Phys. Rev. B 106, 075117 (2022).

[29] M. F. Lapa and M. Levin, Rigorous results on topological su-
perconductivity with particle number conservation, Phys. Rev.
Lett. 124, 257002 (2020).

[30] E. Lebanon, A. Schiller, and F. B. Anders, Coulomb blockade
in quantum boxes, Phys. Rev. B 68, 041311(R) (2003).

[31] F. B. Anders, E. Lebanon, and A. Schiller, Coulomb blockade
and non-Fermi-liquid behavior in quantum dots, Phys. Rev. B
70, 201306 (2004).

[32] F. K. Malinowski, R. K. Rupesh, L. Pavešić, Z. Guba, D. de
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