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First-order vortex lattice melting in bilayer ice: A Monte Carlo method study
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Inspired by the stable bilayer water ice grown in the laboratory [Nature (London) 577, 60 (2020)], we propose
a model representing water ice as a two-layer six-vertex model. Using the loop update Monte Carlo method, we
unveil meaningful findings. While the square lattice six-vertex model exhibits an antiferromagnetic to disordered
phase transition known as the Berezinskii-Kosterlitz-Thouless transition, we observe a different scenario for the
bilayer six-vertex model, where the transition type transforms into an Ising transition. We discover the emergence
of vortices in the disordered phase, and to stabilize them, vortex excitation is induced. This leads to the presence
of distinct 1/2 filling and 2/3 filling vortex lattice phases. More importantly, we identify the phase transitions
between the vortex lattice phase and the disordered phase, as well as between the 1/2 and 2/3 vortex lattices, as
being of first order. We also propose an experimental scheme for realizing a two-layer six-vertex model based on
the artificial ice of particles in a double well trap array. Our findings provide valuable insight into the nature of
phase transitions occurring in layered water ice and artificial spin or particle ice systems in experimental setups.
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I. INTRODUCTION

Ice is a common substance in nature. There are various
types of ice, including the solid form of liquid water [1], spin
ice in real materials [2], artificial spin ice [3,4], and particle ice
[5]. One common feature of the different forms of ice is the ice
rule, i.e., the so called two-in (close) two-out (far away) topo-
logical constraint, introduced by Pauling in 1935 [6]. Water
ice exhibits 19 stable geometric structures, currently identified
through high pressure and low temperature experiments [1].
Spin ice also exists many real materials with different struc-
tures, such as rare-earth pyrochlores Ho2Ti2O7 [7].

Researchers have also attempted to grow artificial spin
ices [8], due to their controllability. The microscale sys-
tems used to create artificial spin ice typically involve
magnetically interacting nanoislands or nanowire links [9],
superconducting-qubit arrays [10]. The physics studied
through ice is very broad; it covers residual entropy [11],
frustration [2], monopoles [12], and so forth.

Artificial spin ice can construct various configurations,
including the vortex lattice (VL) phase [13]. Its periodic
structure composed of vortices is called the VL. As vor-
tex states can help understand superconductors [14], many
studies have been done on transitions between vortex lat-
tices and other phases [15–18]. In the XY model, the
unbinding of the vortex-antivortex pairs is considered the
cause of the Berezinskii-Kosterlitz-Thouless (BKT) phase
transition [19–21]. However, the vortex lattice leads to a
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first-order phase transition in the real crystals YBCO and
YBa2Cu3O7 [15–18].

Of course, the ice physics can also be explored through
experiments with water ice. In 2020, the group at Peking
University confirmed the existence of two-dimensional two-
layered water ice [22]. The positions of the upper layer oxygen
ions, as well as the connections between the oxygen ions, are
exactly the same as those in the lower layer, i.e., AA stacking
ice. Such a stable structure of water was first predicted in
1997 using a molecular dynamics simulation [23]. Actually,
there exists another type of ice with an AB stacking structure
[24] as shown Fig. 1. There is a relative 180 degree rotation
between the two layers, which are connected by hydrogen
bonds. Alternatively, the hydrogen bonds of the first layer
are shifted onto the faces of the second layer. It has been
confirmed to be stable under reasonable temperatures and
pressures by ab initio calculations [24] though lacking in
experimental preparation [22].

To inspire experimental physicists to achieve AB or other
types of bilayer ice in the future, we further convert the bi-
layer ice to the bilayer six-vertex (6V) model [25]. On the
basis of the bilayer square lattice 6V model, the AB stacking
honeycomb 6V model can be formed by bending one leg of
the vertices to the appropriate degree. Hydrogen ions and
oxygen ions in ice can be close to each other or far apart,
similar to the situation of spin-up and spin-down. Viewing
ice as a spin system helps understand the phase transitions
between different types of ice under various conditions like
temperature and pressure. It is not clear whether or not there
is something new in the bilayer honeycomb 6V model.

In this paper, we apply a large-scale loop Monte Carlo
(MC) simulation to study the proposed 6V model. By
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properly defining and scanning the type and weight,
including the vortex exciting weight, we explore the phase
diagrams systematically. The system includes ferromagnetic,
antiferromagnetic, 1/2-filling VL, 2/3-filling VL, and
disordered phases. The theoretically discovered types of phase
transitions, such as first-order phase transitions, also provide
insight into understanding previous experiments [15–18].

The outline of this work is as follows. Section II introduces
the bilayer 6V model, algorithm, and the measured quantities.
Section III describes the phase diagram and details without the
effects of vortex weight V = 1. Section IV describes the phase
diagram with the effects of vortex weight V �= 1. Section V
discusses the experimental realization. Conclusive comments
and outlook are made in Sec. VI.

Physically, apart from the bilayer 6V model initially pro-
posed, we have made new discoveries as follows.

(I) The transition between the antiferromagnetic phase to
the disordered phase is of Ising type for our bilayer 6V model.
However, for the 6V model on the square lattice, the transition
is of BKT type [26].

(II) Two types of vortex lattice phase are found when vortex
excitation is induced. The transition from vortex lattice phases
to other phases is of first order, consistent with previous crys-
tal experiments [15,16] . This helps researchers understand
that not all phase transitions involving vortices are BKT phase
transitions.

On the algorithmic level, although Ref. [25] has simulated
the single-layer planar 6V model using the loop algorithm, our
model is the nonplanar 6V model and we provide the details
of closing loops. In addition, we introduce a Metropolis type
short-loop update method for the purpose of ergodicity.

Experimentally, bilayer water ice, where the ordering is
due to the proton positions [22], is probably better captured by
particle-based ice [5]. Here, we propose to groove or imprint
both bilayer lattices onto a single-layer substrate, and each
edge of the lattices are realized by a double well trap with
only one particle.

II. MODEL, ALGORITHM, AND QUANTITIES

A. The 6V model with vortex weight

1. Hamiltonian and partition function

Unlike the models such as the Ising [27], XY [19–21],
Potts [28] models, or the coupled spins such the Ising-XY
model [29], etc., the famous 6V model does not have a ex-
plicit Hamiltonian. However, each type of vertex has its own
weight and can also have an equivalent energy, and the ver-
tex satisfies the “two-in-two-out” topological constraints. For
convenience, to measure physical quantities related to specific
heat and other energy-related quantities, a quasi-Hamiltonian
is introduced as

H = −
2N∑
i=1

εi − v

2 f∑
j=1

ni, (1)

where −εi is the effective energy for each vertex labeled
by i, and −v is a local vortex energy for each plaquette. ni

represents the number of vortices in each plaquette, where
ni = 1 denotes a clockwise � or a counterclockwise � vortex,
and ni = 0 signifies the absence of a vortex. N is the total

FIG. 1. The construction of the two-layer ice model. The large
balls (in red and blue) represent O2−s and the small balls denote
H+s. The different colors for the large ball means AB stacking [24].
The “two-in-two-out” rule can be demonstrated by the small balls in
different colors.

number of vertices of one layer and f is the total number of
faces of the honeycomb lattice of one layer.

Using the Boltzmann weight factor, the vertex weight is

ωi = exp(βεi ) (2)

and the vortex weight is

Vi = exp(βvni ), (3)

where β = 1/kBT is the inverse temperature and set to 1, and
the partition function of the system is defined as follows:

Z =
2N∏
i=1

ωi

2 f∏
j=1

Vj . (4)

Figures 2(a1)–2(c2) show the configurations of six ver-
tices, and each vertex has four legs marked by the red
arrows. The directions of the legs satisfy two of them facing
out away from the center and two legs pointing toward the
center. For simplicity, the weights of the six vertices take
values as

wi = [a, a, b, b, c, c]. (5)

Here, the flipping symmetry of the leg direction is considered,
i.e., the state of (a1) can be obtained by flipping the directions
of the four legs of (a2), and therefore the weights of these
two vertices are the same as a. In total, only three possible
weight values a, b and c are needed for the six different
configurations. This tradition is also used in Ref. [26].

2. The formation of two-layer honeycomb lattice structure

Figures 2(d1)–2(e2) show how to use the vertices to con-
struct two-layer honeycomb lattices. Firstly, 6V models are
usually constructed in the two-dimensional plane, and it is
rare to see two-layer 6V models. Here, the interlayer coupling
is realized by connecting the two vertices, using the two red
legs marked 2, 4 in the vertical direction. Then, the second
step rotates the two legs (in blue) to the horizontal y direction.
A small coordinate axes system denoted x, y, z is shown for
reference.

It is also essential to illustrate the relationship between
the two-layer honeycomb 6V model and the structure of or-
dered water molecules. In Figs. 2(f1) and 2(f2), the arrows
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FIG. 2. Schematic diagram of the 6V model and water
molecules. [(a1)–(c2)] The configurations of six vertices and their
weights defined as a, a, b, b, c, and c, respectively. [(d1) and (d2)]
Connecting the two vertices by the two vertical red legs marked by 2
and 4. [(e1) and (e2)] Rotating the two legs, marked in blue, on the
horizontal plane. [(f1) and (f2)] Mapping to the structure of real water
ice molecules. The small ball represents the hydrogen ion and the
large ball represents the oxygen ion. [(g1) and (g2)] The definition of
the vortex.

pointing towards the center of the vertex corresponds to the
approaching of the hydrogen (H) ions towards the oxygen
(O) ion in a real water molecule. Conversely, arrows point-
ing away from the center indicate that the hydrogen ions
stay away from the oxygen ion. Ultimately, the arrange-
ment of vertices can describe the structure of real water ice
molecules.

It should be noted that the vortex is defined as shown in
Figs. 2(g1) and 2(g2). Numerically, the requirement is that the
angle difference between adjacent vectors is π

3 , i.e.,

θmod{i,6}+1 − θi = π/3, (6)

where i ranges from 1 to 6. This type of definition does not
need the saw function in Ref. [29] and is the same as the one
in Ref. [30].

In addition, the configurations of the system also depend on
the topological constraints of “two-in-two-out” rules [25,31].
In other words, the arrows in the vertices have two pointing of
them to the center and the other two back to the center. The
real configurations of large lattices need to be simulated by
various MC methods [32,33], which will be discussed in the
next section.

FIG. 3. Schematic diagram of the loop algorithm in a two-layer
honeycomb lattice. The starting point is selected randomly, and the
red arrows illustrate the path of the process. When the head of the
loop meets the start vertex, the loop is closed and the configuration is
updated. For convenience in defining the coordinates of the vertices,
the honeycomb is defined as a topologically equivalent brick wall
structure.

B. Methods and the measured quantities

1. Methods

In this paper, we apply the loop algorithm, which has
proven effective in studying various systems both classical
systems systems [25], and quantum systems [25,34]. A similar
loop algorithm is the famous worm algorithm [35,36], which
involves a partial loop with two open ends with very efficient
dynamical behaviors [37]. The 6V model is very similar to the
flow representation of other models [38–40].

To execute a loop update, the following steps are performed
as shown in Fig. 3.

(1) First, we initialize the system with N = 2Lx × Ly ver-
tices, and then randomly select one of the vertices. Next, we
randomly choose one of the four legs of the vertex to place the
head of the loop.

(2) The leg where the head of the loop is located is used as
the entrance leg, and then again one of the four legs from that
vertex is chosen as the exit leg with a certain probability.

(3) The head of the loop enters the next new vertex, and
the exit leg of the previous vertex is connected to this new
vertex.

(4) To continue the process, we repeat steps 2 and 3 until
the head of the loop and the end of the loop meet. Addi-
tionally, as the head of the loop traverses each leg, the state
(arrows) of that leg should be flipped.

Let’s explain how to choose the exit leg when the loop
head has been determined. Here, we employ the Metropolis-
Hastings strategy. Suppose the weight of the reference vertex
is w0, and the weights of the new vertices resulting from
exiting from the four legs are w1, w2, w3, and w4, respectively.
We choose a random number between 0 and 1 to determine
the interval in which the random number falls. These intervals
are defined as [0, p1], (p1, p1 + p2], (p1 + p2, p1 + p2 + p3],
and (p1 + p2 + p3, 1], where the probabilities are defined as

pi = wi/

4∑
i=1

wi. (7)

224426-3



ZHONG, MA, ZHENG, ZHANG, AND ZHANG PHYSICAL REVIEW B 109, 224426 (2024)

TABLE I. Parameters a, b, and c, and the possible range of
bounce probability pa, pb, and pc, where the subscripts a, b, c
represent the vertices of type a, b, c that the loop encounters during
its walk.

a + b |a − b| c pa pb pc

<1 \ 1
(
0, 1

2

) (
0, 1

2

) (
1
2 , 1

)
\ >1 1

(
0, a

a+1

) (
0, b

b+1

) (
1

a+b+1 , 1
2

)

If the outgoing and incoming legs are exactly the same, then
there is no update, and the corresponding probability p is
referred to, as the bounce probability. Generally, a higher
bounce probability leads to lower efficiency of the loop al-
gorithm [25,34].

Therefore, analyzing the possible range of bounce prob-
abilities under different parameters (see Table I) would be
helpful to ensure the feasibility of the code.

Loop close is an important step in the loop algorithm. In
some cases, the length of the loop is very big and the code
consumes very long run times. The authors of Ref. [41] even
cut the loop by the so-called short-loop methods.

Here, we resort to the method dealing with the quantum
Bose-Hubbard models [42–45]. Two ways of closing loops
are used. In Fig. 4(a), the beginning leg is labeled by “first”
and the ending leg is marked by “last.” In this case, the first
and the last legs meet (overlap) at the same leg, and then the
loop closes. In Fig. 4(b), the last leg connects to the position of
the initial leg. This constraint arises from the “2-in and 2-out”
condition, allowing the loop closure only when connected to
the initial leg. The distinction lies in the fact that in the former
case, the vertex labeled “1” undergoes two updates, whereas
in the latter, it undergoes only a one time update.

2. The measured quantities

(Ia) The magnetization in the x direction is

M±
x =

∑
i, j

(±1)i+ jSx
i, j/N, (8)

where (±1) denotes the phase factor of ferromagnetiza-
tion (FM) or antiferromagnetization (AFM), respectively. The
symbol x refers to the horizontal directions of the lattice, and

(a)

last
last

stop

stop

first

first

loop

loop
1

(b)

1

FIG. 4. The two ways in which the loops close. (a) The first and
last legs overlap at the same leg, and (b) the last leg connecting to the
first leg but the two legs belong to a pair of neighborhood vertices.

TABLE II. The four phases and their boundaries in terms of the
parameters a, b, c, and �.

Phase � a, b, c m+
x m−

x

FM � > 1 b − a > c 1 0
FM � > 1 a − b > c 1 0
DIS (D) -1 < � < 1 a + b > c 0 0
AFM � < −1 a + b < c 0 1

i and j mean the coordinates of the vertices in the x and y
directions.

(Ib) The absolute values of magnetizations are

m±
x = 〈|M±

x |〉, (9)

where 〈〉 signifies the averages of Monte Carlo simulations.
(Ic) The striped ferromagnetization is defined as

ms =
L∑

i=1

∣∣∣∣∣∣
L∑

j=1

Sx
i, j

∣∣∣∣∣∣/N, (10)

which is used later to define the striped specific heat Cms.
(Id) The Binder ratios are also defined as

Q = 〈(M−
x )2〉2

/〈(M−
x )4〉 (11)

Qs = 〈
m2

s

〉2/〈(
ms

4〉
, (12)

corresponding to the antiferro magnetization M−
x and the

striped ferromagnetization ms, respectively.
(II) Vortex density

ρvx = 1

2 f

2 f∑
i=1

ni, (13)

where f is the total number of faces of one layer.
(III) Specific heats CV , and Cvx are expressed as

CV = 2N

kBT 2
[〈e2〉 − 〈e〉2], (14)

Cvx = 2N

kBT 2

[〈
ρ2

vx

〉 − 〈ρvx〉2], (15)

where e is the average energy per site. CV and Cvx are specific
heats related to energy and vortex.

III. PHASE DIAGRAM V = 1 (v = 0) AND DETAILS

A. Global phase diagram with V = 1

We first consider the global phase diagram with the vortex-
excitation factor V = 1. Traditionally, for a two-dimensional
square lattice with periodic boundary conditions, the variable
� was introduced to describe the phase diagram [25,31],

� = a2 + b2 − c2

2ab
, (16)

and the four phases, along with their boundaries expressed in
terms of the parameters a, b, c and �, are listed in Table II.

In Fig. 5(a), the four phases are depicted, where the fer-
romagnetic (FM) phase, the antiferromagnetic (AFM) phase,
and the disordered (D) phase are schematically located in
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FIG. 5. Global phase diagram in the plane (a/c − b/c) with V =
1 and snapshots. (a) Phase diagram containing AFM, FM, and disor-
dered phases (b) the typical snapshot in the FM phase. The AFM-D
transition is of Ising type. (c) Two configurations of the AFM phase
for the Z2 symmetry breaking.

Figs. 5(b)–5(d), respectively. For simplicity, we only show
snapshots from the lower layer of the 6V model; the features
of the other layer can be inferred based on symmetry.

Surprisingly, the phase diagram of the six-vertex model
on our bilayer honeycomb lattice is identical to the tabu-
lated results in Table II from the square lattice presented
above [25,31].

One may wonder why the two-layer 6V model is the same
as the single-layer square lattice 6V model. Let us now briefly
analyze a few locations of the phase transition boundary. The
first point is (a/c, b/c) = (1, 0) which is the point of phase
transition between the AFM and FM phases. As illustrated in
Fig. 5(a), the FM-phase is full of vertices with weight a and
the AF-phase is full of vertices with weight c. At the point of
phase transition of the two phases, i.e., phase AFM and phase
FM, free energies are equal and defined by the following:

Nalna − T SFM = Nclnc − T SAFM, (17)

Na = Nc = 2L2, where SAF and SFM are the entropies of the
two phases, respectively,

SFM = SAFM = kBln2. (18)

Along the b = 0 axis, the system in the FM phase only
has either all a1 type vertices or all a2 type vertices. In other
words, there are two microscopic states. Similarly, in the AFM
phase, there exist configurations with only all c1 or all c2
type vertices. Therefore a/c = 1 is the critical point satisfying
Eq. (17) at b = 0.

B. Ising type not BKT type in transition along a = b

The phase transitions of the 6V model are identical on both
the square lattice and the double-layer honeycomb lattice. For
example, along a = b, Ref. [26] confirms the critical point is
at βc = ln(2). The critical point locates at

ac = bc = 1/2. (19)

In our MC simulation, as shown in Figs. 6(a)–6(b),
the intersection of m−

x and its Binder ratio Q locates
at ac = bc = 1/2.

However, the type of the phase transition changes. In the
F model, the phase transition belongs to be the BKT type, as

(c)
0.7
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-
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16
24

8C
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FIG. 6. Different quantities scanning a while keeping a = b
(a) m−

x (b) Q (c) Data collapse of Q, while using yt = 1. (d) Repeating
CV of the F model on the square lattice [26].

evidenced by the nondivergent behavior of specific heats in
Fig. 4 in Ref. [26]. In our bilayer 6V model, the type should
be of Ising type.

The first signal is that, for the Ising phase transition, the
critical exponent yt = 1. Using the finite size scaling equa-
tion defined as follows:

Q = Q0 + e1(T − Tc)Lyt + e2(T − Tc)2L2yt

+ · · · + f1Ly1 + f2Ly2 + · · · , (20)

and the data collapse method, Q is plotted as function of
(a − ac)Lyt , and data of different sizes overlap as shown in
Fig. 6(c). This phenomenon supports the conclusion that the
observed phase transition is indeed the Ising type.

This type of Ising phase transition can also be analyzed
from the perspective of symmetry breaking. In the AFM
phase, as depicted in Fig. 5(c), there is a twofold degeneracy
in the configuration. In the horizontal direction, one config-
uration is characterized by a c1-c2-c1-c2 vertex arrangement,
while the other features a c2-c1-c2-c1 arrangement. Moreover,
the relationship between these two configurations is achieved
by flipping the states of all legs. This means that from disorder
to AFM, there is a Z2 symmetry breaking leading to the Ising
transition.

To further vindicate our code, we also simulate the F model
on the one-layer square lattice; the CV indeed does not di-
verge at ac as shown in Fig. 6(d), consistent with the result
in Ref. [26].

IV. PHASE DIAGRAM WITH V �= 1

In this section, we introduce a nonzero value for v in Eq. (1)
to discuss the effects of vortex excitation.

As in Ref. [30], it is experimentally possible to manually
insert or delete vortices [46,47], despite the fact that the fac-
tors are added manually here.

224426-5



ZHONG, MA, ZHENG, ZHANG, AND ZHANG PHYSICAL REVIEW B 109, 224426 (2024)

0.

1

2

3

4

5

7 8
V

a
c

(b)

(d)(c)

(a)

FIG. 7. Global phase diagram with V �= 1 and snapshots. (a) A
schematic phase diagram (b) the AF phase (c) 2/3 VL phase (d) 1/2
VL phase. In fact, 1/2 VL is accompanied by a x-direction ferro-
magnetic order and 2/3 VL is accompanied by an AFM order (see
Appendix A).

This phase diagram is shown in the a-V plane, where
V = ev , while simultaneously maintaining a fixed cut
along b = a.

A. Global phase diagram

Figure 7(a) shows the global phase diagram, which con-
tains the AFM, disordered, 1/2 and 2/3 VL phases. When the
vortex excitation is considered, the phase diagram becomes
rich in features. In Fig. 7(c), the configuration of the 2/3-VL
phase is shown. The dual lattice of the honeycomb lattice is
the triangular lattice. In this phase, two of the three sets of sub-
lattices within the triangular lattice are occupied by positive
and negative vortices, respectively, while the remaining set of
sublattices contains no vortices. In Fig. 7(d), the configuration
of the 1/2-VL phase is shown. In this phase, positive and
negative vortices alternate sequentially along the y direction,
forming connected stripes.

Here, we analyze the distribution of different phases within
the phase diagram. When a and b are very small, a = b � c
and V � c, the system resides in the AFM phase, represented
by the dark red region. In the upper right region, a = b �
c and V � c, the system corresponds to the 1/2 VL phase.
The system has almost no type c vertices. At the same time
V drives the system to form vortices consisting of vertices of
type a, b only, as shown in Fig. 17(a).

When a = b ∈ [0.5c, 2c], the influence of V drives the
system to form vortices consisting of vertices of types a, b,
and c, maintaining a 1:1:1 ratio, and the typical configuration
of 2/3 VL phase is illustrated in Fig. 17(b).

In the disordered phase, the characteristics of vortices vary
across different parameter regimes. As depicted in Fig. 17(e),
two distinct regimes are identified, labeled as 3© and 4©.
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FIG. 8. The vortex structure factor S(q) defined in Eq. (21) for
(a) 2/3 VL and (b) 1/2 VL phases in q space. The translation vectors
in real space (c) 2/3 VL and (d) 1/2 VL phases.

In the region where V < 1 and a(b) is large, as shown in
Fig. 17(c), vortices are absent. The reason is that a vortex
typically requires the presence of vertices of types a, b, and
c, within its structure. Conversely, in the other regime where
V > 1 and reasonable values of a(b) are considered, as il-
lustrated in Fig. 17(d), numerous vortices appear randomly
throughout the system.

In fact, 1/2 VL is accompanied by a x-direction ferromag-
netic order and 2/3 VL is accompanied by an AFM order (see
Appendix B).

B. Vortex structure factors

To further understand the spin vortex lattice phase, the
structure factor in q-space is introduced as

S(q) = 1

Nc

∑
i, j

eiq·(ri−r j )〈nin j〉, (21)

where ni, n j represents 1, 0, in the face of the honeycomb
lattices, i.e., a triangular lattice. The symbols ri and r j are
the center coordinates of the vortex. In real space, if the
density obeys configurations of the form (101010 · · · ) or
(010101 · · · ), the wave vector corresponding to the maximum
value of S(q) should be located at q = (π, 0) [48].

In Fig. 8(a), for the 2/3 VL phase, S(qx, qy) is obtained by
using Eq. (21) with a lattice size L = 12. One of the brightest
points is located at

(qx, qy) =
(

4
√

3

9
π,

4

3
π

)
, (22)

as indicated by the red arrow. The position of the peaks reflects
the translational symmetry of the vortex lattice. Assuming
that the side length of the honeycomb lattice is 1, the spacing
between the two pink vortices ri and r j is:

�x = xi − x j = 3
√

3/2 (23)

and

�y = yi − y j = 3/2. (24)
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FIG. 9. Vortex and anti-vortex in the lattices with L = 4, 6, 8,
and 10.

The position in Eq. (22) can be obtained by using

qx(y) = 2π/�x(y). (25)

For the 1/2 VL lattice, S(qx, qy) is shown in Fig. 8(b). The
brightest point (as indicated by the blue arrow) is located at

(qx, qy) = (
0, 2

3π
)
, (26)

and the second brightest point (as indicated by the red arrow)
is located at

(qx, qy) =
(√

3

3
π, 0

)
. (27)

This is because in real space, the translation vectors are re-
spectively �x = 2

√
3 and �y = 3.

In total, we have identified two VL phases in the bilayer
6V model with vortex weight where V > 1. These ordered
states can be distinguished by examining either their respec-
tive structure factors or the relevant order parameters.

C. Size effects from periodic boundaries

Figure 9 shows the size effects of the vortex density in a
2/3 VL with L = 4, 6, 8, and 10. The honeycomb lattice is a
complex lattice with two sites in its smallest cell, hence having
an even number of lattice sites in the horizontal direction, i.e.,
L mod 2 = 0.

In Fig. 9(a), for L = 4, each row contains two faces, one
of which is occupied by a vortex. The vortex density, i.e.,
the ratio between the number of vortices and faces, is ρv =
Nv/Nf = 1/2. Similarly, for L = 6, 8, and 10, the densities
become ρv = 2/3, 2/4, and 3/5, respectively, as shown in
Figs. 9(b)–9(d). In Table III, we list some possible small sizes
and vortex densities.

TABLE III. The table shows the maximum theoretical value of
the vortex density ρv as a function of system size L.

Phase L 4 6 8 10 12 14 16 18 20 L

2/3 VL ρvx 1/2 2/3 2/4 3/5 4/6 4/7 5/8 6/9 6/10 
L/3�
L/2

1/2 VL ρvx 1/2 1/3 2/4 2/5 3/6 3/7 4/8 4/9 5/10 
L/4�
L/2

For more general sizes, the densities are as follows:

ρv = 
L/3�
L/2

, (28)

where the symbol 
.� denotes rounding down. We first explain
Eq. (28) using L = 6, two sites labeled as 1, 2 in the horizontal
direction, a total of L/2 bricks in each row as shown in the
denominator.

Then we explain the numerator in Eq. (28). The following
three subequations explain the number of vortices correspond-
ing to the three sizes L, L + 2, and L + 4, as shown below:

L

2
× 2

3
= L

3
→ L

3
=

⌊
L

3

⌋
, (29a)

L + 2

2
× 2

3
= L

3
+ 2

3
→ L

3
=

⌊
L + 2

3

⌋
, (29b)

L + 4

2
× 2

3
= L

3
+ 4

3
→ L

3
+ 1 =

⌊
L + 4

3

⌋
, (29c)

equation where L + 2 in Eq. (29b) indicates two additional
sites compared to L, i.e., a new empty face without a vortex
(ni = 0), as illustrated by comparing Figs. 9(b) and 9(c) in the
first lines.

Through the analysis above and the densities presented
in Table III, in the 2/3 VL phase, the density remains con-
stant for sizes where L mod 6 = 0. Therefore, when observing
physical quantities later on, we only simulate systems whose
size is a multiple of 6.

D. Detailed transitions between the phases

In this section, our focus is on examining the specific
details of phase transitions between multiple phases, and ana-
lyzing its underlying reasons.

1. The Ising transition between the AFM and disordered
phases at V < 1

Initially, we scan the parameter a = b ∈ [0.5, 0.8] at V =
0.5, around the black point in the lower left corner of the phase
diagram. Various quantities are shown in Fig. 10.

In Figs. 10(a) and 10(b), the specific heat CV and Cvx

exhibit divergence with respect to sizes during the phase tran-
sition between the AFM and disordered phases. This behavior
stands in contrast to the convergence of CV in the single-layer
6V F model [26], as shown in Fig. 6(d).

In Figs. 10(c) and 10(d), the Binder cumulant Q, along with
its data collapse at the critical point ac = 0.617, yields yt = 1,
providing additional confirmation of the Ising transitions.

The possible reasons of the Ising transition between the
AFM and disordered phases at V < 1. Be precise are as fol-
lows: V < 1 implies the absence of the disordered phase as
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FIG. 10. The Ising transition between the AFM and disordered
phases at V < 1, a = b and V = 0.5. (a) CV , (b) Cvx , and (c) Q
(d) data collapse of Q, using yt = 1. The system size ranges from
8 to 24.

depicted by the absence of vortices in Fig. 17(c). Additionally,
the AFM phase has no vertex, as illustrated in Fig. 7(d). Con-
sequently, the phase transition between these two phases does
not involve vortices. Moreover, the transition from simple
AFM order to disorder involves Z2 symmetry breaking.

2. Transitions between the D and 1/2 VL phases at V > 1

The phase transition between disordered and the 1/2 VL
phase is discussed. By fixing the parameter V = 4, and scan-
ning a and keeping a = b, the vortex density ρvx, and CV are
measured for different sizes L = 16–48.

As shown in Figs. 11(a) and 11(b), the jumps of ρvx and
peaks of CV show the signatures of phase transitions. The
divergence of CV confirms the phase transition is not of BKT
type [30]. In Figs. 11(c) and 11(d), the histograms of E/N and
ms are obviously double peaked at the parameters a = b = 2.
This indicates the phase transition is of first order.

The signature of the first order transition can also obtained
by fitting the critical exponent. Using the package for finite
size scaling [49], ν is obtained as 0.48(8) using Eq. (20).

The data for sizes L = 32, 36, and 40 overlap very well.
The scaling dimension yt = 1/0.48 = 2.08 ≈ 2 equals to
the system dimension d = 2 when the first-order transition
occurs [50].

3. Transition between the D and 2/3 VL phases

The transition from the 2/3 VL phase to the disorder phase
is also first order. In Figs. 12(a) and 12(b), the double peaks
in the distribution of P(E ) and P(ρvx ) indicating a first-order
phase transition.

Different from the 1/2 VL phase as shown in Fig. 11,
this phase transition has an obvious size effect. Figure 12(c)
illustrates that the specific heat peak shifts to the right as the

(f)
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10

0.08
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-1 -0.9 -0.7

(e)
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0.6

0.7

0.8

0.2
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1

1.5 2.2 -10 15

c L
yta-

0.3

0.4

0.5
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0

9
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1.5
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C

00

2.2 2.2

0.5

0.16

0.08

(d

ms

Q

( )

Q

a

s s

FIG. 11. The signatures of the first-order phase transition at
V = 4. The quantities (a) ρvx (b) CV with system sizes L = 16–48.
The double peaked distributions (c) P(E/N ) and (d) P(ms ) at
a = 2.004(1). (e) Qs and (f) data collapse of Qs and obtaining
ν = 0.48(8) [49].

size increases. Fortunately, through finite-size scaling defined
as follows:

ac(1/L) = K/L + ac(L = ∞), (30)

the position of the specific heat converges under the thermo-
dynamic limit ac(L = ∞) = 0.475811(2). The line ac(1/L)
versus 1/L is shown in Fig. 12(d).

The error bar (2) from 0.475811(2) is calculated by the
following equations. First, if one fits y = kx + b, then the
standard deviation of the intercept b is

sb =
√

n

n
∑n

i x2
i − ( ∑n

i xi
)2 × sy (31)

where n is the number of points involved, sy is the standard
deviation of the observation yi and can be expressed as

sy =
√∑n

i (yi − kxi − b)2

n − 2
, (32)

where n − 2 is the degree of freedom. If one fits the data using
“gnuplot” software, the result is ac(∞) = 0.476(5) consistent
with the above result within the error bar.

To show that the results are convergent, Fig. 12(e) displays
E/N versus MC steps. The converging time is about 106 steps.
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FIG. 12. The signatures of the first-order phase transition. The
double peaked distributions of (a) P(E/N ) and (b) P(ρvx ) at V = 7
and a = 0.35. (c) CV vs a, (d) ac vs 1/L. (e) E/N versus MC steps
and the convergent time is about 106.

The converged energy is approximately 0.12 and denoted as
ec which is also marked by a dashed line in Fig. 12(a), sitting
between the two peaks.

4. First-order transition between the two vortex lattice phases

Similar to the atomic solid phase in the classical limit
[42–45] for the BH model, the phase transition between 1/2
VL and 2/3 VL phases, should be of first order. The exact
boundary between these two phases can be obtained ana-
lytically by comparing the free energy F = E − T S of both
phases.

By convention, the temperature is set to be T = 1. By
careful checking, the entropy for both phases is respectively
S1/2 = ln 64 and S2/3 = ln 36. The entropy does not depend
on the lattice size, and therefore, the average entropy for per
site denoted as S/L2/2 should be zero in the thermodynamic
limit L → ∞. The energies of the two phases are defined as
follows:

E1/2VL = −L2 ln a − L2 ln b − 1
2 L2 ln V

E2/3VL = − 2
3 L2 ln a − 2

3 L2 ln b − 2
3 L2 ln c − 2

3 L2 ln V,

where −L2 ln a − L2 ln b and − 2
3 L2 ln a − 2

3 L2 ln b − 2
3

L2 ln c are the vertex energies for both phases,

(a)P(     )vx

0.5

0.25

0
0.45 0.55 0.65

vx a

(b) vx

(c) (d)

3

2

4

3

1

2

4

1

2/3

1/2
1 1.5 2 2.5

ac=1.617

FIG. 13. Signal of the first-order phase transition. (a) The double
peaked distribution of ρvx , with V = 7, a = 1.68 (b) ρvx vs a (c) a
short loop in the vertical direction, and the numbers 1, 2, 3, 4
represent the legs. (d) The Metropolis type short-loop updating.

and − 1
2 L2 ln V and − 2

3 L2 ln V are the energies for the
vortex. Let

F1/2VL = F2/3VL, (33)

while keeping a = b, the reduced analytical expression be-
comes

a4 = V, (34)

when L = ∞.
Numerical simulations are also performed to confirm the

first-order transition between the vortex phases. In Fig. 13(a),
the distributions of ρvx for the sizes L = 12 and 24 are ob-
tained. In Fig. 13(b), the curves ρvx versus L are plotted.
The gray data are MC results with 20 independent bins. The
theoretical ac, are marked by the red line to guide the eyes.

In the regime of a strong first-order transition, the cluster
algorithm encounters the issue of ergodicity. As a result, we
have also incorporated the Metropolis type short-loop update
scheme. The short loop in the z-direction is composed of four
vertices, with each vertex contributing two legs that form the
rectangles depicted in Fig. 11(c). These pairs of legs are (3,4),
(2,3), (1,2) and (4,1), respectively. In order to keep the “two-
in-two-out” constraint, we flip eight legs simultaneously with
a certain probability without violating the “ice” rule for each
involved vertex. During the actual simulation, after each round
of loop updates, we check if there are any short loops present.
If a short loop is found, we attempt to flip it.

5. Effect of temperature gradient field

On the single-layer honeycomb lattice, vortex lattice has
been achieved using the charged colloidal particle-based ice
numerically [51]. The Coulomb repulsion between charged
particles favors vortices at low temperatures. Experimen-
tally, a magnetic colloidal particle [52] inside lithographically
sculptured double well traps, with tunable repulsive interac-
tions of magnetic moments, also favors vortices.
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FIG. 14. The distribution of vortex density ρv (x, y) with tem-
perature gradient field (a) along the x direction and (b) along the y
direction. The temperature varies from 1 to 0.45 with an interval of
0.05, with a = b = 1.5, c = 1, V = 2 at the site (1,1).

However, raising the temperature [51] results in the vortex
state melting into a disordered state. Additionally, introducing
a magnetic field [53] or an electric field in the plane also easily
transitions the vortex state into a ferromagnetic state.

Another factor of the vortex depinning is a temperature gra-
dient field. Here we put a temperature field distributed on the
lattice, with the temperature decreasing. The pattern of vor-
tex density ρv (x, y) becomes striped as shown in Figs. 14(a)
and 14(b). The vortex density ρv (x, y) at higher tempera-
ture region are larger than that in the lower temperature
region. Specifically, the coordinate variables x1, x2, . . . , xL are
mapped to T1, T2, . . . , TL, and ultimately to a1, a2, . . . , aL by
ai = bi = exp(εi/Ti ). A similar mapping applies to the vortex
weight Vi.

Note that before applying the temperature gradient field,
we set the temperature to 1. Then, we calculate the energy
of each vertex in the lattice based on parameters a, b, c
and the Boltzmann weight. When introducing the temperature
gradient field, it’s crucial to maintain these energies fixed, as
vertices at different positions experience different tempera-
tures.

When an external field is applied, vortices either disappear
or form stripes. Without an external field, due to translational
invariance, the vortex density is uniformly distributed. The
different average distributions of vortex density with and with-
out an external field indicate vortex depinning.

V. EXPERIMENT REALIZATION
USING PARTICLE BASED ICE

The colloidal particle-based ice, as discussed in Ref. [54],
is another system capable of realizing bilayer ice, in addition
to water ice, natural spin ice, and artificial spin ice. The theo-
retical concept behind colloidal particle ice involves employ-
ing elongated optical traps to confine colloidal particles. Each
optical trap features two wells where colloidal particles can re-
side. These arrays of traps can organize into different kinds of
lattices [51,54,55]. Additionally, the presence of topological
charges [56], vortex states [57] and skyrmions patterns [58],
boundary effects [59], can be simulated by particle-based ice.
More complete reviews are present in Ref. [5].

Experimentally, bilayer water ice, where the ordering is
due to the proton positions [22], is probably better captured
by particle-based ice [5]. Particle-based systems could include
charged or magnetic colloids interlacing in an array that mim-
ics spin ice and more closely resembles the water ice’s proton

(b)(a)

(c) (d)

A

B

A

B

B

A

AA

A

h

FIG. 15. The method of embedding the A-B stacked bilayer hon-
eycomb lattice into the single-layer substrate (a) The single-layer
rendition of two honeycomb lattices, with double-sided arrows in-
dicating their connection. (b) Representation of two different double
well traps for the two lattices, each accommodating a single colloidal
particle. These traps can be symbolized as bonds. (c) Illustration of
the “two-in-two-out” rule pattern, where site B connects four A sites,
including one A site from a different lattice. (d) Depiction of crossing
bonds and their corresponding double well structures.

ordering despite their different natures [53]. The implemen-
tation of a two-well trap array embedded in a substrate has
been achieved in references [52,60,61], on two-dimensional
lattices. However, for a bilayer lattice, achieving the required
structure has not yet been accomplished.

Here, we propose imprinting both layers onto a single-layer
substrate, as schematically illustrated in Fig. 15(a). The upper
and lower honeycomb lattices are depicted in blue and black,
respectively. Interlayer connections are denoted by double
arrows. Given that this is an A-B stacked bilayer, the sites on
the A sublattice and the B sublattice are connected pairwise.

As depicted in Fig. 15(b), each edge can be represented
as a double well holding only one colloid. Some edges cor-
responding to the two layers intersect, raising the possibility
of particle collision at these intersections. To reduce this, the
depths of the two wells can be adjusted differently. The black
wells are deep, while the blue ones are shallow. Additionally,
a small well between the two blue wells helps the passage of
small colloids.

In Fig. 15(c), the arrangement illustrates four noncrossing
bonds. Site B (in the lower layer) connects to four A sites, with
the blue A site originating from the upper layer. In Fig. 15(d),
the crossing bonds are depicted. The shallow and deep wells
meet at the intersection from different directions. Both the big
and small colloids can move within their respective wells.

VI. DISCUSSION AND CONCLUSION

In this paper, we model two-dimensional two-layer water
ice as a two-layer 6V model. By means of the loop update
Monte Carlo method, we obtain interesting results.
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Our study contrasts the square lattice 6V model, where the
AFM to the disordered phase transition is governed by the
BKT mechanism, with the bilayer 6V model, characterized
by a conventional Ising phase transition due to Z2 symme-
try breaking. We find that the transitions from vortex lattice
phases to the disorder phase and between different vortex
lattice phases are both of first order. This insight advances our
understanding of the phase transitions present in layered water
ices, contributing to the broader comprehension of complex
systems in physics.

Despite conducting numerous simulations, there are still
many open questions.

(i) As an initial investigation, we assumed a = b, and the
case where a �= b has not been studied yet. The exploration of
vortex glass induced by random values of a, b, and V worth-
while. Furthermore, the disorder we observed can potentially
be further classified into disordered structures with vortices
and disordered structures without vortices.

(ii) For the bilayer water ice [22], the systems have various
types of boundaries, such as zigzag and armchair edges, and
rough random edges. It is interesting to simulate the bilayer
honeycomb 6V model with different boundaries.

(iii) Although we are not clear about how water ice regu-
lates the ratios of a, b, and c types of vertices, it is possible
to artificially adjust them in the case of artificial spin [3] or
particle ice [5], which is rich in physical properties.

(iv) Regarding the numerical methods for studying this
model, not only are conventional MC methods suitable, but
tensor network methods [62] are also well-suited for exploring
this model. There are existing literature studies that have em-
ployed tensor network methods to investigate similar models
such as the dimer model and the ice model [63]. However,
in our case, we introduce a slightly more complex factor by
incorporating vortex weighting, which results in an increase
in the bond dimensions of the tensors.
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APPENDIX A: DESCRIPTION
OF THE BOUNCE PROBABILITIES

In Sec. II B, Table I shows the range of bounce probabilities
pa, pb and pc. In this Appendix, more details are described.

a1 1c 1b

FIG. 16. Two allowable exit legs and one bounce leg for the 6V
model.

Corresponding to the 6V model, the general expression of the
bounce probability of the loop algorithm is

pi = wi

wa + wb + wc
, (A1)

where the denominator is the sum of the weights of the three
vertices after the loop passes through two allowable exit legs
and one bounce leg (Fig. 16), and the numerator wi are the
weights of the vertices encountered during the loop walk.
The subscript i denotes types of a, b, or c. To discuss the
range of pi, it is only necessary to discuss the maximum
and minimum values of Eq. (A1), where the variable wc is
already fixed to 1. Taking pa ∈ (0, 1/2) in the AFM phase
as an example, the weights wa and wb are independently ad-
justable, but they meet the range 0 < a + b < 1, and therefore
the maximum value of pa = a/(a + b + 1) → a/(a + 1) →
1 − 1/(a + 1) = 1/2.

APPENDIX B: CONFIGURATIONS WITH THE a, b, c
TYPES VERTICES AND VORTICES

In Figs. 17(a)–17(d), the snapshots of the configurations
with vertices and vortices are shown. The parameters cho-
sen correspond to the positions marked as 1©, 2©, 3©, 4© in
Fig. 17(e).

In the 2/3 vortex lattice phase, not only do vortex orders
exist but also AFM orders with a length of 3 in the x direction,
Fig. 17(f). If y == 1, Sy,x = 1 for x ∈ [1, 2, 3] and Sy,x = −1
for x ∈ [1, 2, 3]. The definition to quantify such a pattern is as
follows:

M3 =
L∑

i=1

∣∣∣∣∣∣
L∑

j=1

(−1)
( j−1)/3�Sx
i, j

∣∣∣∣∣∣/N, (B1)

where 
( j − 1)/3� means replacing 1,2,3,4,5 and 6 to
0,0,0,1,1, and 1. Similarly, for the 1/2 VL lattice, there is a FM
order in the x direction and the quantity is defined in Eq. (10).
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FIG. 17. Snapshots for different phases. (a) ρv = 1/2 striped vortex lattice, (b) ρv = 2/3 vortex lattice, (c) disordered phase without vortex,
(d) disordered phase with vortex, and (e) the four snapshots are obtained at parameters marked in 1©, 2©, 3© and 4©. (f) The AFM pattern with
minimum unit length 3 on the 2/3 VL lattice.

224426-12



FIRST-ORDER VORTEX LATTICE MELTING IN BILAYER … PHYSICAL REVIEW B 109, 224426 (2024)

[1] C. G. Salzmann, J. S. Loveday, A. Rosu-Finsen, and C. L.
Bull, Structure and nature of ice XIX, Nat. Commun. 12, 3162
(2021).

[2] S. T. Bramwell and M. J. P. Gingras, Spin ice state in frustrated
magnetic pyrochlore materials, Science 294, 1495 (2001).

[3] S. H. Skjrv, C. H. Marrows, R. L. Stamps, and L. J. Heyderman,
Advances in artificial spin ice, Nat. Rev. Phys. 2, 13 (2020).

[4] C. Nisoli, R. Moessner, and P. Schiffer, Colloquium: Artificial
spin ice: Designing and imaging magnetic frustration, Rev.
Mod. Phys. 85, 1473 (2013).

[5] A. Ortiz-Ambriz, C. Nisoli, C. Reichhardt, C. J. O. Reichhardt,
and P. Tierno, Colloquium: Ice rule and emergent frustration in
particle ice and beyond, Rev. Mod. Phys. 91, 041003 (2019).

[6] L. C. Pauling, The structure and entropy of ice and of other
crystals with some randomness of atomic arrangement, J. Am.
Chem. Soc. 57, 2680 (1935).

[7] M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske, and
K. W. Godfrey, Geometrical Frustration in the Ferromagnetic
Pyrochlore Ho2Ti2O7, Phys. Rev. Lett. 79, 2554 (1997).

[8] W.-C. Yue, Z. Yuan, Y.-Y. Lyu, S. Dong, J. Zhou, Z.-L. Xiao, L.
He, X. Tu, Y. Dong, H. Wang, W. Xu, L. Kang, P. Wu, C. Nisoli,
W.-K. Kwok, and Y.-L. Wang, Crystallizing kagome artificial
spin ice, Phys. Rev. Lett. 129, 057202 (2022).

[9] R. F. Wang, C. Nisoli, R. S. Freitas, J. Li, W. McConville, B. J.
Cooley, M. S. Lund, N. Samarth, C. Leighton, V. H. Crespi,
and P. Schiffer, Artificial ‘spin ice’ in a geometrically frustrated
lattice of nanoscale ferromagnetic islands, Nature (London)
439, 303 (2006).

[10] A. D. King, C. Nisoli, E. D. Dahl, G. Poulin-Lamarre, and A.
Lopez-Bezanilla, Qubit spin ice, Science 373, 576 (2021).

[11] A. Ramirez, A. Hayashi, R. Cava, R. Siddharthan, and B.
Shastry, Zero-point entropy in ‘spin ice’, Nature (London) 399,
333 (1999).

[12] C. Castelnovo, R. Moessner, and S. Sondhi, Magnetic
monopoles in spin ice, Nature (London) 451, 42 (2008).

[13] M. L. Latimer, G. R. Berdiyorov, Z. L. Xiao, F. M. Peeters, and
W. K. Kwok, Realization of artificial ice systems for magnetic
vortices in a superconducting MoGe thin film with patterned
nanostructures, Phys. Rev. Lett. 111, 067001 (2013).

[14] J.-Y. Ge, V. N. Gladilin, J. Tempere, V. S. Zharinov, J. Van de
Vondel, J. T. Devreese, and V. V. Moshchalkov, Direct visual-
ization of vortex ice in a nanostructured superconductor, Phys.
Rev. B 96, 134515 (2017).

[15] V. K. Vlasko-Vlasov, J. R. Clem, A. E. Koshelev, U. Welp, and
W. K. Kwok, Stripe domains and first-order phase transition in
the vortex matter of anisotropic high-temperature superconduc-
tors, Phys. Rev. Lett. 112, 157001 (2014).

[16] B. Maiorov, G. Nieva, and E. Osquiguil, First-order phase
transition of the vortex lattice in twinned YBa2Cu3O7 sin-
gle crystals in tilted magnetic fields, Phys. Rev. B 61, 12427
(2000).

[17] E. Zeldov, D. Majer, M. Konczykowski, V. B. Geshkenbein,
V. M. Vinokur, and H. Shtrikman, Thermodynamic observation
of first-order vortex-lattice melting transition in
Bi2Sr2CaCu2O8, Nature (London) 375, 373 (1995).

[18] T. Sasagawa, K. Kishio, Y. Togawa, J. Shimoyama, and
K. Kitazawa, First-order vortex-lattice phase transition in
(La1−xSrx )2CuO4 single crystals: Universal scaling of the tran-
sition lines in high-temperature superconductors, Phys. Rev.
Lett. 80, 4297 (1998).

[19] J. M. Kosterlitz and D. J. Thouless, Long range order
and metastability in two dimensional solids and superfluids.
(Application of dislocation theory), J. Phys. C: Solid State Phys.
5, L124 (1972).

[20] J. M. Kosterlitz, Nobel Lecture: Topological defects and phase
transitions, Rev. Mod. Phys. 89, 040501 (2017).

[21] V. Berezinsky, Destruction of long range order in one-
dimensional and two-dimensional systems having a continuous
symmetry group. I. Classical systems, J. Exp. Theor. Phys. 32,
493 (1970).

[22] R. Ma, D. Cao, C. Zhu, Y. Tian, J. Peng, J. Guo, J. Chen,
X.-Z. Li, J. S. Francisco, X. C. Zeng, L.-M. Xu, E.-G. Wang,
and Y. Jiang, Atomic imaging of the edge structure and growth
of a two-dimensional hexagonal ice, Nature (London) 577, 60
(2020).

[23] K. Koga, X. C. Zeng, and H. Tanaka, Freezing of Confined
Water: A Bilayer Ice Phase in Hydrophobic Nanopores, Phys.
Rev. Lett. 79, 5262 (1997).

[24] W. Zhu, Y. Zhu, L. Wang, Q. Zhu, W.-H. Zhao, C. Zhu, J. Bai,
J. Yang, L.-F. Yuan, H. Wu, and X. C. Zeng, Water confined
in nanocapillaries: Two-dimensional bilayer squarelike ice and
associated solid–liquid–solid transition, J. Phys. Chem. C 122,
6704 (2018).

[25] O. F. Syljuåsen and M. B. Zvonarev, Directed-loop Monte Carlo
simulations of vertex models, Phys. Rev. E 70, 016118 (2004).

[26] M. Weigel and W. Janke, The square-lattice F model revisited:
a loop-cluster update scaling study, J. Phys. A: Math. Gen. 38,
7067 (2005).

[27] E. Ising, Beitrag zur Theorie des Ferromagnetismus, Z. Med.
Phys. 31, 253 (1925).

[28] F. Y. Wu, The Potts model, Rev. Mod. Phys. 54, 235 (1982).
[29] H. Ma, W. Zhang, Y. Tian, C. Ding, and Y. Deng, Emergent

topological ordered phase for the Ising-XY Model revealed
by cluster-updating Monte-Carlo method, Chin. Phys. B 33,
040503 (2024).

[30] R. Zhao, C. Ding, and Y. Deng, Overlap of two topological
phases in the antiferromagnetic Potts model, Phys. Rev. E 97,
052131 (2018).

[31] P. Belov and N. Reshetikhin, The two-point correlation function
in the six-vertex model, J. Phys. A: Math. Theor. 55, 155001
(2022).

[32] I. Lyberg, V. Korepin, and J. Viti, The density profile of the
six vertex model with domain wall boundary conditions, J. Stat.
Mech. (2017) 053103.

[33] K. Kubo, T. A. Kaplan, and J. R. Borysowicz, Monte Carlo
simulation of the S=1/2 antiferromagnetic Heisenberg chain
and the long-distance behavior of the spin-correlation function,
Phys. Rev. B 38, 11550 (1988).

[34] A. W. Sandvik, The directed-loop algorithm, The Monte Carlo
Method in the Physical Sciences: Celebrating the 50th
Anniversary of the Metropolis Algorithm, AIP Conf. Proc. No.
690 (AIP, New York, 2003), pp. 299–308.

[35] N. Prokof’ev, B. Svistunov, and I. Tupitsyn, “Worm” algorithm
in quantum Monte Carlo simulations, Phys. Lett. A 238, 253
(1998).

[36] N. Prokof’ev and B. Svistunov, Worm algorithms for classical
statistical models, Phys. Rev. Lett. 87, 160601 (2001).

[37] Y. Deng, T. M. Garoni, and A. D. Sokal, Dynamic critical
behavior of the worm algorithm for the ising model, Phys. Rev.
Lett. 99, 110601 (2007).

224426-13

https://doi.org/10.1038/s41467-021-23399-z
https://doi.org/10.1126/science.1064761
https://doi.org/10.1038/s42254-019-0118-3
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/RevModPhys.91.041003
https://doi.org/10.1021/ja01315a102
https://doi.org/10.1103/PhysRevLett.79.2554
https://doi.org/10.1103/PhysRevLett.129.057202
https://doi.org/10.1038/nature04447
https://doi.org/10.1126/science.abe2824
https://doi.org/10.1038/20619
https://doi.org/10.1038/nature06433
https://doi.org/10.1103/PhysRevLett.111.067001
https://doi.org/10.1103/PhysRevB.96.134515
https://doi.org/10.1103/PhysRevLett.112.157001
https://doi.org/10.1103/PhysRevB.61.12427
https://doi.org/10.1038/375373a0
https://doi.org/10.1103/PhysRevLett.80.4297
https://doi.org/10.1088/0022-3719/5/11/002
https://doi.org/10.1103/RevModPhys.89.040501
https://api.semanticscholar.org/CorpusID:115403576
https://doi.org/10.1038/s41586-019-1853-4
https://doi.org/10.1103/PhysRevLett.79.5262
https://doi.org/10.1021/acs.jpcc.8b00195
https://doi.org/10.1103/PhysRevE.70.016118
https://doi.org/10.1088/0305-4470/38/32/002
https://doi.org/10.1007/BF02980577
https://doi.org/10.1103/RevModPhys.54.235
https://doi.org/10.1088/1674-1056/ad1d4d
https://doi.org/10.1103/PhysRevE.97.052131
https://doi.org/10.1088/1751-8121/ac578e
https://doi.org/10.1088/1742-5468/aa6b20
https://doi.org/10.1103/PhysRevB.38.11550
http://doi.org/10.1063/1.1632141
https://doi.org/10.1016/S0375-9601(97)00957-2
https://doi.org/10.1103/PhysRevLett.87.160601
https://doi.org/10.1103/PhysRevLett.99.110601


ZHONG, MA, ZHENG, ZHANG, AND ZHANG PHYSICAL REVIEW B 109, 224426 (2024)

[38] B.-Z. Wang, P. Hou, C.-J. Huang, and Y. Deng, Percolation of
the two-dimensional XY model in the flow representation, Phys.
Rev. E 103, 062131 (2021).

[39] H. Chen, P. Hou, S. Fang, and Y. Deng, Monte Carlo study
of duality and the Berezinskii-Kosterlitz-Thouless phase tran-
sitions of the two-dimensional q-state clock model in flow
representations, Phys. Rev. E 106, 024106 (2022).

[40] L. Zhang, M. Michel, E. M. Elçi, and Y. Deng, Loop-cluster
coupling and algorithm for classical statistical models, Phys.
Rev. Lett. 125, 200603 (2020).

[41] Y.-J. Kao and R. G. Melko, Short-loop algorithm for quantum
Monte Carlo simulations, Phys. Rev. E 77, 036708 (2008).

[42] W. Zhang, L. Li, and W. Guo, Hard core bosons on the dual of
the bowtie lattice, Phys. Rev. B 82, 134536 (2010).

[43] W. Zhang, Y. Yang, L. Guo, C. Ding, and T. C. Scott, Trimer
superfluid and supersolid on two-dimensional optical lattices,
Phys. Rev. A 91, 033613 (2015).

[44] W. Zhang, R. Li, W. X. Zhang, C. B. Duan, and T. C. Scott,
Trimer superfluid induced by photoassocation on the state-
dependent optical lattice, Phys. Rev. A 90, 033622 (2014).

[45] W. Zhang, R. Yin, and Y. Wang, Pair supersolid with atom-pair
hopping on the state-dependent triangular lattice, Phys. Rev. B
88, 174515 (2013).

[46] T.-W. Chen, S.-D. Jheng, W.-F. Hsieh, and S.-C. Cheng, Vortex
and trapped states of microcavity-polariton condensates in a
harmonic trap, Comput. Mater. Sci. 117, 579 (2016).

[47] K.-X. Xu, J.-H. Qiu, and L. yi Shi, Non-power-law I–V char-
acteristics in Ca-doped polycrystalline Y1−xCaxBa2Cu3O7−δ ,
Supercond. Sci. Technol. 19, 178 (2006).

[48] H. Wei, J. Zhang, S. Greschner, T. C. Scott, and W. Zhang,
Quantum Monte Carlo study of superradiant supersolid of light
in the extended Jaynes-Cummings-Hubbard model, Phys. Rev.
B 103, 184501 (2021).

[49] O. Melchert, autoScale.py - A program for automatic finite-
size scaling analyses: A user’s guide, arXiv:0910.5403
[physics.comp-ph].

[50] Z. Wang, L. Feng, W. Zhang, and C. Ding, Phase transitions in
a three-dimensional Ising model with cluster weight studied by
Monte Carlo simulations, Phys. Rev. E 104, 044132 (2021).

[51] G.-W. Chern, C. Reichhardt, and C. J. Olson Reichhardt, Frus-
trated colloidal ordering and fully packed loops in arrays of
optical traps, Phys. Rev. E 87, 062305 (2013).

[52] A. Ortiz-Ambriz and P. Tierno, Engineering of frustration
in colloidal artificial ices realized on microfeatured grooved
lattices, Nat. Commun. 7, 10575 (2016).

[53] C. Nisoli, Unexpected phenomenology in particle-based ice
absent in magnetic spin ice, Phys. Rev. Lett. 120, 167205
(2018).

[54] A. Libál, C. Reichhardt, and C. J. O. Reichhardt, Realizing
colloidal artificial ice on arrays of optical traps, Phys. Rev. Lett.
97, 228302 (2006).

[55] C. J. Olson Reichhardt, A. Libál, and C. Reichhardt, Multi-step
ordering in kagome and square artificial spin ice, New J. Phys.
14, 025006 (2012).

[56] C. Nisoli, Dumping topological charges on neighbors: Ice man-
ifolds for colloids and vortices, New J. Phys. 16, 113049 (2014).

[57] A. Libál, C. J. O. Reichhardt, and C. Reichhardt, Creating artifi-
cial ice states using vortices in nanostructured superconductors,
Phys. Rev. Lett. 102, 237004 (2009).

[58] F. Ma, C. Reichhardt, W. Gan, C. J. O. Reichhardt, and W. S.
Lew, Emergent geometric frustration of artificial magnetic
skyrmion crystals, Phys. Rev. B 94, 144405 (2016).

[59] C. Rodríguez-Gallo, A. Ortiz-Ambriz, and P. Tierno, Topolog-
ical boundary constraints in artificial colloidal ice, Phys. Rev.
Lett. 126, 188001 (2021).

[60] A. Libál, D. Y. Lee, A. Ortiz-Ambriz, C. Reichhardt,
C. J. O. Reichhardt, P. Tierno, and C. Nisoli, Ice rule fragility
via topological charge transfer in artificial colloidal ice, Nat.
Commun. 9, 4146 (2018).

[61] C. Rodríguez-Gallo, A. Ortiz-Ambriz, C. Nisoli, and P. Tierno,
Geometrical control of topological charge transfer in Shakti-
Cairo colloidal ice, Commun. Phys. 6, 113 (2023).

[62] Z. Y. Xie, H. C. Jiang, Q. N. Chen, Z. Y. Weng, and T. Xiang,
Second renormalization of tensor-network states, Phys. Rev.
Lett. 103, 160601 (2009).

[63] L. Vanderstraeten, B. Vanhecke, and F. Verstraete, Residual
entropies for three-dimensional frustrated spin systems with
tensor networks, Phys. Rev. E 98, 042145 (2018).

224426-14

https://doi.org/10.1103/PhysRevE.103.062131
https://doi.org/10.1103/PhysRevE.106.024106
https://doi.org/10.1103/PhysRevLett.125.200603
https://doi.org/10.1103/PhysRevE.77.036708
https://doi.org/10.1103/PhysRevB.82.134536
https://doi.org/10.1103/PhysRevA.91.033613
https://doi.org/10.1103/PhysRevA.90.033622
https://doi.org/10.1103/PhysRevB.88.174515
https://doi.org/10.1016/j.commatsci.2015.12.039
https://doi.org/10.1088/0953-2048/19/2/005
https://doi.org/10.1103/PhysRevB.103.184501
https://arxiv.org/abs/0910.5403
https://doi.org/10.1103/PhysRevE.104.044132
https://doi.org/10.1103/PhysRevE.87.062305
https://doi.org/10.1038/ncomms10575
https://doi.org/10.1103/PhysRevLett.120.167205
https://doi.org/10.1103/PhysRevLett.97.228302
https://doi.org/10.1088/1367-2630/14/2/025006
https://doi.org/10.1088/1367-2630/16/11/113049
https://doi.org/10.1103/PhysRevLett.102.237004
https://doi.org/10.1103/PhysRevB.94.144405
https://doi.org/10.1103/PhysRevLett.126.188001
https://doi.org/10.1038/s41467-018-06631-1
https://doi.org/10.1038/s42005-023-01236-7
https://doi.org/10.1103/PhysRevLett.103.160601
https://doi.org/10.1103/PhysRevE.98.042145

