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Electron states bound to a texture in a Néel antiferromagnet
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We study electron states, bound to topological textures such as skyrmions and domain walls in a Néel
antiferromagnet. In certain limits, we find the dependence of bound states on the geometry of the texture,
and estimate the bound-state contribution to its energy. This contribution proves significant compared with the
purely magnetic energy, and thus substantially influences the shape of the texture. It also considerably shifts the
transition line between the modulated and the uniform phase in favor of the latter.
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I. INTRODUCTION

Topological textures such as skyrmions and domain walls
appear in various contexts from particle physics to cold atoms
and, as in the present paper, to solid-state magnetism [1].
They also hold promise for spintronics [1–3] as near-future
information carriers in racetrack memory devices [1,4–6].

Both ferro- and antiferromagnets have been envisaged as
materials for such applications. However, in ferromagnets,
skyrmion Hall effect (SHE) [1] makes a skyrmion deviate
from driving current, likely leading to pinning at the race-
track edges and hence information loss. Antiferromagnetic
skyrmions are a promising alternative in this regard [1,7–
12]. Firstly, zero net magnetization improves robustness: be-
ing composed of two intertwined ferromagnetic skyrmions
with mutually reversed spins, antiferromagnetic skyrmion ex-
periences no SHE, allowing rectilinear displacement. Also,
antiferromagnetic skyrmions are expected to develop higher
velocities than their ferromagnetic counterparts. Note, how-
ever, that skyrmions in an antiferromagnet are yet to be
experimentally observed [1,8–13].

Using antiferromagnetic skyrmions in future devices re-
quires understanding their interplay with other subsystems
of a solid, most notably with band electrons. Some steps
in this direction have already been made: R. Cheng and
Q. Niu derived quasiclassical equations of motion for the
electron coordinate, momentum and spin near a texture in a
Néel antiferromagnet [14]. Using a different approach, we
have recently derived an effective-mass electron Hamilto-
nian in the presence of a texture [15]. The latter study also
showed that, for certain locations of the electron band ex-
trema, a texture produces a peculiar (and anomalously strong)
spin-orbit coupling. For a skyrmion texture, this coupling
generates skyrmion-electron bound states. In the presence of
dopant carriers, such bound states turn the skyrmion into a
charged particle. Reference [15] studied a tractable example
of the Belavin-Polyakov (BP) skyrmion [16,17], and found
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the bound-state energy dependence on the skyrmion radius R
in the regimes where the bound states are shallow.

Here, we extend the results of Ref. [15] in a number of
ways: (i) For the BP skyrmion, we gain quantitative insight
into the range where the skyrmion-electron bound states be-
come profound, that is of energies comparable with the gap
� in the electron spectrum of the Néel state. (ii) We also
explore another profile that becomes relevant in the presence
of single-ion anisotropy and Dzyaloshinskii-Moriya coupling:
that of a domain-wall (DW) skyrmion. Contrary to the BP
skyrmion, its DW counterpart is defined by two length scales
rather than one: the radius R and the domain wall width w.
We study both shallow and deep bound states of an electron
and a DW skyrmion. (iii) Locally, a DW skyrmion boundary
is a domain wall. Thus, to gain insight, we also study band
electrons in the presence of a straight domain wall, and show
that it produces electron states that are bound in the transverse
direction, and itinerant along the wall. This calculation also
allows us to understand the genesis of electron bound states
for a DW skyrmion. (iv) Last but not least, at half-filling we
address the influence of the skyrmion-electron bound states on
the energy balance of a domain wall.

The key results of our paper are as follows: The skyrmion-
electron bound states and their energies are sensitive to the
skyrmion “shape”. Moreover, the bound-state contribution
to the skyrmion energy proves dominant compared with its
purely “magnetic” counterpart—and thus plays a key role
in selecting an optimal skyrmion profile. In particular, the
BP profile with a sufficiently small skyrmion radius induces
no bound states, and hence no additional energy cost, which
favors smaller BP skyrmions. For DW skyrmions, the bound-
state contribution proves dominant, as well. We show how it
enhances the stability range of the uniform state, and shifts the
transition to the modulated phase [18] to substantially higher
values of the Dzyaloshinskii-Moriya coupling.

The article has the following structure. Section II is devoted
to generalities: derivation of an electron Hamiltonian in the
presence of a texture, and of its effective-mass (low-energy)
limit, with the focus on a specific location of the band extrema.
This section expands on the results of Ref. [15]—both to make
the presentation self-contained and to provide some additional
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details. In Sec. III we use the low-energy Hamiltonian to treat
shallow bound states for the Belavin-Polyakov skyrmion. The
deep bound-state limit is next studied in Sec. IV, allowing
us to complete the picture of the bound-state evolution as a
function of the BP skyrmion radius. In Sec. V, we address
the bound-state problem for a DW skyrmion, exploring both
shallow and deep states. In Sec. VI, we estimate the contri-
bution of bound states to the skyrmion energy as a function
of the skyrmion shape. We also study electron states, bound
to a straight domain wall, and evaluate their contribution to
the domain-wall energy. Which allows us to demonstrate how
texture-bound electron states substantially shift the transition
line between the uniform and the modulated phases [18]. The
article concludes with a discussion in Sec. VII, while some of
the technical details are given in the Appendixes.

II. THE HAMILTONIAN

A. General arguments and the uniform state

We start by writing down the effective Hamiltonian of
a band electron in a collinear Néel antiferromagnet in the
second-quantization formalism,

H =
∫

d2r �†(r)[ε(p̂) + JeM(r) · σ]�(r) (1)

with �†(r) and �(r) the electron creation/annihilation op-
erators at point r, and ε(p̂) the electron dispersion in the
absence of Néel order. The second term JeM(r) · σ accounts
for the exchange interaction between the spontaneous local
magnetization M(r) and the electron spin, represented by the
triad of Pauli matrices σ. Without loss of generality, hereafter
we consider a square lattice with spacing a0. Néel order can
be defined via nearly opposite sublattice magnetizations M1

and M2, from which one can build the local Néel order pa-
rameter n(r) = M1−M2

2Ms
and the effective local magnetization

m(r) = M1+M2
2Ms

, where Ms is the saturation magnetization. In
the Néel state, the order parameter n(r) is large compared with
the effective local magnetization: ‖n‖ � 1 � ‖m‖; moreover,
n(r) varies smoothly in space and slowly in time, while m(r)
fluctuates wildly. Therefore, hereafter we ignore the effec-
tive local magnetization m(r) altogether and approximate
the magnetization by its dominant Fourier harmonic as per
M(r) � Msn(r)eiQ·r with Q = (± π

a0
,± π

a0
).

It is convenient to begin with the uniform Néel state, and
choose the magnetization to point along the z axis in spin
space, M(r) � MsezeiQ·r. Upon introducing the notation � =
JeMs, the Hamiltonian reads

H =
∫

d2r �†(r)[ε(p̂) + �σz eiQ·r]�(r). (2)

Following transition to reciprocal space, the Hamiltonian
takes the form

H =
∑

p∈MBZ

(
�†

p �
†
p+Q

)(
εp �σz

�σz εp+Q

)(
�p

�p+Q

)
. (3)

That is, Néel order couples electron states at any two momenta
p and p + Q [19], reducing the Brillouin zone in the param-
agnetic state to its half, as shown in Fig. 1.

FIG. 1. Magnetic Brillouin zone of the Néel state (cyan square),
and the paramagnetic Brillouin zone (white square). Points �i with
small valleys, described by the expansion (14), are shown sym-
bolically in light blue. The bound sates at these valleys are spin
polarized, with polarization depending on the skyrmion profile. The
polarization above corresponds to a Néel BP skyrmion, see main text
for details.

The Hamiltonian is block diagonal, and can be easily diag-
onalized to produce two doubly degenerate electron bands

E± = ε+ ±
√

�2 + ε2−, ε± = εp ± εp+Q

2
. (4)

These bands are separated by a gap of width 2�, opening at
crossing points εp = εp+Q. The Néel order thus turns a half-
filled metal into an insulator. This elementary treatment of the
uniform Néel state allows us to understand the overall electron
band structure, and puts us in a position to study a nonuniform
texture n(r).

B. A nonuniform texture

Consider the Néel order parameter n(r), varying smoothly
in space—that is, on a scale large compared with a0. Because
of this nonuniformity, Hamiltonian (2) can no longer be easily
diagonalized. However, we can gain insight by rendering n(r)
uniform via a spin rotation U (r) acting as per

U †(r)[n(r) · σ]U (r) = σ z. (5)

Upon transformation � → U †�, the Hamiltonian (2) reads

H =
∫

d2r �†(r)[U †(r)ε(p̂)U (r) + �σ zeiQ·r]�(r).

The price for reducing the second term in the square brackets
to that of Eq. (2) amounts to the appearance of a Peierls
substitution [20] in the kinetic term, since

U † p̂iU = p̂i + Ai · σ (6)

where Ai · σ = Aα
i σα = −ih̄U †(∂iU ), with i the spatial in-

dices and α the spin indices (summation over repeated indices
is implied). Various properties of this gauge field will be dis-
cussed later. Switching back to real space, the single-particle
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FIG. 2. Deriving Hamiltonian Heff in Eq. (13) from the full 4 × 4
Hamiltonian of Eq. (9). Hamiltonian (13) provides an effective de-
scription near the band extremum.

Hamiltonian, acting in the basis (�p, �p+Q), reads

H =
(

εp(p̂ + A · σ ) �σ z

�σ z εp+Q(p̂ + A · σ)

)
(7)

with εp(p̂ + A · σ ) = U †ε(p̂)U . Because of the Peierls sub-
stitution, the terms on the diagonal in Eq. (7) are no longer
proportional to the unit matrix in spin space.

With the band structure of the previous section in mind,
and with Hamiltonian (7) at hand, we can now focus on the
electron states near the band extrema.

C. Low-energy effective Hamiltonian

We wish to derive an effective-mass Hamiltonian [21] de-
scribing an electron near the conduction band minimum at
point p0. To this end, we replace the electron momentum p
by p̂ = −ih̄∇, and expand the dispersion relations ε(p) and
ε(p + Q), denoted as εp0 (p) and εp0+Q(p), around the given
conduction band minimum p0. Note that p0 must be a crossing
point ε(p0) = ε(p0 + Q) of the uniform state. With the help
of a unitary operator [22]

P = 1√
2

(
11 11
σ z −σ z

)
, (8)

we now switch to the basis where Hamiltonian (7) becomes
diagonal at p0,

H → P†HP =
(

γ̂+ + �11 γ̂−
γ̂− γ̂+ − �11

)
, (9)

with

γ̂±(p̂) = 1
2 [εp0 (p̂ + A · σ) ± σ zεp0+Q(p̂ + A · σ )σ z]. (10)

From Hamiltonian (9) acting on a bispinor, we now wish to
construct an effective Hamiltonian that would describe only
states near the bottom of conduction band (see Fig. 2), and
thus would act only on a single spinor. This is akin to taking
the Dirac Hamiltonian to its nonrelativistic Pauli-Schrödinger
limit [23,24]. To this end, we apply Hamiltonian (9) to the

bispinor (
,χ ). We then consider an electron at energy E =
� + ε near the conduction band minimum +�, with |ε| � �.
This yields two equations

γ̂−χ = (ε − γ̂+)
,

γ̂−
 = (2� + ε − γ̂+)χ. (11)

Treating γ̂±(p̂) as small against �, we limit ourselves to
leading terms of their momentum expansion near p0. To first
order in γ̂−

�
� 1, one finds χ � γ̂−

2�

, which means 
 � χ .

This allows us to write down the effective Schrödinger equa-
tion acting only on the spinor 
,(

γ̂+ + γ̂2
−

2�

)

 = ε
, (12)

which yields the sought effective Hamiltonian to first order in
ε
�

� 1:

Heff = γ̂+ + γ̂−2

2�
. (13)

The leading terms in the momentum expansion of γ̂± depend
on the location of the minimum p0 in the Brillouin zone.
Here we focus on points �i: the face centers of the magnetic
Brillouin zone in Fig. 1. The peculiarity of these points is
the presence of a linear term in the momentum expansion of
εp0 (p) and εp0+Q(p),

εp0 (p) = vpy + p2
i

2mi
+ O(‖p3‖),

εp0+Q(p) = −vpy + p2
i

2mi
+ O(‖p3‖). (14)

Here v is the Fermi velocity of the parent paramagnetic state
along the ŷ direction, and mi are the effective masses along x̂
and ŷ, as shown in Fig. 1.

Equations (14) yield the expansion of γ̂±(p̂) in Eq. (10) to
second order in momentum,

γ̂+(p̂) = vA‖
y · σ + 1

2mi

[(
p̂i + Az

i σ
z
)2 + (A‖

i )2
]
,

γ̂−(p̂) = v
(
p̂y + Az

yσ
z
) + 1

2mi
{ p̂i, A‖

i · σ}, (15)

where A‖
i = (Ax

i , Ay
i , 0)t are the gauge-field components in

the xy plane in spin space. This, in turn, allows us to rewrite
Hamiltonian (13) to second order in momentum,

H = 1

2m∗
i

(
p̂i + Az

i σ
z
)2 + vA‖

y · σ + (A‖
i )2

2mi
, (16)

where the second term in Eq. (13) renormalizes the effective
mass m∗

y relative to its band value in the expansion (14) as per

m−1
y −→ (m∗

y )−1 = m−1
y + v2

�
, (17)

with
m∗

y

my
∼ �

εF
� 1. As we will see below, it is thanks to

this renormalization that the kinetic term 1
2m∗

y
( p̂y + Az

yσ
z )2

becomes comparable with the dominant potential term vA‖
y · σ

at smaller texture length scales a � L � ξ .
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Hamiltonian (16) admits further simplification: within
continuum description, the Néel order parameter n of an anti-
ferromagnetic texture varies on a length scale L, that is large
compared with the lattice spacing a0. The latter is of the order
of the “effective lattice spacing” a ≡ h̄

myv
. As the reader will

see below, the two key length scales in the problem are a and
the “coherence length” ξ ≡ h̄v

�
. Their ratio is a

ξ
= �

εF
� 1,

with εF ≡ myv
2 the characteristic electron bandwidth. For an

electron wave function varying on the characteristic length
scale Lψ � a, we find

vAα
i ∼ �

ξ

L
�

(
Aα

i

)2

2mi
,

{
p̂i, Aα

i

}
2mi

∼ �

{
ξa

L2
,

ξa

LLψ

}
. (18)

As a result, the last term in Eq. (16) can be safely omitted at
all relevant texture length scales below, and the leading terms
of Hamiltonian (13) to second order in momentum thus read

H = 1

2m∗
i

(
p̂i + Az

i σ
z
)2 + vA‖

y · σ. (19)

Notice that the effective mass m∗
i above is substantially

anisotropic, m∗
x = mx is of the order of the electron band

mass or greater (on a square lattice with only the nearest-
neighbor hopping, mx is infinite), and thus m∗

x � m∗
y . While

mass anisotropy at points � is generic as dictated by their
position at the magnetic Brillouin zone boundary, strong mass
anisotropy in Hamiltonian (19) can be traced back to sep-
aration of scales: antiferromagnetic gap � in the electron
spectrum being small relative to the band width εF .

As we show below, the second term vA‖
y · σ of Hamiltonian

(19) tends to produce electron states, bound to topological tex-
tures such as skyrmions and domain walls. On the one hand,
in a Néel antiferromagnet, such a term owes its existence to
lower symmetry of band extrema �i in the Brillouin zone: at
higher-symmetry extrema (e.g., points � and X in Fig. 1), such
a term is not allowed. On the other hand, in a ferromagnet,
such a term is not allowed at all, which underlines a key
difference between ferro- and antiferromagnets. We briefly
compare the two problems in Appendix A.

Hamiltonian (19) may appear odd to a reader used to work-
ing with electromagnetic field. Thus we now take a closer look
at transformation properties of the gauge field A.

D. Gauge transformations

Unitary operator U (r) of Eq. (5) is defined up to a spin ro-
tation Vz(r) = eiχ (r)σ z

around the z axis, with a single-valued
field χ (r). Indeed, such a rotation leaves Eq. (5) intact,

V †
z U †[n · σ]UVz = V †

z σ zVz = σ z, (20)

which means that Vz(r) amounts to a gauge transformation.
Under such a transformation, Ai · σ of Eq. (6) varies as per

Ãi · σ = −ih̄V †
z U †∂i(UVz )

= V †
z Ai · σVz − ih̄V †

z ∂iVz

= V †
z A‖

i · σVz + Az
i σ

z + h̄∂iχσ z. (21)

That is, the Az
i component transforms as electromagnetic

vector potential, while the transverse component A‖
i =

(Ax
i , Ay

i , 0)t simply rotates by 2χ (r) around the z axis in spin

space. While the different spin components Aα
i σα do not

commute, they split into Az
i σ

z and A‖
i · σ, each obeying its

distinct abelian transformation law.
Another transformation that leaves Eq. (5) invariant is a

spin rotation W (r) = eiφ(r)n·σ around the local n(r),

U †W †[n · σ]WU = U †n · σU = σ z, (22)

which implies gauge transformation

Ãi · σ = Ai · σ − ih̄U †
[
W †∂iW

]
U . (23)

Just as for transformation Vz above, a simple calculations
shows that, under W , A‖

i undergoes an in-plane rotation by
2φ, while Az

i transforms as electromagnetic vector potential
(see Appendix B).

Note that, for infinitesimal χ (r) and φ(r), the relations (21)
and (23) read, respectively

δAi · σ = ih̄χ [Ai · σ, σ z] + h̄∂iχσ z (24)

and [25]

δAi · σ = h̄φ U †[∂in · σ]U + h̄∂iφσ z

= ih̄φ [Ai · σ, σ z] + h̄∂iφσ z (25)

and thus become identical. Invariant under these two transfor-
mations, Hamiltonians (16) and (19) enjoy the peculiar gauge
symmetry above.

To perform calculations for a given texture, we will have to
choose a concrete U (r)—that is, to fix a gauge. We will define
n via its polar angle θ and azimuthal angle φ as per

n = (sin θ cos φ, sin θ sin φ, cos θ )t , (26)

and choose [26]

U (r) = m · σ (27)

with m being the bisector between n and ez. That is, m · σ

amounts to a π -rotation around m. Such a choice makes
calculations straightforward with the help of the textbook
Pauli-matrix property (n · σ) (m · σ ) = n · m + i (n × m) · σ,
yielding

Ai · σ = −ih̄ (m · σ ) (∂im · σ) = h̄ (m × ∂im) · σ. (28)

A simple calculation leads to the following expression:

h̄−1Ai = ∂iθ

2

⎛
⎝− sin φ

cos φ

0

⎞
⎠ + ∂iφ

2

⎛
⎝− sin θ cos φ

− sin θ sin φ

1 − cos θ

⎞
⎠. (29)

As with electromagnetic field, certain combinations of the
Ai components and their gradients prove gauge-invariant. In
Appendix C, we show that these can be expressed via the
gradient energy density (∇n)2 and the the skyrmion number
density (n · [∂xn × ∂yn]).

Now that we constructed an effective-mass Hamiltonian
for a generic antiferromagnetic texture, and elucidated its
gauge-transformation properties, we are in a position to study
an electron in the presence of a skyrmion.
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III. BELAVIN-POLYAKOV PROFILE,
SHALLOW BOUND STATES

A. Profile properties

Note that a skyrmion has its own localized eigenmodes
that, generally, must be considered on an equal footing with
the electron degrees of freedom. There is, however, a realistic
limit, where proper frequencies of the skyrmion prove to be
small relative to those of the electron motion. Then, to first
approximation, the texture can be treated as static input to the
electron problem. Once the electron eigenstates are found, a
comparison of characteristic electron frequencies with those
of the proper modes of the skyrmion allows one to define
the validity range of such a calculation, as it was done in our
prior study for a skyrmion close to the Belavin-Polyakov (BP)
profile [15].

The BP skyrmion naturally emerges in a perfectly isotropic
magnet, described by the continuum-limit energy density
J (∇ · n)2 with stiffness J . In a topological sector labeled by
the winding number Q = ±1,±2,±3, ..., the lowest-energy
solution is the BP skyrmion of radius R, with R-independent
energy 4πJ|Q| [16,17].

The profile of a skyrmion is specified by the dependence
of polar and azimuthal angles θ and φ in Eq. (26) on the
coordinates in the plane. For the latter, we use polar coor-
dinates r =

√
x2 + y2 and α = arctan y

x . For high-symmetry
skyrmion textures such as the BP skyrmion, the polar angle
θ depends only on the radial coordinate r in the plane, while
the azimuthal angle φ depends on angle α in the plane as per
φ = Qα + γ . The offset γ is called helicity, while the coeffi-
cient Q is the skyrmion winding number [1]. A skyrmion with
γ = 0 is often called Néel skyrmion, while its counterpart
with γ = π

2 is referred to as Bloch skyrmion.
Here we limit ourselves to Q = 1, and consider the BP

profile defined as per [16,17]

sin θ = 2z

1 + z2
, z = r

R
, (30)

depending on a single length scale, the skyrmion radius R.
At first sight, the definition (30) does not imply a choice of
boundary conditions for the orbital angle θ (r). Furthermore,
for an antiferromagnet, the choice of boundary conditions
should be physically irrelevant since it relies on an arbi-
trary choice of definition for the Néel order parameter n =
±M1−M2

2Ms
. However, when looking for example at the z com-

ponents of the gauge field

Az
i = h̄

∂iφ

2
(1 − cos θ ), (31)

we see that the choice θ (0) = π makes the origin singu-
lar. The only possible choice of boundary conditions is
thus θ (0) = 0 and limr→∞ θ (r) = π , which allows to obtain
cos θ = 2 1−z2

1+z2 , leading to

Az
x = h̄

−y

R2 + r2
, Az

y = h̄
x

R2 + r2
. (32)

Encircling the skyrmion along a large closed contour makes
the electron accumulate a geometric flux of 2π : σ z

∮
Az

i dli =
2π h̄σ z, which gives rise to the skyrmion Hall effect [27]. This
is a consequence of a more general relation (C5): an electron

encircling a skyrmion of topological charge Q accumulates a
geometric flux 2πQ, independent of the skyrmion profile.

The BP profile has a remarkable property that greatly sim-
plifies the problem. To illustrate it, consider the expression for
the Ax

y, produced by a high-symmetry Q = 1 skyrmion with
φ = α + γ ,

Ax
y = − h̄

2
cos α sin α sin γ

(
sin θ

r
− dθ

dr

)

− h̄

2
cos γ

(
cos2 α

dθ

dr
+ sin2 α

sin θ

r

)
. (33)

According to Eq. (33), variables r and α separate for a profile,
satisfying

dθ

dr
= sin θ

r
. (34)

Remarkably, this very relation is obeyed by the Q = 1 BP
profile [28], implying

A‖
y = −h̄

sin θ

2r
eσ , (35)

where unit vector eσ = (cos γ , sin γ , 0)t defines the orienta-
tion of A‖

y in spin space. Note that eσ only depends on the
helicity, and remains uniform in real space. Without loss of
generality, this allows us to limit ourselves to a Néel skyrmion
(γ = 0), for which eσ = ex [29].

We will now study shallow electron states, bound to the BP
skyrmion as described by Hamiltonian (19).

B. Shallow bound states

The first thing to note is that strong anisotropy m∗
x � m∗

y
makes y a “fast” variable relative to x, which calls for the
Born-Oppenheimer approximation [30]. Recalling that m∗

y ∼
�
v2 , Hamiltonian (19) can be recast as

H

�
= ξ 2

2R2

(
− ∂2

∂ ỹ2
+ x̃2

(1 + z2)2

)
− ξ

R

1

1 + z2
σ x, (36)

with x̃i = xi
R . Equation above allows us to demonstrate the

appearance of skyrmion-electron bound states, polarized
along ex.

Above, anticommutator { p̂y, Az
yσ

z} has been omitted as
proportional to σ z, and thus only acting in second order of
perturbation theory, the dominant term being proportional to
σ x. This can be seen directly from the physics picture in
Fig. 6 below: the term { p̂y, Az

yσ
z} has matrix elements only

across the gap, hence its contribution is suppressed by large
perturbation-theory denominator �.

Considering the |+〉x component of the wave function, the
corresponding low-lying states can be evaluated by expanding
the potential around the bottom of the well. This yields the
effective harmonic potential for the “slow” coordinate x̃ = x

R ,

εn
x

�
= ξ

R

(
−1 +

(
n + 1

2

)√
2ξ

R
+

[
1 + ξ

2R

]
x̃2

)
. (37)
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FIG. 3. Density plot of the ground-state wave function [see
Eq. (38)] of an electron, bound to a Belavin-Polyakov skyrmion
of radius R, for a large (R � ξ ) and intermediate-size (R ∼ ξ )
skyrmion. For R � ξ , the wave function is localized well within the
skyrmion core. It starts spreading beyond the skyrmion core as the
skyrmion radius R decreases to become of the order of the coher-
ence length ξ , before spilling over R for R � ξ (not shown here).
For a large (R � ξ ) Néel skyrmion, the low-lying bound states are
those of an anisotropic harmonic oscillator. They are spin-polarized
essentially uniformly along −ex , as shown in Fig. 1, as sketched
by red arrows here. Along y, the characteristic length scale of the

ground-state wave function is ȳ ∼ R 4
√

ξ

R , while the scale along x is

x̄ ∼ R 4
√

ε ξ

R � ȳ: it remains small compared with R even for R ∼ ξ .

Reintroducing the kinetic energy term p̂2
x

2m∗
x

then yields the low-
lying states

εn
m

�
= ξ

R

[
−1 +

(
n + 1

2

)√
2ξ

R

]

+
(

m + 1

2

)√
2ε

(
ξ

R

)3/2
√

1 + ξ

2R
(38)

with ε = my

mx

a
ξ
≪ 1. Parameter ε governs the ratio ωx

ωy
of the

characteristic frequencies of the “slow” and “fast” degrees of
freedom. The wave functions of these states are those of a
two dimensional anisotropic harmonic oscillator with differ-
ent frequencies along directions x and y. These wave functions
are thus localized at the skyrmion core, as shown in Fig. 3 for
the ground state [energy ε0

0 in Eq. (38)].
The bound states remain shallow, and the harmonic expan-

sion continues to hold for radia R � ξ . With R approaching
ξ , the frequency h̄ωy becomes comparable to �, and the
low-energy Hamiltonian (19) breaks down. That is, for radia
R � ξ , the complete Hamiltonian (9) must be considered.

At the same time, with R decreasing further below ξ , the

repulsive term
(Az

y )2

2m∗
y

∼ �
ξ 2

R2 in the low-energy Hamiltonian

(19) grows relative to the attraction vAy ∼ �
ξ

R . Using ap-
proximation Az

y ∼ h̄ x
R2 and estimating 〈x̂2〉 within harmonic

approximation shows that the repulsion compensates the at-
traction vAx

y for R ∼ √
εξ . (Notice that

√
εξ � a, hence at

this scale the continuum description of the texture still ap-
plies.) Therefore, bound states become shallow again and
disappear at an R = R̄ ∼ √

εξ � ξ . This estimate can be ob-
tained more rigorously [15], and does not rely on strong mass

anisotropy. For a perfectly isotropic toy model, our calculation
of R̄ in Appendix D yields the same result.

We now turn to a study of deep bound states with the help
of the full Hamiltonian (9).

IV. BELAVIN-POLYAKOV PROFILE:
DEEP BOUND STATES

Above and in Ref. [15], we have analysed shallow bound
states at both small R � R̄ and large BP skyrmion radia R �
ξ . Now we turn to intermediate radia R̄ � R � ξ , where the
bound-state energy becomes comparable with the gap �.

A. Particle-hole symmetry

Before turning to deep bound states, we would like to
highlight the electron-hole symmetry of Hamiltonian (9). If
we go through steps (11) to (13), now considering energies
near the valence band maximum and setting E = −� + ε

with |ε| � �, this time we obtain


 � − γ̂−
2�

χ. (39)

The full four-spinor wave function (φ, χ ) is now dominated
by χ . To first order in γ̂−

�
� 1, the effective Hamiltonian for

χ reads

H− = γ̂+ − γ̂2
−

2�
. (40)

Comparing Eqs. (13) and (40), we see that shallow bound
states near the top of the valence band have polarization
|−〉eσ

and energy ε = E + � > 0, while their conduction-
band counterparts have polarization |+〉eσ

and energy ε =
E − � < 0. Both for large radia R � ξ and for R � R̄, shal-
low bound states near the bottom of the conduction band
and and their counterparts near the top of the valence bands
obey the same Schrödinger equation, and their energies are
perfectly symmetric relative to the gap center E = 0. In other
words, shallow bound states near the edge of the conduction
band are related to their valence-band partners by particle-hole
symmetry

|+〉eσ
→ |−〉eσ

, ε → −ε. (41)

In the intermediate range R ∼ ξ , the full 4 × 4 Hamiltonian
(9) has to be considered. Particle-hole symmetry (41) corre-
sponds to wave-function transformation (φ|+〉eσ

, χ |+〉eσ
)t →

(−χ |−〉eσ
, φ|−〉eσ

)t , represented by operator

M =
(

0 −σ z

σ z 0

)
. (42)

Applying this transformation to Hamiltonian (9) yields

H̃ = M†HM =
(

σ z(γ̂+ − �)σ z −σ zγ̂−σ z

−σ zγ̂−σ z σ z(γ̂+ + �)σ z

)
. (43)

Comparing Hamiltonians (43) and (9), we see that if

{γ̂+, σ z} = 0, and [γ̂−, σ z] = 0 (44)

[that is, if only linear terms are kept in the momentum expan-
sion of γ̂± in Eqs. (15)], then

H̃ = −H, (45)
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which means exact particle-hole symmetry. Quadratic terms
in the momentum expansion break this symmetry, producing
an asymmetry of the order of �/εF � 1 relative to the other-
wise particle-hole symmetric background.

B. Solving the full Hamiltonian

Now we turn to deep bound states in the intermediate
range R ∼ ξ . In this preliminary section, we focus on a Q = 1
skyrmion, and keep the presentation as general as possible.
We consider Hamiltonian (9) and use the expansion (15), only
keeping its dominant terms, which is valid for R ∼ ξ � a. In
this approximation, only differential operators acting on y are
kept, since the slow coordinate x will only slightly affect the
energy; thus we fix it at its mean value which is, by symmetry,
x = 0. Technically, this implies setting Az

y = 0 in γ̂−, which is
further supported by the fact that the dominant potential term
is proportional to eσ · σ. With eσ assumed to be orthogonal
to ez, Az

yσ
z will only act in second order of perturbation the-

ory. Stated differently, by analyzing the electron motion only
along the fast coordinate y, we study the “gross” structure of
the bound-state energy levels, temporarily ignoring the “fine”
structure: the sublevels, appearing due to quantization of elec-
tron motion along the slow coordinate x. The approximations
above imply

γ̂+ = vA‖
yeσ · σ ≡ −γ+eσ · σ,

γ̂− = v p̂y = γ̂−. (46)

The Hamiltonian (9) can now be applied to bispinor
(φ1, ψ1, ψ2, φ2)t where the spinor components φi and ψi are
given in the spin eigen basis |±〉eσ

along eσ .
The corresponding Schrödinger equation thus reads

(1) (� − γ+ − E )φ1 + γ̂−ψ2 = 0,

(2) (� + γ+ − E )ψ1 + γ̂−φ2 = 0,

(3) γ̂−φ1 − (� + γ+ + E )ψ2 = 0,

(4) γ̂−ψ1 − (� − γ+ + E )φ2 = 0. (47)

The equations (2) and (3) allow us to express ψ1 and ψ2 as

ψ1 = − 1

� + γ+ − E
γ̂−φ2,

ψ2 = 1

� + γ+ + E
γ̂−φ1. (48)

Paying attention to noncommutativity of γ̂− and γ+, we
find[

γ̂ 2
− − γ̂−(γ+)

� + γ+ ± E
γ− + �2 − (γ+ ± E )2

]
φ = 0. (49)

The particle-hole symmetry (41) is explicit here, with polar-
ization inversion |+〉eσ

→ |−〉eσ
corresponding to replacing

φ1 by φ2, with sign + in equation (49) associated with φ1.
This one-dimensional second-order differential equa-

tion can be easily solved numerically. Searching for energies
E , for which the wave function is physical, leads to a discrete
energy spectrum En(R). These energies are depicted as func-
tions of the BP skyrmion radius R in Figs. 4 and 5. Figure 4
shows numerical solutions for the ground-state energy and the
energy of the first excited state (with respect to the fast degree

FIG. 4. Ground-state energy (with polarization |+〉eσ
) of Hamil-

tonian (9) as a function of R
ξ

, shown in units of �. The numerical
solution in blue is compared with the analytical one (38) obtained
with Harmonic approximation, plotted in cyan and valid for R

ξ
� 1.

The energy of the first excited state relative to the fast degree of
freedom is represented in dark green, and again compared with its
analytical counterpart (38) in green. The abscissa of the crossing
point between ground-states energies Ec

0 and E v
0 is R∗ � 0.37ξ .

of freedom y) in comparison with the analytical result (38)
obtained in the large-radius limit R � ξ . The agreement is
excellent for R � 8ξ , as expected. Note that the ground state
is the only state whose energy crosses zero.

Figure 5 shows numerical results for the first excited states.
Their structure is nontrivial for R comparable to ξ , where the
frequencies Ei+1

c − Ei
c are far from constant. The harmonic

description holds only for low-lying excited states, and for R
large against the coherence length ξ .

Note that this solution describes only the y dependence of
the wave function. As we already pointed out, it encapsu-
lates the gross structure of bound-state spectrum. Each state
of energy En(R) is accompanied by a set of excited states
separated by frequencies of the order of h̄ωx. This is due to
the fact that for the slow degree of freedom x, the kinetic
term remains small compared with main potential term even
in the range R � ξ . In the picture above, the energy E0

c of the
lowest conduction-band bound state crosses zero at an R ∼ ξ .

FIG. 5. Excited-state energies Ei
c (in � units) as functions of R

ξ
,

obtained by numerical solution of equation (49). Indices i represent
the number of the wave-function zeros along y. The shown states are
arising from the conduction band, and have symmetric counterparts,
generated by the valence band.
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Combined with the particle-hole symmetry, this implies level
crossing with bound states arising from the valence band. We
will now see if this level crossing is avoided.

C. Perturbation-theory analysis of crossing points

Now we will treat the previously neglected terms in γ̂±
of Eq. (15) as perturbation of the dominant terms (46). Fig-
ure 5 suggests that the only states allowed to intersect are
those whose wave function has no zeros along the y direction.
Focusing on these states, we denote them as

�c
i =

⎛
⎜⎜⎝

φi

0
ψi

0

⎞
⎟⎟⎠, �v

i =

⎛
⎜⎜⎝

0
−ψi

0
φi

⎞
⎟⎟⎠, (50)

where indices i stand for the number of wave-function zeros
along x. In first approximation, these states can be presented
as φi(x, y) = φ(y)〈x|i〉 and ψi(x, y) = ψ (y)〈x|i〉, with |i〉 the
one-dimensional harmonic oscillator eigenstates, and φ(y) the

ground-state eigenfunction of Eq. (49). Here ψ = γ̂ 0
−

�+γ 0+
φ,

with γ̂ 0
± representing the zero-order expansion (46) of ‖γ̂±‖.

An avoided crossing can only appear due to off-diagonal
terms in the spin basis defined by eσ . In γ̂−, among such terms
the dominant one is vAz

yσ
y [31]. This will split the crossing

energies

E0
i = 〈

�c
i

∣∣H0

∣∣�c
i

〉 = 〈
�v

i

∣∣H0

∣∣�v
i

〉
(51)

with H0 made of γ̂ 0
±, by the amount [32]

δi j = 〈
�c

i

∣∣V ∣∣�v
j

〉
, V = vAz

yσ
y ⊗ σx, (52)

with σx coupling spinors. To estimate the splitting, we approx-
imate Az

y ∼ �
ξ

R
x̃

1+ỹ2 , and observe that the integral∫ +∞

−∞
dỹ

|φ|2 + |ψ |2
1 + ỹ2

(53)

appears to be numerically near unity for R ∼ ξ . Using stan-
dard properties of harmonic oscillator eigenstates, we find

δi j ∼ �
ξ

R
〈i| ˆ̃x| j〉 ∼ �

ξ

R

(
ε
ξ

R

)1/4

(δi, j+1 + δi+1, j ). (54)

In reality, the wave functions of crossing states are more
complicated, and Az

y is not a separable function. However,
since Az

y is an odd function of x, it couples states of different
parities, meaning δi j is expected to be nonzero if |i − j| is an
odd integer, and to realize its maximum for |i − j| = 1.

The other off-diagonal term is proportional to Ay
x, an odd

function of y, and is irrelevant since there is no crossing
between eigenstates of different parity along y, see Fig. 5.

These arguments suggest that, to second order in mo-
mentum expansion of Eq. (15), there is no avoided crossing
between levels of the same spatial symmetry. Looking at
the ratio

δ01

h̄ωx
� 1

2

[
ε
ξ

R

(
1 + ξ

2R

)3
]−1/4

, (55)

FIG. 6. Evolution of the bound-state levels as a function of the
BP skyrmion radius R, key features. R∗ represents the largest ra-
dius allowing for level crossing, see Fig. 4. And Rc is the radius
for which the ‘slow’ frequency ωx becomes comparable with �,
see Eq. (56).

we see that it is larger than one as long as the skyrmion radius
is larger than

Rc ∼ ε1/4ξ � ξ (56)

with ε = my

mx

a
ξ
≪ 1. This appears to be the radius for which

the characteristic frequency of the slow degree of freedom

h̄wx = �

(
ξ

R

)3/2√
2ε

√
1 + ξ

2R
(57)

becomes of the order of �. Thus, as long the present discus-
sion makes sense, the gaps opening at avoided crossing points
are much larger that the characteristic spacing between the
energy levels. This observation implies that the off-diagonal
coupling term Az

yσ
z will avoid all possible crossings between

levels of the same spatial symmetry along the x axis. Since the
number of crossing levels is large, the precise energy struc-
ture is difficult to identify. However, the qualitative picture
of the bound-state evolution as a function of the skyrmion
radius R is afforded by the textbook argument for electron
terms in a diatomic molecule [32] and is shown in Fig. 6.
The argument states that, for a single-parameter Hamiltonian,
two electron terms of the same symmetry cannot cross. In
the present problem, the single parameter is the skyrmion
radius R, and the avoided crossing is ensured by the term
V = vAz

yσ
y ⊗ σx [33].

D. Physics picture

The analysis above allows us to draw the following physics
picture. For large BP skyrmion radia R � ξ , the bound states
remain shallow: that is, they lie near the edge of the band they
originated from: |ε| � �. For both x and y coordinates, the
low-lying states are close to those of a harmonic oscillator, see
Eq. (38). As R decreases to approach the coherence length ξ ,
these low-lying states become more and more profound, and
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FIG. 7. A sketch of the dominant potential term vA‖
y · eDW

σ , for
a domain wall profile of radius R, large compared with the wall
width w.

approach the gap center at R ∼ R∗. At lower radia R � R∗,
the energy gap is filled by a ladder of bound states of nearly
harmonic structure along x, with a characteristic level spacing
h̄ωx. As R decreases further, the harmonic structure along x
is lost, and levels split to reach an energy difference of about
� at R ∼ Rc, before the last bound state disappears at R = R̄,

with a � R̄ ∼
√

my

mx

√
aξ � ξ . For R < R̄, there are no bound

states any more, a result that holds as long as the continuum
approximation is valid, that is for R � a. Evolution of bound
states with R is sketched in Fig. 6.

Note that, generally, the eigenstates of Hamiltonian (9)
are spin-polarized nonuniformly. In Secs. III and IV above,
the Hamiltonian and the resulting eigenstates were expressed
in the basis obtained via transformations P and U (r). The
physical wave function must then be reconstructed from the
found solution � via

�physical(r) = U (r)P�(r). (58)

Spin rotation U (r) is nonuniform. Thus, generally, so is the
spin polarization of the wave function. However, for a large
BP skyrmion (R � ξ ), the wave functions of low-lying states
are localized well within the skyrmion core (r � R), where
the Néel order parameter points along ẑ, and thus U (r) is
close to π rotation around ẑ. Therefore, for R � ξ , the phys-
ical wave function is spin polarized opposite to x̂, as shown
in Figs. 3 and 8. However, for a small skyrmion (R � ξ ),
spin polarization of the wave function becomes substantially
nonuniform even for low-lying bound states [15].

Being parameterized by a single length scale and hav-
ing a simple and elegant analytic profile, Belavin-Polyakov
skyrmion is a tractable example par excellence, allowing one
to analyze skyrmion-electron bound states. Moreover, weak
single-ion anisotropy affects the skyrmion shape only far away
from the center (r � R) [34,35], and thus does not influence
the low-lying bound states whose wave functions are localized
well within the skyrmion core. However, the BP profile is rele-
vant in a parameter range where the skyrmion lifetime appears
to be short [8]. Skyrmion-electron bound states only increase

FIG. 8. Density plot of the ground-state wave function [see
Eq. (67)] of an electron, bound to a domain-wall skyrmion in limits
w � ξ and w ∼ ξ . For a domain-wall skyrmion with a large wall
width w � ξ , lowest electron bound states lie deep in the effective
potential well formed by the domain wall. Their wave functions are
thus close to those of a substantially anisotropic two-dimensional
harmonic oscillator, which implies strong localization of the trapped
electron inside the domain wall, as depicted in the left panel of the
figure. With the wall width w decreasing to approach w ∼ ξ , the ef-
fective potential well becomes more and more shallow, which makes
the wave function of the low-lying electron states spill outside the
domain wall, as depicted in the right panel above. In both cases, the
states localized near the bottom well at (0,±R) are polarized along
±eDW

σ , pointing along −ex at the bottom well. Away from (0, ±R),
local spin polarization of the bound state remains tangential to the
domain wall, as shown in the right panel. The characteristic spread of
the ground-state wave function along y is ȳ ∼ w( ξ

w
)1/4, while along x

it is x̄ ∼ R(ε wξ

R2 )1/4. Thus, by contrast with ȳ, the bound-state range x̄
along the domain wall is sensitive not only to the domain wall width
w, but also to the skyrmion radius R.

the skyrmion energy, and thus reduce its stability even further.
We now turn to a different profile, which is described by
two length scales rather than one: that of a “domain wall”
(DW) skyrmion. The DW profile becomes relevant near the
transition to the modulated phase [18], where skyrmions tend
to have longer lifetimes [8].

V. DOMAIN WALL PROFILE

In this section, we study the so-called domain wall (DW)
skyrmion profile defined by

θ (r) = π − 2 arctan

(
sinh(R/w)

sinh(r/w)

)
, (59)

with the skyrmion radius R and the domain wall width w.
The name “domain wall skyrmion” points to a nearly con-
stant θ (r) � 1 within the skyrmion radius R, undergoing a
smooth variation within the distance w � R around r = R, to
become nearly constant (θ ≈ π ) again at r > R. That is, such
a skyrmion can be seen as a circular domain wall of radius
R and width w. We consider a DW skyrmion with winding
number Q = 1 and an arbitrary helicity γ . In the relevant limit
R � w [36], we can make an approximation

θ ′(r) � 1

w cosh
(

R−r
w

) � sin θ

w
, (60)
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which implies, near r = R, that

sin θ

r
∼ sin θ

R
� sin θ

w
� θ ′. (61)

The inequality above allows us to simplify the expression for
the gauge field in Eq. (33). For the dominant term, this leads
to [37]

vA‖
y · σ � −�

ξ

2w
sin θ sin α eDW

σ · σ (62)

with eDW
σ = ( sin(α + γ ),− cos(α + γ ), 0)t . Helicity then

plays the same role as for the BP profile: it only defines the
polarization of the bound states. This potential has a nontrivial
shape, depicted in Fig. 7. It has two minima of depth �

ξ

2w

located at points ±r0 = ±Rey with opposite polarization rel-
ative to eDW

σ .

A. Shallow bound states

We start by treating the limit w � ξ , where the potential is
small against �. Direct inspection shows that, near the minima
±r0, the dominant repulsive term can be estimated as(

Az
y

)2

2m∗
y

∼ �
ξ 2

8R2
x2 � vA‖

y ∼ �
ξ

2w
. (63)

That is, repulsion remains small compared with the dominant
attractive potential vA‖

y · σ, and can be neglected altogether.
Cross terms { p̂i, Az

i }σ z are also small and off-diagonal in the
basis of eDW

σ . Thus, in the first approximation, they can also
be ignored.

The potential can be diagonalized with the help of an
operator

P(α) = 1√
2

(1 − ier · σ) (64)

with er = ( cos(γ + α), sin(γ + α), 0)t , which produces ad-
ditional terms when sandwiching the operator p̂2

i →
P†(α) p̂2

i P(α) [38]. Nevertheless, depending only on the polar
angle α, operator P varies on the characteristic scale R, and
thus produces only terms of the order �

ξ 2

R2 (and even smaller
for p̂x), negligible compared with vA‖

y .
The resulting Schrödinger equation for bound states near

the point +r0 is then[
− ξ 2

2w2

∂2

∂ ỹ2
− ε

2

ξ 2

R2

∂2

∂ x̃2
− ξ

2w
sin θ sin α

]
ψ↑ = ε

�
ψ↑

(65)

with x̃ = x
R and ỹ = y−R

w
, and the spin projection ↑ along

eDW
σ . Note that here the anisotropy is much stronger than

in the BP case: on top of the effective-mass anisotropy, the
potential itself is now strongly anisotropic. Such a strong
anisotropy again invites the Born-Oppenheimer approxima-
tion. The low-energy limit w � ξ is also appropriate for a
harmonic expansion, since the kinetic term is small compared
with the depth of the potential well. The potential can be
expanded locally as

− sin(α) sech
r − R

w
� −1 + x̃2 + ỹ2

2
(66)

FIG. 9. Ground-state energy (in units of �) given as a function
of the domain wall width w in units of ξ . The numerical solution (in
blue) is compared with the analytical result (67), in red, obtained
for w � ξ . The agreement is excellent for w � 4ξ , as indeed it
should be.

yielding the energy levels

εn
m

�
= − ξ

2w

[
1 −

(
n + 1

2

)√
2ξ

w

]
+

(
m + 1

2

)
ξ

R

√
ε

2

ξ

w
.

(67)

The spectrum above is similar to that of shallow bound
states for the BP profile in Eq. (38), except for an overall
factor 1

2 : as a function of w, the potential well is a half of what
it was for the BP profile as a function of R. The frequency
of the slow degree of freedom is, however, smaller, due to
the additional anisotropy of the potential. The wave functions
of these states are those of a two-dimensional anisotropic
harmonic oscillator. The key difference relative to the BP
skyrmion is that, here, the electron is predominantly localized
at the two opposites edges of the DW skyrmion rather than
near its center, compare Figs. 3 and 8.

Just as for the BP skyrmion, this low-energy description
breaks down with w decreasing to become comparable with
ξ : at this point, the full Hamiltonian (9) has to be solved.

B. Deep bound states

Equation (49) that we derived to treat the BP profile be-
comes even more accurate for the DW configuration, since the
ratio |Az

y|/|A‖
y | is now smaller than for BP skyrmion. Again,

we solve Eq. (49) numerically, and find the gross spectrum E0
n

with n the number of wave-function zeros along y. The results
are shown in Fig. 9 for the ground state, and Fig. 10 for the
excited states.

Relative to the BP profile, the key difference can be ob-
served already for the ground state: it never crosses zero
energy, even in the limit w → a, meaning there is no cross-
ing between states generated by the valence and conduction
bands. Thus, the in-gap structure will be much simpler here
than for a BP skyrmion. The difference arises from the factor
1
2 in front of the square brackets in Eq. (67) as compared with
Eq. (38): for a DW skyrmion with a given w, the attractive
potential is twice weaker than for an equal-radius (R = w)
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FIG. 10. Numerical results obtained from the resolution of
Eq. (49) with DW profile. The energies E 0

n (R) (in units of �) are
given as a function of wall with w (in units of ξ ). Subscript n stands
for the number of wave-function zeros along y. Superscript 0 indi-
cates that corresponding states have no zeros along the x coordinate.

BP skyrmion. The DW excited-state structure is very similar
to the BP case, even if the bound states are about twice as
shallow.

The harmonic structure for sub-levels associated with the
slow degree of freedom x holds longer for the DW profile.
Indeed, this time

h̄ωx

�
= ξ

R

√
ε

2

ξ

w
(68)

becomes comparable with unity for

wc = my

mx

ξ 2

2R2
a. (69)

Thus, for R �
√

my

mx
ξ , the energy h̄ωx remains always small

compared with the gap �. Which means that, in the continuum
approximation, harmonic structure persists for any radius R.

As in the BP case, the dominant repulsive term
(Az

y )2

2m∗
y

could

be responsible for the loss of bound states at a lower wall
width w̄. However, since harmonic description holds for the
slow degree of freedom, this term can be estimated as〈(

Az
y

)2

2m∗
y

〉
∼ �

ξ 2

R2
〈x̃2〉 ∼ �

ξ 3

R3

√
ε
w

ξ
. (70)

Therefore, this repulsion can never compensate the attraction
vA‖

y ∼ �
ξ

w
. Which means that, for a DW profile with w �

R, bound states are always present, at least in the continuum
description.

For the DW profile, evolution of the bound-state spectrum
as a function of w looks similar to what one sees for the BP
skyrmion as a function of R: compare Figs. 11 and 6. At the
same time, we observe two important differences: (i) there is
no critical DW width w̄ below which bound states disappear—
at least, as long as w � R. And, since there is no avoided
crossing, (ii) polarization of bound states remains pure, that is
|+〉eσ

or |−〉eσ
. Note that, in the leading approximation, the

skyrmion radius R has no impact on the gross structure of
bound states: see the first term in Eq. (67). However, R does
affect the fine structure of bound sates, see h̄ωx in Eq. (68).

FIG. 11. The in-gap structure for a DW profile. There is no
crossing between states arising from valence and conduction bands.
The numerical solutions of equation (49) hold until w becomes com-
parable with critical width wc, where the fine-structure level spacing
becomes comparable with �, see Eq. (69).

Having gained insight into the bound-state spectrum for
both the BP and the DW profiles, we now turn to the contri-
bution of bound states to the skyrmion energy at half-filling.

VI. ENERGETICS AT HALF-FILLING

We consider a material with one electron per site, at zero
temperature. In the Néel phase, all the negative-energy states
are occupied, while all the positive-energy states are empty,
see Figs. 6 and 11. Filled bound states, generated by the
valence band, rise above E = −� (the top of the valence
band in the absence of the skyrmion), thus making a positive
contribution to the skyrmion energy.

The electron contribution to the skyrmion energy may be
defined as the difference between the sums of occupied-state
energies with and without the skyrmion

ET =
∑

i

(
E v

i

)Bloch + (
E v

i

)bound︸ ︷︷ ︸
with skyrmion

−
∑

i

(
E v

i

)Bloch︸ ︷︷ ︸
without skyrmion

.

Calculation of ET requires understanding the effect of the
skyrmion on itinerant electron states. Let Nbs(R) be the micro-
scopic number of valence-band bound states with polarization
|−〉eσ

, for a single valley �i (see fig 1). On the other hand, in
Sec. II we saw that in the uniform Néel state all the electron
eigenstates are doubly degenerate. Thus there are Nbs states
with the same unperturbed energy, but polarization |+〉eσ

, that
are repelled from the skyrmion, resulting in a smaller density
near the skyrmion center, and a smaller energy. The intraband
energy shift for one of these states can be estimated as

δεi = v

∫
d2rA‖

y |ui|2 ∼ v

∫
d2rA‖

y |u0|2 (71)

with ui(r) the ith Bloch function. Since the relevant states are
close to the valence band maximum, we make the approxi-
mation ui ∼ u0 ∼ 1

L (with L the characteristic system size)

224425-11



N. DAVIER AND R. RAMAZASHVILI PHYSICAL REVIEW B 109, 224425 (2024)

in the spirit of the rigid band theorem [21]. This yields the
energy shift

δε � �
ξ

R

R2

L2

∫ L/R

0

z

1 + z2
dz � �

ξ

R

R2

L2
ln

L

R
, (72)

which is a factor of R2

L2 ln L
R smaller than the characteristic

energy �
ξ

R of the bound states. In the thermodynamic limit
L ≫ R, the characteristic energy of these Nbs |+〉eσ

-polarized
states is thus negligible relative to the characteristic energy
�

ξ

R of the bound states. The impact of the skyrmion on the en-
ergy of Bloch states is therefore tiny compared with the effect
of bound state formation, since there is an equal number Nbs

of states of each polarization. The Nbs |+〉eσ
-polarized states

can then be ignored when calculating the electron contribution
ET to the skyrmion energy.

Finally, consider the other states of the same valley, that
are described by the effective-mass Hamiltonian, but lie
sufficiently deep in the band, so that the corresponding |−〉eσ

-
polarized states do not become bound. These states will
experience an energy shift similar to (72) with a sign, depen-
dent on their polarization. Since states of opposite polarization
are initially degenerate, the energy shifts of a pair of states will
tend to compensate. The resulting statement is that the total
energy ET can be approximated by the sum over occupied
bound-state energies only.

Before estimating ET , a remark concerning electron-
electron interaction. While its careful treatment is beyond the
scope of this paper, for a sufficiently large skyrmion electric
neutrality will enforce uniform electron density: in each val-
ley, one spin polarization is attracted to the skyrmion center to
form bound states, while the opposite polarization is repelled
and forms itinerant states whose density is reduced near the
skyrmion center. The estimate of ET in the following subsec-
tion neglects electron-electron interaction altogether. We now
evaluate ET for the two skyrmion profiles discussed above.

A. Belavin-Polyakov skyrmion

1. Harmonic states

We start by computing the contribution of harmonic states
in the limit of large skyrmion radius R � ξ . Treating the
valence band maximum as energy reference, we rewrite
Eq. (38) as

εn
m = ε0

0 − (
1
2 + n

)
h̄ωy − (

1
2 + m

)
h̄ωx, (73)

with ε0
0 = �

ξ

R . Which allows us to write

ET =
∑
m,n

εn
m =

Ny∑
n=0

Mn∑
m=0

(
εn

0 −
(

1

2
+ m

)
ωx

)
, (74)

with Ny = ε0
0

h̄ωy
and Mn = εn

0
h̄ωx

. Since Ny � 1, this yields

ET �
(
ε0

0

)3

6h̄2ωxωy
= �

6

(ξ/R)3

2
√

ε(ξ/R)3

1√
1 + ξ/2R

, (75)

which implies asymptotic behavior

lim
R→∞

ET (R) � E0, with E0 ≡ �

12
√

ε
. (76)

FIG. 12. Numerical estimate of the bound-state contribution to
the skyrmion energy ET , shown in units of E0 = �

12
√

ε
. Orange line

corresponds to Eq. (77), where the sum is calculated numerically for
the first seven excited states, the maximum of the 7th level energy
being already smaller than 4 × 10−3� for this radius range. The
apparent asymptotic value, close to 1.34E0, is of the same order of
magnitude but slightly larger than the one obtained with harmonic
approximation (76), as expected. The blue part is calculated for radia
smaller than the crossing radia R < R∗ using Eq. (79).

Notice that, at large R, the increasing number of bound
states and their decreasing characteristic energy compensate
each other. Also notice that E0 � � emerges as a charac-
teristic scale, defining the contribution of bound states to
the skyrmion energy. Note that the estimate above treats
bound states as harmonic (equidistant) and underestimates
their number, thus giving a lower bound of the bound-state
contribution ET to the skyrmion energy.

We now evaluate ET for intermediate radia Rc � R � ξ .

2. Contribution of deep bound states

In the following section, we focus on the density of in-gap
states since, in the first approximation, the sum over energies
does not depend on the fine structure of energy levels. This
amounts to ignoring the perturbation of harmonic structure,
discussed in Sec. IV C. In this context, the physics picture is
roughly the one presented in Fig. 6. Following the steps of
Sec. IV and assuming that, in the intermediate regime R � R∗,
the harmonic description holds only for the x direction, this
yields

ET � 1

2h̄ωx

∑
n

(
ε0

n

)2
(77)

which can be evaluated numerically, as shown in Fig. 12.
As the skyrmion radius decreases below R∗, the bound

states produced by valence and conduction bands begin to
hybridize, complicating the problem. However, for R � Rc,
the fine-structure levels produced by quantization of motion
along x remain roughly harmonic (equidistant). That is, each
state of the gross structure, labeled relative to the y coordinate,
can be seen as having a fine-structure band with a density of
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FIG. 13. Schematic representation of occupied states at half fill-
ing. Occupied “bands” are colored. The top of the valence band
is taken as zero energy, as for calculations made in this chapter.
The bound-state spectrum remaining approximately equidistant for
R ∼ R∗ allows us to approximate the density of states as being
constant as a function of energy inside the gap, and equal to 1/h̄ωx

in region II. In the region I, where valence-band states ε0
v mix with

conduction-band states ε0
c , the density of states is expected to be

about 2/h̄ωx . Note that the length Rc is not shown here, since it is
vanishingly small compared with the coherence length ξ , as is the
loss radius R̄.

states

ν0(R) = 1

h̄ωx
= E0√

2�2

(
R

ξ

)3/2(
1 + ξ

2R

)−1/2

(78)

attached to it. In this picture, for R � R̄1 (with R̄1 being
the radius where the first excited bound state vanishes) the
band εv

1 associated with first excited state can be considered
completely filled. The bands εv

0 and εc
0 are filled up to energy

�, see Fig. 13. The resulting total energy cost can thus be
estimated as

ET ∼ ν

2

(
ε0

1

)2 + ν

∫ �

0
εdε + ν

∫ �

2�−ε0
0

εdε

∼ ν

2

(
ε0

1

)2 + ν�2

(
−1 + 2

ε0
0

�
− 1

2

(
ε0

0

�

)2
)

. (79)

For R < R1 this result holds by simply taking ε0
1 = 0, the

corresponding plot is given in Fig. 12.
For R < Rc, the numerical results in Fig. 12 can no longer

be trusted. However, at R < R̄, there are no bound states any
more, and thus the bound-state contribution to the skyrmion
energy goes to zero at R → R̄. Therefore, to minimize the
bound-state contribution to its energy, a BP skyrmion shall
shrink to a radius comparable to R̄. Note that these results
are only qualitative, but the overall picture of the energy cost
ET (R) should be captured by the above derivation. We now
turn to estimating the bound-state contribution to the energy
of a DW skyrmion.

FIG. 14. The bound-state contribution to the DW skyrmion en-
ergy ET , shown in units of E0

R
ξ

as a function of the wall width w.

The asymptotic behavior is ET � 1.26E0
R
w

, with a coefficient slightly
greater that the factor 1 predicted within harmonic approximation, as
expected.

B. Domain-wall skyrmion

The shallow bound-state limit w � ξ can be treated as for
the BP profile, with the help of Eqs. (67) and (75), yielding

ET ∼
w�ξ

2
ε3

0

6h̄2ωxωy
= E0

R

w
, (80)

where the factor of 2 above accounts for the two potential
wells generated by the skyrmion. The bound-state contri-
bution ET to the skyrmion energy thus decreases with w

increasing relative to the DW skyrmion radius R, but only for
w � R. Meaning that (for a given R) ET has a lower bound
of the order of E0. For the DW profile, there is no crossing
of bound states that emerge from the conduction and valence
bands. Therefore, the energy cost for w � ξ can be estimated
as we did it for the BP profile for R > R∗ [see Eq. (77)],
leading here to

ET � 2

2h̄ωx

∑
n

(
ε0

n

)2 = 12
√

2E0
R

ξ

√
w

ξ

∑
n

(
ε0

n

)2

�2
. (81)

Estimating the above sum numerically yields Fig. 14. The
energy cost ET tends to zero as w → 0 and, naturally, grows
linearly with the DW skyrmion radius R.

In a way, the above behavior of ET (R,w) favors the
skyrmion shrinking to reduce both its radius R and the wall
width w. In other words, the bound-state contribution favors
compact profiles similar to the BP one, producing a single
potential well.

C. Straight domain wall

Now we consider an electron in the presence of a straight
domain wall. The problem is interesting for several reasons:
firstly, in its own right. Secondly, because it is quasi-exactly
solvable. And, last but not least, since it allows one to gain
insight into the origin of the peculiar form of the effective
potential in Eq. (62) (see Fig. 7) as well as into the effect
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FIG. 15. Straight domain wall at an angle α to the x axis in real
space, the axis defined for a given valley as shown in Fig. 1. Unit
normal u to the wall points at the same angle α with respect to the
x axis. Polar angle θ varies along u as a function of s in Eq. (82).
Angle α governs the bound-state formation: the attractive potential
v(Ay · σ ) of Eq. (84) is the strongest for α = π/2, that is for θ

dependent only on y while the wall stretches along x. By contrast, at
α = 0 attraction ceases to exist: v(Ay · σ ) ≡ 0 for θ dependent only
on x while the wall stretches along y.

of electron bound states on the transition to the modulated
phase [18].

Orientation of a straight domain wall in real space is
defined by an in-plane unit vector u = (cos α, sin α, 0)t ,
orthogonal to the wall, see Fig. 15, while its profile is
described by

θ (s) = 2 arctan(e−s), s ≡ cos(α) x + sin(α) y

w
. (82)

According to (29), it produces a simple gauge field

Ai · σ = 1
2 (eσ · σ)∂iθ (83)

where eσ = (− sin φ, cos φ, 0)t with φ = α + γ . Parameter γ

is similar to the helicity of a skyrmion, and defines bound-state
polarization. The only potential term reads

v(Ay · σ ) = (eσ · σ )
�

2

ξ

w
sin α sech s, (84)

it vanishes for sin α = 0. This is hardly surprising: the pres-
ence of Ay = −ih̄U †(∂yU ) in the left-hand side above means
that, to produce attraction and bound states for electrons in
the given valley, the Néel order parameter n must depend
on y. Viewing a large-radius DW skyrmion as a circle, and
approximating it as a regular inscribed polygon with straight
domain-wall segments, we see from Eq. (84) that the attrac-
tion is the strongest on segments that are nearly normal to the
y axis—indeed, as we already saw in Fig. 7.

The limit w � ξ can again be treated with effective
Hamiltonian (19) in the harmonic approximation, yielding the
low-lying spectrum

εn
k = − �

ξ

w
sin α +

(
1

2
+ n

)
h̄

w

√
�ξ sin α

msw

+
(

1

2mq
− ms

8M2

)
h̄2k2

w2
(85)

FIG. 16. Numerical estimation of the energy ET of a straight DW,
performing the sum (87). The result is given in units of EDW , the
natural energy unit for a straight DW. The asymptotic behavior for
w � ξ is in ( w

sin(α)ξ )−1, see dashed-red curve, as expected from the
harmonic approximation (88). The limit of ET for w � ξ is finite
and precisely equal to ED, see main text. The dashed-green curve
give the estimation of the sum (87), by fitting linearly ε0

0 (w).

We introduced here effective masses

1

ms
= cos2 α

mx
+ sin2 α

m∗
y

,
1

mq
= sin2 α

mx
+ cos2 α

m∗
y

,

1

M
= sin 2α

(
1

m∗
y

− 1

mx

)
(86)

along pertinent directions, and the wave vector k along the
domain wall. The energy cost of a domain wall in this limit
can now be evaluated as

ET = −
∑

n

∫ 0

εn
0

ν(ε)εdε � EDW

∑
n

(∣∣εn
0

∣∣
�

)3/2

(87)

with ν the DOS associated with delocalized states along the
wall, and EDW = 16

√
2

π
E0

L
ξ

sin α the characteristic energy of a
DW. A simple calculation shows that for w � ξ this expres-
sion tends to

ET � 32
√

2

5π
sin2 αE0

L

w
, (88)

showing that the energy cost grows linearly with the domain
wall length L, indeed as expected.

For w � ξ , Eq. (49) can be applied directly: Note that this
time there is no need to neglect the term vAz

yσ
z in γ̂− since

now it is identically equal to zero. Eq. (49) is equivalent to
the one for a DW skyrmion, up to a redefinition of the co-
herence length ξ → sin α ξ . The r.h.s. of Eq. (87) can then be
evaluated using the energy derived numerically for a circular
skyrmion, the result is given in units of EDW in Fig. 16. The
limit w � ξ shows a ( w

sin(α)ξ )−1 behavior as expected. Note
that the total energy cost of a DW always varies linearly
with its length L, as does EDW . In the region w � ξ , there
is a single nonzero term in the sum (87) that tends toward
1, corresponding to a unique occupied bound-state band. The
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bound-state contribution to the energy of the domain wall is
then expected to converge toward EDW as w goes to zero.

Not surprisingly, for the wall orientation α = 0, the ET in
Eq. (88) vanishes, simply because the Néel order parameter
does not vary along y, hence no attractive potential and no
bound states. However, this is true only for the valley �i that
we considered to define α: for the next valley, �i+1, one has
αi+1 = αi + π

2 . That is, taking into account contributions from
all the four � valleys, and considering the w � ξ limit, ET

would contain two terms with angle dependence sin2 α and
two terms with sin2(α + π

2 ) = cos2 α, which yields

ET � 64
√

2

5π
E0

L

w
, (89)

meaning that the bound-state contribution to the domain-wall
energy from all the four � valleys does not depend on the
orientation of the wall.

Equation (89) and its counterpart for a circular DW
skyrmion, Eq. (80), imply that skyrmion-electron bound states
strongly influence the transition to the modulated phase [18].
To see this, recall that the bound-state contribution to the
skyrmion energy complements the purely magnetic part E [n]
of the energy of a texture [18],

E [n] =
∫

d2r

[
J (∇n)2 + K

a2
0

(
1 − n2

z

) + D

a0
εDM

]
, (90)

where J is stiffness, K the easy-axis anisotropy, D the
Dzyaloshinskii-Moriya coupling, and the Dzyaloshinskii-
Moriya energy density εDM depends linearly on ∇n. For a
domain wall of length L and width w, one has |∇n| ∼ 1/w

within the range of about w from the center of the wall and
zero otherwise, while (1 − n2

z ) ∼ 1 within the same range
of about w, and zero elsewhere. With this estimate in mind,
naïve integration of the different terms in Eq. (90) along the
wall and transversely to it yields the following characteristic
dependence of E [n] on L and w,

E [n] ∼ L

[
J

w
+ K

a2
0

w − D

a0

]
. (91)

Equation (91) is written up to numerical coefficients of the
order of unity, dependent on the details of the domain wall
profile, just as the coefficients in Eqs. (89) and (80). These
coefficients do not affect the conclusion below. The first two
terms in Eq. (91) define the optimal domain wall width w0 =
a0

√
J
K that minimizes E [n], thus producing the characteristic

dependence of the domain wall energy on J , K , and D,

E (w0) ∼ L

a0
[
√

JK − D]. (92)

A more accurate calculation yields the energy E (w0) becom-
ing negative at

Dc = 4

π

√
JK, (93)

marking the transition to a modulated state [18].
Now, comparison of Eq. (91) with Eqs. (89) and (80) shows

that the bound-state contribution ET to the domain-wall en-
ergy renormalizes and, in fact, makes a dominant contribution

FIG. 17. The effect of skyrmion-electron bound states on the
phase diagram: the critical value Dc[J, K], marking the transition
between the uniform and the modulated phases, increases from
Dc = 4

π

√
JK to D̃c = 4

π

√
J̃K as per Eq. (94), while keeping its

√
K

dependence. Notice that this picture holds for w � ξ , which limits it
to small values of K � J̃[ a0

ξ
]2.

to stiffness J in Eqs. (91) and (93) as per

J → J̃ = J + �√
ε

= J +
√

mx

my

√
εF �. (94)

The significant upward renormalization of J in Eq. (94) in-
creases the domain wall width. Even more importantly, it
substantially increases Dc[J, K] in Eq. (93) while keeping
its

√
K scaling, and thus extends the stability range of the

uniform state, as shown in Fig. 17. Note that this picture holds
for w � ξ , that is for sufficiently small values of K � J̃[ a0

ξ
]2.

Numerically, how large a renormalization may arise from
Eq. (94)? As a concrete example, consider optimally doped
high-temperature superconductor NCCO (Nd1.85Ce0.15CuO4).
The presence of Néel order in this compound remains contro-
versial [39–42], yet a number of experiments [43–47] report
static or quasistatic Néel order. The electron subsystem of
NCCO is nearly two-dimensional, with the low-temperature
ratio of the c-axis and ab-plane resistivities of about 103 to 104

[48]. The two-dimensional band structure of NCCO involves
small carrier pockets at points �, with anisotropic dispersion

as in Fig. 1. Assuming quadratic dispersion p2
x

2mx
+ p2

y

2my
, the

mass anisotropy can be read off ARPES maps in Refs. [49,50]
as mx/my ∼ 25. The εF /� ∼ ξ/a ratio can be evaluated,
knowing the NCCO lattice constant a ≈ 3.95 Å [48], and
estimating ξ ∼ 9 nm—for instance, from magnetic quantum
oscillation data [47]. As a result, for D̃c/Dc in Fig. 17, with
numerical parameters of NCCO we find

D̃c

Dc
∼

√
J̃

J
∼ 4

√
mx

my

εF

�
∼ 5.

The bound-state contribution to the energy of a domain-wall
texture in Eqs. (89) and (80) proves large compared with
the “magnetic” contribution of Eq. (90). This is in contrast
with what one finds for electron states, bound to a vortex
in a type-II superconductor [51,52]: in the latter problem,
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the gradient contribution to the vortex energy has the form
( φ0

4πλ
)2 ln λ

ξ
, where ξ is the superconducting coherence length,

and λ � ξ the penetration depth. The electron states, bound
to the vortex core, only correct the large argument of the
logarithm by a coefficient of the order of unity [51,52], thus
making a parametrically small contribution to the energy of
the vortex.

VII. DISCUSSION

A. Validity of static-skyrmion approximation

Above, all the textures were implicitly treated as static
input to the electron problem. This assumption must be taken
with caution, since an isolated antiferromagnetic skyrmion
possesses its own excitation modes [53] that couple to the
bound electron. To justify viewing the skyrmion as static,
these eigenmodes must have frequencies far below those of
electron bound states. The proper skyrmion frequencies are
closely bound from above [53] by the gap h̄�0 in the magnon
spectrum, which is about h̄�0 ∼ √

2JK [54,55] for systems
where single-ion anisotropy K is much smaller than stiffness
J . Thus, it is �0 that must be compared with characteristic
electron frequencies, whose scales are different for the gross
and fine structures of bound-electron levels.

For the BP profile, the gross structure is defined by the fre-
quency h̄ωy ∼ �( ξ

R )3/2 in the first term of Eq. (38). Inequality
ωy � �0 limits the validity of the static-texture approxima-
tion to not-too-large skyrmions

R � RBP
y = ξ

(
�2

JK

)1/3

.

At the same time, consistency with the effective-Hamiltonian
approach requires that the bound states remain shallow. Ac-
cording to Eq. (38), this implies R � ξ . Therefore, the upper
bound RBP

y above must be large compared with ξ , which thus
demands [15]

K

J
�

(
�

J

)2

. (95)

The right-hand side of the inequality (95) may be of the order
of unity or smaller: recall that, for a lattice model, � scales
linearly with the lattice spin S (ordered moment), whereas J ∼
S2. Nevertheless, for a not-too-large S, inequality (95) simply
requires that K/J be small against unity.

For the fine structure of the bound-state spectrum, the
condition to meet for the BP profile is more stringent: now
it is the low-frequency ωx in the second term of Eq. (38) that
must be large relative to �0,

h̄ωx ∼ �
√

ε

(
ξ

R

)3/2

�
√

2JK . (96)

This limits the validity of the static-texture approach to

R � RBP
x = ε1/3ξ

(
�2

JK

)1/3

.

Again, for consistency with the effective-mass approximation,
RBP

x must be large against ξ , which thus demands

K

J
� ε

(
�

J

)2

. (97)

Inequality (97) is similar to (95), but has an extra factor of
ε = my

mx

a
ξ

� 1 in the right-hand side.
Numerically, how stringent are inequalities (95) and (97)?

As in the immediately preceding section, we turn to NCCO
as a concrete example. The values used in Sec. VI C yield
ε ∼ 2 × 10−3. As a result, the gross structure of electron
states, bound to a not-too-large BP skyrmion, can be treated
in the static-skyrmion approximation for the K/J ratio suffi-
ciently small compared with unity. By contrast, treating the
fine structure of levels in the same approximation requires a
much smaller anisotropy K/J � 10−3.

For a domain-wall (DW) profile, the wall width w is de-
fined by anisotropy as per w ∼ a0

√
J̃/K , see Sec. VI C. Just

as for the BP skyrmion, one constraint on the validity of our
results stems from Eq. (67) and from the requirement that the
bound states remain shallow, which implies w � ξ . The latter
inequality can be recast as

K

J
� J̃

J

(
a0

ξ

)2

.

Using Eq. (94) and treating the second term in its right-hand
side as dominant, one finds

K

J
� �

J

√
mx

my

(
a0

ξ

)3/2

. (98)

At the same time, the validity of the static-skyrmion approx-
imation is limited by the condition that the characteristic
electron frequency be large compared with that of skyrmion
eigenmodes.

For the gross structure of electron levels this means that
the scale �(ξ/w)3/2 of the “high” oscillator frequency in
the first term of Eq. (67) must be large compared with the
gap h̄�0 ∼ √

2JK in the magnon spectrum. Taking into ac-
count the characteristic domain wall width w ∼ a0

√
J̃/K , this

limits the single-ion anisotropy K from below rather than
from above,

K

J
� J

�

(
a0

ξ

)9/2(
mx

my

)3/2

. (99)

Together, the inequalities (98) and (99) read

J

�

(
a0

ξ

)9/2(
mx

my

)3/2

� K

J
� �

J

√
mx

my

(
a0

ξ

)3/2

. (100)

What numerical bounds can this produce? Again, for a rough
estimate, consider NCCO as a concrete (even if not necessar-
ily universal) example. The material parameters above yield

10−4 � K

J
� 5 × 10−2.

Notice that the upper-to-lower bound ratio in inequality
(100) is (

�

J

)2 my

mx

(
ξ

a0

)3

� 1.
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It contains (i) the ( �
J )2 factor that is likely of the order of unity,

(ii) the my

mx
ratio that tends to be small albeit not parametrically

so (about 0.04 for NCCO) and, finally, (iii) the factor ( ξ

a0
)3

that is indeed parametrically large (over 104 for NCCO) and
overwhelms all the rest.

To treat the fine structure of electron levels in the static-
skyrmion approximation, one has to demand that the “low”
frequency in the second term of Eq. (67) be large compared
with the gap h̄�0 ∼ √

2JK in the magnon spectrum,

�
√

ε
ξ 3/2

w1/2R
�

√
JK . (101)

With w ∼ a0

√
J̃/K , this inequality translates into another up-

per bound, but far more stringent than (98),

K

J
�

(
my

mx

)5/2(
a0

ξ

)1/2(
ξ

R

)4(
�

J

)3

. (102)

Again assuming �/J ∼ 1, for NCCO the product of the first
two factors above falls below 10−4. Now, recall that ξ � w �
R. Even for R/ξ ∼ 10, the factor (ξ/R)4 above would then
yield K/J � 10−8. That is, realistically, for a DW skyrmion,
fine structure of bound electron states can be treated in the
static-skyrmion approximation only for perfectly isotropic
magnets.

While the constraints of this section limit the validity
of the static-skyrmion approximation as applied to shallow
skyrmion-electron bound states, note that the appearance of
texture-bound electron states is a much broader phenomenon,
extending to regimes where electron degrees of freedom and
those of a texture must be treated on an equal footing.

B. Experimental signatures

Combined with the appearance of skyrmion-electron
bound states, doping a half-filled antiferromagnetic insulator
turns a skyrmion into a charged particle. The latter can be
detected and manipulated with the help of electric field.

Even exactly at half-filling, resonance transitions between
different bound-state levels would have a distinct frequency
spectrum. The latter may involve transitions at h̄ω < 2�

(see Figs. 6 and 11), which could serve as a fingerprint
of skyrmion-electron bound states. Away from half-filling,
resonance transitions between the bound-state levels at fre-
quencies h̄ω � � could serve as another spectroscopic
hallmark. A study of such signatures will be the subject of
forthcoming paper.

C. Conclusions

We examined a smooth texture in a Néel antiferromagnet
with a specific location of the electron band extrema, and
showed that it produces a peculiar spin-orbit coupling that has
no analog in a ferromagnet. The coupling has the scale h̄v/L,
where v is the Fermi velocity of the underlying paramagnetic
state, and L is the relevant characteristic length scale of the
texture. For topological textures such as skyrmions and do-
main walls, this coupling generates bound electron states in
the gap of the electron spectrum.

Motivated by fundamental and technological interest alike,
we focused on an interesting limit, where the proper frequen-
cies of the skyrmion are small against those of the bound
electron. In this limit, bound-state energies are sensitive to
the skyrmion shape; the latter serves as a static input to the
electron problem. We studied evolution of bound states with
variation of the skyrmion profile for the Belavin-Polyakov
and domain-wall skyrmions. Bound states prove to be en-
ergetically costly, and this (a) favors smaller BP skyrmions
that produce no bound states, and (b) shifts the transition line
between the uniform and the modulated states to substantially
larger values of the Dzyaloshinskii-Moriya coupling.

With a major research effort focusing on magnetic topo-
logical textures, it is vital to understand their interplay with
other degrees of freedom of the crystal, most notably with
band electrons. We hope that our results contribute to a better
understanding of magnetic textures and to putting them to use.
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APPENDIX A: COMPARISON WITH THE PROBLEM
OF A TEXTURE IN A FERROMAGNET

It is instructive to compare the problem we studied above
with its ferromagnetic counterpart: band electron in the pres-
ence of a texture in a ferromagnet. Smoothly varying as a
function of coordinate r, local magnetization Mr couples to
the band electron spin σ via exchange term J (Mr · σ) (cf.
Sec. II A). For the ease of comparison, we introduce notation
�(nr · σ) ≡ J (Mr · σ ), with unit vector nr pointing in the
direction of local magnetization Mr.

In the uniform state, we choose nr = n0 to point along the
z axis. The band electron spectrum is thus simply

H = ε(p) + �σz,

where ε(p) is the notional band dispersion in the absence
of ferromagnetism, and the second term above describes a
uniform Stoner splitting [56] of 2� between the spin-up and
spin-down subbands with energies ε±(p) = ε(p) ± �, see
Fig. 18.

In the presence of a smooth nonuniform texture nr, it is
convenient to employ the unitary transformation of Eq. (5)
and recast the Hamiltonian as

H = ε(p̂ + A · σ ) + �σz, (A1)

see Eqs. (6) and (7). As a result, the Stoner splitting term is
rendered uniform, and now the texture influences the electron
motion via the gauge potential A · σ.

A smooth texture induces a perturbation on an energy scale
that is small against both � and the Fermi energy εF . Since
we are interested in possible appearance of bound states, let
us notice that such states become visible to low-temperature
measurements only for � � εF , see Fig. 18. It is thus fit-
ting to compare our results for shallow bound states in an
antiferromagnet with a toy model of a ferromagnet with an
entirely filled lower subband of width εF � 2�, as shown in
Fig. 18(b): At low temperatures, a single dopant electron will
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FIG. 18. Band dispersion in the uniform ferromagnetic state,
where a spin-degenerate band of the parent paramagnetic phase is
Stoner-split into two nondegenerate subbands. Panel (a) shows the
limit � � εF , where the minima of both subbands lie deep at the
bottom of the Fermi sea, and thus are inaccessible to low-energy
and low-temperature experimental probes. Panel (b) shows the limit
2� � εF at half-filling, where the lower subband is completely filled
while the upper subband is empty. Lightly doping such a state renders
the physics of electron states near the upper band minimum accessi-
ble to low-energy measurements. Such states can be described by the
effective Hamiltonian Heff of Eq. (A2).

find itself at low-lying levels of the otherwise empty upper
subband, which will correspond to the setting that we studied
above for an antiferromagnet.

As in Sec. II B, we are now in a position to write down an
effective-mass Hamiltonian that will describe low-lying elec-
tron states near the bottom of the upper subband in Fig. 18(b).
To this end, notice that spin-x and -y components of the
vector potential A · σ produce matrix elements only between
the spin-up and spin-down subbands, but not within either of
the two. As a result, they can contribute to the effective-mass
Hamiltonian only via perturbation theory, producing terms
of the order of h̄2

mL2�
� 1 relative to those of the first term

in Eq. (A1). Therefore, to zeroth order in h̄2/(mL2�), the
upper-subband (σz = +1) effective-mass Hamiltonian reads

Heff = 1

2m

(
p̂i + Az

i

)2
, (A2)

where, without loss of generality, we assume isotropic ef-
fective mass and set zero energy at the bottom of the upper
subband.

Hamiltonian (A2) is precisely what one would obtain in
an antiferromagnet upon omitting all but the first term in
Hamiltonians (16) and (19), and keeping to the spin-up prob-
lem. Now we will show that, for a Q = 1 Belavin-Polyakov
skyrmion, this Hamiltonian does not produce skyrmion-
electron bound states, contrary to Hamiltonians (16) and (19).
To this end, consider the problem for a Belavin-Polyakov
skyrmion in the gauge of Eq. (27), that gives rise to Az

i of
Eq. (32). Given isotropic mass above, it is convenient to
switch to polar coordinates r =

√
x2 + y2 and α = arctan y

x as
in Sec. III A. We also switch to polar components of Az

i , that
is from (Az

x, Az
y) to (Az

r, Az
α ), where Az

r = (er · Az ) and Az
α =

(eα · Az ), while er = (cos α, sin α) and eα = (− sin α, cos α).
Using Eq. (32), we find

Az
r = 0, Az

α = h̄r

R2 + r2
. (A3)

Hamiltonian (A2) now reads

Heff = h̄2

2m

[
−1

r

∂

∂r
r

∂

∂r
+

(
l

r
+ Az

α

)2
]

(A4)

= h̄2

2m

[
−1

r

∂

∂r
r

∂

∂r
+

(
l

r
+ r

R2 + r2

)2
]
. (A5)

Here, we took into account Heff being independent of α,
and replaced the orbital momentum operator l̂ = −i ∂

∂α
by

its integer eigenvalue l = 0,±1,±2, ... We see that Az
α only

modifies the centrifugal energy term while keeping it positive-
definite. The first term is the kinetic energy of a free particle
in an l = 0 state. Hence no bound states, certainly not for the
Q = 1 skyrmion above: it is indeed the spin-orbit coupling
term vA‖

y · σ in Hamiltonians (16) and (19) that generates
skyrmion-electron bound states in a Néel antiferromagnet.

APPENDIX B: GAUGE TRANSFORMATION

Operator W can be written as

W = eiφn·σ = cos φ + i sin φ n · σ, (B1)

leading to

W †∂iW = i∂iφ n · σ + i sin φ W †∂in · σ (B2)

and then to

Ãi = − ih̄U †W †∂i(WU ) = Ai + h̄∂iφσ z

+ h̄U †

[
sin 2φ

2
∂in · σ + sin2 φ(n × ∂in) · σ

]
U . (B3)

The last term lies in the plane orthogonal to ez, and thus
only contributes to the transformation of A‖

i .
Acting with ∂i on Eq. (5) yields

∂iU
†n · σU + U †∂in · σU + U †n · σ∂iU = 0. (B4)

A right multiplication by U †n · σU = σ z then leads to

∂iU
†U − iU †(n × ∂in) · σU + σ zU †∂iUσ z = 0. (B5)

Finally, the identity ∂i(U †U ) = 0 allows to write

U †∂iU − σ zU †∂iUσ z = −iU †(n × ∂in) · σU . (B6)

Which, by definition of gauge field Aα
i in Eq. (6), means that

its in-plane components reads

A‖
i = − h̄

2
U †[(n × ∂in) · σ]U . (B7)

Together with (B3), this implies

Ã‖
i = h̄U †

[
sin 2φ

2
∂in · σ +

(
sin2 φ − 1

2

)
(n × ∂in) · σ

]
U .

(B8)

Using the identity sin2 φ − 1
2 = − 1

2 cos 2φ, we then find

(Ã‖
i )2 = h̄2

4
||∂in||2 = (A‖

i )2. (B9)

The norm (A‖
i )2 being conserved, the in plane components A‖

i
thus only undergo an in-plane rotation, as they do under gauge
transformation by operator Vz.
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From the gauge properties above, we can deduce the al-
lowed terms

(A‖
i )n → (Ã‖

i )n(
p̂i + Az

i σ
z
)n → (

p̂i + Ãz
i σ

z
)n

{ p̂i, A‖
i · σ} → { p̂i + δAz

i σ
z, Ã‖

i · σ} = { p̂i, Ã‖
i · σ} (B10)

where in the last line we used the identity {σ i, σ j} = 0 for
i �= j. We observe that all the terms present in γ̂± in Eqs. (15)
are thus allowed, meaning that Hamiltonian (9) and its low-
energy limit (19) are indeed gauge invariant.

APPENDIX C: GAUGE INVARIANTS

In this Appendix, we set h̄ = 1. In Sec. II D, we saw that
gauge transformations (21) and (23) amount only to local
rotation of in-plane components A‖

i , thus conserving (A‖
i )2 as

well as [A‖
x × A‖

y] and (A‖
x · A‖

y ). The absolute value (A‖)2 =∑
i=x,y(A‖

i )2 can be expressed as (with implicit sum over
repeated indices)

4(A‖)2 = (∂iθ∂ iθ + sin2 θ ∂iφ∂ iφ) = (∇ · n)2, (C1)

that is the gradient energy density of the isotropic antiferro-
magnet. Vector product [A‖

x × A‖
y] can be written as

A‖
x × A‖

y = 1
4 sin θ (∂xθ∂yφ − ∂yθ∂xφ)

= 1
4 (n · [∂xn × ∂yn]) = πDs(r), (C2)

where Ds is the skyrmion density [2,26], defined so that∫
d2rDs(r) =

∫
d2r

1

4π
(∂xn × ∂yn) · n = Ns (C3)

where Ns ∈ Z is the total topological charge of skyrmions
present in the plane. Another invariant, suggested by the trans-
formation law of Az

i in Eq. (21) is the fully antisymmetric
tensor

F z
i j = ∂iA

z
j − ∂ jA

z
i . (C4)

The latter invariant can be recast as

F z
i j = ∂i

(
∂ jφ

1 − cos θ

2

)
− ∂ j

(
∂iφ

1 − cos θ

2

)

= 1

2
sin θ (∂iθ∂ jφ − ∂ jθ∂iφ) = 2πεi jDs(r), (C5)

with εi j the fully antisymmetric tensor. This means that there
are only two distinct invariants associated with gauge trans-
formation (21). Note that it also implies that the textbook
non-Abelian gauge field tensor is identically equal to zero,

Fi j ≡ ∂iA j − ∂ jAi + i[Ai, A j] = 0. (C6)

This is due to the “electromagnetic” part exactly canceling the
anti-commutator, both being proportional to skyrmion density.

APPENDIX D: ISOTROPIC TOY MODEL

In this Appendix, we show that the loss of bound states at
small BP skyrmion radia is not related to the mass anisotropy
in Eq. (17). A perfectly isotropic toy model allows us to
capture the scale R̄ = √

εξ , below which the bound states are

lost. To this end, consider Hamiltonian (19) with isotropic
mass

Hi =
∑
i=x,y

1

2m∗
(
p̂i + Az

i σ
z
)2 + vAx

yσx. (D1)

The repulsive potential

1

2m∗
∑

i

(
Az

i

)2 = h̄2

2m∗
(1 − cos θ )2

4r2
(D2)

does not depend on polar angle α, while the cross term is
proportional to∑

i

Az
i ∂i = (1 − cos θ )

2r
eα · ∇ = (1 − cos θ )

2r2

∂

∂α
(D3)

and thus only acts on α. That is, Hamiltonian (D1) allows
separation of variables, and the angular momentum l is a good
quantum number. For l = 0, Hamiltonian (D1) reads

Hl=0
i = h̄2

2m∗R2

(
−1

z

∂

∂z

(
z

∂

∂z

)
+ z2

(1 + z2)2

)

− h̄v

R

1

1 + z2
σ x. (D4)

To keep the same density of states as for Hamiltonian (19), we
choose the effective mass m∗ = √

m∗
x m∗

y . Now treat Hamilto-
nian (D4), considering the potential as a perturbation relative
to the kinetic energy [32]. To this end, we find the wave
function in two separate regions. First, denote the sum of the
potential terms in Eq. (D4) as U (z), and consider the skyrmion
core, where |ε| � |U (z)|: the Schrödinger equation reads

h̄2

2m∗R2

1

z

d

dz

(
z

dψ

dz

)
= U (z)ψ (z). (D5)

The above equation can now be integrated along z to the upper
limit z1 of the attractive region,

dψ

dz

∣∣∣∣
z1

� 1

z1

2m∗R2

h̄2 ψ (z1)
∫ z1

0
U (z)zdz. (D6)

Here we took advantage of the observation that the sought
wave function is spread out, and does not vary much within
the potential well. By contrast, far from the attractive region,
i.e., for z � 1, the Schrödinger equation describes a free
particle, whose wave function is proportional to the Han-

kel function H (1)
0 (iκz), with κ =

√
2m∗R2|ε|

h̄2 � 1. For κz � 1,
this function behaves asymptotically as ln(κz). The value
of z1 being of the order of unity and thus κz1 being
small allows us to match the logarithmic derivative 1

ψ

dψ

dz of
this asymptotic form to that in Eq. (D6) at z = z1, which
yields

ε � − h̄2

2m∗R2z2
1

exp

[
h̄2

m∗R2

(∫ z1

0
U (z)zdz

)−1
]

� −�
R0

R

ξ

R

e2/ ln z1

z2
1

exp

[
1

1 − R
R0

]
(D7)
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with R0 ≡
√

ε

2 ξ . The expression above demonstrates the exis-
tence of a skyrmion radius R̄ ∼ R0, where the lowest bound

state merges into the continuum and disappears. The same re-
sult can be obtained by solving Hamiltonian (D4) numerically.
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