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Recently, several triangular-lattice magnets with delafossite structure have been found to display spin-liquid
behavior down to the lowest temperatures. Remarkably, applying a magnetic field destroys the spin liquid, which
then gives way to symmetry-breaking states, identified as semiclassical coplanar states including a magnetization
plateau at 1/3 total magnetization. Here we provide a theoretical approach rationalizing this dichotomy, utilizing
a Schwinger-boson theory that captures both ordered and disordered magnetic phases. We show that a zero-field
spin liquid, driven by strong frustration, is naturally destabilized in a magnetic field via spinon condensation.
Symmetry-breaking order akin to the standard triangular-lattice Heisenberg model then arises via an order-by-
disorder mechanism. We discuss implications for pertinent experiments.
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I. INTRODUCTION

Frustrated interactions in local-moment magnets tend to
suppress magnetic order and can lead to low-temperature
states defying a description in terms of symmetry-breaking
order parameters and their fluctuations [1–3]. There is sig-
nificant interest in studying magnetic compounds which, by
means of a control parameter such as chemical substitution or
applied magnetic field, display transitions between magneti-
cally ordered phases and paramagnetic quantum spin-liquid
(QSL) phases. A theoretical account of such transitions nec-
essarily lies beyond the Landau symmetry-breaking paradigm
and requires concepts such as fractionalization and long-range
entanglement [4].

Recent experimental studies of rare-earth delafossites
[5–12], compounds of the form A1+R3+X2, with A a nonmag-
netic ion, R a rare-earth ion, and X a chalcogen, suggest that
these compounds are an ideal platform for investigating the
competition between QSL and magnetically ordered ground
states, and how it unfolds in the presence of an external
magnetic field. These layered compounds feature jeff = 1/2
moments on a structurally perfect triangular lattice and are
believed to be exceptionally clean. While some of them, such
as KCeS2 [13], have been found to display magnetic order at
low temperatures, there is an entire family of QSL candidates,
encompassing NaYbS2 [5,6], NaYbO2 [7–10], NaYbSe2 [11],
and CsYbSe2 [12,14], where no zero-field order has been de-
tected; KYbSe2 displays weak order at zero field but is argued
to be near a QSL quantum critical point [15,16]. Remarkably,
upon application of a magnetic field, these compounds display
a sequence of ordered phases identified as coplanar three-
sublattice states including a magnetization plateau at 1/3 of
the saturation magnetization [8–12,17].

This sequence of field-induced ordered phases is rem-
iniscent of the zero-temperature phase diagram of the
nearest-neighbor triangular-lattice Heisenberg antiferromag-

net (TLHAF), obtained, e.g., using the semiclassical 1/S
expansion by Chubukov and Golosov [18]. At zero field,
the TLHAF orders in a noncollinear 120◦ three-sublattice
magnetic spiral. With an applied magnetic field, the spiral is
replaced in the classical S → ∞ limit by a degenerate ground-
state manifold involving coplanar and noncoplanar states.
Beyond the classical limit, a quantum order-by-disorder
mechanism [19] lifts this accidental degeneracy in favor of
coplanar three-sublattice states, including the so-called Y
state at low fields, a 2:1 canted (V) state at high fields, and
an incompressible 1/3 magnetization plateau (up-up-down
state) at intermediate fields. This complex interplay be-
tween geometric frustration and applied magnetic field in the
TLHAF has invited significant experimental activity over the
years [20–23], culminating in the recent surge of interest in
delafossite compounds. The new ingredient in those latest
experiments is the absence of 120◦ order at low fields in favor
of a QSL state, which calls for theoretical treatments beyond
the semiclassical paradigm that can adequately capture the
observed field-induced competition between fractionalization
and conventional symmetry breaking.

Motivated by these questions, we explore theoretically the
competition between QSL physics and field-induced magnetic
order on the triangular lattice using Schwinger-boson methods
[24–29]. We consider the TLHAF model in an applied mag-
netic field h,

H =
∑
(i j)

Ji jSi · S j − Sh ·
∑

i

Si, (1)

where Si is the spin operator on site i, and Ji j > 0 is the
antiferromagnetic exchange coupling between sites i and
j. For describing the magnetism of the delafossites, both
spin-isotropic models [15,16] with first-neighbor (J1) and
second-neighbor (J2) couplings, with J2/J1 acting as a frus-
tration parameter, as well as various spin-anisotropic models
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FIG. 1. Phase diagram of the triangular-lattice Heisenberg anti-
ferromagnet obtained from the Sp(N ) Schwinger-boson theory, as
a function of the magnetic field h and the inverse spin size 1/κ ,
with κ = ∞ describing the classical limit. A Z2 quantum spin liq-
uid (QSL) transitions to noncollinear 120◦ order at zero field (red
line) and a sequence of canted antiferromagnetic phases at a criti-
cal field hc(κ ) (dashed blue line). The ordered phases include the
semiclassical coplanar Y and V states and an up-up-down (UUD)
1/3 magnetization plateau phase. Beyond a field hFP a fully polar-
ized state (FP) is obtained. Since the coplanar ordered phases are
favored over noncoplanar ones only by nominally 1/N fluctuation
corrections, the phase boundaries of these phases have been obtained
including such corrections.

[30–33] have been considered. For simplicity, we shall ig-
nore possible spin anisotropies. Instead of studying the J1−J2

model directly, we will consider nearest-neighbor (J ) ex-
change only but use a parameter κ controlling the spin size S
as a proxy for the (inverse) strength of quantum fluctuations.
As detailed in Sec. II, we enlarge the spin symmetry from
SU(2) to Sp(N ) to develop a controlled theory in the large-N
limit [25–27]. We then extrapolate our results to the physical
N = 1 limit, corresponding to SU(2) spins and for which
κ = 2S with S the spin quantum number.

Our main results are depicted in the zero-temperature
phase diagram, Fig. 1, as a function of the strength 1/κ of
quantum fluctuations and the magnitude h of the applied field,
and they can be summarized as follows. At zero field, the
ground state is a gapped Z2 QSL for large 1/κ and a magnetic
state with 120◦ noncollinear order for small 1/κ; the latter
is obtained from condensation of the gapped bosonic spinons
in the QSL at a critical value of the inverse spin size [27].
For small but finite 1/κ , we find that turning on an external
field h reproduces the same sequence of ordered states as
the semiclassical treatment of the TLHAF [18]. Crucially,
we find the strict large-N limit leads to a near degeneracy
between coplanar and noncoplanar states. We then compute
1/N corrections to the ground-state energy, adapting the re-
cently proposed formalism of Refs. [34–36] to the case of
finite magnetic fields, and we find that such corrections favor
the coplanar states. For 1/κ larger than its zero-field critical
value, we find that the Z2 QSL becomes unstable at a critical

magnetic field value hc(κ ) beyond which magnetic order sets
in via spinon condensation. The transition out of the QSL is
found to be continuous and results in the Y state. At some
higher magnetic field hUUD

1 , we find a first-order transition to
a collinear 1/3 magnetization plateau state. This state persists
until hUUD

2 > hUUD
1 , beyond which we find another first-order

transition to a canted V state. This state undergoes a final
continuous transition into the fully polarized state beyond a
saturation field hFP.

The rest of the paper is structured as follows. In Sec. II,
we introduce the Sp(N ) generalization of the TLHAF
Hamiltonian and its representation using Schwinger bosons.
We solve the mean-field equations of the large-N limit and
obtain a phase diagram with QSL and ordered phases cor-
responding to uncondensed or condensed Schwinger bosons,
respectively. Among ordered phases, we find a near degener-
acy between coplanar and noncoplanar states. This ambiguity
is resolved by considering 1/N corrections in Sec. III; they
favor coplanar states and produce the sequence of ordered
states expected for the TLHAF. 1/N corrections are also nec-
essary to obtain a dynamical spin structure factor S(p, ω) with
the correct magnon physics in the ordered phases [34–36].
Finally, we discuss our results in the context of recent exper-
iments on delafossite compounds, and we comment on future
extensions of our work.

II. LARGE-N SCHWINGER BOSON THEORY

A. Model and mean-field equations

We begin with the TLHAF Hamiltonian (1), which we
study using a representation of spin operators in terms of
Schwinger bosons bα, b†

α with α =↑,↓ [28]; these are in-
terpreted physically as bosonic spinon degrees of freedom.
The SU(2) spin operator on site i is expressed as Si =
1
2 b†

iασαβbiβ , with the physical spin-S Hilbert space imposed
by the constraint b†

iαbiα = 2S. To obtain a controlled theory
using large-N methods, one must enlarge the SU(2) sym-
metry group. For bipartite lattices, SU(N ) generalizations
have been put forward for which mean-field theory becomes
exact in the limit N → ∞ [24,28]. Here we employ a sym-
plectic Sp(N ) generalization suitable for nonbipartite lattices
[25–27], where the mean-field theory involves a decoupling
in the singlet particle-particle channel and hence a BCS-type
ground state. Using Schwinger bosons biaα, b†

iaα with flavor
index a = 1, . . . , N and the local constraint∑

aα

b†
iaαbiaα = κN, (2)

the Sp(N ) generalization of Eq. (1) can be written as [27]

H = −
∑
(i j)

Ji j

2N

[(
Eab

αβb†
iaαb†

jbβ

)(
Ecd

γ δbicγ b jdδ

)− N2κ2

2

]

− hκ

4

∑
i

b†
iaασ z

αβbiaβ, (3)

with the symplectic tensor Eab
αβ = δabεαβ appearing as a large-

N extension of the Levi-Civita symbol, and we have chosen
the field direction along the z axis without loss of generality.
We note that the external field couples equally to all N flavor
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pairs. On account of the group isomorphism Sp(1) ∼= SU(2),
Eq. (3) is equivalent to the SU(2) TLHAF (1) when N = 1
and κ = 2S.

Expressing the partition function of the Sp(N ) theory (3) as
an imaginary-time functional integral over Schwinger boson
fields, we further decompose the four-boson interaction term
via complex Hubbard-Stratonovich fields Qi j (τ ), Q∗

i j (τ ) to
obtain the action

S[b, b∗, Q, Q∗, λ] =
∫

dτ
(∑

i

b∗
iaα∂τ biaα+ : HMF[b, b∗] :

)
,

(4)

with the effective Hamiltonian [37]

HMF[b, b†]

= 1

2

∑
(i j)

Ji j

[
N |Qi j |2 − (Qi jεσσ ′b†

iaαb†
jaβ + H.c.)

]

− 1

2

(
hκ

2
+ Bz

)∑
i

b†
iaασ z

αβbiaβ

+ i
∑

i

λi(b
†
iaαbiaα − κN ), (5)

where the constant piece ∝ κ2 has been dropped. A
Lagrange multiplier λi(τ ) has been utilized to impose the
local constraint (2) in the partition sum, and we have intro-
duced a probe field Bz (distinct from the applied field h) for
eventual computations of the uniform magnetization. In the
functional-integral representation, in which a systematic 1/N
expansion can be formulated, the bosonic operators biaα, b†

iaα

are replaced by complex fields biaα (τ ), b∗
iaα (τ ) in the normal-

ordered Hamiltonian : HMF :.
The formal large-N expansion is obtained after integrating

out the quadratic bosonic fields arranged in a Nambu ba-
sis a(τ ) = (. . . , bia↑(τ ), . . . . . . , bia↓(τ )∗, . . .)T so that
the partition function assumes a simple form,

Z =
∫

DQDQ∗Dλ e−NW (Q̂,Q̂†,λ̂), (6)

where W (Q̂, Q̂†, λ̂) is the action functional obtained by in-
tegrating out the bosonic spinors from the Schwinger-boson
action S [Eq. (4)]:

W (Q̂, Q̂†, λ̂) =1

2

∫
dτ
∑
(i j)

Ji j |Qi j (τ )|2

− i
∫

dτ
∑

i

λi(τ )(κ + 1)

+ 1

N
Tr ln Ĝ−1(Q̂, Q̂∗, λ̂), (7)

with a trace (Tr) over the spatiotemporal, flavor, and spinor
indices of the inverse Schwinger-boson Green’s function:

[Ĝ−1(Q̂, Q̂∗, λ̂)]ab = δab

[(
∂τ − 1

2

(
hκ

2
+ Bz

))
Î ⊗ σ̂ z

+
(

iλ̂ − 1
2 Ĵ ◦ Q̂

− 1
2 Ĵ ◦ Q̂† iλ̂

)]
, (8)

where Î is the N × N identity matrix, with N the number
of lattice sites, and [Ĵ]i j = Ji j , [Q̂]i j = Qi j , and [λ̂]i j = δi jλi

are all expressed as N × N matrices, with ◦ denoting the
Hadamard product between the exchange coupling matrix and
the Hubbard-Stratonovich fields. With the control parameter
1/N , the partition function can be treated perturbatively by
expanding around its saddle-point value.

The saddle point itself, however, is most easily discussed
in the canonical Hamiltonian framework with Eq. (5). The
saddle-point solution in the disordered phase is described
by propagating Schwinger bosons, and the ordered phases
are obtained from the Bose-Einstein condensates (BECs) of
these fractionalized quasiparticles [38–40] (Sec. II C). In the
N → ∞ limit, the saddle-point approximation to the partition
function becomes exact. Thus, the large-N phase diagram
is obtained by solving the time-independent saddle-point
equations:

δS
δQ∗

i j

= 0 ⇔ Qi j = 1

N
εαβ〈biaαb jaβ〉,

δS
δλi

= 0 ⇔ κ = 1

N
〈b†

iaαbiaα〉, (9)

which determine the magnitude of the oriented bond-order
parameter Qi j = −Qji and impose the local constraint on av-
erage, respectively. In a putative condensate phase 〈biaα〉 �= 0,
these equations are complemented by a third set of equations
δS/δb∗

iaα = 0 that determine the wave function of the possible
BEC ziaα ≡ 〈biaα〉. To capture ordered states with a three-
sublattice (A, B,C) structure, we look for static solutions with
three bond variables QAB, QBC, QCA, local chemical potentials
μA, μB, μC such that λi ≡ −iμi, and condensate amplitudes
zAα, zBα, zCα , which are in general distinct. Solving the saddle-
point equations ensures one has found an extremum in the
free-energy density. We focus primarily on T = 0, and to
determine the global phase diagram we choose the solution
with the lowest energy density.

B. Uncondensed spinons: Z2 quantum spin liquid

We first consider the simplest type of solution, consisting
of uncondensed Schwinger bosons 〈biaα〉 = 0. In this case, the
equation δS/δb∗

iaα = 0 is trivially solved and the remaining
equations (9) determine the values of Qi j and μi. Follow-
ing Ref. [27], we consider a homogeneous Ansatz QAB =
QBC = QCA ≡ Q, μA = μB = μC ≡ μ such that the effective
Hamiltonian (5) describes nearest-neighbor spinon hopping
on the triangular lattice. Passing to the Fourier domain
(Appendix A 1), HMF can be diagonalized by a Bogoliubov
transformation, which allows us to find the spinon excitation
spectrum:

ω±(k) =
√

μ2 − J2Q2
( ∑

j=1,2,3

sin k · u j

)2
± |h|κ

4
, (10)

where k is the wave vector and u j , j = 1, 2, 3 are nearest-
neighbor vectors on the triangular lattice [Fig. 3(a)]. Physi-
cally, this state is a QSL with gapped bosonic spinons and Z2

topological order. The Schwinger bosons remain uncondensed
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FIG. 2. Stability of the Z2 QSL in large-N Schwinger-boson the-
ory: (a) zero-field spinon gap in the QSL phase; (b) critical magnetic
field hc(κ ) for spinon-gap closing towards a canted broken-symmetry
phase.

FIG. 3. (a) Triangular lattice with nearest-neighbor vectors u1,2,3

(black arrows), and oriented links (blue arrows) depicting the bond
order parameters Qi j . A tripled unit cell (yellow triangles) with sub-
lattices A, B,C and nearest-neighbor vectors e1,2,3 (orange arrows)
is necessary to describe the sequence of field-induced ordered states
in (b), which comprise the coplanar Y, 2:1 canted (V), and up-up-
down (UUD) states as well as the noncoplanar umbrella state. In the
classical limit, the coplanar and noncoplanar states are degenerate at
all fields.

provided the spinon gap,

� =
√

μ2 − (27/4)J2Q2 − hκ/4, (11)

remains real and non-negative.
At zero field, this Z2 QSL is the lowest-energy saddle-point

solution for κ < κc with κc ∼ 0.34 [27]. This zero-flux state
yields a lower energy compared to other QSL states such as
a homogeneous π -flux state [41]; flux corresponds here to
the circulation arg(

∏
(i j)∈� Qi j ) of the bond order parameter

around the rhombus formed by two adjacent triangles on the
triangular lattice [see the shaded rhombus in Fig. 3(a)]. This
outcome is also consistent with the flux-expulsion principle
for symmetric and uniform bosonic spin liquids (λi = λ) in
nearest-neighbor Sp(N ) models [42]. At κ = κc, the spinon
gap closes [Fig. 2(a)] at wave vectors that indicate translation
symmetry breaking and a tripling of the unit cell. For κ > κc,
one obtains a spinon BEC corresponding to 120◦ noncollinear
order [27,29].

C. Spinon BEC: Ordered phases

At finite field, the QSL remains stable up to a κ-dependent
critical magnetic field hc(κ ) above which the spinon gap
(11) closes and spinons condense [Fig. 2(b)]. As for the
zero-field 120◦ state, the nature of the resulting magnetic
order is encoded in the structure of the condensate ampli-
tudes zAα, zBα, zCα . For efficient numerics at h > hc(κ ), we use
Ansätze for those amplitudes that correspond to the classical
ground states of the TLHAF in a magnetic field [18]. For a
fixed field value below the saturation field, these form a degen-
erate set of states with three-sublattice order. Within this set,
two classes can be further delineated that describe coplanar
and noncoplanar ordering, respectively [Fig. 3(b)]. Coplanar
states include the Y state and the V state; the collinear up-up-
down (UUD) state occurs as a special case of the Y state, for
a specific field value. The noncoplanar state is the umbrella
state.

To describe spinon condensation from the homogeneous
Z2 QSL to the field-induced three-sublattice order, we intro-
duce a six-component Nambu spinor basis,

a(k) = (bkAa↑, bkBa↑, bkCa↑, b†
−kAa↓, b†

−kBa↓, b†
−kCa↓)T ,

(12)

containing the spinon degrees of freedom on the three
sublattices A, B, and C in the momentum space of the under-
lying triangular Bravais lattice (Appendix A 1). The effective
Hamiltonian (5) now reads

HMF = NN J

2

∑
r<s

|Qrs|2

+
∑

k

†
a(k)

(
Ĥ (k) − h

κ

4
�
)
a(k)

− NN
3

(κ + 1)
∑

r

μr − NN hκ

4
, (13)

where r, s = A, B,C are sublattice indices. We also define the
diagonal matrix

� = diag
(
1, 1, 1,−1,−1,−1

)
, (14)
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and the dynamical matrix Ĥ (k) is given in Appendix A 1.
The dynamical piece of HMF can be solved by a

bosonic Bogoliubov transformation, i.e., a 6 × 6 matrix M(k)
that obeys the pseudounitary condition M(k)†�M(k) = �

and rotates the Nambu spinor (12) according to a(k) =
M(k)ϒa(k), where

ϒa(k) = (ξ1a↑(k), ξ2a↑(k), ξ3a↑(k),

ξ
†
1a↓(−k), ξ †

2a↓(−k), ξ †
3a↓(−k))T . (15)

This diagonalizes the dynamical matrix Ĥ (k),

M†(k)Ĥ (k)M(k) = �̂(k), (16)

where

�̂(k) = diag(E1(k), E2(k), E3(k),

E1(−k), E2(−k), E3(−k)) (17)

contains the eigenvalues En(k), which depend implicitly
on the bond order parameters Qrs and Lagrange mul-
tipliers μr , and are obtained numerically following the
algorithm in Ref. [43]. Here n = 1, 2, 3 is a band index, and
ξnaσ (k), ξ †

naσ (k) in (15) are the corresponding Bogoliubov
eigenoperators. The dispersing spinons have the spin-split
spectrum ωn±(k) = En(k) ± κ|h|/4. Field-induced magnetic
order ensues when the lowest-lying Bogoliubov eigenmode
ωn−(k) touches zero at the critical field h = hc(κ ); this spin-
gap closing is found to always occur at k = 0 in the reduced
(three-sublattice) Brillouin zone and signals the onset of a
spinon BEC.

The spinon BEC for h > hc(κ ) is described by 〈a(0)〉 =√
(N /3)Z , where the complex vector

Z ≡ (zA↑, zB↑, zC↑, z∗
A↓, z∗

B↓, z∗
C↓)T (18)

of expectation values describes three-sublattice classical or-
dering via the map

〈Sr〉 = 1
2 z∗

rασαβzrβ, r = A, B,C. (19)

In the BEC phase, the ground-state energy density ε0 has
contributions from both condensed (k = 0) and uncondensed
(k �= 0) spinons:

ε0

N
= J

2

∑
r<s

(
|Qrs|2 + κ2

2

)

+ 1

3
Z∗(h)

[
Ĥ (0) −

(
h
κ

4
+ Bz

2

)
�

]
Z (h)

+ 1

N
∑

n

∑
k �=0

En(k) − 1

3
(κ + 1)

∑
r

μr . (20)

The large-N saddle-point equations (9) reduce to minimizing
the ground-state energy density ∂ε0/∂Q∗

rs = 0, ∂ε0/∂μr = 0
and can be written explicitly as

Qrs = εαβzrαzsβ − 2

N J

∑
n

∑
k �=0

∂En(k)

∂Q∗
rs

, (21)

κ = |zrα|2 − 1 + 3

N
∑

n

∑
k �=0

∂En(k)

∂μr
. (22)

In a BEC phase, the third saddle-point equation δS/δb∗
iaα = 0

reduces to ∂ε0/∂z∗
rα = 0 and becomes

0 = [Ĥ (0) − ( hκ
4

)
�
]
Z. (23)

It stipulates that the vector Z of condensate amplitudes must
be a zero eigenvector of the Bogoliubov problem solved ear-
lier [27], which specifies the ordering pattern via Eq. (19).
Once Eqs. (21)–(23) have been solved self-consistently, one
can substitute the mean-field solution {Qrs, zrα, μr} back into
Eq. (20) to compute the ground-state energy density, and
also calculate observables such as the uniform magnetization
density m,

m = − 1

NN
∂ε0

∂Bz

∣∣∣∣
Bz=0

. (24)

D. The classical limit: κ → ∞
The coupled system of Eqs. (21)–(23) cannot be solved

analytically. However, in the classical limit κ → ∞, the con-
tributions from uncondensed bosons become subleading and
the saddle-point equations simplify to

Qrs = εαβzrαzrβ, (25)

κ = |zrα|2, (26)

0 = [Ĥ (0) − ( hκ
4

)
�
]
Z. (27)

Upon substituting those equations into the mean-field energy
density (20) and taking the κ → ∞ limit (Appendix A 2),
Eq. (20) reduces to the classical TLHAF in a field with spin
vectors given by (19). Thus, we consider a family of conden-
sate solutions(

z∗
r↑(θ, φ)

z∗
r↓(θ, φ)

)
= eiφσ z/2eiθσ y/2

(√
nc

0

)
e−iθσ y/2e−iφσ z/2, (28)

parametrized by angles θ (h), φ(h) and the condensate magni-
tude nc, such that the spin arrangements associated with these
solutions give rise to the three-sublattice classical ground
states of the TLHAF in the presence of a magnetic field [18].
Two particular classes of these solutions, that we term Zcop(h)
and Znoncop(h), respectively, describe the coplanar and non-
coplanar ordered states at various magnetic field magnitudes
h [Fig. 3(b)]. In the classical TLHAF, the Y state stabilized
for h < 3J becomes the collinear UUD state at h = 3J , which
tilts into the V state for 3J < h < 9J , and eventually attains
the fully polarized state for h > hFP = 9J . The UUD state has
a net magnetization given by 1/3 of the saturation value in
the fully polarized state. For each field value 0 < h < 9J , the
corresponding coplanar state is degenerate with a noncopla-
nar umbrella state. In Appendix A 3, we provide the explicit
expressions for those various condensate wave functions.

E. Finite κ: Numerical solution of the mean-field equations

For finite κ , the mean-field equations (21)–(23) are solved
numerically. Guided by the phenomenology of the rare-earth
delafossites, we conjecture that the magnetic orders of the
κ → ∞ limit persist at finite κ but with shifted values of
the various critical fields, and renormalized values of the
magnetic moment and ground-state energy densities due to
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FIG. 4. Transition from Z2 QSL to field-induced order in the
large-N limit for (a,c) κ = 0.18 and (b,d) κ = 0.24. Panels (a) and
(b) show the magnitude nc of the spinon BEC (three-sublattice stag-
gered moment) rising continuously from the QSL following the onset
of coplanar (blue) or noncoplanar (orange) order beyond the critical
fields hc(κ ). Panels (c) and (d) compare the ground-state energy
densities of those two competing states; modulo numerical accuracy,
they are degenerate as in the classical limit.

quantum corrections. In particular, the condensate amplitude
nc in the mean-field Ansatz (28), which is akin to a staggered
moment in our three-sublattice ordered states, is renormalized
by quantum fluctuations according to

nc = 1

3

∑
r

|zrα|2

= κ + 1 − 1

N
∑

r

∑
n

∑
k �=0

∂En(k)

∂μr
. (29)

In practice, we seed the mean-field equations with our
classical mean-field Ansätze, iterate those equations until con-
vergence is reached, and compare the ground-state energy
densities of the various solutions (local minima) to determine
the global minimum (Appendix A 3).

The numerical solution of the mean-field equations reveals
a field-induced second-order transition between the Z2 QSL
and three-sublattice magnetically ordered phases described by
a spinon BEC. The second-order nature of the transition can
be seen in Figs. 4(a) and 4(b) where the condensate magnitude
nc is seen to increase continuously from the QSL phase as
the external magnetic field is increased above its critical value
hc(κ ). However, in this strict large-N limit, we find that the
coplanar and noncoplanar solutions remain degenerate mod-
ulo numerical accuracy for finite κ [Figs. 4(c) and 4(d)], as
in the classical κ → ∞ limit. Although the large-N energy
density (20) includes quantum zero-point fluctuations via the
contribution of uncondensed spinons, these quantum fluctu-
ations do not conclusively lift the degeneracy between the
competing coplanar and noncoplanar states.

FIG. 5. Comparison of (a,b) the uniform magnetization
m [Eq. (24)] and (c,d) the energy density for various solutions of
the large-N mean-field equations: the coplanar state (blue), the
high-energy up-up-down state (orange), and the noncoplanar state
(red). Value of κ for (a,c) is κ = 0.5 and for (b,d) is κ = 1. The
UUD solution has generally higher energy but becomes degenerate
with the noncollinear/noncoplanar solutions at a discrete value of h,
as in the classical limit.

To investigate the possibility of a 1/3 magnetization
plateau, we also consider the fate of the collinear UUD state,
treated as a variational Ansatz for all fields h � hc(κ ) (Fig. 5).
As mentioned before, in the classical limit, the UUD state is
stabilized at a single field value h = 3J . Here, we find that
the UUD Ansatz yields a solution of the large-N mean-field
equations for a wide range of fields (see Fig. 5). The lower
symmetry of the UUD spin configuration allows us to identify
its associated variational wave function both numerically and
analytically. As a function of the external magnetic field, both
the coplanar and noncoplanar mean-field solution branches
are continuously connected to the sublattice-symmetric 120◦
ground state, and both of them attain homogeneous (but differ-
ent) local chemical potentials for all field values. The optimal
energy UUD solution, on the other hand, breaks the sublat-
tice occupational symmetry in favor of a configuration with
μA = μB �= μC . Its energy density is, however, higher than
that of the noncollinear (coplanar) and noncoplanar states,
except at isolated field values which differ from the classical
value h = 3J [Figs. 5(b) and 5(c)].

Finally, at saturation fields higher than the classical value
h = 9J , the fully polarized state sets in continuously for all
κ . Figure 5(b) shows the onset for the polarized state for κ =
1. The critical field for the polarization transition decreases
towards the classical value with increasing κ .

Overall, we conclude that the large-N limit of the
Schwinger-boson theory of the quantum TLHAF in a mag-
netic field is able to capture a continuous field-induced
quantum phase transition from a Z2 QSL to ordered states
with net magnetization. However, despite accounting for some
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measure of quantum fluctuations, the large-N limit does not
resolve a degeneracy between coplanar and noncoplanar states
that is also encountered in the classical TLHAF. Therefore,
the order-by-disorder mechanism present in the solution of
the TLHAF via the 1/S expansion [18] is not captured by
Schwinger-boson mean-field theory. We next show that the
inclusion of 1/N corrections lifts the large-N degeneracy and
also predicts a 1/3 magnetization plateau with UUD order, in
agreement with the phenomenology of the rare-earth delafos-
sites.

III. 1/N CORRECTIONS

Beyond the strict large-N (mean-field) limit, SU(N ) and
Sp(N ) Schwinger-boson theories admit controlled 1/N ex-
pansions [24–28]. The Z2 QSL is a gapped phase with a
discrete dynamical gauge field, and 1/N corrections do not
substantially alter its physics. However, as has been pointed
out recently, 1/N corrections are crucial to capture even
qualitative aspects of ordered phases in the Schwinger-boson
formalism [35,36]. In principle, all observables computed in
Schwinger-boson theory, such as the ground-state energy den-
sity ε0 and the uniform magnetization m, receive fluctuation
corrections suppressed by powers of 1/N ,

ε0

N
= ε

(0)
0 + ε

(1)
0

N
+ ε

(2)
0

N2
+ · · · , (30)

m = m(0) + m(1)

N
+ m(2)

N2
+ · · · , (31)

where ε
(0)
0 and m(0) correspond to the large-N values com-

puted in Sec. II. In broken-symmetry phases, these corrections
can become substantial [36], in particular in the case of
SU(2) spins with N = 1. Here, we only consider the first
(subleading) correction, to order 1/N . After reviewing the
1/N expansion and its diagrammatic formulation (Sec. III A),
we show that 1/N corrections become vital in capturing the
subtle order-by-disorder mechanism in the TLHAF model
(Sec. III B), and also in reproducing the correct magnon ex-
citation spectrum in the ordered phases (Sec. III C).

A. The 1/N expansion

In the N → ∞ limit, the saddle-point evaluation of the
Schwinger-boson partition function [Eq. (6)] becomes exact.
In this limit, the bond order parameters Qi j , Lagrange mul-
tipliers λi, and condensate amplitudes ziaα are all determined
self-consistently. At finite N , these quantities acquire fluctu-
ations. Fluctuations of λi are akin to a dynamical temporal
gauge field which imposes the local constraint (2) on the
Schwinger-boson density. This leads to (gauge) zero modes
in the inverse fluctuation propagator, and in turn unphysical
divergences in the partition function, which can be avoided by
discarding such fluctuations [34,44]. Thus, we only consider
fluctuations in the bond parameters, AI (R) ∈ {δQi j, δQ∗

i j}
[here (R, r) = i is the unit-cell, three-sublattice index for site
i, and I denotes the nine independent bonds (i j) associated
with each unit cell; see Appendix B 1 for more details on this
notation], which leads to the effective action

W = Wmf + Wfluc, (32)

FIG. 6. Feynman rules for the 1/N expansion: (a) Schwinger-
boson propagator; (b) bond-order-parameter fluctuation propagator;
(c) three-point interaction. 1/N corrections involve the RPA propa-
gator DA (d), obtained from the bare propagator DA and the one-loop
irreducible self-energy � (polarization bubble).

where

Wmf = N
[

J

2

∑
r<s

(
|Qrs|2 + κ2

2

)

− 1

3
(κ + 1)

∑
r

μr −
(

hκ

4
+ Bz

2

)]

+ 1

N
Tr ln Ĝ−1

 (Q, Q∗, λ), (33)

is the leading-order (mean-field) action with a trace over the
inverse Schwinger-boson Green’s function obtained for the
saddle-point fields Qrs and μr , and

Wfluc =1

2

∫ β

0
dτ
∑

R

AI (τ, R)
[
D−1

A

]IJ
AJ (τ, R)

+ 1

N
Tr ln

(
1 + Ĝ(Q, Q∗, λ)ÂI �̂

I
)
, (34)

is the subleading contribution from the bond fluctuations. For
the 1/N corrections to the observables, it suffices to consider
the leading-order expansion term of the fluctuation action that
gives rise to a three-point interaction vertex �I between the
Schwinger bosons and the bond fluctuations.

These various contributions to the action can be repre-
sented diagrammatically in the frequency-momentum space
K = (−ik0, k) (Fig. 6). The noninteracting part of the ac-
tion functional involves the bare propagators [G(K )]ab =
〈a, K|Ĝ|b, K〉 and DA(K ) for Schwinger bosons and
bond order-parameter fluctuations, respectively; they are
expressed as

[G(K )]ab = δab

[
−
(

ik0 + hκ

4
+ Bz

2

)
� + Ĥ (k)

]−1

, (35)

DA(K ) = 1

N

[
0 1

2 Î
1
2 Î 0

]
, where ÎIJ = δIJ , (36)

which we denote by solid and wiggly lines, respectively
[Figs. 6(a) and 6(b)]. The 1/N contribution from Wfluc in-
volves the three-point vertex 〈K + P|�̂I |K〉 = �I (K + P, K ),
which corresponds to the decay of a bond-order-parameter
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FIG. 7. The differences between the 1/N-corrected ground-state
energy densities of the coplanar and noncoplanar (orange), and
coplanar and UUD states (blue), extrapolated to the SU(2) case
(N = 1), for (a) κ = 1/2 and (b) κ = 1. 1/N corrections favor the
coplanar states and also stabilize the UUD state in a finite field range.

fluctuation into a pair of Schwinger bosons [Fig. 6(c)]. The
explicit expression for �I is cumbersome and therefore rele-
gated to Appendix B 1.

B. Order by disorder from 1/N corrections: Coplanar order
and a magnetization plateau

The first effect of 1/N corrections is to correct the ground-
state energy density. The 1/N correction ε

(1)
0 in Eq. (30) is

given by [24]

ε
(1)
0 = 1

2βN
∑

P

tr ln D
−1
A (P), (37)

where

D
−1
A (P) = D−1

A (P) − �(P) (38)

is the RPA-resummed fluctuation propagator [Fig. 6(d)], and

�IJ (P) = 3

N
∑

K

tr(�I (K + P, K )G(K )

× �J (K, K + P)G(K + P)) (39)

is the one-loop fluctuation self-energy (polarization bub-
ble) obtained by restricting the momentum sum to the first
Brillouin zone. Traces (tr) in these expressions are over the
appropriate index space (Schwinger-boson Nambu space or
fluctuation-field index space, respectively), and the factor of
3 comes from the three-sublattice reduction of the Brillouin
zone. Details of the fluctuation self-energy calculation are
provided in Appendix B 3.

In Fig. 7, we plot the 1/N-corrected energy density ε0/N ≈
ε

(0)
0 + ε

(1)
0 /N , extrapolated to the physical N = 1 limit of

SU(2) spins. Remarkably, the 1/N correction lifts the degen-
eracy between the large-N coplanar and noncoplanar solutions
in favor of coplanar order for all ranges of κ and h for which
ordered phases win over the Z2 QSL. Thus, the 1/N-corrected
Schwinger-boson theory is able to capture the quantum order-
by-disorder mechanism, which stabilizes coplanar states in the
semiclassical (1/S) expansion of the TLHAF in a magnetic
field [18]. Furthermore, for a select range of applied magnetic
fields, the collinear UUD state becomes the state of lowest
energy. This results in a 1/3 magnetization plateau for all
κ outside the QSL state. Figure 8 plots the 1/N-corrected
uniform magnetization m ≈ m(0) + m(1)/N , obtained from the

FIG. 8. 1/N-corrected uniform magnetization m extrapolated to
the SU(2) limit (N = 1) for (a) κ = 1/2, (b) κ = 1 with a finite-sized
Brillouin zone of 36 × 36 × 3 lattice sites. The UUD state stabilized
by 1/N corrections (Fig. 7) results in a 1/3 magnetization plateau
in an intermediate field range. For smaller fields, the correction
introduces anomalous diamagnetic behavior that diminishes with
increasing system size.

probe-field derivative of the 1/N-corrected energy density
[Eq. (31)], extrapolated to the SU(2) limit N = 1. Transitions
in and out of the plateau are of first order, as in semiclassical
studies [45,46]. The width of the plateau decreases with in-
creasing κ and reduces to a point in the classical limit (Fig. 1).
The growth of the fluctuation contribution with decreasing
spin size reflects an expected behavior as the system becomes
more quantum-mechanical. For smaller κ and applied fields,
the diamagnetic first-order correction to the mean-field energy
overwhelms the leading contribution and leads to anomalous
magnetization (Fig. 8). A similar low-field anomalous mag-
netization was reported in Ref. [34] for the triangular lattice
Sp(N ) theory. The authors found that for κ = 1, the anomaly
disappears in the thermodynamic limit. We witness the same
outcome in Fig. 8(b). However, for the numerically accessi-
ble system sizes in our computation, the low-field anomaly
survives for smaller spin sizes. The anomaly does not affect
the plateau phase as it always appears at elevated fields with a
magnetization jump �m < S/3.

C. Dynamic spin structure factor and magnon spectrum

In addition to affecting the ground-state energy of vari-
ous mean-field solutions, 1/N corrections have been recently
shown to be crucial in accounting for the correct excitation
spectrum of ordered phases in the Schwinger-boson formal-
ism [34–36]. This manifests in computations of the dynamic
spin structure factor [47],

Sαβ (ω, p) = 1

N
∑

i j

∫
dt eiωt−ip·(ri−r j )

〈
Sα

i (t )Sβ
j (0)

〉
, (40)

where ri is the position vector of site i. This structure fac-
tor can be obtained from an analytic continuation of the
Matsubara spin susceptibility χαβ (ip0, p) (Appendix C), and,
in an ordered phase, it should exhibit δ-function peaks at
single-magnon energies. In the large-N limit, χ is a convo-
lution of bare Schwinger-boson propagators G (bubble dia-
gram), which contain poles at single-spinon excitation ener-
gies following the onset of condensation. For collinear (Néel)
states on bipartite lattices, this convolution reproduces the cor-
rect magnon spectrum [48], but spurious single-spinon poles
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FIG. 9. Dynamic spin structure factor S(ω, q) along high-
symmetry lines in the extended Brillouin zone, in (a) the Z2 QSL
(κ = 0.2, h = 0.1), (b) the Y state (κ = 1, h = 0.5J), (c) the UUD
state (κ = 1, h = 4.3J), and (d) the V state (κ = 1, h = 6J). These
structure factors were obtained from an analytic continuation of the
dynamical susceptibility (Appendix C).

remain in the large-N limit for noncollinear states on frus-
trated lattices. As shown in Refs. [34–36], inclusion of 1/N
diagrams in the computation of χ cancels the single-spinon
poles and reproduces the correct magnon peaks in Sαβ (ω, p),
as would be observed in inelastic neutron scattering. Refer-
ence [34] was able to demonstrate this cancellation for the
120◦ spiral order in the TLHAF at zero field.

Here, we compute these 1/N corrections for the various
field-induced ordered phases appearing in the phase dia-
gram of Fig. 1. Details of the computation are provided in
Appendix C, and the resulting structure factors S(ω, p) =∑

α Sαα (ω, p) are displayed in Fig. 9. The emergence of the
magnon signal and the disappearance of the single-spinon
pole in the ordered phases [Figs. 9(b)–9(d)] are consis-
tent with the notion that those phases are not fractionalized
(spinons are confined). As expected from previous studies
[49], the excitation spectrum is strongly affected by the ex-
ternal magnetic field. Crucially, in the collinear UUD state, a
clear magnon gap arises [Fig. 9(c)], as opposed to the gapless
spectrum of the coplanar Y and V states in Figs. 9(b) and
9(d), respectively. The character of the bond fluctuations is
significantly different in the collinear state. The noncollinear
and noncoplanar condensates admit slow changes in the
bond profiles commensurate with local spin rotations along
the field-axis. Consequently, gapless spin-wave modes arise
through the 1/N fluctuation correction. In the UUD config-
uration, such changes amount to phase twists of the bond
parameters with no change in spin texture. Thus, the unbro-
ken global U(1) spin-rotation symmetry elevates to a local
gauge symmetry of the fluctuation action in the collinear state.
With the Schwinger bosons charged under this symmetry,
the presence of the condensate triggers the Anderson-Higgs
mechanism, and a gapped spectrum results. The gap signi-
fies that the UUD state is incompressible and guarantees the

stability of its magnetization plateau. For a unit-charge con-
densate, the Higgs phase is adiabatically connected to the
confined phase [50], thus the UUD order is conventional.

Contrasting the sharply peaked signature of the field-
ordered states, the proximate Z2 QSL has a diffuse spin
structure factor generated by the two-particle continuum of its
fractionalized quasiparticles [Fig. 9(a)]. Confinement in the
ordered phases does not preclude a two-spinon continuum in
their spectra as they are composite S = 1 excitations. They
do not make an appearance in the spectrum as their spectral
weight is lower than that of the magnon modes by several
orders of magnitude.

IV. CONCLUSION

Motivated by recent experimental observations of spin-
liquid behavior and field-induced magnetic orders in rare-
earth delafossite magnets, we have investigated the zero-
temperature phase diagram of the quantum TLHAF in a
magnetic field using large-N Schwinger boson methods. For
strong quantum fluctuations, tuned by a spin-size parameter
κ , we find that a gapped Z2 QSL with deconfined bosonic
spinons is present at small magnetic fields, but undergoes a
continuous confinement transition at a critical field via spinon
condensation. Beyond this critical field, the QSL gives way
to a sequence of coplanar ordered states, including canted Y
and V states and a 1/3 magnetization plateau with collinear
up-up-down order. This sequence of field-driven phases is
known from a semiclassical treatment of the TLHAF, where
the classical degeneracy between coplanar and noncoplanar
states is lifted in favor of the former by a quantum order-
by-disorder mechanism. We have shown that 1/N corrections
in the Schwinger-boson formalism have a similar effect, even
away from the semiclassical limit where strong quantum fluc-
tuations can stabilize a zero-field QSL.

Our phase diagram (Fig. 1) qualitatively parallels the
experimental observations in various rare-earth delafossite
magnets. Although the T = 0 long-range order found here
would disappear in our two-dimensional Heisenberg model at
finite T , both weak interlayer coupling as well as spin-orbit
anisotropies will restore such order at low T , in agreement
with experiment.

We hope that our work will stimulate further theoretical
and experimental studies, including the application of hydro-
static pressure and/or the exploration of other families of
rare-earth delafossite materials, with the goal of completing
the catalog of their phenomenology. For instance, neutron
scattering and heat-transport measurements will be important
to clarify the nature of the zero-field spin liquid, which in
our treatment and according to some numerical studies of the
J1−J2 model [51,52] is a gapped Z2 QSL, but other such stud-
ies favor a gapless U(1) QSL [53,54]. We note that gapless
spin liquids, such as a state with a spinon Fermi surface, are
not perturbatively accessible within our bosonic theory, and
a complementary approach with fermionic partons is more
suited in that scenario. Also, detailed thermodynamic studies
of the onset of field-induced order in the delafossites will shed
light on the confinement transition.

On the methodological front, it is worth pointing out
different approaches from the literature. Spin-wave theory
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implemented for spins 1/2 leads to a hard-core boson rep-
resentation which has also been used to study magnetization
plateau states and proximate phases [55–57]. Interestingly, the
fractionalization schemes greatly differ: In our Schwinger-
boson theory, the spin fluctuations are composed of two
bosonic partons. In the hard-core boson description, a spin
flip corresponds to a single bosonic mode, which, however,
is then converted into a fermion via a Chern-Simons gauge
field [55,56] or fractionalizes into two fermionic partons [57].
Notably, a refined mean-field theory using hardcore bosons on
the triangular lattice has found the same high-field sequence of
transitions around the up-up-down phase [57] that we report.
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APPENDIX A: SCHWINGER-BOSON MEAN-FIELD
THEORY ON THE TRIANGULAR LATTICE

In this Appendix, we provide details regarding the large-N
(mean-field) Sp(N ) Schwinger-boson formalism for inves-
tigating three-sublattice magnetic orders on the triangular
lattice (Appendix A 1), we show how the classical TLHAF
Hamiltonian is recovered in the κ → ∞ limit (Appendix A 2),
and we provide explicit expressions for the trial condensate
wave functions that encapsulate coplanar and noncoplanar
orders (Appendix A 3) and are used in our numerical solution
of the mean-field equations (21)–(23).

1. Three-sublattice structure

To describe both QSL and magnetically ordered phases on
the triangular lattice, we set up the formalism using a three-
site unit cell, as this covers the semiclassical ordered states
known for the TLHAF in a magnetic field [58]. We consider
unit cells composed of nonoverlapping upward-triangular pla-
quettes as depicted in Fig. 3(a), with the sublattice labels
r = A, B,C, the unit-cell (Bravais) translation vectors

e1 =
√

3(0, 1),

e2 =
√

3(−
√

3/2,−1/2),

e3 =
√

3(
√

3/2,−1/2), (A1)

and primitive translation vectors u1 = (1, 0), u2 =
(−1/2,

√
3/2), and u3 = (−1/2,−√

3/2). On going from the

FIG. 10. Three-sublattice structure of the fluctuating bond order-
parameter Qδ

r (R) used in the computation of the Schwinger boson
mean-field theory and its 1/N corrections.

site basis (i) to the unit-cell basis (R, r), where R is a Bravais
lattice vector [integer linear combination of the translation
vectors (A1)], the momentum-space spinon annihilation
operator bkraσ appearing in Eq. (12) is defined as

bkraσ =
√

3

N
∑

R

e−ik·RbRraσ . (A2)

For any three-sublattice bond configuration with a max-
imum of nine independent bonds per unit cell, we use the
parametrization

Qδ
r (R) = Qr,r+δ, μr (R) = μr, (A3)

where r ∈ {A, B,C}, δ ∈ {1, 2, 3}, and r + δ ∈ {A, B,C} de-
notes the sublattice index of the neighboring site along the
primitive vector uδ if r is the sublattice index of the site i =
(R, r) (Fig. 10). Here Qr,r+δ and μr are the constant, uniform
mean-field bond variables obtained at the given saddle point.

For a generic and dynamic bond profile, the quadratic
Schwinger boson action is given by

Sb,b∗ =
∑
Rra

∫ β

0
dτ b∗

Rraα (τ )
[
[∂τ + μr (R, τ )]δαβ

−
(

hκ

4
+ Bz

2

)
σ z

αβ

]
bRraβ (τ )

− 1

2

∑
Rraδ

∫ β

0
dτ
(

Qδ
r (R, τ )

× εαβb∗
Rraα (τ )b∗

R′,r+δ,aβ
(τ ) + c.c.

)
, (A4)

where R′ = R if the bond (r, r + δ) lies within unit cell R,
and R′ �= R if the bond connects R to a neighboring cell R′

(Fig. 10). In the static limit, the lattice Fourier transformation
of this action defines a pairing Hamiltonian,

Ĥ (Qr (p), Q∗
r (−p), μr (p), k + p, k)

=
(

diag(μr (p)) −Jγ (Qr (p), k + p, k)/2

−Jγ (Qr (p), k + p, k)†/2 diag(μr (p))

)
,

(A5)
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FIG. 11. Mean-field spinon spectrum in spinon BEC phases,
plotted along the K−�−K high-symmetry line in the reduced Bril-
louin zone, and computed for κ = 1 in (a) the Y state (h = 0.50) and
(b) the UUD state (h = 4.30).

that is nonlocal in momentum. With the constant mean-field
parameters, the dynamical matrix Ĥ (k) appearing in the ef-
fective Hamiltonian (13) is obtained as the reduction of this
pairing Hamiltonian with momentum-independent Lagrange
multipliers diag(μr ) = diag(μA, μB, μC ). The pairing matrix
γ (Qr, k′, k) is given by

γ (Qr, k′, k)

=

⎛
⎜⎝

0 QA · f A(k) −QC · f ∗
C (k′)

−QA · f ∗
A(k′) 0 QB · f B(k)

QC · f C (k) −QB · f ∗
B(k′) 0

⎞
⎟⎠, (A6)

with Qr = Qr (k′ − k) collecting the independent bond param-
eters incident on each unit-cell site of sublattice index r with
the associated phase factors

f A(k) = (1, eik2 , e−ik3 ),

f B(k) = (1, e−ik1 , eik3 ),

f C (k) = (1, eik1 , e−ik2 ), (A7)

where k j ≡ k · e j , j = 1, 2, 3. For the uniform mean-field
solutions Qrs, the nonlocal expression for the pairing matrix
is redundant, but it is a useful expression for fluctuation
calculations. Upon diagonalizing Ĥ (k) via a pseudounitary
Bogoliubov transformation as described in Sec. II C, we ob-
tain a mean-field spinon spectrum consisting of six spin-split
bands ωn±(k), n = 1, 2, 3. Magnetic order triggered by the
onset of spinon BEC occurs when the lowest band touches
zero energy (Fig. 11).

2. The classical limit

As mentioned in Sec. II D, the κ → ∞ limit leads to
additional simplifications. There Q, μ, and Z†Z scale as κ ,
such that the energy density (20) is dominated by terms of
order κ2, while contributions from the uncondensed modes
scale as κ . In the limit κ → ∞, the condensate amplitude
fulfills the normalization condition Z†Z = 3κ arising from
the Schwinger-boson occupation constraint. As shown earlier
[27], the energetics in this limit is identical to that of clas-
sical spin vectors of length Scl = κ/2. Defining the classical
vectors Sr = z∗

rαταβzrβ/2 and using the saddle-point values
Qrs = εαβzrαzsβ of the bond variables, the condensate part
of the mean-field energy density (20) can be brought into

the form

ε0(κ → ∞)

N
= J

∑
r<s

Sr · Ss − Scl

6
h ·
∑

r

Sr

+ 2

3

∑
r

μr (|Sr | − Scl ), (A8)

representing a classical TLHAF model with three-sublattice
ordering symmetry in the presence of a magnetic field, aug-
mented by a Lagrange multiplier term to impose a length
constraint on the spin vector.

3. Mean-field Ansätze

To efficiently solve the mean-field equations (21)–(23) at
finite κ , we employ a numerical strategy that starts with the
κ → ∞ classical solutions and iterates the equations until
convergence. Modulo global spin rotations about the field axis
(ẑ) and a local U(1) gauge degree of freedom, condensate
wave functions describing classical coplanar and noncoplanar
orders, respectively, can be written in terms of four Euler
angles, ϑ = (θA, θB, θC, φ):

Z (ϑ) = √
κ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos
(

θA
2

)
e

iφ
2 cos

(
θB
2

)
eiφ cos

(
θC
2

)
− sin

(
θA
2

)
−e

iφ
2 sin

(
θB
2

)
−eiφ sin

(
θC
2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A9)

with the angles describing various ordering patterns deter-
mined by the external field magnitude (h̃ = h/J < 9) as

ϑcop =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

π

cos−1
(

h̃+3
6

)
− cos−1

(
h̃+3

6

)
0

⎞
⎟⎟⎟⎟⎠ for h̃ � 3,

⎛
⎜⎜⎜⎜⎜⎝

− cos−1
(

h̃2−27
6h̃

)
cos−1

(
h̃2+27

6h̃

)
cos−1

(
h̃2+27

6h̃

)
0

⎞
⎟⎟⎟⎟⎟⎠ for 3 < h̃ � 9,

ϑnoncop =

⎛
⎜⎜⎜⎜⎜⎝

cos−1
(

h̃
9

)
cos−1

(
h̃
9

)
cos−1

(
h̃
9

)
2π
3

⎞
⎟⎟⎟⎟⎟⎠. (A10)

Under the mapping (19), these correspond to degenerate
ground-state solutions of the classical TLHAF with magnetic
field h̃ < 9 (in units of J), which obey the energetic constraint
SA + SB + SC = h̃Sẑ/3 [59]. For a given magnetic field h in
the Sp(N ) Hamiltonian (3) with κ just above κc of the Z2

QSL transition, it was shown in Ref. [29] that to leading
order, the uniform moment of the condensate is proportional
to h̃ ∝ h − hc, where hc is the critical field of the transition.
Keeping that in mind, we use as initial guesses condensate
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Ansätze [Eq. (A10)] parametrized with general h̃ and not h. In
practice, we sample over a range of h̃ to guide the numerical
solver in order to achieve convergence.

APPENDIX B: 1/N CORRECTIONS

In this Appendix, we provide details regarding the compu-
tation of 1/N corrections in the Schwinger-boson formalism.
We present the form of the three-point interaction vertex
(Appendix B 1) and the Schwinger-boson Green’s function
(Appendix B 2), which are the basic building blocks for
diagrammatic calculations. We then compute the Schwinger-
boson polarization bubble (Appendix B 3), from which we
obtain the RPA propagator DA for bond-order-parameter
fluctuations, which itself gives a 1/N correction to the ground-
state energy density (Appendix B 4).

1. Three-point interaction vertex

Beyond the mean-field level, we need to include spatial and
temporal fluctuations in the bond order parameters Qi j . Using
the formalism developed in Appendix A 1, we expand around
the static saddle-point bond configurations,

Qδ
r (R) = Qr,r+δ + Arδ+(R),

Qδ
r (R)

∗ = Q∗
r,r+δ + Arδ−(R), (B1)

and label the fluctuation modes with a single index I = (rδs),
where s ∈ {±}. In frequency-momentum space, the interac-
tion vertex has the concise form

Sint =
√

3

N
∑
K,P

AI (P)†
a(K + P)�I (K + P, K )a(K ) (B2)

that is expressed graphically in Fig. 6 with a vertex function
�I given by

�I (K + P, K ) = �I (k + p, k)

= δI,rδ+
∂Ĥ (k + p, k)

∂Qδ
r (p)

+ δI,rδ−
∂Ĥ (k + p, k)

∂Qδ
r (−p)∗

(B3)

with the nonlocal Hamiltonian introduced in Eq. (A5).

2. Schwinger-boson Green’s function

The spinon Matsubara Green’s function G(K ) in Eq. (35)
is a basic building block of our diagrammatic computa-
tions. Having diagonalized the dynamical matrix Ĥ (k) as in
Eq. (16), we can compute the matrix inverse in Eq. (35) and

obtain

[G(−ik0, k)]i j =
∑

n,α∈{±}

Mnα
i (k)Mnα

j (k)∗

−(ik0 + hκ/4)σ z
αα + ωnα (k)

,

(B4)

where we have set the probe field Bz to zero for simplicity and
used the spin-split notation for the Bogoliubov eigenmodes
introduced in Eq. (15).

However, in the spinon BEC phases, we have to
be careful with the Green’s functions due to the clos-
ing of the spinon gap at k = 0 (Fig. 11). In the var-
ious loop sums that follow, the condensation of the
mode c = (mc+) is reflected via an extensive weight of
the Bose-Einstein function, nB(ωc) = 〈ξmca↑(0)†ξmca↑(0)〉 =
1/{exp (β[Emc (0) − hκ/4]) − 1}, for the condensate mode mc

where the spinon gap closes.
The weight of the condensate mode is obtained by solving

the mean-field energy equations in the presence of the con-
densate,

1

N
∂Emc (0)

∂μr
nB(ωc) + 1

N
∑

n

∑
k

∂En(k)

∂μr
= 1

3
(κ + 1),

nB(ωc) = N
3[∂Emc (0)/∂μr]

|zrα|2. (B5)

The first equation is obtained by writing out the diagonal-
ized Hamiltonian [Eq. (13)] in its second-quantized form and
taking the derivatives with respect to the Lagrange multi-
pliers. In the last line, a comparison of the equation with
Eq. (22) defines the weight of the boson condensate at zero
temperature.

In the Matsubara frequency sum involving the spinon
Green’s function, we introduce this normalization fac-
tor for the condensate-mode Bose-Einstein function. Fol-
lowing Ref. [36], we consider a nonfragmented, simple
BEC of only one of the possibly degenerate low-lying
modes.

3. Polarization bubble

Let us first consider the full dynamical content of the
fluctuation theory of the Schwinger boson theory. To compute
the one-loop polarization function, we simplify its expression
given in the main text in terms of the modified vertices,

γ I (K + P, K ) = M(K + P)†�I (K + P, K )M(K ), (B6)

where M(K ) ≡ M(k) are the Bogoliubov transformation ma-
trices. With the modified vertices, the loop-sum becomes
simpler,

�IJ
1−loop(P) = 3

βN
∑

K

[γ I (K + P, K )]mα,nβ [g(K )]nβ[γ J (K, K + P)]nβ,mα[g(K + P)]mα

= 3

βN
∑

K

π IJ
mα,nβ (K + P, K )[g(K + P)]mα[g(K )]nβ, (B7)

where π IJ
mα,nβ (K + P, K ) = [γ I (K + P, K )]mα,nβ [γ J (K, K + P)]nβ,mα . The expression involves a Matsubara frequency summa-

tion and summation over momentum modes.
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The function π IJ only involves momentum. The frequency
summation, on the other hand, can be computed exactly
with the bosonic Matsubara frequency summation formula
(cf. p. 247 in Ref. [60]) by replacing the sum with a contour
integral around the poles of the summand, 1

β

∑
ik0

f (ik0) =
− ∫C dz

2π i f (z)nB(z), where nB(z) = 1/[exp(βz) − 1] is the
Bose-Einstein function. The Matsubara summation within our
polarization function evaluates to

1

β

∑
ik0

[g(K + P)]mα[g(K )]nβ

= −σ z
αασ z

ββ

nB(σ z
ααωmα (k + p)) − nB(σ z

ββωnβ (k))

−ip0 + σ z
ααωmα (k + p) − σ z

ββωnβ (k)
. (B8)

At zero temperature, the Bose function contributes to a macro-
scopic weight of the density of states at the condensate mode
momentum. Introducing the polarization wave function,

LIJ
mα,nβ (k + p, k) = π IJ

mα,nβ (k + p, k)σ z
αασ z

ββ

× (nB
(
σ z

ααωmα (k + p)
) − nB

(
σ z

ββωnβ (k)
))

, (B9)

and the two-spinon dispersion Emα,nβ (k + p, k) =
σ z

ααωmα (k + p) − σ z
ββωnβ (k), we evaluate the polarization

function as a momentum summation over the first Brillouin
zone,

�IJ (−ip0, p) = − 3

N
∑

mnαβk

LIJ
mα,nβ (k + p, k)

−ip0 + Emα,nβ (k + p, k)
.

(B10)

4. Correction to the energy density

Loop corrections to free energy may formally diverge. To
consider the finite part of the free energy correction (37), we
perform the following summation:

ε
(1)
0,reg = 1

2βN
∑
ip0,p

(
tr ln

[
D−1

A − �(−ip0, p)
]− tr ln

[
D−1

A

])
,

(B11)

where we have subtracted a constant factor from the ex-
pression to regularize it. Due to the regularization, this is a
finite expression that can be computed by using the contour-
deformation technique for Matsubara frequency summation,

ε
(1)
0,reg = − 1

2N
∑

p

∫
C

dz

2π i
tr ln [I − DA · �(z, p)]nB(z),

(B12)

with the resulting complex integral evaluated with the residue
theorem. The pole structure of the logarithm is determined
by possible branch-cut singularities for positive frequencies,
z ∈ [0,∞), and the isolated regular poles of the polarization
function. We treat them separately.

a. Contribution from isolated poles of the log

Let us consider an integral path around an isolated singular-
ity of the polarization function, z = Emα,nβ (k + p, k) + ρeiθ ,

where ρ → 0 is an infinitesimal radius around the singularity.
Around that pole, the above contour integral becomes

lim
ρ→0

− 1

2N

∫
iρeiθ dθ

2π i

(
tr ln

[
I − 3

N
DA · L̂mα,nβ (k + p, k)

ρeiθ
+ · · ·

])
nB(Emα,nβ (k + p, k)), (B13)

where [L̂]IJ = LIJ . Now, by expanding the log, it is easy to see
that the only nonzero contribution in this expression comes
from the first-order term, as all the higher-order O(1/ρ2)
terms cancel with their associated angular integrals vanishing
identically. Now, by summing over contributions from all
these poles, we obtain the first contribution to the regularized
free energy,

ε
(1)
0,reg(poles) = 3

2N 2

∑
mnαβ,k,p

tr[DA · L̂mα,nβ (k + p, k)]

× nB(Emα,nβ (k + p, k)), (B14)

where the final sum over the first Brillouin zone lacks an
analytical expression and has to be performed numerically.

b. Contribution from branch-cut singularities of the log

A branch-cut singularity is encountered when, at a special
pole zbr = Emα,nβ (k + p, k), the argument of the logarithm
vanishes. This implies that the eigenvalue equation,

[I − DA · �(zbr, p)]|vλ〉 = λ|vλ〉, (B15)

has at least one zero eigenvalue for branch cuts end-
ing at poles. Let us introduce a short-hand notation, E� =

Emα,nβ (k + p, k), for the two-spinon poles. The additional
contribution from the branch cut associated with the special
pole evaluates to

ε
(1)
0,reg(branch)

= − 1

2N
∑

p

∫ ∞

E�

dw

2π i
tr[ln [I − DA · �(w − iη, p)]

− ln [I − DA · �(w + iη, p)]nB(w), (B16)

with the selection of a counterclockwise contour shifted ±η

from the positive-real frequency axis. By taking the limit
η → 0, it is easy to see that the surviving contribution in this
equation comes from the locus in the (first) reduced Brillouin
zone with E� = 0.

Following some more algebra, the branch-cut contributions
are enumerated to be

ε
(1)
0,reg(branch) = − 1

2N
∑

p

∑
�

δE�,0

∫ ∞

0

dw

2π i
nB(w)

×
∑
λ�

(
ln

[
1 + 3

N
λ�

−ω + iη

]
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− ln

[
1 + 3

N
λ�

−ω − iη

])

= 1

2βN
∑
p,�

δE�,0

∑
λ�

ln
(
1− exp(−3βλ�/N )

)
,

(B17)

where λ� are the eigenvalues of the spectral decomposition,

DA · L̂� = λ�|vλ�〉〈vλ� |, (B18)

with [L̂�]IJ = LIJ
mα,nβ (k + p, k) being the polarization wave

function defined above and reexpressed in the short-hand
notation. This contribution vanishes at zero temperature,
β → ∞.

APPENDIX C: SPIN STRUCTURE FACTOR

An experimentally relevant observable is the dynamic spin
structure factor, Eq. (40), where Sα

i (t ) = eiHt Sα
i e−iHt are the

real-time Heisenberg-picture spin operators, i is a site index,
and α, β are spin indices. This is a real-time four-spinon
correlator that can be computed from our Euclidean theory
by using analytic continuation [61],

Sαβ (ω, p) = [�(ω)/π ]Im
[
χαβ (ω + iη, p)

]
η→0, (C1)

where χαβ (iω, p) is the spin susceptibility, and we replaced
iω �→ ω + iη to obtain the real-time response function. The
spin susceptibility is obtained by considering our original
action with the Zeeman-coupling source-term B [Eq. (4)], and
then taking the derivative concerning this field [36],

χαβ (P) = ∂2 ln Z (B)

∂Bα (P)∂Bβ (−P)
. (C2)

The result of the functional derivative can be organized in
terms of a diagrammatic 1/N expansion but with some sub-
tleties.

First of all, to accommodate all the spin vertices, we need
to double our Nambu basis,

�a(K ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bAa↑(K )

bBa↑(K )

bCa↑(K )

bAa↓(K )

bBa↓(K )

bCa↓(K )

b∗
Aa↑(−K )

b∗
Ba↑(−K )

b∗
Ca↑(−K )

b∗
Aa↓(−K )

b∗
Ba↓(−K )

b∗
Ca↓(−K )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C3)

with the corresponding Green’s function 2G� (K ). Further-
more, we need to connect the lattice momentum of the probe
Zeeman field to the Brillouin-zone momentum of our enlarged

FIG. 12. The Feynman diagrams for the approximated suscep-
tibility computation: (a) the Zeeman vertex, (b) the leading-order
spin-susceptibility loop, and (c) a subleading correction to the spin-
susceptibility loop with dressed fluctuation propagator.

unit cell,

δH[B] =
∑
a,i

Bi · b†
a,i,α[σ/2]αβba,i,β

= 1√
N
∑

x

∑
p

B(p) · eip·(x+δr )b†
arα (x)[σ/2]αβbarβ (x),

(C4)

where δr represent the displacement vectors within a unit cell,
e.g., δA = (0, 0), δB = (1, 0), and δC = (1/2,

√
3/2), where

we have placed the coordinate of a unit cell at its A-sublattice
site. In the enlarged Nambu basis, the spin vertices are now
given by [Fig. 12(a)] δS[B] = −(1/2

√
βV )

∑
Q,K �∗

a (K +
P)[B(P) · J(P)]�a(K ), where the vertices J(P) can be read
off from the equation above.

The leading-order large-N contribution to the dynamic sus-
ceptibility is given by Fig. 12(b),

χαβ (P) = 1

βV
∑

K

Tr[Jα (P)G� (K )Jβ (−P)G� (K + P)].

(C5)

Due to the presence of a gap closing the boson spectrum, the
spinon Green’s functions are singular at the momentum k =
0. This singularity is related to the Bose-Einstein condensate
through the condensate Green’s function.

In the disordered phase, the spin structure factor is
dominated by a two-spinon continuum characteristic of a
gapped spin liquid [Fig. 13(a)]. The situation becomes more

FIG. 13. The isotropic dynamic structure factor S(ω, q) plotted
along the high-symmetry points of the triangular lattice for (a) κ =
0.3, h = 0.1J and (b) κ = 0.2, h = 3J in the spin liquid phases of
the Schwinger boson theory.
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complicated in the ordered phase. It is straightforward to see
that the presence of the condensate leads to a single-spinon-
pole spectral response in the leading-order spin susceptibility.
The leading-order mean-field theory, therefore, leads to spu-
rious spin dynamics. References [34,36] showed that this
artifact of the leading large-N expansion can be controllably
eliminated by considering diagrams that appear to be of higher
order in 1/N but contribute to lower order due to the pres-
ence of the condensate. The higher-order sister diagram of
Fig. 12(b) is Fig. 12(c), which includes the fully dressed RPA

propagator for the fluctuations and yields single spinon poles
with precisely the opposite sign and cancels the spurious pole
from the leading-order diagram [36]. Without going into the
specifics of these calculations, we show the resulting isotropic
spin structure factor, S(ω, k) =∑α Sαα (ω, k), for κ = 1 in
Fig. 9. In Fig. 13(b), the spinon gap is not yet closed for
κ = 0.2 and |h|/J = 3 but it is small. In Fig. 13, we can see
the two-spinon continuum that is a hallmark of the spin-liquid
phase, but the spectra are spin-split due to the presence of the
Zeeman field.
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