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Fluctuation-induced spin nematic order in magnetic charge ice
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A pyrochlore charge ice consisting of two magnetic cation types gives rise to a Heisenberg magnet with an
interesting type of long-range correlated bond disorder. If the antiferromagnetic exchange among cations of the
same type dominates over the interspecies exchange, closed antiferromagnetic chains following the fully packed
loops of like cations emerge as nonlocal effective low-temperature degrees of freedom. Monte Carlo simulations
reveal a fluctuation driven first-order phase transition from an algebraically correlated spin liquid to a long-range
ordered spin nematic, which mean-field theory captures with very high accuracy. The global O(3) Heisenberg
symmetry is suddenly reduced to a Z2 Ising symmetry as the Néel vectors of the strongly antiferromagnetically
correlated loops align with each other to optimize the entropy of their thermal fluctuations. Interestingly, the
nematic transition is found to be sensitive to the size statistics of the cation loops and thus provides a direct
thermodynamic probe of otherwise elusive structural properties. In turn this sensitivity offers a structural route
to engineering the nematic phase stability.

DOI: 10.1103/PhysRevB.109.224423

I. INTRODUCTION

The discrete translational symmetry of the crystalline state
underlies the utility of many functional materials. Introducing
random disorder into crystalline materials can play a crucial
role in modifying their static and dynamical properties to ob-
tain new or improved functionality, for example by producing
pinning centers in superconductors [1] or tuning transition
temperatures in multiferroics [2,3]. Recently it has been sug-
gested that a kind of correlated disorder based on tiling
high-symmetry lattices with low symmetry motifs may be a
route to novel functionalities via the interplay of the disorder
with crystal properties such as lattice dynamics or electronic
conduction [4]. Magnetism is another material property that
may be controlled by disorder. Usually uncorrelated variations
of exchange strength or coordination (via uncorrelated doping
of magnetic ions) are expected to produce spin glasses [5].
In the present work, we show that more correlated types of
structural disorder may result in distinct equilibrium and out-
of-equilibrium properties.

An ice rule is a well known way to produce such correlated
disorder. Here, a simple constraint on the local configura-
tion of binary degrees of freedom allows the construction of
an extensively degenerate manifold of states, in which the
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correlation among local degrees of freedom decays not expo-
nentially, but by a power-law [6]. Ice rules have a long history
beginning with water-ice [7,8], in which the H2O molecule
retains its identity, producing a lattice of O atoms in which
the positions of the H define a two-in–two-out displacement
ice rule. This motivated a class of Hamiltonians referred to as
vertex models, which afford analytical solutions in two dimen-
sions [9], such as the F -model [10]. Such rules and models are
of contemporary relevance for describing spin configurations
in geometrically frustrated magnetic materials, notably spin
ice [11] and quantum spin ice [12]. Ice rules and vertex models
also underpin the understanding of artificial spin ice [13–16]
and pyrochlore thin films [17,18].

The equivalence of spins and charges on the pyrochlore
lattice was first noted by Anderson in an investigation of the
Vewey transition in magnetite [19], where it was pointed out
that cations would obey a charge ice rule which requires that
each tetrahedron is occupied by two cations of each type. If
the different cations carry magnetic moments one obtains a
model of magnetic charge ice, which is directly relevant to
pyrochlores of the type AMM ′F6 (for example CsCrNiF6, see
Ref. [20]). In pyrochlores such as R2MM ′O7 and AA′M2F7,
see respective Refs. [21,22], the charge ice formed among
the nonmagnetic spectator ions may introduce more subtly
correlated bond disorder among the magnetic atoms. More
generally, geometric frustration of charge order causes cor-
related site distributions of ions and thus of the interactions
among their associated degrees of freedom, resulting in spe-
cific material properties that reflect the correlated nature of the
underlying disordered structure.

Here we study a nearest neighbor classical Heisenberg
Hamiltonian whose exchange constants are templated by the
correlated disorder of a charge ice. Using the Monte Carlo
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method we discover a previously unnoticed order-by-disorder
driven first-order phase transition to a low-temperature spin
nematic phase, in which the aligning magnetic degrees of
freedom are nonlocal and entirely defined by the particular
realization of correlated charge ice disorder. The transition
is quantitatively described by a mean-field calculation in
which each spin experiences an emergent rotation symmetry-
breaking Ising anisotropy. Thus, while the spin nematic does
not break time-reversal symmetry, it reduces the continuous
Heisenberg symmetry to a discrete Ising symmetry, causing
a drastic and abrupt increase of the relaxation time entailing
an effective spin-freezing in long-lived patterns defined by the
underlying disorder.

The paper is organized as follows: In Sec. II we outline the
employed sample preparation and numerical methods. Sec-
tion III details the Monte Carlo results showing the presence
of a first-order nematic phase transition and the dependence
of its properties on the particular charge ice realization, in
particular its loop statistics. Section IV rationalizes the nu-
merical results by first analyzing the thermal properties of a
single tetrahedron and then presenting a mean-field theory of
the full system, which captures the location of the first-order
transition surprisingly accurately. Section V concludes with
an emphasis on how correlated disorder can result in distinct
equilibrium–out-of-equilibrium behavior and be used to tune
emergent nonlocal magnetic degrees of freedom.

II. METHODS

A. Charge ice sample creation

In a simple model of magnetic charge ice [24], two types
of magnetic cations a and b populate the pyrochlore lattice
according to the 2 : 2 charge ice rule, resulting in correlated
site disorder characterized by a randomly packed set of single
cation-type nearest-neighbor connected loops of even length.
The loops are fully packed, meaning that every cation belongs
to a loop [23].

To produce a pyrochlore sample satisfying the charge ice
constraint on each tetrahedron, the pyrochlore lattice of size
L (containing N = 16L3 cations) is constructed and initially
populated with a and b sites according to an ordered structure
of [110] and [11̄0] chains of sites of one or the other type
of cation, respectively. Under periodic boundary conditions,
this may be seen as a regular array of 4L2 winding loops of
length 4L. The loop connectivity of this ordered structure is
characterized by any two loops sharing either zero or one
tetrahedron. This initial structure will be referred to as the
ordered charge ice system I, an example of which is displayed
in Fig. 1(a). To produce a disordered charge ice, a string
of alternating site types, closing on itself, is identified via a
worm algorithm and the ion types of the sites on this loop are
interchanged, preserving the charge ice rule. This procedure
is repeated until variations in loop structure satisfy the known
statistical properties of the loops as detailed in Ref. [23]. Such
samples with correlated disorder will be referred to as a charge
ice system [see Fig. 1(b)]. For clarity, the figure captions refer
to these structures as disordered charge ice.

Figure 1(c) shows the loop size distribution derived
from multiple L = 20 charge ice realizations, in which we

FIG. 1. (a) An ordered charge ice I structure, in which bonds
connect nearest neighbor cations of the same type. (b) An example
of a disordered charge ice structure realized by eight loops of lengths
42, 30, 16, 14, 8, and (3×)6. Here the two largest loops are winding
and the remaining are nonwinding. (c) Sample-averaged normalized
histogram of loop lengths in which nonwinding and winding are
distinguished, as well as the two largest (giant) loops. The power-law
exponents are well understood from the perspective of diffusion [23].
The normalized distributions of loop lengths l are plotted as a func-
tion of l/N where N = 16L3 with L = 20. (d) An ordered charge
ice structure II. In panels (a) and (d) cations and bonds are colored
according to cation type, whereas in (b) they are colored according
to the loop index. In panels (a), (b), and (d) small L = 2 samples are
used for ease of visualization.

distinguish four classes of loops: those that are nonwinding or
winding with respect to the periodic boundaries of the system,
and, additionally, the largest and second-largest winding loop.
For a given charge ice realization these latter two will be of
different chemical type and we refer to them as giant loops.
The fraction of sites occupied by the four loop classes tends
(with increased sampling and system size) to fnw = 0.06 for
nonwinding, fw = 0.22 for winding, f2 = 0.31 and f1 = 0.41
for the second and largest (giant) loops respectively, in agree-
ment with Ref. [23].

An alternative ordered charge ice system may be con-
structed consisting of (001) planes of [110] chains of sites
separated by planar regions densely packed with inclined
hexagonal loops of length l = 6. This structure is referred to
as the ordered charge ice system II. It contains L2 loops of
length 4L and 2L3 of length six [see Fig. 1(d)]. In this structure
the system-spanning linear chains (loops) do not share any
tetrahedra with each other.

A number of considerations motivates the use of these
samples. While the disordered charge ice allows for a real-
ization of algebraically correlated structural disorder resulting
in a broad range of loop lengths (up to ≈L3) and nontrivial
loop-loop connectivity (shared tetrahedra), the ordered charge
ice systems result in just one system spanning loop length
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FIG. 2. (a) The ground-state phase diagram [24] is found to be rich in structure with regions I–III hosting long-range ordered phases.
The boundary of region IV (JaaJbb = J2

ab) contains the classical PHAFM at (−1,−1). Within region IV the ground state is a (less degenerate)
classical spin liquid with perfect AFM order on each loop but no correlations between loops. This work focuses on Jaa = Jbb = J with JaaJbb =
J2 > J2

ab with the simulated system parameters indicated by dots. (b) The charge ice structure of two types of cations, a and b, distributed on
the pyrochlore lattice is characterized by an ensemble of closed loops of the same cation species. Two loops of different species (blue and red)
may share a number of tetrahedra. In region IV, the ground state is characterized by such loops being AFM ordered but randomly orientated,
with respect to each other.

(≈L), where each such loop shares at most one tetrahedron
with another linear loop in system I, while in system II such
loops share no tetrahedra. When templated to a magnetic
Hamiltonian (see Sec. II B), these quite diverse loop structures
are found to sensitively affect the thermal magnetic properties.

B. Model Hamiltonian: Strong and correlated magnetic
exchange disorder via a charge ice

To produce a magnetic charge ice system, we take a charge
ice structure and use this to template an exchange network.
We describe the magnetic structure by unit-length classical
Heisenberg spins on the sites, that are connected by the nearest
neighbor exchange constants Jaa, Jbb, and Jab. The resulting
Heisenberg Hamiltonian therefore displays correlated bond
disorder that derives from the spatial structure of the cation
loops. Banks and Bramwell [24] identified four regions of the
ground-state magnetic phase diagram for this model, as shown
in Fig. 2(a). In region I, the spins of the same site type are
aligned and spins of different type are aligned either parallel
or antiparallel according to the sign of Jab. In regions II and
III (which are equivalent upon interchange of site type), spins
of one type are parallel, with the other type partially frustrated
and canted away from the collinear axis of the first type. We
focus on region IV, where JaaJbb > J2

ab, with Jaa and Jbb both
promoting intraspecies antiferromagnetic (AFM) alignment,
so that the zero-temperature ground states have perfect AFM
arrangements on each loop [Fig. 2(b)], but are degenerate with
respect to the orientation of the AFM alignment axis (the
Néel vector) of any loop due to the interloop couplings Jab

being perfectly frustrated. In the work of Ref. [24], Monte
Carlo simulations at T/|J| < 0.12 for region IV (Jaa = Jbb =
J with J/|Jab| = −1.2) revealed a pinch-point-like structure
factor and a vanishing Edwards-Anderson parameter down

to T/|J| = 0.012 (indicating no spin freezing), suggesting an
algebraic spin liquid down to abitrarily low temperatures.

To investigate yet lower temperatures and study the fate
of the spin liquid, we have used a single-site Monte Carlo
approach. Since a wide range of temperature scales are to
be probed, the Monte Carlo heat bath algorithm was found
to be most suitable. Here, a Monte Carlo move entails ran-
domly selecting a site and calculating exactly the probability
density function for that spin with all other spins fixed. This
distribution is then sampled to determine a new configuration
for the chosen spin. While there is a computational cost in
sampling this distribution, it has the advantage of all moves
being accepted and of automatically reducing the scale of
variations in spin as the temperature is decreased. For more
details see, for example, Ref. [25].

III. NUMERICAL RESULTS

We now numerically investigate how the ground-state
properties of region IV manifest themselves at finite tem-
perature. In doing so, we find that large enough loops align
themselves below a temperature scale characterized by a first-
order phase transition. This temperature scale is found to
depend sensitively on both the loop length distribution and
the ratio J/|Jab|.

A. Low-temperature spin nematic order

Focusing on the fully antiferromagnetic case Jaa = Jbb =
J < 0 with J/|Jab| = −2 (region IV), our Monte Carlo sim-
ulations show that, on cooling (0.125 � T/|J| � 1.5), the
system evolves from the paramagnetic state into a low-
temperature state with an energy per site approaching that of
the expected ground-state value, a strongly suppressed mag-
netization, and a well developed plateau in the specific heat
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FIG. 3. Specific heat as a function of temperature for a parameter set in region IV, indicating (a) a low-temperature plateau and a peak,
which (b) sharpens with increasing system size, signifying a transition towards a phase in which the Néel vector of giant and other large loops
becomes collinear. This nematic transition is also reflected in the structure factor (insets) which has a smooth pinch point structure above the
transition and turns patchy below it. At the lowest temperatures the specific heat is anomalous in that it slightly decreases with increasing
temperature. This reflects that temperature enhances the constraints due to entropic interactions.

reflecting the low-temperature behavior of a classical Heisen-
berg system [Fig. 3(a)]. At low temperatures, the specific heat
cV has a value just below unity. Since 1 − cV , as T → 0, is
proportional to the zero modes of the ground-state manifold,
this indicates that charge ice is significantly more constrained
than the pyrochlore Heisenberg AFM (PHAFM), Jab = Jaa =
Jbb < 0, whose extensively degenerate ground state is enu-
merated by all possible fully packed AFM loop realizations
connected by (2N )/4 zero modes resulting in a specific heat
that asymptotes to the lower value of cV = 3/4 [see Ref. [26]
and, here, Fig. 5(a)]. A small peak in cV at T0/|J| ≈ 0.01,
which sharpens with increasing system size [Fig. 3(b)], sug-
gests a previously unnoticed phase transition, whose nature
we now elucidate. Interestingly the low-temperature phase
exhibits a specific-heat anomaly in that, below T0, the specific
heat rises as the temperature decreases.

The static structure factor [Fig. 3(a), insets], is taken as

Sk =
∣∣∣∣∣N−1

N∑
i=1

si exp (ik · ri)

∣∣∣∣∣
2

(1)

and thermally averaged over statistically independent spin
configurations for a single charge ice realization. It shows the
distinctive diffuse scattering and pinch-points associated with
dipolar spin correlations on the pyrochlore lattice above T0.
Below T0 this pinch-point structure becomes patchy, like that
of similarly sized individual charge ice ground states [24].
The pinch-point structure arises because all spins that share
the same loop are AFM correlated, which implies power-law
spin correlations. This is not unlike the case of the PHAFM
where, as already noted, the ground-state manifold consists of
all possible AFM close-packed loop realizations combining to
give a smooth diffuse scattering profile at these system sizes.
The patchiness is therefore due to the system falling into a
restricted subset of the full PHAFM manifold, which does not
self-average at our finite system size. It can be removed by

averaging over several tens of charge ice realizations or by
considering larger system sizes.

To reveal the structure of the low-T phase we investigate
the one-dimensional (1D) AFM structure factor of the �th
loop:

Sloop
AFM,� =

∣∣∣∣∣∣
1

l�

l�∑
i=1

(−1)isi

∣∣∣∣∣∣
2

, (2)

where l� is its length. When Sloop
AFM,� = 1, the loop has complete

AFM correlations, while the orientation of its Néel vector may
still fluctuate. Figure 4(a) plots Sloop

AFM,� for loops of various
sizes l� as a function of temperature. Generally, they develop
smoothly as the temperature is reduced, but for the two gi-
ant loops, the structure factor jumps up abruptly at T0. As
a reference, data are also shown for the case of noninteract-
ing loops (Jab = 0). Above T0, loops of all sizes in the full
system behave similarly to noninteracting loops, for which
the thermal properties are known analytically through inte-
gral transfer methods [27,28], exhibiting a continuous rise in
AFM order as the temperature decreases. Indeed, rescaling the
temperature axis of the Jab = 0 data by the factor 0.8 results
in almost perfect overlap with the Jab �= 0 data for T > T0,
suggesting the full system is well described in this temperature
regime by an ensemble of noninteracting spin chains with the
renormalized coupling ≈0.8J .

Inspection of the low-temperature spin configurations re-
veals that, for T < T0, the Néel vectors of the two giant loops
align collinearly, motivating the use of the bulk quadrupolar
or nematic order parameter [29]: Q = ∑N

i=1 Qi, where Q is a
traceless symmetric tensor with components

Qμν
i = sμ

i sν
i − 1

3δμν. (3)

A nonzero 〈Q〉 signals breaking of rotational symmetry, but
not necessarily of time reversal-symmetry, as Qμν

i is invari-
ant under spin reversal (which costs very little energy when

224423-4



FLUCTUATION-INDUCED SPIN NEMATIC ORDER IN … PHYSICAL REVIEW B 109, 224423 (2024)

FIG. 4. (a) The one-dimensional AFM loop structure factor as a function of temperature, for different loop sizes in disordered charge ice.
Above T0 all loops exhibit 1D domain wall activity and thus short-range order at a finite temperature, characteristic of Heisenberg spin chains.
However, around T0, the giant loops show a discontinuous jump in their AFM order as their Néel vectors align. Such alignment is diagnosed
(b) by the bulk quadrupolar order parameter Q whose average magnitude jumps at T0 concomitant with strong fluctuations, as measured by the
generalized quadrupolar susceptibility (c). The first-order nature of this phase transition is revealed by the generalized Binder cumulant [30]
which becomes negative close to T0 indicating a bimodal order-parameter distribution (histograms of |Q| below, close to, and above T0 are
shown in the inset). In all figures, vertical dashed lines indicate the estimate of the infinite size T0/J equal to 0.0103, as derived from the Binder
cumulant crossing shown in panel (d).

carried out on entire loops). Figures 4(b) and 4(c) plot the
average of the magnitude of the quadrupolar order parameter,
defined via

|Q|2 ≡ Tr[Q2], (4)

with |Q|2max = 2/3, and a measure of its fluctuations near the
transition via the generalized susceptibility,

χ|Q| = 〈|Q|2〉 − 〈|Q|〉2

T N
, (5)

indicating a rapid, discontinuous turn-on of quadrupo-
lar order that sharpens with increasing system
size.

Since Q and −Q describe qualitatively different spin struc-
tures the Landau free energy does not need to be invariant
under a sign change of Q and will generally contain a cu-
bic term Tr(Q3), ruling out a continuous phase transition.
The first-order nature of the transition is indeed confirmed
by the generalized Binder cumulant [30] for Q, which be-
comes increasingly negative just above T0 with increasing
system size [Fig. 4(d)], due to a bimodal distribution of the

order-parameter magnitude reflecting phase coexistence at
T0 [see inset in Fig. 4(d)]. Together these numerical results
indicate that as the temperature is reduced, the magnetic prop-
erties may be first characterized by an ensemble of effective
one-dimensional Heisenberg spin chains, which via a first-
order phase transition nematically align. The origin of the
observed alignment and corresponding increase in AFM order
in the largest loops will be revealed in a surprisingly accurate
mean-field treatment of the transition (see Sec. IV). We now
investigate how loop length distribution and loop connectivity
affect this phase transition.

B. Role of loop lengths and loop-loop coupling

Figures 5(a) and 5(b) display the heat-capacity and
quadrupolar order parameter for a range of J/|Jab| values
within region IV. Also shown is the case J/|Jab| = −1, which
corresponds to the less constrained PHAFM and does not
exhibit the nematic transition. Both observables show that
T0 increases as J/|Jab| decreases in magnitude, reaching a
maximum around J/|Jab| = −8/7 and then decreases,
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FIG. 5. Thermodynamic quantities of systems with different coupling ratios J/|Jab| within region IV and at its boundary (PHAFM), show-
ing (a) the specific heat and (b) the average quadrupolar magnitude |Q| as a function of temperature. Except for the PHAFM (J/|Jab| = −1),
there is a phase transition whose T0 and heat-capacity signature (latent heat) are controlled by J/|Jab|. Data were obtained using an L = 8
sample with fixed charge ice structure, containing loops of lengths 3926, 3908, 60, 26, 24, 18 (2×), 14 (4×), 10 (2×), 8 (2×), 6 (20×).
(c) Loop-loop quadrupolar correlation matrix using Eq. (6) at the lowest T/|J| = 0.001 for different loop couplings. As J/|Jab| approaches −1
from below also smaller loops align increasingly and participate in the phase transition.

indicating nonmonotonic behavior very close to the PHAFM
boundary (J/|Jab| = −1). The magnitude of |Q| below T0 also
increases, indicating that a growing fraction of the sample
nematically aligns. Defining Ql as the quadrupolar order pa-
rameter of the lth loop, this trend is reflected in the loop-loop
quadrupolar correlation function,

〈Tr[Ql1 Ql2 ]〉
(〈|Ql1 |2〉〈|Ql2 |2〉)1/2 , (6)

shown in Fig. 5(c). For J/|Jab| = −2 the two giant loops dom-
inate the transition and only their Néel vectors become well
aligned. However, as J/|Jab| decreases in magnitude, smaller
and smaller loops take part in the alignment and contribute
to the bulk quadrupolar order parameter. This trend saturates
around J/|Jab| = −8/7. Note that even at this optimal cou-
pling for nematic ordering, the smallest loops remain only
weakly aligned.

These results might suggest the giant loops are an essential
ingredient for the transition to occur, but this turns out not to
be the case. In the first instance, the use of open boundary

conditions (not shown) is found to have little effect on the
transition as long as sufficiently large loops remain present.
We have investigated this conclusion more systematically
by performing Monte Carlo (MC) simulations on an L = 8
system for which the loop structure generation was biased
towards smaller loops. This bias was achieved by only al-
lowing changes in the structure which reduced the sum of
the square of loop lengths. In particular, this procedure was
applied to the L = 8 sample used in the main text, resulting
in a sample (referred to as the “small loop” sample) with over
54 loops, the largest ten of which had lengths 1386, 1376,
1236, 1218, 1058, 826, 426, 140, 86, and 30. This should be
compared with the original sample which had 35 loops, the
largest four of which are 3926, 3908, 60 and 26 in length.
Figure 6(a) displays the resulting specific heat compared with
the original L = 8 charge ice system showing little change in
the transition temperature T0. Figure 6(b) displays the loop-
loop orientation correlation below the critical temperature,
demonstrating that the growth in the bulk quadrupolar order
parameter is due to the alignment of these larger, but nongiant
loops.
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FIG. 6. (a) Heat capacity and (b) loop-loop quadrupolar correlation [Eq. (6)] of an L = 8 charge ice system with J/|Jab| = −2 in which
a bias towards smaller loops has been imposed, eliminating the giant loops. (c) Heat capacity and (d) average quadrupolar magnitude of the
ordered charge ice system I (solid lines) and of the ordered charge ice system II (dashed lines) for L = 8 and a range of J/|Jab|. The dashed
black horizontal lines in (c) indicate the value cV = 1 − Nloop/N expected in the absence of nematic order, which is seen in all cases of charge
ice II and in charge ice I for J/|Jab| = −2 with L = 8.

In Figs. 6(c) and 6(d), we consider the thermodynamics of
the two very different ordered charge ice systems I and II of
size L = 8 [for the structures, see Figs. 1(a) and 1(c)]. Both
structures are investigated for interchain couplings J/|Jab|
equal to −2, −4/3, −8/7, −16/15. For order of type I with
J/|Jab| = −2, inspection reveals the absence of the first-order
phase transition. However, with increasing interloop coupling,
as J/|Jab| becomes less negative, the transition appears, with
T0 again increasing as J/|Jab| approaches −1, as for the case of
the general charge ice structure. For order of type II, instead,
we find the phase transition to remain absent for all simulated
values of J/|Jab|. For both ordered charge ice structures, in
the absence of a transition the specific-heat plateaus to 1 −
Nloop/N , where Nloop is the number of loops and N = (16L3) is
the number of sites. The deviation from 1 reflects the fraction
of zero modes in the ground-state manifold [26]. Here their
number equals twice the number of loops, while the total num-
ber of modes is equal to 2N . For ordered charge ice I, Nloop =
4L2 and for ordered charge ice II Nloop = L2 + 2L3 giving
the respective specific-heat plateaus of 0.97 and 0.87 [see
Fig. 6(c)]. In the presence of ordering the T = 0 zero modes
experience fluctuational quartic interactions and contribute

1/4 to the specific heat. This will, however, be obscured at the
probed temperatures by the fluctuations associated with the
nematic ordering to be investigated in the proceeding sections.

Together these numerical results demonstrate that whether
a first-order phase transition is seen will depend on both the
value of J/|Jab| and the distribution of loop lengths within
the charge ice structure. We understand this in more depth via
the mean-field calculation of the next section.

IV. THEORETICAL ANALYSIS AND DISCUSSION

In this section we demonstrate that nematic alignment
originates from maximizing spin entropy and is driven by
the phenomenon of order-by-disorder, a mechanism already
at play at the level of individual tetrahedra. Based on the
ensuing entropic interaction, we develop a mean-field theory
for the onset of a symmetry-breaking spin-anisotropy and
demonstrate a first-order transition to a nematic phase which is
sensitive to loop lengths, temperature and interloop coupling.
The predictions of mean-field theory turn out to be remarkably
accurate when compared with the numerical results presented
in the previous sections.
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FIG. 7. Density of normal-mode frequencies of the transverse
harmonic spin fluctuations around a specific ground-state configu-
ration. Data are shown for both aligned and randomly aligned (RLA)
ground-state configurations, respectively. Each loop contributes two
zero-modes (not shown). In the low-frequency regime, a power-law
1/

√
λ is seen (inset), a fingerprint of fluctuations around 1D long-

range-ordered AFM chain configurations.

A. Order-by-disorder and symmetry reduction
from Heisenberg to Ising loops

Insight into why the nematic structure is favored at low
temperature can be gained from the thermal properties of
a single tetrahedron. Expanding the corresponding four-spin
Hamiltonian to quadratic order with respect to transverse fluc-
tuations around a ground-state configuration defined by the
angle φ between the Néel vectors of the two species (see
Appendix A), yields a fluctuational entropy,

�S(2)[cos2 φ] = −1

2
ln

[
1 − J2

ab/J2 cos2 φ
]

≈ 1

2

J2
ab

J2
cos2 φ, (7)

that favors collinear alignment of the Néel vectors, the sec-
ond expression being valid to lowest order in the interloop
couplings Jab. This suggests that the observed first-order
transition is driven by an entropic order-by-disorder mecha-
nism [26,31–33], which is already manifest at the tetrahedral
level. Such an order-by-disorder phenomenon selects those
states purely on entropy grounds. A similar harmonic analysis
may be carried out for a ground-state spin configuration of a
charge ice realization (in our simulation for a cube of linear
size L = 8), where now the eigenvectors and corresponding
eigenvalues λ of the Hessian M [calculated via Eq. (A4)] are
obtained numerically.

Figure 7 displays the normal-mode density of states (DOS)
for two ground-state configurations: one with nematic order,
in which all loop Néel vectors are aligned; and one where they
are randomly oriented with respect to each other (random loop
AFM or RLA). These states are both members of the mani-
fold of ground states identified by Banks and Bramwell [24],
and are indistinguishable in terms of their internal energies.

The DOS of the RLA depends slightly on the particular
ground-state configuration, but for sufficiently large samples
self-averaging reduces such differences. For smaller samples
an average over many choices of random alignments results
in a converged DOS. Both RLA and nematic order reveal
2Nloop zero-modes reflecting the O(3) degrees of freedom to
choose a Néel vector on each individual loop. While there
are differences between the nematic and random ground-state
configurations (e.g., the enhanced density of low frequency
modes and the more discrete structure at higher frequencies in
the nematic ground state), the similarities at low frequency are
more revealing. In particular, a log-log plot (inset of Fig. 7)
shows in both cases the asymptotic form ρ(λ) ∼ 1/

√
λ for

small λ—a hallmark signature of the fluctuation spectrum of
AFM-ordered reference configurations of 1D Heisenberg spin
chains. For comparison the DOS derived from the harmonic
Hessian with Jab = 0 is also shown. Such a system consists of
Nloop noninteracting finite 1D antiferromagnetic spin chains,
whose mode spectrum is known analytically (neglecting finite
loop size corrections due to a small fraction of short loops):
ρ(λ) ∝ √

λ(4J − λ).
Within the harmonic approximation, the difference in fluc-

tuational entropy between nematic and RLA states is given by
− ∫ ∞

0+ dλ[ρnematic(λ) − ρRLA(λ)] ln(λ) which we find to be a
positive quantity. This originates from the coupling-induced
softening of low-frequency normal modes, which enhances
the 1/

√
λ tail, as is seen in the inset of Fig. 7. This softening

effect is strongest for the nematically aligned configuration
(hence the enhancement at low frequency compared with a
randomly aligned ground-state configuration), which is thus
entropically favored. Indeed, the fluctuational entropy of ne-
matic order with a finite Qz = 〈cos2 φ〉 − 1/3 exceeds that of
randomly aligned configurations by 1

2 QzJ2
ab/J2 per spin [at

small coupling |Jab/J| 
 1, see Eq. (14), Sec. IV B], which
is comparable to the entropy gain of a single tetrahedron, cf.
Eq. (7).

B. Effective Hamiltonian with entropic interactions

The above results yield an effective, entropic interaction
between neighboring loops of different cations with their
locally AFM correlated configurations. Since the AFM inter-
action between the loops is frustrated the resulting interaction
is comparatively weak. Note that a given loop sees a lot of
neighboring loop segments, and thus has a high coordination
number. This motivates us to treat the effect of the neighboring
loops at the mean-field level, while treating the AFM cou-
plings along the loops exactly. This will result in a mean-field
theory for entire loops, with an associated loop-decoupled
effective spin Hamiltonian H = ∑

� H�.
Let us assume that the temperature is sufficiently low,

T 
 J , such that AFM correlations are well established at
the length-scale of a tetrahedron. In this regime, the spin
directions define the local orientation of the AFM structure.
We then may approximate the entropy of every tetrahedron as

�S(2)[(n̂a · n̂b)2] ≈ �S · (n̂a · n̂b)2

≈ �S

4

2∑
m,k=1

(ŝa,m · ŝb,k )2, (8)
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where n̂a/b is the Néel vector on the loops of type a, b, respec-
tively, ŝa/b,1 and ŝa/b,2 are the two spins on either cation type,
and we expanded the effective interaction Eq. (7) to leading
order in Jab, with

�S = 1

2

J2
ab

J2
. (9)

Using this entropic interaction leads to the effective tempera-
ture dependent Hamiltonian

H ≈ −J
∑

�

∑
i∈�

ŝi · ŝi+1 − T �S

4

1

2

∑
i

∑
j∈nn(i)

(ŝi · ŝ j )
2, (10)

where periodic boundary conditions for the site labels on the
closed loops � are assumed, and nn(i) denotes the ith site’s
nearest neighbors of opposite cation type.

C. Mean-field theory for loops

We now decouple the individual loops in a mean-field
spirit, by considering the presence of an effective symmetry-
breaking anisotropy due to an emergent quadrupolar order. We
rewrite the interloop couplings (ŝi · ŝ j )2 = ∑

α,β sαisβisα j sβ j

(with α, β ∈ {x, y, z}) as∑
α,β

[(sαisβi − 〈sαisβi〉)(sα j sβ j − 〈sα j sβ j〉)

+ sαisβi〈sα j sβ j〉 + sα j sβ j〈sαisβi〉
− 〈sαisβi〉〈sα j sβ j〉]. (11)

We then assume quadrupolar order with polarization axis
along z to set in, while preserving rotational symmetry around
the z axis. This implies local spin-spin correlations

〈sαisβi〉 = δαβ

[
1
3 + Qz

(
3
2δαz − 1

2

)]
, (12)

whose form ensures that the trace of the spin correlator equals
one. Note that in general the nematic order parameter depends
on the length and cation type of the loop that the site i belongs
to. However, in the simplest mean-field only the loop aver-
age Qz enters [cf. Eq. (20) below]. Spin inversion symmetry
implies 〈sxi〉 = 〈syi〉 = 〈szi〉 = 0. Substituting the above into
Eq. (11), and dropping the term quadratic in the fluctuations
around the mean, finally gives

(ŝi · ŝ j )
2 ≈ 3

2 Qz
(
s2

zi − 1
3 + s2

z j − 1
3

) − 3
2 Q2

z + 1
3 . (13)

This mean-field approximation decouples the loops, splitting
the Hamiltonian (10) into a sum of loop contributions, H =∑

� H�, with effective loop Hamiltonians (dropping an irrele-
vant overall additive constant)

H� = −
∑
i∈�

[
J ŝi · ŝi+1 + AT Qz

(
s2

zi − 1

3

)
− 1

2
AT Q2

z

]
,

(14)
with

A ≡ 3

2
�S = 3

4

J2
ab

J2
. (15)

As all loops have even length we can perform a simple gauge
transformation si → (−1)isi to switch from AFM (J < 0) to
FM interactions (J ′ = |J| > 0) in Eq. (10). The free energy

FMF(L; Qz ) of a loop of length L can be found with transfer-
matrix methods. In the limit of large correlation lengths,
T 
 |J|, one may resort to a continuum spin field approxi-
mation [34], which yields the expression

βFMF(L; Qz ) = − ln [Tr(exp (−βHL))], (16)

where the operator

H = �E + T 2

2|J| �L2 − AT Qz

(
cos2 θ − 1

3

)
+ AT Q2

z

2
(17)

is the quantum-mechanical hindered rotor Hamiltonian, �L be-
ing the angular-momentum operator in spherical coordinates
(φ, θ ). This result has its origin in the equivalence between the
transfer-matrix eigenvalue method used to evaluate the func-
tional integrals of 1D classical statistical mechanics, and the
zero-dimensional single-particle quantum mechanical prob-
lem. In the above, the Qz-independent term

�E = −|J| + T ln (|J|/T ) (18)

is the free-energy density of an infinite Heisenberg chain with
periodic boundary conditions. The trace in Eq. (16) is over the
square integrable functions on the sphere.

The total free energy per site within this mean-field approx-
imation follows as

fMF(Qz ) = 1

N

∑
�

FMF(L�; Qz ), (19)

where N is the number of sites and L� is the length of loop �.
The self-consistency condition on Qz reads

Qz = 1

N

∑
�

L�〈cos2 (θ ) − 1/3〉L�;Qz ,

〈O〉L;Qz ≡ Tr(O exp (−βHL))

Tr(exp (−βHL))
, (20)

which, as usual, is equivalent to imposing a (local) minimum
of the constrained mean-field free energy, ∂ fMF/∂Qz = 0. The
equilibrium configuration corresponds to the global minimum
of fMF(Qz ).

Below we exploit this general formalism in two limits:
(i) the limit T → 0, where the transverse fluctuations on a
given loop become irrelevant and the only remaining de-
gree of freedom is the Néel vector of a loop �; and (ii) the
case where essentially all loops in the considered charge ice
are large, L� � 1 (more precisely L� � T/δE , where δE is
the spectral gap of H), in which case the free energy per site
is given by the lowest eigenvalue of H. This simplifies our
analytical study of the finite-temperature behavior.

D. Nematic transition in the limit T → 0

We first investigate the possibility of loop alignment at very
low temperature T , such that the correlation length LT = J/T
of a Heisenberg chain exceeds the length of any given loop
�. We have in mind the analysis of charge ice structures
with relatively short loops, for which we aim to show that a
minimal coupling strength Jab is needed to induce ordering.

In this low-temperature regime, the spin chain on the loop
� is well characterized by its Néel vector n�, which is the only
relevant degree of freedom left. For its z component we write
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nz ≡ cos(θ ). The angular-momentum part of H in Eq. (17),
which captures spin-wave fluctuations, becomes irrelevant for
T → 0 and the loop free energy (16) reduces to

β(FMF(L; Qz ) − �EL)

= − ln

[∫ 1

−1
dnz exp

{
AL

[
Qz

(
n2

z − 1/3
) − Q2

z /2
]}]

, (21)

where we split off the Qz-independent term �E from the free
energy.

1. Charge ice with loops of equal, finite length

As a specific example, we consider a periodic charge-
ordered system of finite size L, which contains Nl = 4L2 loops
of length l = 4L, where each loop shares at most one tetrahe-
dron with any other loop—the ordered charge ice I structure
[Fig. 1(a)].

Let us now determine whether it is consistent to assume
that Qz = 〈n2

z 〉 − 1/3 acquires a finite expectation value, and
thus spontaneously breaks the rotational invariance. Self-
consistency of the mean-field requires that

Qz =
∫ 1
−1 dnz exp

[
AlQz

(
n2

z − 1/3
)](

n2
z − 1/3

)
∫ 1
−1 dnz exp

[
AlQz

(
n2

z − 1/3
)] . (22)

For large Al the integral is dominated by nz = ±1 and
there is a nontrivial solution with Qz ≈ 2/3. However, this
symmetry-breaking solution disappears at the spinodal point
Al ≈ 10.1 ≡ (Al )(1)

sp , where the order parameter discontinu-
ously drops from Qz ≈ 0.205 to zero, signaling a first-order
transition. This is consistent with the fact that nematic tran-
sitions cannot be continuous, as we discussed in Sec. III A.
The disordered phase (Qz = 0) displays a similar spinodal
instability at (Al )(2)

sp = 45/4 = 11.25 beyond which the dis-
ordered solution Qz = 0 is locally unstable. The equilibrium
transition between the disordered and the symmetry broken
solution takes place where the two associated free energies
cross. This happens at Al = (Al )0 ≈ 10.218, where the order
parameter jumps to the finite value Qz ≈ 0.286.

In charge ice systems with equally long loops low-
temperature order is thus predicted to exist only if the loop
length exceeds

l0 = (Al )0

A
= 4(Al )0

3

J2

J2
ab

= 13.6
J2

J2
ab

, (23)

which scales inversely with the entropy gain �S ∼ (Jab/J )2

for alignment. Indeed, for loops longer than l0, the entropy
gain l�S(2)�Qz (�Qz ≈ 0.28) from (partial) alignment can
compensate the entropy O(1) lost due to constraining the
loop’s Néel vector.

For the case of our ordered finite-size charge ice where l =
4L, the nematic phase transition will only occur for periodic
samples of size L, when Jab/|J| > J0

ab/|J| = [4(Al )0/3l]1/2 =
[(Al )0/3L]1/2. For the case of L = 8 this requires Jab/J >

0.65 or J/|Jab| < −1.53. Considering finite-size ordered
charge ices at T = 0+, nematic order emerges discontinuously
as the loops reach the critical length l = l0. The nematic
order is absent in charge ice structures with too short loops
and/or too weak interloop couplings, as seen in the data of
Figs. 5, 6(a), and 6(b).

The above analysis shows that short loops resist nematic
ordering. In an ordered structure containing alternating short
loops and (winding) large loops, one still expects order in
the thermodynamic limit. However, the nematic transition
temperature will be substantially reduced due to the strong
fluctuations of the small loops, which only mediate a very
weak coupling between the long loops. This is indeed the
case for the ordered charge ice system II [Fig. 1(d)] where the
finite-size systems of Figs. 6(c) and 6(d) show no signature of
the nematic transition.

2. Charge ice with distributed loop sizes

It is not difficult to generalize the analysis to a charge ice
configuration with an ensemble of loops with a distribution
of lengths. We assume normalized loop length distributions
Pa/b(l ) for loops of cation type a and b. We further assume an
absence of loop-loop correlations. Namely when considering
a given loop of type a, we assume that lPb(l ) represents the
probability of it sharing a tetrahedron with a b type loop of
length l , independently of the length of the considered a loop.
We then can evaluate the average quadrupolar field component
for sites of type a/b as

Q
a/b
z =

∑
l lPa/b(l )Qa/b

z (l )∑
l lPa/b(l )

, (24)

where

Qa/b
z (l ) =

∫ 1
−1 dnz exp

[
lAQ

b/a
z

(
n2

z − 1/3
)](

n2
z − 1/3

)
∫ 1
−1 dnz exp

[
lAQ

b/a
z

(
n2

z − 1/3
)] . (25)

Here Qa/b
z (l ) is the quadrupolar order parameter that es-

tablishes on loops of length l of type a/b. In a slight
generalization of the above mean-field approach, we allow for
the possibility of (slightly) different order parameters Qa/b

z ,
which represent the average of the nematic order over loops
of one cation type only.

By using the loop length distribution of a simulated charge
ice structure, the self-consistent solution entailed by Eqs. (24)
and (25) may be compared with that found by the MC nu-

merics. Indeed, the average order parameter Q
a/b
z and Eq. (25)

may be used to calculate the orientational correlation between
two loops, 〈Tr[Ql1 Ql2 ]〉/(〈|Ql1 |2〉〈|Ql2 |2〉)1/2, for example for
the charge ice realization shown in Fig. 5. We take l1 to be
a giant loop of type a/b whose quadrupolar field is oriented

along ẑ with magnitude very close to Q
a/b
z , while l2 is a small

loop of type b/a. Figure 8 compares this correlation to the
simulated data of Fig. 5(c) showing very good agreement.
This quantitatively confirms the initial assumption entailed in
Eq. (10) and the general mean-field approach. For this system

Q
a
z /(2/3) = 0.983 and Q

b
z/(2/3) = 0.971 reflecting the small

fraction of sites that belong to small loops [1 − Qz/(2/3)].
Our analysis shows that the existence of the nematic phase

and the value of T0 both hinge on the distribution of loop
lengths and the connectivity among the loops of different
sizes. The stronger the interloop coupling, the more small
loops align significantly with the global nematic order pa-
rameter. For a given interloop coupling, the magnitude of
1 − Qz/(2/3) in random charge ice structures can be taken
as a measure of the fraction of sites belonging to small loops.
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FIG. 8. Mean-field prediction of loop-loop quadrupolar correla-
tion for small loops (l2) embedded in the quadrupolar field of larger
loops. Here we take l1 to be a giant loop. This is to be compared
with low temperature T/|J| = 0.001 Monte Carlo simulations of the
L = 8 charge ice realization of Fig. 5(c) for the case of J/|Jab| = −2.

E. Finite-temperature transition in charge ice with large loops

Let us now analyze the case of charge ices in which
(almost) all loops are large. This is a reasonable approxima-
tion for random charge ice, where small loops are relatively
rare. In this case the trace in Eq. (16) is dominated by the
ground-state energy ε0 of H in Eq. (17),

fMF[Qz] = lim
L→∞

FMF[L, Qz]

L
= ε0[H]. (26)

Introducing the reduced temperature τ ≡ T/|J|A, it is conve-
nient to rewrite this as

fMF[Qz] − �E

|J|A2
= τ 2ε̃0[H̃[Qz/τ ]] + τ

2
Q2

z , (27)

with the reduced hindered rotor Hamiltonian H̃,

H̃[Qz/τ ] = �L2

2
− Qz

τ

(
cos2 (θ ) − 1

3

)
. (28)

It remains to minimize the mean-field free energy (27) with
respect to the order parameter Qz. Second-order perturbation
theory assures that ε̃0 ∼ Q2

z for small Qz, and thus, a local
extremum at Qz = 0 always exist. However, the coefficient of
the quadratic term changes sign at low temperature (τ (2)

sp =
8/135 ≈ 0.593), rendering this disordered minimum unstable.
However, before this happens, a secondary minimum at a
finite Qz emerges and drops below fMF(Qz = 0) = �E , in-
dicating a first-order transition.

The transition happens when, for a positive Qz, one finds
simultaneous solutions of fMF = �E and dfMF/dQz = 0, or

τ 2ε̃0

(
Qz

τ

)
+ 1

2
τQ2

z = 0, (29)

τ ε̃′
0

(
Qz

τ

)
+ τQz = 0, (30)

where we consider ε̃0[H̃] = ε̃0(Qz/τ ) as a function of the
coefficient Qz/τ in Eq. (28).

Multiplying the second equation by Qz/2 we find for ρ =
Qz/τ the equation

ε̃0(ρ) = ρ

2
ε̃′

0(ρ). (31)

From its solution, ρ∗, one obtains the order parameter at the
first-order transition,

Q∗
z = −ε̃′

0[ρ∗], (32)

and the transition temperature

T0

A|J| = τ ∗ = Q∗
z

ρ∗ . (33)

Carrying out this procedure numerically, one finds

ρ∗ = 3.5569, (34)

Q∗
z = 0.2377, (35)

τ ∗ = 0.0668. (36)

This predicts the equilibrium first-order transition to take
place at the temperature

T0

|J| = Aτ ∗ = 0.100�S. (37)

In our derivation we have assumed that all loops are
large and thus contribute essentially equally to the symmetry-
breaking quadrupolar field. This is, however, not entirely true
in typical charge ice samples, since the loops smaller than
a certain length threshold do not actively participate in the
transition. To a first approximation this can be taken into
account by assuming that only an average fraction c < 1 of
the sites neighboring a given loop belong to loops above a
certain length threshold. This then modifies Eq. (37) to

T0

|J| = 0.100c�S = 0.050c

(
Jab

J

)2

. (38)

This rationalizes the observed temperature scale of T0 and
its decrease as J/|Jab| becomes more negative. Indeed, for
J/|Jab| = −2 the mean-field prediction gives T0 = 0.0125c.
The fraction c depends on the microstructure of the charge
ice, in particular on its loop distribution function, an aspect
already encountered in the previous section. The mean-field
prediction is remarkably close to that of simulation (Fig. 4)
for a value c ≈ 0.95 which, for charge ice, is the approximate
fraction of sites involved in loops longer than the critical
length l0 defined in Sec. IV D.

F. Specific heat in charge ice at T � T0

Mean-field theory also explains the unusual tempera-
ture dependence of the specific heat in the nematic phase
[Fig. 3(a)]. The specific heat can be evaluated via

cV = −T
∂2

∂T 2
fMF = − τ

A|J|
∂2

∂τ 2
fMF. (39)
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The Qz independent part �E of the free energy contributes
c0

V = −T ∂2

∂T 2 �E = 1, as expected from the equipartition the-
orem. We now show that the entropic interaction introduces a
negative correction to this value. Using Eq. (27) together with
Eq. (30), the full specific heat evaluates to

cV − c0
V = Aτ

(
−2ε̃0(Qz/τ ) − 2

Q2
z

τ
− QzQ

′
z

)
. (40)

To proceed we need the asymptotics of ε̃0 at large argument.
This can be obtained, e.g., by calculating the low-temperature
free energy of the spin chain via a quadratic expansion with
respect to transverse spin fluctuations around a bulk AFM spin
configuration aligned along the z axis. This yields

ε̃0(ρ ≡ Qz/τ � 1) = − 2
3ρ +

√
2ρ + O(1). (41)

This result, based on the continuum approximation, does not
include the effect of Z2 domain walls though. However, as
those are exponentially rare they contribute only negligibly
to the low-temperature specific heat.

Using the asymptotics (41) in Eq. (30), one obtains the
leading temperature dependence of the quadrupolar field as

Qz(τ 
 1) ≈ 2

3
−

√
3τ

2
, (42)

which reflects the weakening of nematic order by spin-wave
fluctuations. Substitution of these asymptotics into Eq. (40)
finally gives

cV ≈ 1 −
√

3

2
A
√

τ = 1 − 3

4

|Jab|
|J|

√
T

|J| . (43)

Thus, in the nematic phase at T 
 T0, the specific heat
decreases from unity as the temperature increases. This
anomalous effect in the specific-heat arises from the quench-
ing of long-wavelength spin waves due to the linear in
T increase of the anisotropic quadrupolar field, ≈T �S in
Eq. (14), which reflects its entropic origin.

Figure 9 displays the low-temperature regime below the
transition and the prediction of Eq. (43), showing good agree-
ment for the case J/|Jab| = −2, which is within the assumed
perturbative regime. The present calculation does not include
the temperature dependent features of the specific heat asso-
ciated with the release of latent heat close to T0, nor does it
take into account that in the limit T → 0, cV → 1 − 1

2 Nloop/N
due to the presence of 2Nloop zero modes [26]. Note that the
factor of one-half originates from the fact that soft modes
only experience effective quartic potentials associated with
the entropic quadrupolar interaction, contributing only kB/4
instead of kB/2 to the specific heat. For the charge ice struc-
ture Nloop/N ≈ 0.004–0.005—a number that does not depend
strongly on the charge ice realization.

V. CONCLUDING REMARKS

While discontinuous transitions were found in related frus-
trated systems upon homogeneously perturbing the interac-
tions and thereby lifting the ground-state degeneracy [35–38],
those are driven by the essentially local competition between

FIG. 9. Low-temperature specific heat as a function of tem-
perature for the case of J/|Jab| = −2, along with the mean-field
prediction for the nematic phase, cf. Eq. (43).

energy and entropy. In contrast, charge ice establishes a com-
plex connectivity among strongly correlated nonlocal cluster
degrees of freedom, which reflect the precise realization of the
correlated disorder—and it is with respect to these degrees of
freedom that the first-order transition takes place.

The predicted spin nematic breaks spin rotation symmetry,
but preserves (statistical) lattice symmetries. It is thus quite
distinct from lattice nematics, that break lattice rotation invari-
ance at the level of the spin-spin correlation function [39,40].

The nematic s2
z anisotropy below T0 does not break time-

reversal symmetry and no long-range spin order is expected
within the nematic phase. However, such a spontaneously
emerging anisotropy reduces the O(3) global symmetry
of the Heisenberg Hamiltonian to an Ising Z2 symmetry,
which remains unbroken on the chains in accord with the
Mermin-Wagner theorem [41]. Thus, above T0, loops fluctuate
and equilibrate rapidly due to long wavelength spin waves,
whereas below T0 the reduced spin symmetry entails a many
orders of magnitude longer spin relaxation time due to the tiny
Gibbs factor exp(−4J/T ) associated with the nucleation and
separation of a pair of Ising domain-walls. With such kinetics
nearly frozen out, the loops maintain their nearly perfect AFM
order for very long times, with spin-relaxation times of order
τ1 ∼ exp(4J/T ). This is why a rapid increase in AFM order
is seen in the numerics for the largest loops at T0 [Fig. 4(a)].

Such a spin-liquid freezing, in which sufficiently large
loops fall out of equilibrium and become AFM ordered on
mesoscopic timescales, differs strongly from the effect of ran-
dom couplings, which may induce glassy spin freezing [42],
with slow dynamics deriving from a complex energy land-
scape, but occurring at temperatures far below the dominant
exchange energy scale.

Our work shows that correlated structural disorder can
produce nontrivial behavior due to the emergence of non-
local degrees of freedom tied to lower-dimensional clusters
(loops or strings). Solids in which similarly correlated disor-
der is known (or expected) to exist are numerous [20,43,44],
with corner-sharing tetrahedra being only one example of
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a more general class of materials whose corner or edge-
sharing plaquettes may show qualitatively different magnetic
behavior [33,45,46]. Moreover, transferring the paradigm of
nonlocal, intertwined degrees of freedom that arise from
correlated disorder to the realm of continuous phase transi-
tions might offer the possibility of entirely new universality
classes [47]. In the present system, such a phenomenon might
be realized or tuned-to through an appropriate external field
or heterogeneous strain.

Quantitatively understanding the relation between such
correlated structural disorder and emergent collective de-
grees of freedom and their thermodynamic signatures is a
formidable but not intractable problem. Indeed, experimen-
tally observing the predicted nematic phase transition through
magnetic birefringence would give indirect evidence for the
existence of large loops and the presence of correlated disor-
der. Moreover, if it is possible to vary the exchange constants
either chemically or through a global distortion, or alter-
natively modify the charge ice structure through specific
annealing protocols, and monitor the transition tempera-
ture and the order-parameter magnitude, one might extract
additional information on the distribution of loop lengths,
establishing an experimental link between correlated disorder
and the thermodynamics it entails.
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APPENDIX A: HARMONIC TRANSVERSE SPIN
FLUCTUATIONS FOR A SINGLE TETRAHEDRON

The classical Heisenberg spin Hamiltonian may be written
as

H = −1

2

∑
i j

Ji j ŝi · ŝ j, (A1)

for which the local field at each site i is

bi =
∑

i

Ji j ŝ j . (A2)

To investigate the transverse spin fluctuations, s⊥,i with
respect to a given spin configuration ŝ0,i each spin is written
as

ŝi = s⊥,i + ŝ0,i|s‖,i|, (A3)

where |s‖,i| = (1 − |s⊥,i|2)1/2. If the magnetic configuration
ŝ0,i is at a local energy minimum then all ŝ0,i will be parallel to

their local fields, b0,i. Then to quadratic order in the transverse
components, the Hamiltonian may be written as H = H (0) +
�H (2), where

�H (2) = −1

2

∑
i j

(Ji j − |b0,i|δi, j )s⊥,i · s⊥, j

= −1

2

∑
i j

�i js⊥,i · s⊥, j . (A4)

In the above, the off-diagonal term Ji j is the full three-
dimensional (3D) Hessian whereas the second diagonal term
is a correction to the 3D Hessian which projects the taken
derivatives onto the tangent space of each spin.

Representing the two-dimensional (2D) tangent space of
spin i as e1,i and e2,i with e1,i × e2,i = ŝ0,i, the transverse
fluctuations of the ith spin may be written as

s⊥,i =
∑

α=1,2

χα,ieα,i, (A5)

where χα,i are (small) real numbers. The choice of the eα,i

is not unique and we follow Ref. [48]. Together the above
yields a symmetric matrix Miα, jβ of rank 2N , represented
as an N × N matrix of 2 × 2 block elements, whose (i, j)th
block element is �i jeα,i · eβ, j . Solving the corresponding
eigenvalue-problem yields the normal modes of Eq. (A4) that
govern the fluctuations of this quadratic Hamiltonian. Note
that for disordered or frustrated systems, ŝ0,i and thus the local
tangent space, defined via eα,i, will be different for each spin.
Thus the normal modes presently calculated are nontrivially
related to the corresponding spin-wave modes which arise
from a linearization of the Landau-Lifshitz equation.

At the level of the quadratic approximation to the Hamil-
tonian, the resulting partition function becomes a simple
Gaussian integral, evaluating to

Z =
∏

n|λn>0

√
2πT

λn
, (A6)

where the λn are the nonzero eigenvalues of the fluctuation
matrix M, from which the free energy may be calculated as
F = −T ln Z , giving

F = T

2

∑
n|λn>0

ln
λn

2πT
. (A7)

In the thermodynamic limit this can be evaluated as an integral∫ ∞
0+ dλρ(λ) ln λ, using the density of eigenvalues (or density

of states DOS), ρ(λ), which is normalized to 2N .
The Hamiltonian for a single tetrahedron satisfying the

charge ice rule is given by

H = −Jaaŝa,1 · ŝa,2 − Jbbŝb,1 · ŝb,2

− Jab[(ŝa,1 + ŝa,2) · (ŝb,1 + ŝb,2)], (A8)

where we recall that we focus on the parameter regime
where the couplings Jaa and Jbb are negative (AFM). For a
ground-state configuration of region IV, we have the AFM
configurations between spins of the same type: ŝa,1 = −ŝa,2

and ŝb,1 = −ŝb,2, and an angle φ between the alignment axis.
This gives the ground-state energy −Jaa − Jbb, independent of
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φ. The quadratic Hamiltonian is represented as a matrix of rank eight:

Miα, jβ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|Jaa| 0 −Jaa 0 −Jab 0 −Jab 0

0 |Jaa| 0 Jaa 0 −Jab cos φ 0 Jab cos φ

−Jaa 0 |Jaa| 0 −Jab 0 −Jab 0

0 Jaa 0 |Jaa| 0 Jab cos φ 0 −Jab cos φ

−Jab 0 −Jab 0 |Jbb| 0 −Jbb 0

0 −Jab cos φ 0 Jab cos φ 0 |Jbb| 0 Jbb

−Jab 0 −Jab 0 −Jbb 0 |Jbb| 0

0 Jab cos φ 0 −Jab cos φ 0 Jbb 0 |Jbb|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A9)

whose four nonzero eigenvalues give the free-energy contribution

�F (2)[T, φ] = T

2
ln

[(
JaaJbb − J2

ab

)(
JaaJbb − J2

ab cos2 φ
)

π4T 4

]
.

The above can be conveniently written as

�F (2)[T, φ] = �F (2)[T ] − T �S(2)[cos2 φ], (A10)

where (with kB = 1)

�S(2)[cos2 φ] = −1

2
ln

[
1 − J2

ab cos2 φ

JaaJbb

]
≈ 1

2

J2
ab

JaaJbb
cos2 φ (A11)

is the (temperature independent) fluctuational entropy eval-
uated for a given angle φ between the orientations of the
two equal species pairs, and the last approximation holds for
small Jab. Thus the angle-constrained free energy has minima

at φ = 0, π and maxima at φ = ±π/2. Alignment or anti-
alignment thus results in maximal fluctuational entropy, that
can be quantified by �S(2)(φ = 0) − 〈�S(2)(φ)〉φ ≈ 0.1 for
Jab/

√
JaaJbb = 1/2.
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