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Square ice Coulomb phase as a percolated vertex lattice
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The square ice is a canonical example of a Coulomb phase in two dimensions: Its ground state is extensively
degenerate and satisfies a local constraint on the spin arrangement (the so-called ice rule). In this paper, we
use a loop flip algorithm to explore the properties of this ground state that we analyze not in terms of a spin
texture, but rather in terms of a spatial distribution of ice-rule satisfying vertices. More specifically, we determine
for various lattice sizes the average vertex populations characterizing the ice manifold, the pairwise vertex
correlations, and the size distribution of vertex clusters. Comparing these results to those obtained from random,
constraint-free vertex tilings, the square ice manifold is found to resemble an almost ideal vertex gas, and the
cluster size distribution of ice-rule satisfying vertices is well approximated by percolation theory. Remarkably,
this description remains reasonably accurate when monopoles are present in a dilute amount, allowing a direct
comparison with experiments. Revising former experimental results on two artificial square ice systems, we
illustrate the interest of our approach to spot the presence of a Coulomb phase from a vertex analysis.
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I. INTRODUCTION

The square ice [1,2] is a frustrated magnet. It is defined
by a set of Ising variables, placed and oriented along the
bonds of a two-dimensional square lattice in such a way that
each vertex is made of two spins pointing inward and two
spins pointing outward (Fig. 1). The square ice manifold is
extensively degenerate and thus characterized by a residual
entropy per site [2]. This manifold consists of all tilings based
on the six possible vertex arrangements satisfying the two-
in/two-out constraint (see the type I and type II vertices shown
in Fig. 1 with their associated degeneracy). This constraint
is the ice rule introduced by Bernal and Fowler [3] in water
ice [4], which translates into a local divergence-free condi-
tion of the magnetization vector field. Fluctuating from one
ice microstate to another cannot be achieved by flipping a
single spin, which necessarily violates the ice-rule constraint,
generating a pair of magnetically charged defects, the so-
called magnetic monopoles [5,6]. Fluctuations within the ice
manifold then require other spin-flip processes preserving the
ice-rule constraint.

The square ice provides one example, among others, in
the larger family of spin ice systems [7–10], and in highly
frustrated magnets on a broader perspective [11], of a freezing
of the single spin-flip dynamics before the ground state can
be reached. Its low-energy properties can be probed using
collective spin updates, for example along either closed loops,
fully comprised within the lattice or wrapping the torus under
periodic boundary conditions (PBCs), or strings, i.e., portions
of loops intersected by the lattice edges under open boundary
conditions (OBCs) (see Fig. 1). In fact, loop updates play a
key role in spin ice physics, and they are intimately related to
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the concept of Coulomb phase [12,13]. Although the concept
is quite general and applies to many types of lattice models,
whether or not they are magnetic, frustrated magnets are prob-
ably the most known systems in which the Coulomb phase
physics is actively studied [14–18]. Coulomb phases have
been also investigated in square [19–25] and kagomé [26–30]
artificial spin ices, in which their properties can be visualized
in real space and time, at the scale of the individual spin degree
of freedom [31–33].

II. MOTIVATION

The question we address in this paper is whether the
Coulomb phase that characterizes the square ice presents
peculiar signatures when analyzed not in terms of a magne-
tization texture but rather in terms of a vertex distribution.
In other words, we wonder whether the square ice Coulomb
phase has signatures other than peculiar magnetic correla-
tions. As we will see, the answer to this question is yes,
and we report below three main results. (1) The square ice
manifold is well approximated by an unconstrained random
distribution of type I and type II vertices when their frac-
tions are set to 37% and 63%, respectively, for large lattices.
Because of the large fraction of type II vertices, the vertex
distributions within the square ice are well described by those
of a percolated square lattice, whose properties are known
in two dimensions. (2) This description remains reasonable
as long as the vertex populations are close to these frac-
tions with a several percent tolerance. Interestingly, it also
remains relatively accurate when monopoles are present in
dilute amount (up to several percent, typically), enabling
direct comparison with experiments. (3) We confront two
experimental case studies from previous literature to our nu-
merical results, and analyze to what extent the picture of an
almost ideal gas of ice-rule satisfying vertices accounts for the
experiments.
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FIG. 1. Ising spins (arrows) arranged and oriented along the
bonds of a square lattice with open boundary conditions. Examples
of two loops and a string spanning across the lattice are highlighted
in pink and black. Flipping the spin directions within such loops
or strings allows the system to fluctuate without breaking the two-
in/two-out local constraint. The vertex map, associated with the spin
configuration, is shown as a colored background, with type I and type
II vertices appearing in blue and red, respectively. Numbers indicate
the vertex degeneracy.

III. VERTEX POPULATIONS, VERTEX CORRELATIONS,
AND CLUSTER SIZE DISTRIBUTION IN THE SQUARE ICE

The numerical approach we followed consists in generat-
ing a set of ground state configurations using an algorithm
shuffling spins along oriented loops. We proceeded as follows:
A starting configuration satisfying the ice-rule constraint (in
practice the ordered antiferromagnetic state made of a per-
fect tiling of type I vertices, but we checked that the initial
condition does not modify the results) is shuffled by flip-
ping a sufficiently large number of randomly chosen (closed)
loops and strings (touching two of the system boundaries,
see Fig. 1). As shown in Fig. 2(a), the fraction ρI of type I
vertices continuously decreases from 1 to a (size-dependent)
limit value after n2 loops and strings have been flipped, with
n2 being the number of vertices in the lattice. We note that
the efficiency of the shuffling process does not depend on the
boundary conditions, and similar results are found whether the
system has open or periodic boundary conditions [Fig. 2(a)].
The process is repeated N times to obtain a set of configura-
tions belonging to the ground state manifold. For each of the
N configurations, a vertex map is generated. These N maps are
then used to compute the vertex populations, the vertex-vertex
correlations, and the size distribution of the clusters formed by
type I and type II vertices. These quantities are also computed
for vertex lattices generated in a different way by choosing
each vertex randomly (i.e., disregarding the ice rule, imposing
no constraint between neighboring vertices), thus generating
an n × n random tiling of the two vertex types. The results of
the two methods are then compared.

The vertex populations obtained with the shuffling algo-
rithm are displayed in Fig. 2(b) for different lattice sizes.
These populations marginally depend on the lattice size, and
tend to constant values for the largest sampled arrays. Note
that the limit values for these two populations are 38% and
62% for type I and type II vertices, respectively, and not

FIG. 2. (a) Fraction ρI of type I vertices for different lattice sizes
(n × n vertices) against the number of loops and strings that were
reversed in the shuffling algorithm. Similar results are obtained for
open (OBC) and periodic (PBC) boundary conditions. (b) Limit val-
ues of ρI and ρII (fractions of type I and type II vertices, respectively)
averaged over N = 103 configurations for various lattice sizes. The
same color code is used on both figures. The standard deviation is
represented by the vertical colored lines (very small for n � 30).
(c) Pairwise vertex correlations as a function of the separation dis-
tance computed from the shuffling algorithm and from the random
tiling approach (n = 100, OBC). Standard deviation is ∼10−5.

1/3 and 2/3 as one might guess from the vertex degeneracy.
In fact, these 1/3 and 2/3 values correspond to the values
expected if the vertices were independent, which is not the
case here because of the constraint that links two neighboring
vertices by a common spin. We also note that the values found
for large lattices do not depend substantially on the boundary
conditions (open or periodic).

The vertex maps generated with the shuffling algorithm
allow us to determine the vertex-vertex correlators in the
Coulomb phase manifold. Since the vertices are either of type
I or type II in the ground state, they can be assigned an Ising
variable, and the correlation between neighboring vertices is
simply expressed by the quantity 〈σiσ j〉 averaged over all
(i, j) vertex pairs, with σi = ±1 depending on the vertex
type. We can then compute the value of these correlators as
a function of the vertex separation distance and compare the
results from the shuffling algorithm and the random tiling
approach (for which we naturally choose 38%/62% fractions
for the two vertex types). As anticipated, both methods return
small values of a few percent only [Fig. 2(c)]. At relatively
long distances, all correlator values tend to a constant of about
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6 × 10−2, which corresponds to the value obtained from the
random tiling approach: The vertex correlations in the square
ice are then very similar to those characterizing an ideal vertex
gas. We emphasize that, although the correlators differ in the
two approaches at short distances, the values are fairly small,
making them also potentially difficult to distinguish if the
statistics is low, as it is often the case experimentally (see
below). Here as well, the results do not depend much on the
boundary conditions.

Another important information that can be extracted from
the vertex maps obtained with the two methods is the size
distribution of clusters made of edge-connected vertices of a
given type (I or II). These clusters have size distributions (ex-
pressed in the number of vertices per cluster) that depend on
the fraction ρ of the considered vertex type. Given the percola-
tion threshold ρC � 0.593 for a square lattice (randomly filled
with two different types of edge-touching square elements),
the distributions of type I and type II vertices are expected to
distribute rather differently since ρI < ρC and ρII > ρC. This
can be seen in Fig. 3(a) where a typical vertex map is reported,
showing a large type II cluster that extends throughout the
lattice and bridges the facing edges (see the white path in
the figure). In the following, we will only consider the cluster
distribution of type I vertices to characterize the ground state
manifold of the square ice.

First, we find a striking similitude of the cluster size dis-
tributions obtained with the two algorithms [compare the
colored dots and the gray curves in Fig. 3(b)]. This demon-
strates numerically a simple result: A percolation problem
on a square lattice accounts well for the vertex distribu-
tion in the square ice manifold. While this result may seem
intuitive, one should keep in mind that a randomly tiled
vertex lattice is a priori different from a Coulomb phase.
Indeed, certain configurations present in an unconstrained
random arrangement of vertices do not exist in the square
ice due to the spin constraint linking neighboring vertices.
For example, a type II vertex surrounded by eight type I
vertices cannot be found in a Coulomb phase. Despite this
fundamental difference, our result shows that the square ice
Coulomb phase is an almost ideal gas of ice-rule satisfying
vertices.

In fact, differences between the two distributions become
discernible for large cluster sizes: For example, as show in
Fig. 3(b), the distribution of type I vertices in a 100 × 100 lat-
tice slightly deviates from the 38%/62% random distribution,
and replacing the initial 38%/62% fractions by 37%/63%
gives a much better agreement. In other words, the local
constraint present in the spin model translates into a change
of about 1% in the vertex fractions used in the random tiling
approach. This is also observed when the calculations are run
in periodic boundary conditions (data not shown). In all cases
and whatever the lattice size, ρI fractions smaller than 38% in
the random tiling approach better account for the results found
with the shuffling algorithm.

For a relatively small cluster size s, the ρI distribution
from the shuffling algorithm is well described by a power
law [34,35]. For large s values, ρI decreases faster, which may
altogether be accounted for by multiplying the at-percolation
power law with an ad hoc function of s, for instance an
exponential [36].

FIG. 3. (a) Typical vertex map obtained from the shuffling algo-
rithm. Type I and type II vertices appear in blue and red, respectively.
Due to their large fraction (62%), type II vertices percolate. A per-
colated path is highlighted by a white line. (b) Statistics of the type I
cluster size distribution for several lattice sizes (n × n vertices) under
open boundary conditions. Data are averaged over 103 microstates,
except for the 100 × 100 lattice for which 4 × 104 microstates have
been used. The case of a 100 × 100 random lattice of type I/II
vertices with a varying population of type I vertices is also plotted
for comparison (for better readability solid lines are used, yet the data
were obtained for the same domain size binning as for the shuffling
algorithm; the ρI value, between 0.35 and 0.41, is coded by the gray
shade, with �ρI = 0.05 increments).

Summarizing our results, one can consider that a spin
configuration presenting a vertex fraction of the order of
38%/62%, a first-neighbor vertex correlator of the order of
0.06, and a size distribution of type I clusters described
by the above-mentioned power law to be a Coulomb phase
microstate. We stress that the magnetic correlations of the
underlying spin texture are not considered here, and only the
vertex statistics matters.

In practice, particularly in artificial spin ice systems where
vertex maps can be measured, the ground state is not reached.
For example, artificial arrays of interacting nanomagnets gen-
erally present a nonzero density of monopoles, which we
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FIG. 4. Statistics of the type I cluster size distributions for the
100 × 100 lattice under open boundary conditions and for several
monopole densities ρm. Data are averaged over 2 × 103 microstates.
The case of a random tiling of type I/II vertices (no monopoles
are present) with varying populations of type I vertices is plotted
for comparison (for better readability solid lines are used, yet the
data were obtained for the same domain size binning as for the
shuffling algorithm; the ρI value, between 0.32 and 0.38, is coded
by the gray shade, with �ρI = 0.05 increments). The inset shows
how the fraction of type I vertices varies in the shuffling algorithm as
monopoles are injected in the lattice.

have not considered so far. The question is therefore to what
extent the description of artificial realizations of the square ice
using percolation theory remains a good approximation. To
address this issue, we proceeded the same way as before and
compared the outcome of the shuffling algorithm, applied to
starting configurations where monopoles have been injected
with a constant density ρm of 1%, 2%, 3%, 4%, and 5%, to
the purely random distributions. We note that the fraction of
type I/II vertices reduces linearly as the monopole density
increases (see the inset of Fig. 4). This is expected and a
monopole should replace a type I or type II vertex with a 38%
or 62% probability, in good agreement with what is found.
As monopoles tend to break large clusters into smaller ones,
the cluster size distributions feature fewer large clusters as ρm

increases. Remarkably, good agreement is again found with
a fully random vertex tiling, provided that the ρI/ρII ratio
is decreased according to the density of injected monopoles
(by a few to several percent in the ρm range studied here,
see Fig. 4). The comparison between the two approaches is
sufficiently robust to envisage a practical application to artifi-
cial spin ices.

IV. APPLICATION TO ARTIFICIAL SQUARE
ICE SYSTEMS

We finally consider two experimental situations known
to realize a Coulomb phase physics [19,24]. We reexamine
these previously published results through the analysis of

FIG. 5. Statistics of the type I cluster size distributions for differ-
ent experimental situations. (a) Two sets of four lattices consisting
of 20 × 20 vertices in which one sublattice is shifted vertically to
restore the ice condition between all nanomagnets [19]. (b) Two
lattices consisting of 30 × 30 vertices that physically connect the
neighboring nanomagnets, but leaving an empty hole at the vertex
site to retrieve the type I/type II energy degeneracy [24]. (c) Two
lattices consisting of 30 × 30 vertices such as in (b), but in which
the ice condition is detuned [24]. In all three cases, the experimental
measurements are compared to predictions from the shuffling al-
gorithm. Although good agreement is found for the first two case
scenarios (a) and (b), the model fails to reproduce the results in the
third case (c), especially for large cluster sizes. In the insets of (b) and
(c), φ indicates the diameter of the hole left at the vertex center.

224422-4



SQUARE ICE COULOMB PHASE AS A PERCOLATED … PHYSICAL REVIEW B 109, 224422 (2024)

TABLE I. Vertex populations for type I and type II vertices (ρI

and ρII, respectively) as well as monopoles (ρm), and first-neighbor
vertex correlator C1 in different artificial spin ice (ASI) structures.
The lattice size is n × n vertices. Populations expected in a random
vertex tiling containing a monopole density ρm are indicated as ρ

gas
I

and ρ
gas
II for type I and type II vertices, respectively [37].

Lattice n ρI ρII ρm C1 ρ
gas
I ρ

gas
II

1 [19] 20 0.285 0.590 0.125 0.09 0.322 0.553
2 [19] 20 0.320 0.598 0.083 0.14 0.339 0.578
3 [19] 20 0.280 0.615 0.105 0.14 0.330 0.565
4 [19] 20 0.283 0.598 0.120 0.08 0.324 0.556
5 [19] 20 0.320 0.600 0.080 0.12 0.340 0.580
6 [19] 20 0.310 0.618 0.073 0.10 0.343 0.584
7 [19] 20 0.298 0.625 0.078 0.19 0.341 0.581
8 [19] 20 0.233 0.678 0.090 0.21 0.336 0.574
9 [24] 30 0.333 0.663 0.003 0.27 0.374 0.623
10 [24] 30 0.327 0.672 0.001 0.21 0.375 0.624
11 [24] 30 0.460 0.533 0.007 0.21 0.372 0.621
12 [24] 30 0.477 0.522 0.001 0.17 0.375 0.624

the vertex statistics, following the methodology presented
above. The two cases are interesting as they represent two
distinct strategies to realize the square ice experimentally.
The first data set has been obtained by modifying the two-
dimensional square ice and exploiting the third direction of
space, perpendicular to the lattice plane, to render the first-
and second-neighbor coupling strengths equal [19,22] [see the
inset of Fig. 5(a)]. The second data set has been obtained
for a truly planar square lattice in which the nanomagnets
are physically connected, but with an empty hole at the ver-
tex center to restore the energy degeneracy of type I and
type II vertices [24] [see the inset of Fig. 5(b)]. The vertex
populations ρI and ρII, the monopole density ρm, and the
first-neighbor vertex correlator C1 are reported in Table I. We
stress that, while the two strategies led to the observation of a
Coulomb phase, the table shows that the vertex statistics differ
substantially in the two cases. In particular, the monopole den-
sity varies by almost an order of magnitude between the two
realizations [38].

The experimentally measured cluster size distributions of
type I vertices are compared with those deduced from the
shuffling algorithm. The results of this comparison are re-
ported in Figs. 5(a) and 5(b) for the two case scenarios.
Remarkably, good agreement is found, demonstrating that the
experimentally measured Coulomb phase microstates are well
described by an almost ideal vertex gas, despite the presence
of magnetic monopoles, as well as vertex populations and
correlation differing from the expected ones. In particular, it
is interesting to note that the ρI/ρII vertex populations mea-
sured in ten artificial square ice realizations are systematically
lower/larger than the ones expected in a purely random vertex
tiling containing a monopole density ρm (see Table I). In other
words, despite the fact that these ten lattices are characterized
by magnetic correlations resembling those of the square ice
[19,24], our vertex analysis reveals that experimental condi-
tions may be further optimized to truly match the Coulomb
phase properties. For example, the analysis performed on the
first eight lattices indicates that the height offset (100 nm,

see Ref. [19]) used to restore the ice degeneracy in field
demagnetized systems might be slightly too large. Reducing
this height offset should provide even better agreement with
the square ice physics, consistent with the coupling strength
analysis reported in Ref. [22]. The same interpretation could
be also made for lattices 9 and 10, for which the hole diameter
inserted at the lattice vertices might be slightly too small.
Increasing φ might bring the system closer to the square ice
Coulomb phase, although the fairly large value of the vertex
correlator C1 suggests that the vertex distribution could be
biased (see Table I). Indeed, it is likely that the field demagne-
tization protocol employed in this paper favors the formation
of large type II clusters, kinetically stabilized by magnetic do-
main walls that can propagate throughout the lattice, contrary
to what happens in systems in which the nanomagnets are
physically disconnected [24].

Finally, we consider other experimental cases known to
deviate slightly from the properties of a Coulomb phase [24].
These systems were obtained from the second strategy by
increasing the hole diameter left at the vertex center so that
the ice-rule condition is detuned. In the corresponding mi-
crostates, antiferromagnetic correlations are more pronounced
than what they should be in the Coulomb phase, and the vertex
populations deviate from the populations expected in the ice
regime (lattices 11 and 12 in Table I). Comparison with the
shuffling algorithm reveals a clear discrepancy, notably for
large cluster sizes [see Fig. 5(c)]. There, the experimental
data cannot be faithfully reproduced, and the magnetic con-
figurations cannot be considered as an almost ideal vertex
gas.

These different comparisons illustrate the central result
of this study: The Coulomb phase of the square ice is well
approximated by an almost ideal vertex gas, even when
monopoles are present in the system. Our results also suggest
that a phase in which the vertex cluster distribution does not
follow the analytical form derived from percolation theory is
likely not a Coulomb phase. The size distribution of the largest
clusters in particular can be used as a sensitive “criterion.”
In the context of artificial spin ice physics, the type I cluster
size distribution thus appears as a relevant quantity to spot
the presence of a Coulomb phase, complementary to what
can be done by computing the magnetic correlations or the
magnetic structure factor. To conclude, we stress that we have
studied experimentally the case of field demagnetized artifi-
cial square ice systems. It would be interesting to proceed the
same way with thermally active lattices, such as those reported
in Refs. [20,21]. However, the monopole fractions is large
(about 37% and 23%, respectively) in those systems in which
the interactions between neighboring nanomagnets is weak
due to their small volume. As a consequence, the fraction of
type II vertices is below (or barely reaches) the percolation
threshold. Reducing the density of magnetic monopoles is
thus a prerequisite to extend our analysis to thermally active
systems.
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