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Energy landscape of noncollinear exchange coupled magnetic multilayers

George Lertzman-Lepofsky ,1,* Afan Terko ,1,† Sabri Koraltan ,2 Dieter Suess ,2 Erol Girt ,1,‡ and Claas Abert 2,§

1Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
2Faculty of Physics, University of Vienna, Vienna 1010, Austria

(Received 29 February 2024; revised 11 May 2024; accepted 13 May 2024; published 17 June 2024)

We conduct an exploration of the energy landscape of two coupled ferromagnetic layers with perpendicular-
to-plane uniaxial anisotropy using finite-element micromagnetic simulations. These multilayers can be used to
produce noncollinearity in spin-transfer torque magnetic random-access memory cells, which has been shown
to increase the performance of this class of computer memory. We show that there exists a range of values of
the interlayer exchange coupling constants for which the magnetic state of these multilayers can relax into two
energy minima. The size of this region is determined by the difference in the magnitude of the layer anisotropies
and is minimized when this difference is large. In this case, there is a wide range of experimentally achievable
coupling constants that can produce desirable and stable noncollinear alignment. We investigate the energy
barriers separating the local and global minima using string method simulations, showing that the stabilities of
the minima increase with increasing difference in the anisotropy of the ferromagnetic layers. We provide an
analytical solution to the location of the minima in the energy landscape of coupled macrospins, which has good
agreement with our micromagnetic results for a case involving ferromagnetic layers with the same thickness
and anisotropy, no demagnetization field, and large exchange stiffness. These results are important to understand
how best to employ noncollinear coupling in the next generation of thin-film magnetic devices.
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I. INTRODUCTION

While magnetic computer memory dominated the nascent
stages of fast-memory applications, it was quickly supplanted
by solid-state, transistor-based, dynamic random-access mem-
ory (DRAM) and static random-access memory (SRAM)
[1]. Recently, however, there has been renewed academic
and commercial interest in novel designs of magnetic RAM
(MRAM), some of which promise to combine the density and
low-cost of DRAM, the performance of static RAM (SRAM),
and the nonvolatility of hard disk drives [2].

At the heart of contemporary MRAM designs is a trilayer
configuration, which comprises two magnetic layers separated
by a nonmagnetic, insulating spacer. This is commonly re-
ferred to as a magnetic tunnel junction (MTJ). Typically, one
layer has a maximized uniaxial anisotropy (the hard layer),
while the other has a reduced but sufficiently large uniaxial
anisotropy to maintain thermal stability (the soft layer) [3,4].
Writing operations are performed by reversing the relative
direction of magnetization of these layers (either antiparallel
or parallel) by switching the polarization of the softer layer,
which is thus referred to as the “free layer.” The relative
orientation of the layers’ magnetization is measured through
tunneling magnetoresistance.

One such design of MRAM is especially exciting: spin-
transfer torque MRAM (STT-MRAM), which allows the
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reading and writing operations of a single memory bit to be
performed by the current supplied by a single driving MOS-
FET. During a write operation, a large current is developed
across the perpendicularly magnetized magnetic layers, being
spin polarized by the hard layer. This current interacts with the
magnetization of the free layer through spin-transfer torque
(STT), wherein a spin-polarized current can induce magnetic
reversal by exerting a torque on the local magnetic moment
[5]. Thus, the direction of the applied current determines
the resultant direction of magnetization in the free layer. In
practice, STT-MRAM devices are often composed of three
layers: the free layer (FM3), a reference layer (FM2), and
a stabilizing layer (FM1), as shown in Fig. 1(a). FM1 and
FM2 are strongly antiferromagnetically exchange coupled,
i.e., their moments are antiparallel. This coupling improves
the stability of FM2 during writing processes and, ideally,
eliminates unwanted stray fields on FM3 [6,7]. In this work
we will consider the design of FM1 and FM2 of a three-layer
STT-MRAM structure, primarily with the assumption that
FM3 is free and stores the magnetic bit. However, one can
instead consider a design where both FM1 and FM2 comprise
the free layer and store the magnetic information, while FM3
is the immobile hard layer.

There is already widespread industry and academic interest
in STT-MRAM [8–10], and while some modern designs are
showing substantially reduced writing times [11,12], switch-
ing currents and write-error rates remain unacceptably large
[13,14]. Reducing the switching current and increasing the
writing speed while maintaining long-term thermal stability
is of critical importance. It was demonstrated in [15,16] that
the introduction of noncollinear coupling (an interlayer an-
gle between 0◦ and 180◦) between the magnetic moments of
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FIG. 1. Schematic of an STT-MRAM stack, where a single bit of
memory is stored in the relative orientation of the magnetic moment
of the second and third ferromagnetic layers, FM2 and FM3. Writing
is performed by reversing the direction of magnetization of FM3 by
developing a current along either the positive or negative vertical
axis. (a) A collinear STT-MRAM cell with θ = 180◦ and (b) a
noncollinear STT-MRAM cell, with 90◦ < θ < 180◦.

FM1 and FM2 can substantially improve the performance of
STT-MRAM devices in this regard by ensuring a nonzero
(and controllable) spin torque on FM3 at the beginning of
switching processes, as shown in Fig. 1(b). In devices without
this modification, the only source of noncollinearity between
FM2 and FM3 is the random off-axis thermal motion of the
magnetic moments of the ferromagnetic layers. Instead, in this
work we investigate the effect of biquadratic in addition to
bilinear interlayer exchange coupling to create noncollinear
magnetic alignment of two ferromagnetic layers. We primarily
look from the perspective of application in STT-MRAM, but
much of the results of this work can be applied to magnetic
sensors, spin-torque oscillators, and other thin-film magnetic
devices [17].

In this paper, we will first construct a macrospin model
of the magnetic energy of two coupled ferromagnetic layers,
FM1 and FM2 (Sec. III C). This model will be used for analyt-
ical calculations of the magnetization state of this system. We
will then present results from full micromagnetic simulations
which illustrate the coupling angle between FM1 and FM2 as
a function of the interlayer exchange coupling strengths and
layer anisotropies of a nanopillar (Sec. IV A). Maintaining the
same material parameters, we will then simulate the energy
barriers between minima in the magnetic energy landscape
of these layers (Sec. IV B). In these simulations, we will
consider the results only in terms of experimentally achiev-
able material parameters. Finally, we will compare some of
these simulated results to those from an analytic solution to
the macrospin model, considering a simplified case for equal
layer anisotropies and without the effects of the stray field
(Sec. IV C). We will provide a discussion of our findings in
the context of magnetic device design throughout.

II. THEORY

A. Interlayer exchange coupling

The magnetization configuration of a multilayer is gov-
erned by multiple energy contributions. The areal interlayer
exchange energy density [17] represents the strength of

coupling between layers of magnetic material separated by a
nonmagnetic spacer layer [18]. It can be expressed as

Eiex = J1 cos (θ ) + J2 cos2 (θ ), (1)

where J1 is the bilinear coupling constant, J2 is the biquadratic
coupling constant, and θ is the angle between the magnetic
moments of the coupled layers. The bilinear term contributes
energy minima at either 0◦ (parallel) or 180◦ (antiparallel)
depending on the sign of J1. In our convention, a positive J1 fa-
vors antiferromagnetic coupling. Meanwhile, the biquadratic
term is always positive and thus has identical minima at 90◦
and 270◦, which correspond to perpendicularly magnetized
layers. When J2 is zero or very small relative to J1, the mo-
ments of the layers are collinear. Meanwhile, if J2 > J1/2 (for
J1 and J2 > 0), and in the absence of other magnetic energy
contributions, noncollinear configurations at the energy min-
imum will appear, as demonstrated by the first derivative of
Eq. (1).

It has been shown experimentally that the strength and sign
of the bilinear term (determined by J1) oscillates depending on
the thickness and composition of the spacer [18]. The contri-
bution of the biquadratic term (J2) is shown to be induced by
spatial variations in J1 [17,19], the atomic surface roughness
of the coupled layers [20], pin holes [21], and loose spins [22].
Moreover, it was recently discovered that a new class of spacer
layers containing a nonmagnetic material (Ru or Ir) alloyed
with a ferromagnetic material (Fe or Co) can be used to
precisely control noncollinear coupling of magnetic moments,
even those of smooth and uniform multilayers [17,23,24]. An
atomistic model developed by Abert et al. in [25] was shown
to successfully reproduce the noncollinear coupling behavior
in these structures. These spacers allow the highly scalable
fabrication of noncollinearly coupled multilayers.

B. Anisotropy energy

The nanopillars simulated in this work consist of magnetic
layers with uniform material parameters throughout the layer.
Additionally, the ferromagnetic layers have uniaxial magne-
tocrystalline anisotropy perpendicular to the surface of the
substrate. This anisotropy is larger than the shape anisotropy,
forcing the magnetization of the films to orient perpendicular
to the plane. The volumetric uniaxial anisotropy energy den-
sity of a layer is given by

εKu = −Ku cos2(φ), (2)

where Ku is the uniaxial anisotropy constant and φ is the angle
of the magnetic moment with respect to the anisotropy axis
which, in this case, is perpendicular to the film plane.

In addition to crystallographic uniaxial anisotropy, the
aspect ratio of a sample can impose a strongly preferred di-
rection of magnetization, or shape anisotropy. The volumetric
shape anisotropy energy density is defined as [26]

εKs = N
μ0

2
M2

s cos2 (φ), (3)

where N is the demagnetization factor (a function of the
sample aspect ratio), μ0 is the permeability of free space, and
φ is, as defined in Eq. (2), the angle between the magnetic
moment and the sample surface normal.
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The STT-MRAM nanopillars under study have an aspect
ratio which confers a shape anisotropy causing magnetization
in plane. In this case, the combined effect of EKu and EKs

determines the relaxed state of a sample; whichever is larger
will dominate and determine whether a sample is magnetized
in or out of plane in its energy minimum. Thus, the effective
volumetric anisotropy energy density is defined as

εKeff = εKu + εKs = −Keff cos2(φ), (4)

with the effective anisotropy constant defined as

Keff = Ku − N
μ0

2
M2

s . (5)

III. METHODS

The simulations in this work are performed in magnum.pi
[27], a finite-element micromagnetic solver. In contrast to
the analytical macrospin approach, introduced in Sec. III C,
the micromagnetic simulations in magnum.pi take into ac-
count the demagnetization field and allow for inhomogeneous
magnetization configurations within the ferromagnetic layers
[28,29]. The demagnetization field includes the external inter-
action due to the stray fields generated by the ferromagnetic
layers and the internal shape anisotropy. The boundary con-
ditions used in the micromagnetic simulations are as defined
in [28,29]. magnum.pi requires a mesh of the simulation
space: all numerically simulated structures in this work are
a nanopillar with two ferromagnetic layers, FM1 and FM2.
These have thicknesses of d = 3 nm, while the nonmagnetic
spacer has a thickness of d = 0.5 nm. The entire stack is a
circular cylinder with a radius of 15 nm. This models the
bottom two layers of Fig. 1. Thus, the magnetic field gen-
erated by FM3 on FM1 and FM2 is not included in our
calculations.

A. Micromagnetic relaxations

To determine both local and global energy minima of
the magnetization states of two interlayer exchange coupled
ferromagnetic layers, each relaxation simulation is produced
from one of two possible initial conditions: with the magnetic
moments of FM1 and FM2 aligned collinearly parallel or
collinearly antiparallel [30]. In either case, their moments are
initially oriented along the easy axes of the magnetization
of FM1 and FM2, collinear with the z axis. Herein, these
initial collinear alignments will be referred to as “PP” or
“AP,” respectively. From these PP and AP states, the system
is allowed to “relax” toward an energy minimum determined
by the effective field contributions of the exchange effect, the
anisotropy energy, demagnetization, and interlayer exchange
coupling. This minimum determines the resultant interlayer
angle. While the FM layers of the relaxed states may not
always be collinear, the z components of their magnetic
moments will either point in the same or in opposite direc-
tions [30]. Noncollinear states at an energy minimum will
be referred to as noncollinear PP (NCPP) and noncollinear
AP (NCAP) to reflect the alignment or antialignment of
the z components of the magnetization of FM1 and FM2.
We note that PP initial conditions are most easily repro-
duced while fabricating film structures: the magnetization of a

multilayer is biased by an external field along the easy axis of
magnetization to align the magnetic moments of both
FM layers, and then allowed to relax into an energy
minimum.

The anisotropy constant Ku in each layer is chosen to take
one of three values: Ku = 0.6, 0.8, and 1.0 MJ m−3. This
ensures that Ku > N μ0

2 M2s and that the thermal stability con-

dition of K1,2,effV
KBT � 60 is satisfied for the layer dimensions used

in our calculations, corresponding to an operating temperature
of T = 300 K [3,4]. These anisotropy constants are repre-
sentative of CoPt-based alloys and multilayers [31,32]. Both
ferromagnetic layers have a saturation magnetization of Ms =
1 MA m−1 and an exchange stiffness of Aex = 13 pJ m−1,
which is likewise appropriate for CoPt films [32]. These
quantities define the exchange length, which determines the
minimum size of the discretizations in the simulation mesh,
which is thus chosen to be 3.0 nm. We relax the system into
a local minimum by integrating the Landau-Lifshitz-Gilbert
(LLG) equation with a high Gilbert damping of α = 1.0,
which reduces computational run times but does not impact
the accuracy of the results.

In these simulations, we choose to vary J1 over 0 to
4 mJ m−2 and J2 over 0 to 3 mJ m−2 to reflect the range of
values which are currently considered experimentally achiev-
able across RuFe spacer layers [17] while providing some
additional context to act as a predictive tool for future work.

B. String method

Where the relaxation simulations described in Sec. III A
produce the same final state regardless of PP or AP initial
condition, that state is known to be the global minimum
for that pair of J1, J2 and Ku1, Ku2. Where these relax-
ations produce different final alignments, this is indicative
of a local minimum in the energy landscape. The minimum
energy path between these minima can be computed using
the string method, thereby identifying the local and global
minimum and quantifying the height of the energy barrier
between minima. String-method simulations as implemented
in magnum.pi [33,34] are visualized in Fig. 2, wherein the
path between each energy minimum is initially discretized
into n “images” representing the transitional magnetization
states between the NCPP and NCAP alignments. These im-
ages are iteratively relaxed toward the path with minimized
barrier height using the steepest descent method, according
to the direction of the damping term of the LLG equation
m × (m × Heff ). The thermal stability of the minima can be
determined from the difference in energy from each of the
NCPP and NCAP states to the peak of the minimum energy
path, which likewise allows us to identify the magnetic state
of the global minimum. In this work, the energy path from
an NCPP to an NCAP state is discretized using 20 images,
which are evolved toward the minimum energy path over 100
iterations.

C. Macrospin model

A macrospin model provides a simplified yet effective
framework for understanding the magnetostatic energy land-
scape in ferromagnetic layers. By assuming the exchange
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FIG. 2. A visualization of the string method applied to the energy
landscape defined by the energy dependence on the angles of the
magnetic moments of FM1 and FM2 with respect to the z axis, φ1

and φ2. Initially, the path between the two energy minima (NCPP
and NCAP) of the relaxed FM layers is discretized along an arbitrary
path into n “images” (initial path). Each of these states are itera-
tively relaxed using the steepest descent method and then rearranged
equidistantly along an interpolated spline. After a sufficient number
of iterations, this spline lies along the minimum energy path.

constant Aex to be infinite, the model implies infinitely strong
coupling between adjacent magnetic moments, ensuring that
the magnetic moments within ferromagnetic layers are per-
fectly aligned. We likewise do not consider the effects of the
stray fields produced by each ferromagnetic layer. This allows
for the analysis to focus on the layer as a singular magnetic
entity, without the complexity of inhomogeneous magnetic
states. This assumption is justified for system sizes below the
single-domain limit. We construct a model to represent the
areal magnetic energy density of two ferromagnetic layers,
separated by a nonmagnetic spacer. Figure 3 illustrates the
film structure considered in our macrospin model. The areal
energy density for this configuration in the absence of an

FIG. 3. Schematic representation of a macrospin model of two
ferromagnetic layers, FM1 and FM2, separated by a nonmagnetic
spacer. K1,eff and K2,eff are effective anisotropies, d1 and d2 are layer
thicknesses, and J1 and J2 are the interlayer exchange coefficients for
the coupling between FM1 and FM2. φ1 and φ2 are the angles formed
by the macrospins with respect to the easy axis of magnetization.
(a) A noncollinear antiparallel magnetization configuration (NCAP),
and (b) a noncollinear parallel magnetization configuration (NCPP).

external magnetic field is given by

E (φ1, φ2) = −K1,effd1 cos2(φ1) − K2,effd2 cos2(φ2)

+ J1 cos(φ1 − φ2) + J2 cos2(φ1 − φ2), (6)

where K1,eff and K2,eff are the effective anisotropy con-
stants for ferromagnetic layers FM1 and FM2, respectively.
The thicknesses of these layers are denoted by d1 and
d2. The angles φ1 and φ2 are defined as the orientations
of the magnetic moments in each layer relative to the easy
axis of magnetization, as shown in Fig. 3. J1 and J2 are
the bilinear and biquadratic interlayer coupling strengths,
respectively.

IV. RESULTS

A. Micromagnetic interlayer coupling angles

The results of micromagnetic simulations of the angle be-
tween the magnetic moments of FM1 and FM2, the interlayer
coupling angle, are shown in Fig. 4, for varying coupling,
anisotropies, and either parallel (PP) or antiparallel (AP) ini-
tial conditions. The interlayer coupling angle at the energy
minimum is given according to the color bar. Multilayers that
relax to an NCPP state have values of J1 and J2 left of the red
line. Conversely, multilayers that relax to an NCAP state have
values of J1 and J2 right of the red line. The dashed purple line
shows the J2 > J1/2 condition for noncollinearity. Taking into
account only interlayer exchange coupling, multilayers with
J1 and J2 above and to the left of this line will favor a non-
collinear alignment of magnetic moments of FM1 and FM2.
The addition of anisotropy to the model shifts the required
value of J2 to produce noncollinearity larger than J1/2. For use
as the pinning and reference layers of a noncollinearly coupled
STT-MRAM device, one desires an NCAP multilayer, which
minimizes the stray field on FM3. This configuration must
exist for values of J1 and J2 which can be experimentally
obtained from the coupling of FM1 and FM2 across RuFe and
IrFe spacer layers [17,24].

For multilayers with the same uniaxial anisotropies, as in
Figs. 4(a) and 4(d), there is a marked difference in the size
and shape of the noncollinear regions produced by AP and PP
initial conditions. This is indicative of the existence of two en-
ergy minima in the region where Figs. 4(a) and 4(d) differ. The
energy states in these minima, either NCPP or NCAP, resem-
ble the macrospin configurations in Fig. 3. As well, there does
not exist a large region of NCAP states with values of J1 and
J2 which are produced by current spacer layers and is invariant
through changes in the initial condition: only the area between
the red line and the yellow region in Fig. 4(a) satisfies this
condition. Therefore, multilayers with equal anisotropies may
not be appropriate for use as a reference layer in STT-MRAM.
The regions where the relaxed state depends on the initial
conditions (where two minima exist) are shown in Fig. 5.
Meanwhile, Figs. 4(b), 4(c), 4(e), and 4(f) show interlayer
angles for multilayers with different anisotropies. These show
a clear trend in comparison to Figs. 4(a) and 4(d): the region
where the noncollinear states are independent of the initial
conditions is much larger and extends to much lower values
of J1 and J2. This region is shown to grow with an increasing
difference between the anisotropies of FM1 and FM2. Indeed,
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FIG. 4. Simulated interlayer coupling angle for relaxations starting from PP (a)–(c) and AP initial conditions (d)–(f), for varying
interlayer coupling constants J1 and J2, and uniaxial anisotropies in FM1, Ku1 = 0.6, 0.8, and 1.0 MJ m−3. FM2 is the same in all plots,
Ku2 = 0.6 MJ m−3. The red line demarcates the final state: left of the line for NCPP and PP, right for NCAP and AP. The dashed purple line
inscribes the J2 > J1/2 condition for noncollinearity taking into account only the interlayer exchange coupling energy.

for Ku1,2 = [1.0, 0.6] MJ m−3, the desired NCAP states are
completely invariant to initial conditions for coupling values
as low as J1 ≈ 0.59 mJ m−2 and J2 ≈ 0.63 mJ m−2, which
demonstrates that samples with these material parameters
should be reproducible in experiment with currently available
spacer layers.

FIG. 5. The regions of the relaxation simulations for which two
energy minima exist are enclosed by the red lines and colored
light blue. The boundaries are calculated in Fig. 4, and they are
defined by the transition from NCPP to NCAP for a given initial
condition and pair of anisotropies. The layers have anisotropies (a)
Ku1,2 = [0.6, 0.6] MJ m−3, (b) Ku1,2 = [0.8, 0.6] MJ m−3, and (c)
Ku1,2 = [1.0, 0.6] MJ m−3.

We are confident of the presence of at most two minima
in this energy landscape. Preliminary simulations were per-
formed with a randomized initial orientation of each magnetic
spin. The relaxed states produced by these simulations were
entirely consistent with the ordered PP and AP initial condi-
tions of the presented results.

B. Micromagnetic energy barriers

As shown in Sec. IV A, there exist two energy minima
(NCPP or NCAP) for certain values of J1 and J2 and Ku1,2. It
has likewise been shown that the range of J1 and J2 that pro-
duces both minima is larger when the multilayered structures
have layers with equal anisotropies. For given anisotropies
of FM1 and FM2, this region is defined by the area be-
tween the red lines from each initial condition in Fig. 4. For
example, the blue region of Fig. 5(a) is obtained from the
area between the red lines calculated from PP and AP initial
conditions in Figs. 4(a) and 4(d), respectively. These regions
define the pairs of J1 and J2 for which we perform string-
method simulations. This is by necessity since the string
method requires at least one stable state for each end of the
path.

Figure 6 shows two evolutions from an NCPP to an NCAP
state: (a) where NCPP is the global minimum and (b) where
NCAP is the global minimum, obtained from string-method
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FIG. 6. Minimum energy path and energy barriers calcu-
lated using the string method for (a) J1 = 0.80 mJ m−2, J2 =
0.57 mJ m−2 and (b) J1 = 0.55 mJ m−2, J2 = 0.66 mJ m−2, with
Ku1,2 = [0.6, 0.6] MJ m−3. The NCAP state is the global minimum
in (a), while the NCPP state is the global minimum in (b). The barrier
height is measured with respect to each minimum. Each “image”
corresponds to a black dot along the minimum energy path in the
string method diagram, Fig. 2.

simulations. These correspond to multilayers with J1 and J2

above and below the violet lines of Figs. 7(a) and 7(d), re-
spectively. As in the figure, one can define two barrier heights
for a given pair of J1 and J2, one from NCPP to the maxi-
mum barrier energy and another from NCAP to the maximum

barrier energy. Each describes the stability of its respec-
tive minimum under thermal fluctuations or other sources of
energy.

The results of string-method simulations for the values of
J1 and J2 that produce local minima, one for each of the plots
in Fig. 5, are shown in Fig. 7. This figure is zoomed-in with
respect to Figs. 4 and 5 to highlight lower values of J1 and J2.
As in Fig. 4, the results in Fig. 7 are given in two plots for
each pair of anisotropies, Ku1,2 = [0.6, 0.6] MJ m−3, Ku1,2 =
[0.8, 0.6] MJ m−3, and Ku1,2 = [1.0, 0.6] MJ m−3. The fig-
ure shows the difference in energy from each NCPP state to
the maximum barrier energy [Figs. 7(a)–7(c)], and the differ-
ence in energy from each NCAP state to the maximum barrier
energy [Figs. 7(d)–7(f)]. Thus, the plot is colored according
to the magnitude of the energy barriers defined in Fig. 6.
These results show that there exist critical values of J1 and
J2 that separate the region where NCPP is the global energy
minimum and where NCAP is the global energy minimum,
which is demarcated by violet lines in the figures. These lines
bend down toward the J1 axis for small J2 due to the increasing
relative effect of the demagnetization field for low coupling
energy density.

For the studied anisotropies, barrier heights are larger for
multilayers with unequal anisotropies as compared with those

FIG. 7. Energy barrier heights between relaxed NCPP and NCAP states with varying uniaxial anisotropies, simulated for values of J1 and
J2 for which there are two minima (the blue regions of Fig. 5, zoomed to highlight a smaller range of values of J1 and J2). (a)–(c) Show the
height of the barrier from the NCPP state to the energy maximum, while (d)–(f) show the height of the barrier from NCAP to the maximum.
The violet line divides the two regions with differing magnetic alignments at the global energy minimum: above and to the left for NCPP,
below and to the right for NCAP. The dashed cyan line divides regions with barrier heights above and below 60 kBT.
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with equal anisotropies for the same values of J1 and J2.
This indicates that both the NCAP and NCPP states are more
stable when anisotropies are unequal, as demonstrated by the
trend over Figs. 7(a)–7(c) and 7(d)–7(f). Figure 7(c) shows
that the energy barrier for every state is above 60 kBT for
Ku1,2 = [1.0, 0.6] MJ m−3. Similarly, Fig. 7(b) shows that
barriers heights are below 60 kBT only in a very small re-
gion for Ku1,2 = [0.8, 0.6] MJ m−3. In contrast, for Ku1,2 =
[0.6, 0.6] MJ m−3 [Fig. 7(a)], the majority of the barriers
are below 60 kBT. According to [4], a barrier height of at
least 60 kBT is required to guarantee stability of a mag-
netic state to thermal fluctuations for at least 10 years. This
indicates that there is a high probability that layers with
Ku1,2 = [0.6, 0.6] MJ m−3 will repeatedly transition between
two minima for most values of J1 and J2 in the long term.
However, these barrier heights could potentially be tuned
through adjustments to layer dimensions, allowing the struc-
tures in the two-minima band of Fig. 7(a) to be used in a
probabilistic computing device [35].

We have focused thus far on applications in a three-layer
STT-MRAM device, where FM1 and FM2 comprise a stable
reference magnetization for a free FM3. Alternatively, FM1
and FM2 can be designed to comprise the memory storage
element themselves, with FM3 used as a stable reference. In
this case, it is required that there exist two stable magneti-
zation states in the energy landscape, both NCPP and NCPP,
to store magnetic information. That is, these devices can only
exist within the blue regions of Fig. 5. However, such a device
will, in general, have an unequal energy barrier from each
minimum to the peak of the barrier, as represented by the
states in Fig. 6. This results in an anisotropy in the direction of
the writing current, which may be desirable in some applica-
tions. In contrast, in order for a noncollinear FM1 and FM2 to
have symmetric energy barriers, J1 and J2 must lie precisely
along the violet line of Fig. 7. This would pose significant
fabrication challenges owing to the degree of specificity of
the values of J1 and J2.

C. Analytical solution to the macrospin model

The macrospin model, as outlined in Eq. (6), can be analyt-
ically solved for the case of ferromagnetic layers having the
same anisotropy (K1,eff = K2,eff = Ku), and thicknesses (d1 =
d2 = d). Under these conditions, the areal energy density can
be expressed as

E (φ1, φ2) = −Kud cos2(φ1) − Kud cos2(φ2)

+ J1 cos(φ1 − φ2) + J2 cos2(φ1 − φ2). (7)

To identify the relative minima within this energy landscape,
we employ the second partial derivative test. First, we find the
critical points of E (φ1, φ2) by setting its first partial deriva-
tives with respect to φ1 and φ2 to zero. This yields a system of
two equations, and their summation leads to a condition

sin (2φ1) + sin (2φ2) = 0. (8)

We restrict the analysis to 0 � φ1,2 � 2π . The unique solu-
tions identified are φ2 = π − φ1 and φ2 = −φ1.

Next, we compute the second partial derivatives with re-
spect to φ1 and φ2, as well as the mixed partial derivative. We

FIG. 8. Variation in the interlayer coupling angle between two
ferromagnetic layers as predicted by the macrospin model [Eq. (7)].
(a) The first solution, as described by Eq. (11) when J1 + Kud < 2J2,
and θ = 180◦ when J1 + Kud > 2J2. (b) The second solution, in
accordance with Eq. (12) when Kud < J1 + 2J2 and J1 < Kud , and
θ = 0◦ when Kud > J1 + 2J2. The region where both solutions ex-
ist is demarcated by a dashed violet line, indicating the condition
J1 < Kud . The solid red circle on each plot highlights a specific
pair of J1 and J2 values, J1 = 1.0 mJ m−2 and J2 = 2.0 mJ m−2, for
which there exist two minima at θNCAP = 134◦ and θNCPP = 78◦. Both
layers have identical magnetic anisotropies and thicknesses, with
Ku1,2 = 0.6 MJ m−3 and d1,2 = 3.0 nm, respectively.

can then evaluate the Hessian matrix at the two determined
critical points. A critical point is identified as a minimum if the
determinant of the Hessian matrix is positive and the second
derivative with respect to either φ1 or φ2 is also positive.
These solutions represent the macrospin orientations wherein
the energy function E (φ1, φ2) attains a relative minimum.
Furthermore, we restrict J1,2 > 0, Ku > 0, and d > 0. Figure 8
shows the interlayer angle produced from two distinct solu-
tions to Eq. (7) for Ku1,2 = 0.6 MJ m−3 and d1,2 = 3.0 nm.

The first solution is given by the following equations:

φ1 = π − arctan

⎛
⎝

√
−J1 − 2J2 + Kud

J1 + 2J2 + Kud

⎞
⎠,

φ2 = π − φ1, (9)

where J1 + Kud < 2J2, which gives interlayer angle θNCAP =
φ1 − φ2:

θNCAP = π − 2 arctan

⎛
⎝

√
−J1 − 2J2 + Kud

J1 + 2J2 + Kud

⎞
⎠. (10)

This angle is plotted as a function of J1 and J2 in Fig. 8(a).
When J1 + Kud > 2J2, the interlayer angle is π , which is rep-
resented by the yellow area in the figure. The second solution
is given by

φ1 = arctan

⎛
⎝

√
J1 + 2J2 − Kud

−J1 + 2J2 + Kud

⎞
⎠,

φ2 = −φ1, (11)
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FIG. 9. Visualization of regions exhibiting dual energy minima,
highlighted in light blue. (a) The macrospin calculations and simu-
lations agree well when the exchange stiffness in the simulation is
set to 100Aex (Aex = 13 pJ m−1) and the demagnetization field is not
considered. (b) The expansion of the two-minima region obtained
from the simulation using exchange stiffness Aex and neglecting the
demagnetization field. (c) With the introduction of the demagnetiza-
tion field in the simulation, the region tilts to the right, leaving an
area with one minimum in the top left. Both layers have identical
magnetic anisotropies and thicknesses, with Ku1,2 = 0.6 MJ m−3 and
d1,2 = 3.0 nm, respectively.

where Kud < J1 + 2J2 and J1 < Kud , which gives interlayer
angle θNCPP = φ1 − φ2:

θNCPP = 2 arctan

⎛
⎝

√
J1 + 2J2 − Kud

−J1 + 2J2 + Kud

⎞
⎠. (12)

This angle is plotted as a function of J1 and J2 in Fig. 8(b).
When Kud > J1 + 2J2, the interlayer angle is 0, which is
represented by the purple area in the figure. Thus, the pres-
ence of a second minimum is contingent upon satisfying
the condition J1 < Kud . This finding highlights the essential
influence of the ratio between J1 and Kud on the system’s
energy landscape. For an arbitrary point (J1 = 1.0 mJ m−2

and J2 = 2.0 mJ m−2), that satisfies this condition (J1 < Kud),
there are two distinct minima: θNCAP = 134◦ and θNCPP = 78◦,
as illustrated in Fig. 8.

In Fig. 9(a), we show that the region exhibiting dual min-
ima in the analytical macrospin solution is consistent with the
results obtained from micromagnetic simulations that neglect
the demagnetization field and use an exchange stiffness that
is 100 times larger than in the earlier simulations (Aex =
13 pJ m−1). This ensures a coherent rotation of magnetiza-
tion in the simulation, mirroring the behavior presupposed
in the macrospin model. Figure 9(b) shows that the range of
J1 and J2 values for which two minima exist expands when
Aex = 13 pJ m−1 is used. In a simulation with this exchange
stiffness that includes the demagnetization field, this region
tilts to the right, leaving an area in the top left with only one
minimum, as shown in Fig. 9(c). This shift is due to the effects

of the stray field, which promotes the parallel alignment of the
magnetic moments of the ferromagnetic layers.

V. DISCUSSION

This paper presents a study of the effects of interlayer
exchange coupling and uniaxial anisotropy strengths on the
magnetic energy landscape of two coupled ferromagnetic lay-
ers. We showed that, when relaxing from a collinear parallel or
antiparallel state, the moments of the ferromagnetic layers of
a nanopillar fall into one of two energy minima: noncollinear
parallel (NCPP) or noncollinear antiparallel (NCAP), depend-
ing on coupling strength and the magnitude of the difference
in the layer uniaxial anisotropies. For certain material pa-
rameters, the relaxed state is entirely determined by initial
conditions, due to the presence of a local minimum in the
energy landscape. We showed that the range of values of
experimentally reproducible J1 and J2 [17,36], and for which
the relaxed state is NCAP, is maximized when the difference
in anisotropies is large. Additionally, we demonstrated that the
range of J1 and J2 which produce two minima is minimized in
these structures. A large parameter space with NCAP states is
critical for use in STT-MRAM with a noncollinear reference
layer. Furthermore, string-method simulations showed that the
energy barriers between NCPP and NCAP states (when both
are present) are mostly smaller than the 60-kBT requirement
for stability over 10 years when Ku1,2 = [0.6, 0.6] MJ m−3.
Conversely, the vast majority of the energy barriers are larger
than this threshold when layer anisotropies are unequal. These
string-method simulations also showed the regions for which
NCAP or NCPP is the global energy minimum state. Further-
more, an analytic solution to a macrospin model of interlayer
exchange coupling for equal uniaxial anisotropies and fer-
romagnetic layer thicknesses showed very good agreement
with the micromagnetic simulations, without considering the
effects of the demagnetization field and assuming large ex-
change stiffness. We identified an analytic expression for the
condition which produces two minima in this case: J1 < Kud .
These results provide targets and constraints on the interlayer
exchange coupling strengths and layer anisotropies required
by noncollinear STT-MRAM designs and other thin-film mag-
netic devices.
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