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Soft magnons in van der Waals multiferroic NiI2
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The ferroelectric polarization in van der Waals multiferroic NiI2 is believed to be induced by the helimagnetic
spin order. The formation of the helimagnetic ground spin configuration and the properties of its spin excitation
are yet to be clarified. In the present work, we explore the proper magnetic ground states with well-defined
magnon spectra in a single-layer NiI2, by analyzing the role of different interactions. While the spin frustration
due to the ferromagnetic and antiferromagnetic exchange terms stabilizes a helimagnetic phase, the anisotropic
Kitaev interaction introduces a canting of the spin rotation plane. We find the modulation vector of the heli-
magnetic structure can be continuously oriented within the atomic plane by the competition between the Kitaev
interaction and the third-nearest-neighbor exchange. The calculation of magnon spectrum reveals anomalous
features with soft magnons at finite wave vectors, which is found to be related with the vibration of the canting
plane. From the finite-temperature calculation of the magnon spectra, we predict a magnetic phase transition
driven by soft magnons, which cause a spatial modulation of the canting plane. Furthermore, a sign change is
predicted in the temperature dependence of the transverse magnon thermal conductivity. Our results provide a
comprehensive understanding of the spin ground state and the soft magnons in the van der Waals NiI2.
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I. INTRODUCTION

Since the invention of the mechanical exfoliation tech-
nique in 2004 [1], the two-dimensional (2D) materials have
been intensively explored [2–7], where various outstanding
advantages, such as high carrier mobility [1,8], superior ther-
mal conductivity [9,10], and excellent optical transparency
[11–13], have been demonstrated. The experimental achieve-
ment of 2D van der Waals (vdW) materials with intrinsic
magnetism in 2017 [14,15] arouses great interests in inves-
tigating and seeking for the potential applications of 2D
magnetic materials, whose magnetic properties can be effi-
ciently manipulated via electrostatic doping [16,17], electrical
field [18,19], and external strain [20]. Meanwhile, the 2D
ferroelectricity in vdW materials, which hosts a switchable
intrinsic ferroelectric polarization, has also garnered signifi-
cant attention [21,22] as a promising candidate in information
storage memory [23,24], ferroelectric-based topological de-
vices [25], etc. As a hybrid of magnetism and ferroelectricity
[26], 2D multiferroic materials, if accessible, may provide
new opportunities to realize multifunctional devices [27,28].

Since the early study in 1950s [29], various bulk mul-
tiferroic materials have been discovered [30,31], such as
BiFeO3 [32–35], BiMnO3 [36], Pb(Fe1/2Nb1/2)O3 [37,38],
and TbMnO3 [39–42]. While type-I multiferroic is com-
monly referred to the multiferroic materials with different
ferroic orders disentangled from each other, the ferroelectric
polarizations in type-II multiferroic are induced by specific
magnetic textures through the inverse Dzyaloshinskii-Moriya
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(DM) mechanism [43,44], the spin-dependent p-d hybridiza-
tion [45,46], or the exchange striction [47]. The correlation
between spin and electric polarization order in type-II multi-
ferroic materials leads to a strong magnetoelectric coupling,
which allows the electrical control of the magnetic moments
as well as the manipulation of ferroelectric polarizations by a
magnetic field. Among the type-II multiferroics, the NiI2 with
weak vdW coupling between atomic layers is regarded as a
promising candidate for 2D multiferroic materials [48–53].

Bulk NiI2 belongs to the space group R3̄m (point group
D3d ) with the magnetic ions Ni2+ in each atomic layer forming
a triangular lattice and different layers stacking in a rhombo-
hedral structure [54]. The ferroelectric polarization in NiI2 is
believed to be induced by the spiral magnetic order through in-
verse DM mechanism [54]. As the temperature decreases from
ambient temperature, bulk NiI2 first undergoes a magnetic
phase transition from the paramagnetic phase to the interlayer
antiferromagnetic phase with a ferromagnetic order in each
layer, followed by another transition to the helimagnetic phase
[54–57]. The two transition temperatures were found to be
TN,1 � 76 K and TN,2 � 59.5 K, respectively, at normal pres-
sure and can be significantly elevated under high pressures
[58]. In the helimagnetic phase, the spins of Ni2+ within a
single layer form a canted proper screw (CPS) order with a
period λ ≈ 7a along [11̄0] direction, where a is the lattice
constant, and a canting angle of 55 ± 10◦ between the spin
rotation plane and the normal direction of the layer [57].

Recent observations based on the optical second-harmonic
generation technique revealed the presence of ferroelectric
polarizations in ultrathin NiI2 flake down to bilayer [48] and
monolayer [49] limit below TN,2 � 20 K, which suggested the
survival of the 2D multiferroic and the helimagnetic order
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therein. A sandwiched device with a trilayer NiI2 in between
hexagonal boron nitride and graphene even showed room-
temperature multiferroic, where the mutual control between
magnetism and ferroelectricity was demonstrated [59]. Subse-
quently, the multiferroic order in monolayer NiI2 was directly
probed through scanning tunneling microscopy [60] and spin-
polarized scanning tunneling microscopy [61] at atomic scale,
where the resulting spin modulation vector was found to differ
from the bulk case, not only in its value but also in its direction
[60]. Similar to the bulk case, a canting of the spin rotation
plane was also observed in a monolayer NiI2 [61].

On the theoretical side, the existence of the multiferroic
in NiI2 was supported by first-principles-based spin models
in both bulk and 2D limit [50–53]. An isotropic Heisenberg
model up to the third-nearest neighbors showed that the com-
petition between exchange couplings is sufficient to establish
a planar spin spiral along [110] direction in monolayer NiI2,
with all spins orientated within the plane [52]. The inclusion
of the spin-orbit coupling further resulted in a canting angle
of the rotation plane ∼64◦, which is comparable with the bulk
value, with respect to the normal direction of the layer plane
[52]. The density functional theory (DFT) calculations based
on the Perdew-Burke-Ernzerhof (PBE) functional [62] with
the spin-orbit coupling comprised self-consistently predicted
a noncoplanar helix in monolayer NiI2 [53], which is, how-
ever, in conflict with the later observation of coplanar spin
texture from spin-polarized scanning tunneling microscopy
[61]. Alternatively, other calculations based on the HSE06
hybrid functional [63] and the PBE functional showed the
presence of Kitaev and biquadratic interactions between the
nearest neighbors, which are conducive to the coplanar spin
spiral with a proper canting of the rotation plane in bulk
NiI2 [50,51] as well as in monolayer limit [51]. However, as
all possible choices of the spin spiral configurations in these
works rely on the size of the supercells used in the calcula-
tion, whether the selected lowest-energy state is the ground
state needs to be examined. Scanning tunneling microscopy
actually revealed a slight deviation of the modulation vector
from crystal axes [60], which cannot be well described by
finite-supercell modeling. A self-consistent determination of
the ground spin configuration in NiI2 thus remains to be de-
veloped. Furthermore, the spin excitation of the spin spiral in
NiI2 is also far from clear.

In this work, we study the magnetic ground states with
different interactions through an analytical method and con-
firm the formation of the helimagnetic structure. We find
that, while the modulation vectors of the helimagnetic ground
states from the isotropic models obey sixfold rotational sym-
metry including the [110] axis, the increase of the anisotropic
Kitaev interaction gradually tilts the modulation vector toward
[11̄0] direction and causes a canting of the rotation plane in
the helimagnetic structure. Then, we calculate the magnon
spectra and the wave functions of magnons, which display
anomalous behaviors around the center of the Brillouin zone
(BZ). Specifically, we find soft magnons at finite wave vec-
tors, which have zero frequency within the isotropic model,
and gain a finite frequency from Kitaev interaction. The spin
precession trajectories show that, in contrast to the normal
Goldstone mode, which is polarized within the canting plane,
such soft magnons correspond to linearly polarized dynamics

FIG. 1. (a) Top and (b) side views of a single-layer NiI2, where
pink balls represent Ni2+ ions and the gray ones with (without) the
black-dashed circles stand for the I− ions below (above) the Ni2+

layer. (c) The simplified top view, where the nonmagnetic I− are
omitted. Two red arrows represent the basic translation vectors a1

and a2. Blue, green, and purple arrows indicate the nearest- (J1), the
next-nearest- (J2), and the third-nearest-neighbor (J3) exchange pairs.

normal to the canting plane. Finally, we investigate the ther-
mal effects on the spectra of magnons and their transport and
predict a magnetic phase transition driven by soft magnon as
well as a sign change in the temperature dependence of the
transverse thermal conductivity.

II. MODEL AND FORMALISM

As schematically shown in Figs. 1(a) and 1(b), each Ni2+

ion is surrounded by six I− ions. Those I− ions with and
without the black-dashed circles lie below and above the Ni2+

layer, respectively. The location of the Ni2+ indexed by (i, j)
is described by Ri j = ia1 + ja2 with a1 and a2 being the basic
translation vectors as shown in Fig. 1(c). All magnetic mo-
ments come from Ni2+ with spin S = 1. The generalized spin
exchange model with the Kitaev and biquadratic interactions
is expressed by [50,51]

H =
∑

〈i j,i′ j′〉1

{
J1Si j · Si′ j′ + KSγ

i jS
γ

i′ j′ + B(Si j · Si′ j′ )
2}

+
∑

〈i j,i′ j′〉2

J2Si j · Si′ j′ +
∑

〈i j,i′ j′〉3

J3Si j · Si′ j′ , (1)

where 〈i j, i′ j′〉l denote the pairs of the lth-nearest neigh-
bors and Jl correspond to the exchange constants as defined
in Fig. 1(c). K and B are the strengths of the Kitaev and
biquadratic interactions between the nearest neighbors. The
Kitaev interaction describing the anisotropy of the exchange
terms with Sγ

i j = Si j · γ , where γ is the Kitaev axis of a spe-
cific nearest-neighbor Ni-Ni bond [64], which is provided in
Appendix A. Focusing on the spins of a single layer within the
few-layer NiI2, we omit the interlayer exchange interactions
following the previous work [50]. The single-ion anisotropy
is also neglected because of its weak strength as found in both
bulk [50] and monolayer [53] NiI2. Moreover, as a type-II
multiferroic, the DM interaction does exist in NiI2, but it is
also too weak to affect the spin texture and hence is neglected
here.
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FIG. 2. Definition of the rotation transformations from the labo-
ratory coordinate system (x, y, z) to the local spin coordinate system
(x̃, ỹ, z̃)i j , bridged by an intermediate system (x1, y1, z1).

A. Representation in the local rotation frame

For a collinear magnetic ground state, it is common to
project the spin Hamiltonian into the laboratory coordinate
system, where one of the three axes is set to be along the mag-
netization direction. For a noncollinear spin configuration,
however, a local spin coordinate system is more convenient
for the study of spin excitation. Specified to the present case
with a possible helimagnetic phase, we define the local spin
coordinate system (x̃, ỹ, z̃)i j with z̃i j being the equilibrium
direction of the spin at site (i, j).

By assuming the rotation plane of the helimagnetic config-
uration consistent with that in bulk, namely, with its normal
vector in the (110) plane, which will be confirmed later by the
positive definiteness condition of the magnon Hamiltonian,
we define φ as the relative angle between the normal of the
rotation plane and the [001] axis. Starting from the laboratory
coordinate system (x, y, z) defined by the [11̄0], [110], and
[001] axes in Fig. 2(a), we introduce a global coordinate
system (x1, y1, z1) by rotating the laboratory coordinate one
around the [110] axis by (π/2) − φ as shown by Fig. 2(b).
The local spin coordinate system (x̃, ỹ, z̃)i j of each site then
can be specified, as shown in Fig. 2(c), by further applying
another rotation with θi j , which corresponds to the polar angle
of the equilibrium spin with respect to the z1 axis.

The transformation between the laboratory coordinate sys-
tem and the local spin coordinate system is thus given by

Sα
i j = Rαβ

i j S̃β
i j, (2)

with the transformation matrix

Ri j = R
θi j
x1 × R

π
2 −φ

y

=
⎛
⎝ sin φ cos φ sin θi j cos φ cos θi j

0 cos θi j − sin θi j

− cos φ sin φ sin θi j sin φ cos θi j

⎞
⎠, (3)

where θi j = q · Ri j with q being the magnetic modulation
vector of the helimagnetic structure.

Projecting Eq. (1) to (x̃, ỹ, z̃)i j , the isotropic Heisenberg
exchange terms and the biquadratic interaction lead to

Hiso =
∑

l,〈i j,i′ j′〉l

Jl T̃i j,i′ j′ +
∑

〈i j,i′ j′〉1

B(T̃i j,i′ j′ )
2, (4)

where the expression of T̃i j,i′ j′ is

T̃i j,i′ j′ = S̃x
i j S̃

x
i′ j′ + cos 	θi′ j′ S̃

y
i j S̃

y
i′ j′ + cos 	θi′ j′ S̃

z
i j S̃

z
i′ j′

− sin 	θi′ j′ S̃
y
i j S̃

z
i′ j′ + sin 	θi′ j′ S̃

z
i j S̃

y
i′ j′ , (5)

with 	θi′ j′ = θi′ j′ − θi j . The anisotropic exchange due to the
Kitaev interaction can be expressed by

Hani =
∑

〈i j,i′ j′〉1

KỸi j × Ỹi′ j′ . (6)

The detailed expression of Ỹi j is provided in Appendix A.

B. Ground-state energy

Since z̃i j is defined as the equilibrium orientation of the lo-
cal spin, we substitute S̃z

i j = S and S̃x
i j = S̃y

i j = 0 into Eqs. (4)
and (6) to calculate the ground-state energy of a helimagnetic
configuration. The isotropic and the anisotropic exchange
contributions separately give

Eiso =
∑

l,〈i j,i′ j′〉l

JlS
2 cos

(
q · δ

i j
i′ j′

) +
∑

〈i j,i′ j′〉1

BS4cos2
(
q · δ

i j
i′ j′

)
,

(7)
and

Eani =
∑

i j

2KS2 cos2(q · Ri j )

{
cos(qya)ξ 2

1 (φ)

+ cos

(√
3qxa

2

)
cos

(
qya

2

)[
2ξ 2

2 (φ) − 1
]}

+
∑

i j

2KS2 cos

(√
3qxa

2

)
cos

(
qya

2

)
. (8)

Here, δ
i j
i′ j′ = Ri′ j′ − Ri j , ξ1(φ) = −

√
2√
3

cos φ + 1√
3

sin φ, and

ξ2(φ) = 1√
6

cos φ + 1√
3

sin φ.
In order to derive the magnetic ground configuration, we

need to find out qG and φG for a minimum total energy Etot =
Eiso + Eani. Since the canting angle φ is determined solely by
the anisotropic energy due to the Kitaev interaction, we derive
φG from the condition ∂φEani|φG = 0 and ∂2

φEani|φG > 0. After
straightforward calculation, we obtain

tan 2φG = −2
√

2, (9)

which corresponds to φG ≈ 55◦, consistent with the result
from Ref. [50]. Substituting Eq. (9) into Eqs. (7) and (8), the
total energy of the magnetic ground state is then expressed as

Etot =
∑

l,〈i j,i′ j′〉l

JlS
2 cos

(
q · δ

i j
i′ j′

) +
∑

〈i j,i′ j′〉1

BS4cos2
(
q · δ

i j
i′ j′

)

+
∑

i j

2KS2 cos

(√
3qxa

2

)
cos

(
qya

2

)
. (10)

The possible ground-state configuration can be then obtained
by further minimizing Eq. (10) with respect to q, which can
be achieved numerically as discussed later in Sec. III A. As
mentioned above, the correctness of the ground state must be
examined by the positive definiteness condition of the magnon
Hamiltonian.

C. Magnon Hamiltonian

In order to derive the magnon Hamiltonian, we em-
ploy Holstein-Primakoff transformation [65] to the local spin
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operators in Eqs. (4) and (6) through

S̃x
i j �

√
2S

2
(ãi j + ã†

i j ),

S̃y
i j �

√
2S

2i
(ãi j − ã†

i j ),

S̃z
i j = S − ã†

i j ãi j, (11)

and perform Fourier transformation ãi j = 1/
√

N
∑

k ãkeik·Ri j

to project the magnon operators into the momentum space.
The resulting magnon Hamiltonian can be expressed as

Hk,−k = Ak(ã†
kãk + ã†

−kã−k) + Bk(ãkã−k + ã†
kã†

−k). (12)

The detailed expressions of Ak and Bk can be found in
Appendix B. The magnon Hamiltonian, i.e., Eq. (12), can
be rewritten in the form of a matrix Hk under the basis of
(ãk, ã†

−k ) as

Hk,−k = X †
k,−kHkXk,−k, (13)

where Xk,−k = [ãk ã†
−k]T with ãk denoting the magnon an-

nihilation operator for a wave vector k. A true ground-state
configuration requires that Hk must be positive definite, which
corresponds to |Ak|2 − |Bk|2 � 0 in the present case.

In the case of a proper ground state, the magnon spec-
trum and the corresponding magnon wave functions can be
obtained from the paraunitary diagonalization of Hk through

T †
k,−kHkTk,−k =

[
h̄ωk 0

0 h̄ω−k

]
, (14)

where Tk,−k is a paraunitary matrix derived from the Cholesky
decomposition [66]. The magnon spectrum is then given by

h̄ωk =
√
Ak

2 − Bk
2, (15)

and the corresponding operators of the magnon eigenmodes
are

Zk,−k = [α̃k α̃
†
−k]T = T −1

k,−kXk,−k. (16)

For a nonground state, |Ak|2 < |Bk|2 leads to an imagi-
nary frequency in Eq. (15). For the sake of convenience,
we will show the magnon excitation with an imaginary fre-
quency by a negative frequency with the definition −h̄ωk =
−

√
|Ak

2 − Bk
2|.

III. NUMERICAL RESULTS

For numerical calculations of the ground configuration and
the magnon spectrum, we adopt parameters from previous
first-principles study [50]. Specifically, we take the exchange
parameters J1 = −4.976 meV, J2 = 0.03J1, B = 0.14J1, and
K = −0.17J1. Since the value of J3 strongly relies on the
functional used in the first-principles calculation [50,51], we
treat the ratio of J3/J1 as an adjustable parameter with nega-
tive values by considering the antiferromagnetic nature of J3

term [50,51].

A. Magnetic ground states

The magnetic ground state with the modulation of J3 is
carried out by searching the minimum of Etot in Eq. (10)

FIG. 3. Phase diagrams of the magnetic ground states with re-
spect to the variation of |J3| from (a) J1-J2-J3, (b) J1-J2-J3-B, and
(c) J1-J2-J3-B-K models. The solid and dashed curves are the x and
y components of the modulation vector qG. (d)–(f) illustrate the spin
rotation plane and the orientation of qG for IC, PScant, and IM phases.

during the variation of q within the entire first BZ. In order
to elucidate the role of different interactions, we perform cal-
culations from three different models: (i) J1-J2-J3 model with
only isotropic Heisenberg exchange, (ii) J1-J2-J3-B model
with both Heisenberg and biquadratic interactions, and (iii)
J1-J2-J3-B-K with our full Hamiltonian in Eq. (1). The results
of the ground states are summarized in Fig. 3.

Figures 3(a) and 3(b) show that the ground state in J1-J2-J3

and J1-J2-J3-B models can be either a ferromagnetic (FM)
phase (pink-shaded areas) or an incommensurate cycloid (IC)
phase (green-shaded areas), resulting from the competition
between the exchange terms. In a small J3 limit, the ferro-
magnetic nearest-neighbor interaction makes all spins parallel
with each other. As the magnitude of J3 exceeds a critical
value, an incommensurate cycloid along the y direction ([110]
axis) is established, as illustrated in Fig. 3(d), with the value of
the modulation vector qG increasing with J3. The absence of
the Kitaev interaction makes the system isotropic and there-
fore the rotation plane of the IC phase can be of arbitrary
values, according to Eq. (7). On the other hand, the sixfold
rotational symmetry of the Ni2+ sublattice leads to the re-
lation Eiso(0,±qG) = Eiso(±√

3qG/2,±qG/2), indicating six
modulation vectors in total. The critical value of |J3| for the
transition from the FM phase to the IC phase in J1-J2-J3-B
model is larger than the one in J1-J2-J3 model, as the B
term between the nearest neighbors effectively enhances the
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FIG. 4. Phase diagrams and the evolution of the modulation vec-
tors by varying the Kitaev parameter in the J1-J2-J3-B-K model with
different values of J3.

ferromagnetic coupling of J1 and requires a larger J3 to stabi-
lize the cycloid configuration.

With the inclusion of the Kitaev interaction, the phase
diagram of the magnetic ground states shown in Fig. 3(c)
contains, in addition to the FM phase, a canted proper screw
(PScant) and an intermediate (IM) phase, which correspond to
the modulation vector along x direction ([11̄0] axis) and in
between x and y axes, respectively, as illustrated in Figs. 3(e)
and 3(f). While the configuration of the PScant phase is consis-
tent with the in-plane projection of bulk NiI2 [50], our finding
of the IM phase nicely reproduces the recent observation from
scanning tunneling microscopy measurement [60]. Note that,
although our model and parameters are all the same as those
in Ref. [50], our analytical calculation allows us to derive the
precise ground state with any modulation vector, which is be-
yond the scope of the supercell calculation in Refs. [50,51,53].
For example, with J3 = −0.45J1, we obtain an IM ground
state, while the rectangle supercell used in Ref. [50] leads to
a modulation vector qG along [11̄0] or [110] direction with
its magnitude matching the size of the supercell. Another
noteworthy point is that the sixfold rotational symmetry of qG
is broken in both PScant and IM phases, leaving only a reversal
symmetry of ±qG. In addition, the Kitaev interaction aligns
all spins within the canting plane even in the FM phase in
Fig. 3(c).

As reported from the previous first-principles study, the
Kitaev strength could be significantly reduced in a monolayer
[51]. To show its consequence on the ground-state configura-
tion, we plot the two components of the modulation vector as
functions of the Kitaev strength in Fig. 4, which gives the tran-
sition from the PScant order to the IM state in the weak Kitaev
region. The modulation vector qG of the IM state gradually ro-
tates toward the [100] direction along the nearest Ni-Ni bond,
which is equivalent to the y axis in the zero-K limit. Notice
that for any finite K , the modulation vector deviates from
the Ni-Ni bond, which explains the microscopy in monolayer
NiI2 [60]. This feature, as explained above, cannot be captured
by the supercell-based calculation commonly used for deter-
mining the ground-state spin configuration [50,51,53]. The
reported helimagnetic ground states of NiI2 in the literatures
are summarized in Table I in Appendix C.

B. Magnon spectra in helimagnetic phase

In this section, we discuss the property of the magnon
spectra in the realistic helimagnetic ground states from dif-

FIG. 5. The magnon spectra from different models. The red ar-
rows in (a) are the reciprocal basis vectors and the blue-dotted lines
frame the BZ with high-symmetry points indicated. The right panels
in (a)–(d) are the enlarged views of the white-solid parallelograms in
the main figures on the left.

ferent models discussed in the previous section. The main
results are presented in Fig. 5, where the right panel of each
subfigure is the enlarged view of the white parallelogram in
the left plot. As seen, all of the spectra do not suffer from
the imaginary-frequency problem, indicating that the helimag-
netic phases for these calculations are indeed ground states,
which also rules out the noncoplanar spin textures in the
present case [53]. The first BZ is framed by the blue-dotted
lines in Fig. 5(a) with the high-symmetry k points labeled.
We can explicitly observe that the existence of a specific
modulation vector breaks the six-fold rotational symmetry of
the magnon spectra in all cases.

By using the same models for Figs. 3(a) and 3(b), i.e.,
J1-J2-J3 and J1-J2-J3-B models, with J3 = −0.45J1, where the
magnetic ground states are in the IC phase with qG along y
axis indicated by the orange-dashed lines in Figs. 3(a) and
3(b), we obtain the magnon dispersions as shown in Figs. 5(a)
and 5(b), respectively. These two spectra preserve the mirror
symmetries with respect to the x and y axes. While the magnon
frequencies at all K points are degenerate in these two cases,
the frequencies at M1 and M4 are larger than those at the
other M points. From the right panels, very interestingly, the
dispersions around the BZ center exhibit complicated features
with several local minima and local maxima, especially in y
direction (along qG).
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FIG. 6. The magnon dispersions along 
-K3-M3-
-K4-M4-

path (left panel) and the illustrations of the corresponding modula-
tion vectors (right panel). The insets are the enlarged views of the
corresponding regions with the k points with anomalous features
highlighted by colored arrows.

For the J1-J2-J3-B-K model with Kitaev interaction, we
choose two J3 values, J3 = −0.45J1 and J3 = −0.4J1, whose
magnetic ground states lie in the IM and PScant phases, re-
spectively, indicated by the orange-dashed lines in Fig. 3(c).
In the IM case, the mirror symmetries of the magnon spec-
trum with respect to the x and y axes are both broken as
shown in Fig. 5(c), owing to the deviation of the qG from
the x and y directions. For the PScant phase with qG along x
direction in Fig. 5(d), the magnon spectrum satisfies the same
mirror symmetries as those in the IC phase in Figs. 5(a) and
5(b). However, in contrast to Figs. 5(a) and 5(b), the magnon
frequencies at M1 and M4 in Figs. 5(c) and 5(d) are smaller
than those at the other M points. This feature and the distinct
spectra around the BZ center reflect the consequence of the qG
orientation.

To show the characteristic features around the BZ center
more explicitly, we plot the dispersion curves along 
-K3-
M3-
-K4-M4-
 path in Fig. 6. In the enlarged plots, we mark
typical k points of anomalous dispersion with colored arrows.
For comparison, magnon states in the normal linear-dispersion
region are also taken as labeled by the a1-d1 with yellow
arrows in the 
-K3 path. Specifically, in Fig. 6(a) from the
J1-J2-J3 model, zero-frequency states of finite wave vectors
are observed at a3 and a5. These vectors coincide with two
of the six equivalent modulation vectors of the IC phase,
namely, (0, qG) and (

√
3qG/2, qG/2), with which one can

easily examine the relation |A| = |B| in Eq. (15) by using
the analytical expressions in Appendix B. The zero frequency
of these modes reflects the global symmetry with respect to
the continuous variation of φ for the spin rotation plane as
discussed above. For the J1-J2-J3-B model in Fig. 6(b), the

FIG. 7. The trajectories of spin precession in the local spin coor-
dinate system at the k points marked in Fig. 6. The yellow, pink,
and purple trajectories are multiplied by factors indicated in the
figures for plotting.

biquadratic interaction leads to |A| 
= |B| everywhere along
the (

√
3q/2, q/2) path, leaving only a local dip, instead of

zero frequency, at b5. In contrast, the zero-frequency mode
remains available along the (0, q) path at b2, again reflecting
the rotational symmetry of the IC ground state. When the Ki-
taev interaction is taken into account, all magnon frequencies
at finite wave vectors become finite, as shown in Figs. 6(c)
and 6(d), while the anomalous features can still be recognized
at c3 and c5, as well as d3 and d5. The linear dispersion
around the 
 point in all cases reflects the property of the
Goldstone mode with all spins rotating simultaneously within
the rotation plane, just like the situation in easy-plane magnets
[67].

The dynamic properties of the magnon modes around the
anomalous dispersion points in Fig. 6 are then analyzed from
their wave functions. According to Eq. (16), the eigenstates of
magnons can be written as

α̃k = (
T −1

k,−k

)
11

ãk + (
T −1

k,−k

)
12

ã†
−k. (17)

By substituting the ãk = S̃x
k − iS̃y

k, the dynamical components
of the magnetization in the local spin coordinate system can
be expressed as [68]

S̃x
k(t ) = �{[(

T −1
k,−k

)
11

+ (
T −1

k,−k

)
12

]
e−iωkt

}
,

S̃y
k(t ) = �{[(

T −1
k,−k

)
11

− (
T −1

k,−k

)
12

]
e−iωkt

}
. (18)

The spin precession trajectories at the k points labeled in
Fig. 6 are plotted in Fig. 7. It is clear to find out that the zero-
frequency modes at a3, a5, and b3 all present linear vibration
out of the rotation plane, i.e., the ỹ-z̃ plane, corresponding to
the variation of φ, as illustrated in Fig. 8(a). We should point
out that the magnitude of dynamical components is arbitrarily
large for the exact zero-frequency mode, therefore, we here
use the wave vectors slightly away from these points for their
plots. For those low-frequency magnons near the 
 point, the
spin trajectory also presents a similar linearlike feature, as
shown by the yellow curves in Fig. 7, especially for c1 and
d1 with lower frequencies. The polarization direction of a1-d1

is along ỹ direction within the rotation plane [see Fig. 8(b)],
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FIG. 8. Illustrations of the soft magnon modes at k = qG and k =
0 in the local and laboratory coordinate systems.

defined by the symmetry of the models [67], which is per-
pendicular to that of a3, a5, and b3 along x̃ direction. Further,
from the evolution of trajectories from a3 to d3 and from a5

to d5, we find that a finite frequency of the soft magnon,
introduced by different parameters, generally changes the
linear polarization to the elliptical polarization. When the
frequency approaches the local maximum at a2 or b2, the
precession can become nearly a circular shape.

C. Thermal effects

In this section, we investigate the thermal effects in the
magnon spectra due to the enhanced magnon-magnon inter-
action as the temperature increases. In the two-dimensional
limit, the gapless magnon dispersion causes an infrared diver-
gence at finite temperature, according to the Mermin-Wagner
theorem [69]. The direct calculation of the expectation value
of the spin excitation 	S = 〈ã†

kãk〉 in the present case does
lead to a ln k divergence [68,70,71]. This suggests the de-
struction of the long-range magnetic order in two-dimensional
limit by thermal effects. However, the previous experi-
ments did observe the magnetic order at finite temperature
[49,60,61], which might imply the influence of substrate by
opening a finite magnon gap through some additional interac-
tions. While the specific reasons for the survival of magnetic
order down to monolayer NiI2 at finite temperature need fur-
ther experimental and theoretical studies, here, we analyze the
thermal effects qualitatively by considering the effective spin
〈S〉 with its reduction due to the thermally excited magnon
populations taken into account [68,70]. The finite-temperature
magnon spectra then can be calculated from the mean-field
technique by replacing the spin magnitude S in Sec. II B
and Sec. II C by 〈S〉. Although a further self-consistent cal-
culation is doable in principle [68], here, we stop at this
first-order approximation due to the complicity of the present
spin configuration, which is fortunately sufficient to capture
qualitatively the consequence of thermal magnon excitation.

In this calculation, we use J1-J2-J3-B-K model with J3 =
−0.4J1 The magnon dispersion curves are plotted along 
-
K3-M3-
-K4-M4-
 path in Fig. 9(a) for different values of
〈S〉. It can be explicitly seen that the biquadratic term, which
is a fourth-order interaction of spin, competes with the other
interactions in the second order and leads to the change of
the magnon spectrum beyond a simple rescaling with 〈S〉.

FIG. 9. (a) The magnon dispersions at finite temperatures, where
the black-dashed lines in the enlarged views label the frequency ω =
0. (b) The modulation vector and (c) the ferroelectric polarization
as functions of the effective spin 〈S〉 derived from the helimagnetic
structure.

The evolution of the helimagnetic state from the minimization
procedure of Etot in Eq. (10) is also shown in Fig. 9(b),
which indicates that the spin configuration remains a PSscant

state with the spiral period decreasing at small 〈S〉. The left
enlarged view of magnon spectra in Fig. 9(a), however, shows
that the frequency of the soft magnon becomes imaginary at
〈S〉 = 0.75. This means that the presumed helimagnetic con-
figuration is not the equilibrium state any longer, suggesting a
magnetic phase transition.

As the precise prediction of the ground state after the
phase transition is rather challenging, the spatial modulation
of the canting angle is found to be a possible reason for the
transition. As shown in Fig. 10, in the present PScant structure
with the modulation vector along the x direction, the spins
located along the y axis all point to the same direction. A finite
wave vector in 
-K3 path (in y direction) leads to these spins
out of the canting plane with spatially modulated magnitudes,
corresponding to a y-dependent variation of the canting angle

FIG. 10. Illustration of the magnetic phase transition driven by
the spatial modulation of the canting plane.
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φ. The imaginary frequency of this magnon mode means
that such a modulation actually reduces the total energy and
drives the system to leave the presumed helimagnetic con-
figuration with a global constant φ permanently, causing the
magnetic phase transition. This magnetic phase transition is
under-reported, which might be ascribed to the incomplete
studies, especially in few-layer NiI2, or the absence of this
new phase in those systems under study, possibly, due to the
improper material parameters there [51,60,61]. If the issue of
parameters occurs, then it might be possible to use different
substrates to tune the parameters in few-layer NiI2 and ex-
amine the presence of the magnetic transition through, for
instance, the measurement of the magnetic susceptibility.

As mentioned before, NiI2 is a type-II multiferroic mate-
rial, whose ferroelectric polarization is induced by the spiral
spin order through inverse DM mechanism. The variation of
the spin spiral modulation in Fig. 9(b) also leads to a change
in the ferroelectric polarization. We calculate the induced
electric polarization from

P ∝
∑

〈i j,i′ j′〉1

δ
i′ j′
i j × (Si j × Si′ j′ ). (19)

As shown in Fig. 9(c), the resulting ferroelectric order only
has a Py component because the modulation vectors are along
x direction. As the effective spin 〈S〉 decreases, Py follows
nicely with 〈S〉2 (see the black dashed curve), where the re-
duction of 〈S〉 dominates the enhancement of the polarization
due to the increase of modulation vector in Fig. 9(c). The
suppression of electric polarization by thermal effect is also
consistent with experimental observations [54].

D. Thermal conductivity

The strong anisotropy of the low-frequency magnon spec-
tra shown in Fig. 5 is expected to give anisotropic thermal
transport in the presence of a temperature gradient. In the
linear response formalism, the heat current due to magnon
transport can be expressed as

j = −κ · ∇T, (20)

where the components of thermal conductivity matrix read
[72]

κγ ζ = 1

kBT 2

∫
d2k

(2π )2
τk(∂kγ

ωk)(∂kζ
ωk)

eβ h̄ωk (h̄ωk)2

(eβ h̄ωk − 1)2
, (21)

with β = 1/(kBT ) and γ , ζ ∈ {x, y}. Here, τ−1
k is the scat-

tering rate of magnons, which could be quantitatively
calculated by considering magnon-phonon interaction [72,73]
or magnon-magnon interaction [74,75], and so on. For the
present calculation, we treat it as a constant with τ = 1 ns
by assuming its weak dependence on the temperature in the
region we considered (below 30 K).

The calculated longitudinal and transverse thermal conduc-
tivities based on J1-J2-J3-B-K model with J3 = −0.4J1 are
depicted in Fig. 11(a) as functions of temperature. One can
see the transverse heat conductivity κxy = 0, because of the
mirror symmetries with respect to the x and y axes. For the
longitudinal components, κxx is considerably larger than κyy

below 5 K as expected by the relation vx > vy of the low-

FIG. 11. (a) The temperature dependence of longitudinal ther-
mal conductivities κxx(yy) and transverse thermal conductivities κxy.
(b) The temperature dependence of the rotated thermal conductivities
with a rotation angle at ϕ = 30◦.

frequency magnons, which can be observed from the enlarged
view of the Fig. 5(d) and the slope of the dispersion in Fig. 6.

To describe the magnon heat current with a temperature
gradient in an arbitrary direction, we project the thermal con-
ductivity tensor into a rotated frame (x′, y′, z′) through the
transformation

κm′n′ =
∑
m,n

Rm′mRn′nκmn, (22)

where R corresponds to the transformation matrix between
coordinate systems⎛

⎝x′
y′
z′

⎞
⎠ =

⎛
⎝ cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0
0 0 1

⎞
⎠

⎛
⎝x

y
z

⎞
⎠. (23)

This will lead to a transverse thermal conductivity

κx′y′ = sin ϕ cos ϕ(κyy − κxx ), (24)

of which the sign is determined by the relative values of κyy

and κxx for a given ϕ. The numerical results with ϕ = 30◦ are
presented in Fig. 11(b), where a sign change is observed for
κx′y′ around 23 K. Above T > 23 K, the large population of
the high-frequency magnons, which satisfies vy > vx, domi-
nates the thermal transport and makes κyy > κxx. In addition to
the sign change, the value of κx′y′ also shows a nonmonotonic
temperature dependence below 23 K, due to the complicated
features of the low-frequency spectrum.

IV. DISCUSSION

In Sec. III B, we focus on the magnon spectra in the
helimagnetic phases. By calculating their magnon spectra
with the formalism in Appendix B, we confirm that the
FM states shown in Fig. 3 are indeed ground states in the
corresponding weak J3 region. The dispersion curves along

-K3-M3-
-K4-M4-
 path from different models with J3 =
−0.2J1 are shown in Figs. 12(a)–12(c). It could be explic-
itly seen that the magnon dispersions near 
 points become
parabolic and the frequencies at all M points become de-
generate, recovering the sixfold rotational symmetry in the
entire BZ.
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FIG. 12. The magnon dispersions along 
-K3-M3-
-K4-M4-

path in the FM phase of different models at (a)–(c) 〈S〉 = 1 and
(d) 〈S〉 = 0.75. The insets in (d) are the enlarged views of the low-
frequency regions.

In Sec. III C, we predict the breakdown of the helimag-
netic structure when 〈S〉 � 0.75. In a recent work [76], the
weak ferromagnetism was found to survive up to the room
temperature in a NiI2 flake with a thickness ∼10 μm. It
is thus necessary to check if the FM states would be the
thermal equilibrium states after the phase transition in our
two-dimensional model. Therefore, we calculate the magnon
spectrum from J1-J2-J3-B-K model in the FM phase with
J3 = −0.4J1 at 〈S〉 = 0.75. The magnon dispersions plotted
in Fig. 12(d) still show imaginary frequencies, indicating that
the FM state cannot be the thermal equilibrium state or even a
metastable state after the phase transition. In the bulk case, the
antiferromagnetic phase with intralayer ferromagnetic order
in the temperature region between TN,1 and TN,2 might imply
the relevance of the interlayer coupling.

V. CONCLUSION

In summary, we adopted a realistic spin model containing
isotropic exchange, biquadratic and Kitaev interactions to in-
vestigate the spin configurations of magnetic ground states
in the vdW NiI2, where a FM phase and three helimagnetic
phases, i.e., IC, PScant, and IM phases, were discovered with
different parameters. When only the isotropic terms, i.e., the
Heisenberg exchange and biquadratic interactions, are consid-
ered, the magnetic ground states can be either a FM phase or
an IC one. The modulation vector of the IC phase is along
the [110] axis or its five equivalents under a sixfold rotation

symmetry. Such a sixfold symmetry is broken when the Ki-
taev interaction is included, where the magnetic ground state
changes from the FM phase to two helimagnetic phases with
increasing the value of antiferromagnetic coupling between
the third-nearest neighbors for a given strength of Kitaev in-
teraction, namely, the PScant phase with the modulation vector
along [11̄0] axis and the IM phase with the modulation vector
lying between [100] and [11̄0] axes. The transition between
PScant and IM phases was also found to be achievable by
tuning the Kitaev strength. In addition, while the spin ro-
tation plane of the helimagnetic structure is arbitrary in the
isotropic model, the Kitaev interaction leads to a well-defined
canting angle of the rotation plane for all FM, PScant, and IM
phases.

The thermal stabilities of the obtained magnetic structures
were then verified through the absence of imaginary frequen-
cies in the magnon spectra. The magnon dispersion in the FM
phase obeys a sixfold rotational symmetry with a standard
parabolic dispersion in the long-wavelength region. In the
helimagnetic phases, however, we found that the established
spiral breaks the sixfold rotational symmetry of the magnon
spectra but retains the mirror symmetries with respect to the
x and y directions for IC and PScant phase. For the IM phase,
these mirror symmetries are also violated. From an explicit
analysis of the magnon spectra, in addition to the linear dis-
persion of the Goldstone mode in the long-wavelength region,
we also found anomalous reductions of the frequency at finite
wave vectors, which was recognized as soft magnons with
linear polarization normal to the equilibrium spin rotation
plane. Contrarily, the spin dynamics of the Goldstone mode
show a linear polarization within the rotation plane and those
magnon states with high frequencies give nearly a circular
precession.

Moreover, we studied the thermal effects on the magnon
spectra of the PScant phase based on a mean-field approach,
where we predicted the breakdown of the helimagnetic
structure when effective spin 〈S〉 � 0.75 by recognizing the
occurrence of the imaginary frequencies of the soft modes.
This implies a magnetic phase transition driven by the soft
magnons, which causes an instability in the global cant-
ing plane and tends to generate a spatial modulation to the
canting angle. Before the phase transition, the period of the
helimagnetic structure was found to be compressed by the
reduction of the effective spin due to the thermal magnon
population, which also suppresses the induced ferroelectric
polarization via inverse DM mechanism. Finally, we calcu-
lated the thermal conductivities and found a sign change
in the temperature dependence of the transverse thermal
conductivity.

From the perspective of application, the local minima
of magnon energies at soft magnon modes could host the
magnon Bose-Einstein condensation [77–79] and might give
negative differential thermal conductivity, which is similar
to the negative differential conductivity in charge transport
[80,81]. On the other hand, the ferroelectric polarization in
NiI2 originates from the spin texture, whose modification
associated with soft magnons can also affect the magnitude
of the induced ferroelectric polarization. The sign change
of the transverse thermal conductivity or the thermal Hall
conductivity is considered to be a unique probe of nontrivial
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topological excitations and the topological phase transition
[82,83]. Our results reveal a similar sign reversal from an
alternative mechanism, i.e., the strong frequency-dependent
anisotropy of the magnon spectrum, which might be helpful
in analyzing the origins of this phenomenon in real materials
with/without topological excitations.
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APPENDIX A: DETAILS OF KITAEV INTERACTION

The Kitaev interaction depends on the direction of Ni-Ni
bond with Sγ = S · γ and γ = α × β, where α points from
Nii j to its nearest neighbor Nii′ j′ and β is in the direction of
two I ligands connecting Nii j-Nii′ j′ pair [84]. Using the atomic
positions of different Ni-I bonds, the explicit expressions of γ

axes are derived as

γ i−1, j−1 = γ i+1, j+1 =
(

−
√

2√
3
, 0,

1√
3

)
,

γ i, j−1 = γ i, j+1 =
(

1√
6
,

1√
2
,

1√
3

)
,

γ i−1, j = γ i+1, j =
(

1√
6
,− 1√

2
,

1√
3

)
. (A1)

In the main text, the contributions from Kitaev interaction can
be written as Eq. (6), where Ỹi j is expressed as

Ỹi j = Oγ i′ j′
i j S̃x

i j + Pγ i′ j′
i j S̃y

i j + Qγ i′ j′
i j S̃z

i j . (A2)

For the Kitaev axes between (i + 1, j + 1) and (i − 1, j − 1)
neighbors, the parameters are

Oγ i+1, j+1(i−1, j−1)

i j = ζ1(φ),

Pγ i+1, j+1(i−1, j−1)

i j = ξ1(φ) sin θi j,

Qγ i+1, j+1(i−1, j−1)

i j = ξ1(φ) cos θi j, (A3)

with ζ1(φ) = −
√

2√
3

sin φ − 1√
3

cos φ and ξ1(φ) =
−

√
2√
3

cos φ + 1√
3

sin φ. The substitution of the Kitaev axes
between (i + 1, j) and (i − 1, j) neighbors gives

Oγ i+1, j(i−1, j)

i j = ζ2(φ),

Pγ i+1, j(i−1, j)

i j = ξ2(φ) sin θi j − 1√
2

cos θi j,

Qγ i+1, j(i−1, j)

i j = ξ2(φ) cos θi j + 1√
2

sin θi j, (A4)

with ζ2(φ) = 1√
6

sin φ − 1√
3

cos φ and ξ2(φ) = 1√
6

cos φ +
1√
3

sin φ. For the Kitaev axes between (i, j + 1) and (i, j − 1)

neighbors, we have

Oγ i, j+1(i, j−1)

i j = ζ2(φ),

Pγ i, j+1(i, j−1)

i j = ξ2(φ) sin θi j + 1√
2

cos θi j,

Qγ i, j+1(i, j−1)

i j = ξ2(φ) cos θi j − 1√
2

sin θi j . (A5)

APPENDIX B: DETAILED EXPRESSIONS OF MAGNON
HAMILTONIAN

In this Appendix, we provide the detailed expressions
of the coefficients in the magnon Hamiltonian in Sec. II B.
Specifically, we define

Ak

S
= Ck + Fk + Ik, (B1)

Bk

S
= Dk + Gk + Jk, (B2)

where Ck, Fk, Ik, Dk, Gk, and Jk are expressed as

Ck =
∑

l,〈i j,i′ j′〉l

Jl
{
cos

(
k · δ

i j
i′ j′

)[
1 + cos

(
q · δ

i j
i′ j′

)]

−2 cos
(
q · δ

i j
i′ j′

)}
, (B3)

Fk = 2BS2
∑

〈i j,i′ j′〉1

{
cos

(
q · δ

i j
i′ j′

)
cos

(
k · δ

i j
i′ j′

)

+ cos
(
2q · δ

i j
i′ j′

)[
cos

(
k · δ

i j
i′ j′

) − 2
]

− sin2
(
q · δ

i j
i′ j′

)}
, (B4)

Ik = K
{
cos

(
q · δ

i j
i+1, j

)[
cos

(
k · δ

i j
i+1, j

) − 2
]

+ cos
(
q · δ

i j
i, j+1

)[
cos

(
k · δ

i j
i, j+1

) − 2
]

+2 cos
(
k · δ

i j
i+1, j+1

)}
. (B5)

Dk =
∑

l,〈i j,i′ j′〉l

Jl cos
(
k · δ

i j
i′ j′

)[
1 − cos

(
q · δ

i j
i′ j′

)]
, (B6)

Gk = 2BS2
∑

〈i j,i′ j′〉1

{
cos

(
q · δ

i j
i′ j′

)
cos

(
k · δ

i j
i′ j′

)

− cos
(
2q · δ

i j
i′ j′

)
cos

(
k · δ

i j
i′ j′

) − sin2 (
q · δ

i j
i′ j′

)}
,

(B7)

Jk = K
{
2 cos

(
k · δ

i j
i+1, j+1

)
− cos

(
k · δ

i j
i+1, j

)
cos

(
q · δ

i j
i+1, j

)
− cos

(
k · δ

i j
i, j+1

)
cos

(
q · δ

i j
i, j+1

)}
. (B8)

The expressions presented in this Appendix can be applied
to the ferromagnetic phase as well by taking the modulation
vector q = 0.

APPENDIX C: SUMMARY OF THE HELIMAGNETIC
GROUND STATES

In this section, we summarize the helimagnetic ground
states obtained from previous experimental and theoretical
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TABLE I. Summary of the helimagnetic ground states in NiI2. Here, we show the results in previous experimental (Expt.) and theoretical
(Theor.) works including the system, the obtained spiral phase and the used spin models in the theoretical works. In the spin models, the
intralayer exchange J are all considered up to the third-nearest neighbor J3. In the last line, we show the phase derived in the current work at
J3 = −0.45J1 from J-B-K model.

References Expt./Theor. System Spiral phase Spin model

Bilayer
Ref. [48] Expt. IC –

(SiO2/Si substrate)
Monolayer

Ref. [49] Expt. IC –
(hBN substrate)

PScant
Ref. [50] Theor. Bulk J-B-K model

(within a single layer)
PScant (from bulk to bilayer)

Ref. [51] Theor. From bulk to monolayer J-B-K-Az model
IC (monolayer)

Ref. [52] Theor. Monolayer IC J-K model
Ref. [53] Theor. Monolayer IC (noncoplanar) J-K model
Ref. [54] Expt. Bulk PScant –
Ref. [57] Expt. Bulk PScant –

Monolayer
Ref. [60] Expt. IM –

(HOPG substrate)
Monolayer

Ref. [61] Expt. IC (with canting –
(graphene-covered SiC substrate) spin rotation plane)

Current work Theor. A single-layer IM J-B-K model
within few-layer NiI2

works in NiI2, as listed in Table I. For comparison, we also
include our analytical results in the last line of the table, where

the parameters are adopted to be the same as those in Ref. [50]
with J3 = −0.45J1.

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Electric field effect in atomically thin carbon films, Science 306,
666 (2004).

[2] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R.
Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach et al.,
Progress, challenges, and opportunities in two-dimensional ma-
terials beyond graphene, ACS Nano 7, 2898 (2013).

[3] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D.
Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo,
Electronics based on two-dimensional materials, Nature
Nanotechnol. 9, 768 (2014).

[4] C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen,
W. Zhao, S. Han, G.-H. Nam et al., Recent advances in ultrathin
two-dimensional nanomaterials, Chem. Rev. 117, 6225 (2017).

[5] X. Zheng, S. Chen, J. Li, H. Wu, C. Zhang, D. Zhang, X.
Chen, Y. Gao, F. He, L. Hui et al., Two-dimensional carbon
graphdiyne: Advances in fundamental and application research,
ACS Nano 17, 14309 (2023).

[6] H. Zhou, S. Li, K.-W. Ang, and Y.-W. Zhang, Recent advances
in in-memory computing: Exploring memristor and memtran-
sistor arrays with 2D materials, Nano-Micro Lett. 16, 121
(2024).

[7] R. Rani and M. M. Sinha, Recent advances in two-dimensional
transition metal oxides and di-chalcogenides as efficient ther-
moelectric materials, Phys. Scr. 99, 032002 (2024).

[8] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and
A. Kis, Single-layer MoS2 transistors, Nature Nanotechnol. 6,
147 (2011).

[9] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan,
F. Miao, and C. N. Lau, Superior thermal conductivity of single-
layer graphene, Nano Lett. 8, 902 (2008).

[10] C. Wang, J. Guo, L. Dong, A. Aiyiti, X. Xu, and B. Li, Supe-
rior thermal conductivity in suspended bilayer hexagonal boron
nitride, Sci. Rep. 6, 25334 (2016).

[11] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J.
Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine struc-
ture constant defines visual transparency of graphene, Science
320, 1308 (2008).

[12] L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J.
Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I.
Yakobson et al., Large scale growth and characterization of
atomic hexagonal boron nitride layers, Nano Lett. 10, 3209
(2010).

[13] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X.
Chen, and H. Zhang, Single-layer MoS2 phototransistors, ACS
Nano 6, 74 (2012).

[14] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R.
Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire,
D. H. Cobden et al., Layer-dependent ferromagnetism in a van
der Waals crystal down to the monolayer limit, Nature (London)
546, 270 (2017).

224419-11

https://doi.org/10.1126/science.1102896
https://doi.org/10.1021/nn400280c
https://doi.org/10.1038/nnano.2014.207
https://doi.org/10.1021/acs.chemrev.6b00558
https://doi.org/10.1021/acsnano.3c03849
https://doi.org/10.1007/s40820-024-01335-2
https://doi.org/10.1088/1402-4896/ad25cf
https://doi.org/10.1038/nnano.2010.279
https://doi.org/10.1021/nl0731872
https://doi.org/10.1038/srep25334
https://doi.org/10.1126/science.1156965
https://doi.org/10.1021/nl1022139
https://doi.org/10.1021/nn2024557
https://doi.org/10.1038/nature22391


ANDI CONG AND KA SHEN PHYSICAL REVIEW B 109, 224419 (2024)

[15] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C.
Wang, Y. Wang et al., Discovery of intrinsic ferromagnetism in
two-dimensional van der Waals crystals, Nature (London) 546,
265 (2017).

[16] S. Jiang, L. Li, Z. Wang, K. F. Mak, and J. Shan, Control-
ling magnetism in 2D CrI3 by electrostatic doping, Nature
Nanotechnol. 13, 549 (2018).

[17] H. Wang, J. Qi, and X. Qian, Electrically tunable high Curie
temperature two-dimensional ferromagnetism in van der Waals
layered crystals, Appl. Phys. Lett. 117, 083102 (2020).

[18] B. Huang, G. Clark, D. R. Klein, D. MacNeill, E. Navarro-
Moratalla, K. L. Seyler, N. Wilson, M. A. McGuire, D. H.
Cobden, D. Xiao et al., Electrical control of 2D magnetism in
bilayer CrI3, Nature Nanotechnol. 13, 544 (2018).

[19] N. C. Frey, A. Bandyopadhyay, H. Kumar, B. Anasori,
Y. Gogotsi, and V. B. Shenoy, Surface-engineered MXenes:
Electric field control of magnetism and enhanced magnetic
anisotropy, ACS Nano 13, 2831 (2019).

[20] A. Edström, D. Amoroso, S. Picozzi, P. Barone, and M. Stengel,
Curved magnetism in CrI3, Phys. Rev. Lett. 128, 177202
(2022).

[21] C. Wang, L. You, D. Cobden, and J. Wang, Towards two-
dimensional van der Waals ferroelectrics, Nature Mater. 22, 542
(2023).

[22] S. Lin, G. Zhang, Q. Lai, J. Fu, W. Zhu, and H. Zeng, Recent ad-
vances in layered two-dimensional ferroelectrics from material
to device, Adv. Funct. Mater. 33, 2304139 (2023).

[23] S. Wan, Y. Li, W. Li, X. Mao, C. Wang, C. Chen, J. Dong, A.
Nie, J. Xiang, Z. Liu et al., Nonvolatile ferroelectric memory
effect in ultrathin α-In2Se3, Adv. Funct. Mater. 29, 1808606
(2019).

[24] W. Huang, F. Wang, L. Yin, R. Cheng, Z. Wang, M. G. Sendeku,
J. Wang, N. Li, Y. Yao, and J. He, Gate-coupling-enabled robust
hysteresis for nonvolatile memory and programmable rectifier
in Van der Waals ferroelectric heterojunctions, Adv. Mater. 32,
1908040 (2020).

[25] J. Xiao, Y. Wang, H. Wang, C. D. Pemmaraju, S. Wang, P.
Muscher, E. J. Sie, C. M. Nyby, T. P. Devereaux, X. Qian et al.,
Berry curvature memory through electrically driven stacking
transitions, Nature Phys. 16, 1028 (2020).

[26] H. Schmid, Multi-ferroic magnetoelectrics, Ferroelectrics 162,
317 (1994).

[27] K. Shen, Magnon-ferron coupling mediated by dynamical
Dzyaloshinskii-Moriya interaction in a two-dimensional mul-
tiferroic model, Phys. Rev. B 106, 104411 (2022).

[28] K. Shen, Electrical and magnetic control of spin-lattice config-
uration and magnon-ferron hybridization in a two-dimensional
multiferroic model, Phys. Rev. B 108, 094413 (2023).

[29] G. A. Smolenskii, V. A. Isupov, N. N. Krainik, and A. I.
Agranovskaya, The coexistence of the ferroelectric and fer-
romagnetic states, Izv. Akad. Nauk SSSR Ser. Fiz. 25, 1333
(1961).

[30] J.-M. Liu and C.-W. Nan, Decade of multiferroic researches,
Physics 43, 88 (2014).

[31] N. A. Spaldin and R. Ramesh, Advances in magnetoelectric
multiferroics, Nature Mater. 18, 203 (2019).

[32] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale,
B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V.
Waghmare et al., Epitaxial BiFeO3 multiferroic thin film het-
erostructures, Science 299, 1719 (2003).

[33] V. V. Shvartsman, W. Kleemann, R. Haumont, and J. Kreisel,
Large bulk polarization and regular domain structure in ceramic
BiFeO3, Appl. Phys. Lett. 90, 172115 (2007).

[34] D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F.
Marucco, and S. Fusil, Room-temperature coexistence of large
electric polarization and magnetic order in BiFeO3 single crys-
tals, Phys. Rev. B 76, 024116 (2007).

[35] G. Catalan and J. F. Scott, Physics and applications of bismuth
ferrite, Adv. Mater. 21, 2463 (2009).

[36] T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano,
and Y. Tokura, Magnetocapacitance effect in multiferroic
BiMnO3, Phys. Rev. B 67, 180401(R) (2003).

[37] Y. Yang, J.-M. Liu, H. B. Huang, W. Q. Zou, P. Bao, and
Z. G. Liu, Magnetoelectric coupling in ferroelectromagnet
Pb(Fe1/2Nb1/2)O3 single crystals, Phys. Rev. B 70, 132101
(2004).

[38] O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, and
J. M. Siqueiros, Frequency-temperature response of ferroelec-
tromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different
precursors. Part I. Structural and thermo-electrical characteri-
zation, J. Appl. Phys. 97, 084107 (2005).

[39] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y.
Tokura, Magnetic control of ferroelectric polarization, Nature
(London) 426, 55 (2003).

[40] T. Kimura, S. Ishihara, H. Shintani, T. Arima, K. T. Takahashi,
K. Ishizaka, and Y. Tokura, Distorted perovskite with e1

g config-
uration as a frustrated spin system, Phys. Rev. B 68, 060403(R)
(2003).

[41] M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer,
S. B. Kim, C. L. Zhang, S.-W. Cheong, O. P. Vajk, and J. W.
Lynn, Magnetic inversion symmetry breaking and ferroelectric-
ity in TbMnO3, Phys. Rev. Lett. 95, 087206 (2005).

[42] T. Aoyama, K. Yamauchi, A. Iyama, S. Picozzi, K. Shimizu,
and T. Kimura, Giant spin-driven ferroelectric polarization
in TbMnO3 under high pressure, Nature Commun. 5, 4927
(2014).

[43] H. Katsura, N. Nagaosa, and A. V. Balatsky, Spin current and
magnetoelectric effect in noncollinear magnets, Phys. Rev. Lett.
95, 057205 (2005).

[44] M. Mostovoy, Ferroelectricity in spiral magnets, Phys. Rev.
Lett. 96, 067601 (2006).

[45] C. Jia, S. Onoda, N. Nagaosa, and J. H. Han, Microscopic theory
of spin-polarization coupling in multiferroic transition metal
oxides, Phys. Rev. B 76, 144424 (2007).

[46] T.-H. Arima, Ferroelectricity induced by proper-screw type
magnetic order, J. Phys. Soc. Jpn. 76, 073702 (2007).

[47] Y. J. Choi, H. T. Yi, S. Lee, Q. Huang, V. Kiryukhin, and S.-W.
Cheong, Ferroelectricity in an Ising chain magnet, Phys. Rev.
Lett. 100, 047601 (2008).

[48] H. Ju, Y. Lee, K.-T. Kim, I. H. Choi, C. J. Roh, S. Son, P. Park,
J. H. Kim, T. S. Jung, J. H. Kim et al., Possible persistence
of multiferroic order down to bilayer limit of van der Waals
material NiI2, Nano Lett. 21, 5126 (2021).

[49] Q. Song, C. A. Occhialini, E. Ergeçen, B. Ilyas, D. Amoroso, P.
Barone, J. Kapeghian, K. Watanabe, T. Taniguchi, A. S. Botana
et al., Evidence for a single-layer van der Waals multiferroic,
Nature (London) 602, 601 (2022).

[50] X. Li, C. Xu, B. Liu, X. Li, L. Bellaiche, and H. Xiang, Realistic
spin model for multiferroic NiI2, Phys. Rev. Lett. 131, 036701
(2023).

224419-12

https://doi.org/10.1038/nature22060
https://doi.org/10.1038/s41565-018-0135-x
https://doi.org/10.1063/5.0014865
https://doi.org/10.1038/s41565-018-0121-3
https://doi.org/10.1021/acsnano.8b09201
https://doi.org/10.1103/PhysRevLett.128.177202
https://doi.org/10.1038/s41563-022-01422-y
https://doi.org/10.1002/adfm.202304139
https://doi.org/10.1002/adfm.201808606
https://doi.org/10.1002/adma.201908040
https://doi.org/10.1038/s41567-020-0947-0
https://doi.org/10.1080/00150199408245120
https://doi.org/10.1103/PhysRevB.106.104411
https://doi.org/10.1103/PhysRevB.108.094413
https://doi.org/10.1038/s41563-018-0275-2
https://doi.org/10.1126/science.1080615
https://doi.org/10.1063/1.2731312
https://doi.org/10.1103/PhysRevB.76.024116
https://doi.org/10.1002/adma.200802849
https://doi.org/10.1103/PhysRevB.67.180401
https://doi.org/10.1103/PhysRevB.70.132101
https://doi.org/10.1063/1.1870099
https://doi.org/10.1038/nature02018
https://doi.org/10.1103/PhysRevB.68.060403
https://doi.org/10.1103/PhysRevLett.95.087206
https://doi.org/10.1038/ncomms5927
https://doi.org/10.1103/PhysRevLett.95.057205
https://doi.org/10.1103/PhysRevLett.96.067601
https://doi.org/10.1103/PhysRevB.76.144424
https://doi.org/10.1143/JPSJ.76.073702
https://doi.org/10.1103/PhysRevLett.100.047601
https://doi.org/10.1021/acs.nanolett.1c01095
https://doi.org/10.1038/s41586-021-04337-x
https://doi.org/10.1103/PhysRevLett.131.036701


SOFT MAGNONS IN VAN DER WAALS MULTIFERROIC … PHYSICAL REVIEW B 109, 224419 (2024)

[51] N. Liu, C. Wang, C. Yan, C. Xu, J. Hu, Y. Zhang, and W.
Ji, Competing multiferroic phases in monolayer and few-layer
NiI2, Phys. Rev. B 109, 195422 (2024).

[52] J. Sødequist and T. Olsen, Type II multiferroic order in two-
dimensional transition metal halides from first principles spin-
spiral calculations, 2D Mater. 10, 035016 (2023).

[53] D. Amoroso, P. Barone, and S. Picozzi, Spontaneous
skyrmionic lattice from anisotropic symmetric exchange in a
Ni-halide monolayer, Nature Commun. 11, 5784 (2020).

[54] T. Kurumaji, S. Seki, S. Ishiwata, H. Murakawa, Y. Kaneko,
and Y. Tokura, Magnetoelectric responses induced by domain
rearrangement and spin structural change in triangular-lattice
helimagnets NiI2 and CoI2, Phys. Rev. B 87, 014429 (2013).

[55] D. Billerey, C. Terrier, N. Ciret, and J. Kleinclauss, Neutron
diffraction study and specific heat of antiferromagnetic NiI2,
Phys. Lett. A 61, 138 (1977).

[56] D. Billerey, C. Terrier, R. Mainard, and A. J. Pointon, Magnetic
phase transition in anhydrous NiI2, Phys. Lett. A 77, 59 (1980).

[57] S. R. Kuindersma, J. P. Sanchez, and C. Haas, Magnetic and
structural investigations on NiI2 and CoI2, Physica B+C 111,
231 (1981).

[58] C. A. Occhialini, L. G. P. Martins, Q. Song, J. S. Smith,
J. Kapeghian, D. Amoroso, J. J. Sanchez, P. Barone, B.
Dupé, M. J. Verstraete et al., Signatures of pressure-enhanced
helimagnetic order in van der Waals multiferroic NiI2,
arXiv:2306.11720.

[59] Y. Wu, H. Lu, X. Han, C. Yang, N. Liu, X. Zhao, L. Qiao, W. Ji,
R. Che, L. Deng et al., Observation of unconventional van der
Waals multiferroics near room temperature, arXiv:2311.14300.

[60] M. Amini, A. O. Fumega, H. González-Herrero, V. Vaňo, S.
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