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We investigate the coherent enhancement of inherently weak magnetic interactions in rare-earth orthoferrite
SmFeO3 as a functional material for spintronic applications using a realistic model of dissipative spin dynam-
ics that are linearly and quadratically coupled to laser-driven infrared-active phonons. When linear coupling
dominates, we discover a magnetophononic dynamical first-order phase transition in the nonequilibrium steady
state which can inhibit strong enhancement of magnetic interactions. By contrast, when quadratic spin-phonon
coupling dominates, no phase transition exists at experimentally relevant parameters. By utilizing a chirp
protocol, the phase transition can be engineered, enabling stronger magnetic interactions. We also discuss the
route for experimental observation of our results.
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I. INTRODUCTION

In recent years, the prospect of using spins as alternative
information carriers has led to the emerging field of spintron-
ics, which promises next-generation digital processing units
that are fast, robust, and energy efficient [1]. In solid materials
exhibiting magnetic properties, the electronic spins interact
with lattice vibrations (phonons) opening up a back-action
channel, through electron orbital hybridization.

The famous magnetic material class whose role in spintron-
ics is as significant as silicon in electronics is the rare-earth
orthoferrites (perovskite oxides) RXO3, with magnetic rare-
earth ion R and a magnetic ion X [2]. A primary example is
SmFeO3, where at low temperatures an unusually strong non-
linear spin-phonon coupling (SPC) arises from the crosstalk
between the two magnetic iron and samarium ions [3], in
contrast to most examples that deal only with one magnetic
lattice and linear SPC.

Even though the nonlinear SPC in SmFeO3 is strong, the
magnetic exchange interactions including Sm spins are weak
[4]. While various Sm-magnetic orders have been reported to
explore the interplay between phonons, spin-orbit coupling,
and Sm magnetism, the precise Sm-spin ordering is still un-
clear. Enhancing these interactions will enhance the effects
controlled by the unusual nonlinear SPC. This is necessary
to leverage their unusually large spin interactions for the
design of material properties from a scientific perspective,
as they exhibit intriguing features such as the measurable
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magnetoelectric effect [5–9], and for applications in industry,
e.g., in solar cells and spintronics [10–12].

A conventional way is to apply pressure [13] or magnetic
field [14]. In contrast to these static approaches, dynamic
control techniques emerge as a new frontier to induce and
observe a broader array of novel phenomena that only exist
away from equilibrium [15–17]. Since spin motions in solids
typically have a timescale that coincides with the THz spec-
trum region, detection and manipulation of spins by optical
means is indispensable.

In this paper, we propose a nonequilibrium magne-
tophononic mechanism to manipulate inherent weak spin-spin
interactions in SmFeO3 via laser-driven single-mode infrared-
active (IR-active) phonons that play the central role of a
mediator for dynamic control of spins. The term magne-
tophononics was originally coined in the context of classical
magnets [18]. However, in this work, we adapt the mag-
netophononic protocol to a quantum spin system featuring
quantum dissipation. We first show that magnetic interactions
are enhanced in SmFeO3 for the on-resonance laser-phonon
coupling regime. More importantly, we discover a dynamical
magnetophononic first-order phase transition in SmFeO3 in
the off-resonance laser-phonon coupling regime to be a more
efficient way to further enhance magnetism as compared to the
on-resonance one. We also discuss the origin of the transition
from inherent nonlinearities in the mechanism as well as a fea-
sible solution in the experiment to observe these phenomena.
Finally, we propose a linear chirp drive to further enhance the
magnetic response of the system.

This paper is structured as follows: Section II introduces
the Hamiltonian model describing SmFeO3 at low temper-
atures, an anisotropic antiferromagnetic spin S = 5

2 chain.
Subsequently, we compute the time evolution of all observ-
ables. In Sec. III, we present the primary findings and results
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obtained for various parameter sets. Additionally, we briefly
discuss the relevance of these phenomena to experimental
measurements in Sec. IV. Finally, Sec. V summarizes the
paper.

II. MODEL

We consider SmFeO3 at extremely low temperatures,
where the weak spin interaction between Sm3+ and Fe2+

ions can be effectively described by an anisotropic antifer-
romagnetic (AFM) Heisenberg S = 5

2 chain (XXZ model)
[3,4,19,20]. Vibrational modes are initially excited by a THz
continuous wave laser, inducing a coherent phonon field on
every site �. This field couples both linearly and quadratically
to the nearest isotropic (in-plane) and anisotropic (easy-axis)
spin interactions [21–24]. It is important to note that our
considerations pertain only to the phonon we drive, given the
plethora of phonons in the spectrum. Despite the minimal
complexity of our model for a magnetophononically driven
quantum spin system, it encompasses all essential components
to capture the fundamental physics of real-driven materi-
als. Therefore, the total Hamiltonian governing the dynamics
comprises four terms:

H = Hs + Hph + Hsp + Hlp, (1)

with

Hs =
∑
〈�, j〉

(
J
[
Sx

�Sx
j + Sy

�Sy
j

] + J�Sz
�Sz

j

)
. (2)

The in-plane isotropic exchange coupling is approximately
J � 0.1 meV, while the phenomenological anisotropic AFM
parameter � is greater than 1 along the a axis [4,20], as
illustrated in Fig. 1 [3,19]. We consider only nearest-neighbor
interactions within the system. By dividing the sites into two
sets, we treat the spins as classical vectors. Subsequently, we
perform an axis rotation in spin space for sites on the down
sublattice to accommodate the classical Néel state, resulting in
the magnetic unit cell having twice the volume of the chemical
one. The Hamiltonian can thus be reformulated as follows:

Hs = J
∑
〈�, j〉

[
1

2

(
S+

� S−
j + S−

� S+
j

) + �Sz
�Sz

j

]
, (3)

where S± = Sx ± iSy.
We proceed by employing the zeroth-order expansion of

the Holstein-Primakoff transformation [25], which is applica-
ble for the linear spin-wave theory used to investigate spin
excitations. Given our focus on modeling the system at very
low temperatures, where the population of excited magnons
is low, and considering a large number of sites in the system
with sizable spin lengths S = 5

2 for both magnetic sublattices,
we use

Sz
� = b†

�b� − S, S+
� �

√
2S b�, S−

� �
√

2S b†
�, (4a)

Sz
j = −b†

jb j + S, S+
j �

√
2S b†

j, S−
j �

√
2S b j, (4b)

where b represents the bosonic operator at the sublattice
sites � and j. Upon performing the Fourier transform, the
Sm-Fe spin Hamiltonian, up to terms of quadratic order in the

FIG. 1. SmFeO3 at low temperatures considering a spin S = 5
2

chain with coupling between two magnetic ions, Sm3+ and Fe3+

[17]. Here, magnetic moments point upwards only when directly
neighboring magnetic moments point downwards. The parameter J
represents the bare Heisenberg exchange coupling, while � quanti-
fies the anisotropy of the spin interactions. Additionally, we model
optical phonons using green springs, with ω0 denoting the phonon
frequency and gl/q representing the linear and quadratic spin-phonon
coupling. The damping of the driven phonon and the interaction
of spins with the phononic bath (other phonons of the system)
are, respectively, characterized by the phenomenological rates γph

and γs. Moreover, the steady laser field is represented by E (t ) =
A0 cos(ω t ), where A0 denotes the intensity and ω signifies the
frequency.

k space, is expressed as

Hs

S
= −LJ�S + J

∑
k

[2�b†
kbk + cos(k)(bkb−k + b†

−kb†
k )],

(5)

where L represents the system size or chain length. It is impor-
tant to note that we neglect the magnon-magnon interaction at
very low temperatures. Additionally, for simplicity, we set the
lattice constant to 1. To diagonalize the aforementioned spin
Hamiltonian, we utilize the bosonic Bogoliubov transforma-
tion, employing the operator

bk = cosh(θk )Bk + sinh(θk )B†
−k (6)

with sinh(2θk ) = − cos(k)/
√

�2 − cos2(k). Thus, we obtain

Hs

S
=

∑
k

εkB†
kBk + E0, (7)

where εk is the magnon dispersion

εk = 2J
√

�2 − cos2(k), (8)

and E0 = 1
2

∑
k εk − LJ�(S + 1) refers to the ground energy.

In the phonon sector, the quadratic SPC arises from the
crosstalk between sublattices. Therefore, in our scenario,
the optical phonons are expected to originate from the rel-
ative movement of ions. Additionally, we assume that the
driven noninteracting IR-active phonons are dispersionless, as
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described by

Hph = ω0a†
0a0. (9)

The phonons are characterized by an energy h̄ω0 (we set
h̄ = 1 throughout the paper), as typically the phonon energy
at the phononic band center (corresponding to a dispersionless
phonon mode) exceeds the bandwidth of optically dispersive
ones in most materials. Conversely, in the case of the usual
long-wavelength coupling of laser and phonon, it is evident
that the laser will excite modes with very small momentum,
making this approximation not far from reality.

In our approach, we aim to locally couple the spins to the
phonons for the SPC Hamiltonian. We assume that the relative
oscillation of the Sm and Fe ions couples to both the isotropic
and anisotropic interactions of spins. The linear and quadratic
displacement of an optical phonon modulates the parameters
J and �, enabling control over the spin system by driving the
phonon out of equilibrium. Hence,

Hiso
s-ph =

∑
〈�, j〉

∑
α=x,y

(gl (a
†
0 + a0)+gq(a†

0 + a0)2)

× [
Sα

� Sα
j − 〈Sα

� Sα
j 〉eq

]
, (10a)

Haniso
s-ph =

∑
〈�, j〉

(gl�(a†
0 + a0)+gq�(a†

0 + a0)2)

× [
Sz

�Sz
j − 〈

Sz
�Sz

j

〉
eq

]
, (10b)

where gl and gq represent the strengths of the linear and
quadratic SPC, respectively. It is worth noting that the
isotropic and anisotropic SPCs have units of energy and, for
convenience, they are normalized by �. The term 〈. . . 〉eq

denotes subtraction of the equilibrium value of the spin-spin
interactions to establish the vacuum state as the ground state
of both the phonon and spin sectors. Additionally, since the
expectation value of the phonon occupation is proportional
to the number of sites (L = 2501 in our simulation), the
relative quantum fluctuations, proportional to 1/

√
L, tend to

zero in the thermodynamic limit (L → ∞). Consequently, we
employ the mean-field approximation to decouple the SPC
acting on the phonon and spin [22], yielding

HMF
s-ph

S
=

(
gl

〈
a†

0 + a0√
L

〉
+gq

〈
a†

0 + a0√
L

〉2)
×

∑
k

(Tk + Rk[B†
kBk − N (εk )]

+ Sk[BkB−k + B†
−kB

†
k ]), (11)

where N (εk ) represents the average number of magnons with
energy εk in equilibrium, and Tk only influences the ground
energy. Additionally, the matrix elements are given by

Rk =
{

−4J cos2(k)/εk isotropic,

4J�2/εk anisotropic,
(12a)

Sk =
{

2J� cos(k)/εk isotropic,

−2J� cos(k)/εk anisotropic.
(12b)

Indeed, from Eq. (12), it is apparent that spin excitations
occur only when the phonon is coupled to the isotropic and
anisotropic interactions separately. Otherwise, Sk becomes

zero if the phonon is simultaneously coupled to both J and �

with equal amplitude, indicating the absence of spin excitation
in the coupled regime.

Up to this point, we have discussed the undriven Hamilto-
nian of the system. Now, we introduce the excitation of optical
phonons induced by the electric field of the laser [22], which
is represented by

Hlp = E (t )
√

L(a†
0 + a0). (13)

This setup enables the required excitations to be transferred
into the spin chain. It is important to note that when the
phonon is driven by the electric field, the discussion of electric
field directions pertains to atomic motions. We proceed with a
steady laser, given by

E (t ) = A0 cos(ω t ), (14)

with amplitude (frequency) A0 (ω). Given our objective of
determining the nonequilibrium steady states (NESS) as the
desired output, a steady field serves as a suitable input power.
While experimental evidence has demonstrated the consider-
ation of the quantum nature of the laser field [26,27], it is
typically the case that quantum fluctuations of the laser field
are negligible in most experiments, thereby justifying the use
of a classical field.

In the following, we define the physical observables of the
model for both the spin and phonon subsystems, elucidating
how the dynamics can be induced in the magnons by the
driven IR-active phonons:

qph(t ) =
〈

1√
L

(a†
0 + a0)

〉
(t ), (15a)

pph(t ) =
〈

i√
L

(a†
0 − a0)

〉
(t ), (15b)

nph(t ) =
〈

1

L
a†

0a0

〉
(t ), (15c)

Qph(t ) =
〈

1

L
(a†

0a†
0 + a0a0)

〉
(t ), (15d)

Pph(t ) =
〈

i

L
(a†

0a†
0 − a0a0)

〉
(t ), (15e)

ns,k (t ) = 〈B†
kBk〉(t ), (15f)

zs,k (t ) = 〈B†
−kB

†
k 〉(t ), (15g)

where, respectively, refer to the phonon displacement, phonon
momentum, phonon number, squeezed phonon displacement,
squeezed phonon momentum, k component of the spin den-
sity, and the k component of off-diagonal excitation (pair
magnons). It is also useful to define the total spin density by
summing over all k modes; ns(t ) = 1

L

∑
k ns,k (t ).

To prevent overheating caused by the laser driving, the
entire system is coupled to a phononic bath (comprising other
undriven phonons of the system). To incorporate the effect of
damping due to the coupling to the bath, we utilize the ad-
joint quantum master equation with phenomenological decay
rates for an arbitrary observable O(t ) [28,29]. The equation
governing the coherent evolution and the dissipator is given
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FIG. 2. The dynamics of phonons and magnons are depicted in (a) and (b), respectively, when the laser-driven phonon is exclusively
coupled to the isotropic bonds, and in (c) and (d), respectively, when coupled exclusively to the anisotropic bonds in SmFeO3. In the coupled
situation, the parameters are set as follows: � = 1.2, ω = ω0 = 2.5J , gl/J = 0.1, A0/γph = 0.2, γph/ω0 = 0.05, and γs/J = 0.01. In the
decoupled situation, we only have gl/J = 0, gq/J = 0, and γs = 0.

by

〈Ȯ〉(t ) = i〈[H, O(t )]〉 + 1

2

∑
�

γ�〈[L†
�, O(t )]L�

+ L†
�[O(t ),L�]〉, (16)

where the summation � runs over all possible states in
the Hilbert space, and L� represents the time-independent
Lindblad jump operators in the reduced system’s Liouville
space. The phenomenological decay rates γ� are γs and γph,
respectively, for the spin and phonon. The first term for the de-
fined O(t ) = {qph(t ), pph(t ), nph(t ), ns,k (t ), zs,k (t ) = xs,k (t ) +
iys,k (t )} can be straightforwardly calculated. Turning to the
second term, the most relevant Lindblad operators are

L� = a†
0 and a0 �→ γ� = γph N (ω0) and γph[1 + N (ω0)],

(17a)

L� = B†
k and Bk �→ γ� = γs N (εk ) and γs[1 + N (εk )],

(17b)

for the phonon and spin, respectively [28]. N (ω0) is the aver-
age number of phonon with energy ω0.

As mentioned before, we assume that both subsystems are
in the vacuum state in equilibrium. Additionally, both distri-
butions N (ω0) and N (εk ) vanish at very low temperatures.
Taking these into account, we eventually obtain

q̇ph(t ) = +ω0 pph(t ) − γph

2
qph(t ), (18a)

ṗph(t ) = −ω̃0(t ) qph(t ) − 2 Ẽ (t ) − γph

2
pph(t ), (18b)

ṅph(t ) = −Ẽ (t ) pph(t ) − 1

2
(ω̃0(t ) − ω0)Pph(t )

− γphnph(t ), (18c)

Q̇ph(t ) = +(ω̃0(t ) + ω0)Pph(t ) + 2 Ẽ (t ) pph(t )

− γphQph(t ), (18d)

Ṗph(t ) = −(ω̃0(t ) + ω0)Qph(t ) − 2 Ẽ (t ) qph(t )

− 4gq

(
2nph(t ) + 1

L

)
[Ns(t ) + Xs(t )]

− γphPph(t ), (18e)

ṅs,k (t ) = +2qph(t )[gl + 2gqqph(t )]Skys,k (t ) − γsns,k (t ),

(18f)

ẋs,k (t ) = −2 ε̃k (t ) ys,k (t ) − γsxs,k (t ), (18g)

ẏs,k (t ) = +2 ε̃k (t ) xs,k (t ) + 2qph(t )[gl + 2gqqph(t )]Sk

×
[

ns,k (t ) + 1

2

]
− γsys,k (t ), (18h)

where Ns(t ) = 1
L

∑
k Rkns,k (t ), Xs(t ) = 1

L

∑
k Skxs,k (t ), and

Ẽ (t ) = E (t ) + gl[Ns(t ) + Xs(t )], (19a)

ω̃0(t ) = ω0 + 4gq[Ns(t ) + Xs(t )], (19b)

ε̃k (t ) = εk + qph(t )[gl + gqqph(t )]Rk, (19c)

respectively, describe the effective electric field in the cou-
pled regime, the dressed phonon frequency, and the dressed
magnon dispersion.

III. RESULTS AND DISCUSSION

Depending on the matrix elements Rk and Sk defined in
Eq. (12), the equations of motion have different solutions
for the phonon coupled to isotropic and anisotropic bonds.
After solving the tightly coupled equations of motion between
subsectors, as a result, magnons acquire dynamics via laser-
driven phonons such that the properties of the spin band can
be dynamically engineered. We initially examine the regime
of on-resonance laser-phonon coupling (LPC) at ω = ω0.

First, we consider the case where gl/q = 0, i.e., the decou-
pled phase, where the spin damping is set to zero, γs/J = 0,
implying that the magnon density is at its equilibrium value
(zero). Numerical solutions indicate that occupations reach
the NESS exponentially at around t � 100 ps, as depicted
by the gray line in Fig. 2(a). Such a short timescale offers
applications with higher performance speeds [30]. Regarding
nph(t ), Eq. (18c) predicts a timescale of 1/γph from the last
damping term. However, one should carefully consider the
role of the laser-phonon coupling given by the E (t ) pph(t )
term, leading to an effective timescale of 2/γph at the end to
achieve the NESS.

Another noteworthy aspect is the oscillation frequency of
nph(t ), which oscillates at twice the frequency 2 ω0 in the
NESS, frequency-doubling effect, as observed in the inset
panels. This phenomenon arises from the laser-phonon cou-
pling term in Eq. (18c). From Fig. 2(a), the time averaging
in the NESS for nph(t ) yields nph = 0.04. This observation
aligns well with elementary electrodynamics, which states
that the power of the laser is proportional to the squared
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amplitude of the laser field, i.e., nph = (A0/γph )2. For
A0/γph = 0.2 in our simulation, this relationship exhibits ex-
cellent agreement.

We now delve into the emergence of (quasi)NESS in the
coupled phase, where gl,q 	= 0, exhibiting a degree of univer-
sality in parameter selection. The magnon dynamics induced
by the laser-driven phonon is illustrated in Fig. 2(c). In this
scenario, feedback effects between sectors become apparent
in the transient processes before reaching the NESS. Here, the
phonon pumps into a state lower than the decoupled one, fol-
lowed by the magnon density of each mode becoming nonzero
as a consequence of the same transient feedback, ultimately
leading to a spin NESS. The change in the occupation of
phonons and magnons with the quadratic SPC is a direct
consequence of hybridization effects. With the SPC effects,
driving the phonon with a given frequency results in both
phonon and magnon exhibiting higher harmonics, as depicted
in the inset panels. Similarly, isotropic and anisotropic inter-
actions respond differently to the quadratic SPC. In contrast
to J , the occupations coupled to � are not strongly affected,
as illustrated in Figs. 2(b) and 2(d).

Exciting the IR-active phonons directly with the laser leads
to a modulation of both magnetic coupling constants J and �,
expressed by

J̃ (t )/J = 1 + glqph,iso(t ) + gqq2
ph,iso(t ), (20a)

�̃(t )/� = 1 + glqph,aniso(t ) + gqq2
ph,aniso(t ). (20b)

As shown, the inclusion of SPCs and linear and quadratic
lattice vibrations alters the magnetism of the system. The
variance of atomic displacements of a material, represented
by squeezed phonon states, can be observed through time-
resolved x-ray diffraction peaks in experiments [31], although
measuring this variance poses challenges. In Eq. (20), the
superscripts “iso” and “aniso” indicate that data are taken
with SPC given by Hiso

s-ph and Haniso
s-ph , respectively. Note that,

since isotropic SPC strongly modifies J while anisotropic SPC
strongly modifies only �, all data for J̃ (t ) [�̃(t )] are obtained
using only Hiso

s-ph (Haniso
s-ph ) throughout this paper.

In general, atomic displacements can influence electronic
orbitals, thereby playing a crucial role in shaping the ma-
terial’s electronic structure. Particularly, the distribution of
electrons among these orbitals is influenced by the material’s
chemical potential. Consequently, changes in the material’s
chemical potential and electronic structure should manifest
in spin-orbit coupling and SPCs, if present. Moreover, the
density of states describes the distribution of energy states
available to electrons in a material, making it directly re-
lated to the material’s electronic structure. Given that oxygen
orbitals influence the bonding between magnetic ions in
SmFeO3, SPCs exhibit strong dependence on the material’s
density of states at the chemical potential [32]. Various static
methods, such as temperature, doping, pressure, and elec-
trostatic gating [33–36], have been developed to tune the
chemical potential in a controlled manner and induce changes
in the coupling constants. Consequently, with the parameters
mentioned, experimental manipulation of SPCs enables the
detection of phenomena arising from phonon coupling.

Figure 3 illustrates the temporal evolution of J and � over
short [left part of Figs. 3(a) and 3(b)] to long [right part of

1
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184 186 188 190 192

0.1 0.2

0 200 400 600
1

1.05

1.1

1860 1900

(a)

(b)

0 0.1 0.2 0.3 0.4
1

1.02

(c)

0 1 2 3 4 5

(d)
1.04

FIG. 3. (a), (b) The temporal evolution of isotropic (J) and
anisotropic (�) magnetic interactions with a predominant quadratic
SPC (gq/gl = 5) against laser amplitude is depicted. Time averaging
in the NESS yields interactions as a function of laser amplitude [(c),
with gq/gl = 5] and SPC [(d), with A0/γph = 0.2]. The intrinsic
spin feedback effect in the magnetophononic mechanism results in
a saturated spin response to the laser field in the strong coupling
regime. Meanwhile, a nonlinear (linear) modulation of the isotropic
(anisotropic) response to the SPCs arises due to distinct matrix
elements of spin excitations. Parameters: ω = ω0 = 2.5J , � = 1.2,
γph/ω0 = 0.05, and γs/J = 0.01.

Figs. 3(a) and 3(b)] timescales, culminating as the system
converges to its long-term steady state around t � 1000 ps.
In the presence of the laser field, both exchange interactions
attain a NESS, characterized by coherent oscillations roughly
5% above the inherent interaction strengths, as depicted
in Figs. 3(a) and 3(b). The interaction between spins and
phonons becomes evident even in the transient (early-time)
dynamics. Notably, the amplitude of oscillations increases
with the laser amplitude in both interactions. Additionally, the
phase of oscillations in isotropic and anisotropic interactions
undergoes slight shifts to the right and left, respectively, owing
to a negative sign disparity in the matrix elements of the SPC
component. The observed alterations in phonon and magnon
occupations, following the modulation of interactions induced
by SPC, are direct outcomes of hybridization effects.

Energy transfer occurs from the laser to the spin system
until reaching a steady state, altering the effective exchange
interactions. As the laser fluence is proportional to A2

0, one
would anticipate J and � to scale similarly. This expectation
holds up to A0/γph = 0.1 and 0.2, respectively, for J and
�, but saturates at higher laser intensities. This saturation,
illustrated in Fig. 3(c), stems from an inherent spin feedback
effect in the strong coupling regime, where spin excitations
shift the phonon resonance, hindering further excitations.
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0 /2

1.5

2

2.5

pristine
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2.5(a) (b)

FIG. 4. (a) The plot displays the magnon dispersion, both in its
pristine form and after modulation by the laser field. The modula-
tion is particularly evident when the phonon is coupled to either
isotropic or anisotropic bonds. (b) Corresponding to these disper-
sions, it shows the magnonic density of states (in arbitrary units),
revealing prominent features associated with band-edge van Hove
singularities. These singularities indicate regions where spin excita-
tions are notably enhanced due to the coupling with the laser-driven
phonon. Parameters: ω = ω0 = 2.5J , � = 1.2, gq/gl = 5, A0/γph =
0.2, γph/ω0 = 0.05, and γs/J = 0.01.

The data highlight a crucial observation: quadratic SPC
significantly alters both isotropic (J) and anisotropic (�) mag-
netic interactions, particularly when the phonon is resonantly
driven. This enhanced effect is partly attributed to the stronger
impact of linear SPC on the phonon resonance frequency.
Thus, driving off resonance might offer a means to even more
strongly modify interactions.

Using the modulated interactions, we can elucidate the
dynamic evolution of the magnon dispersion under similar
conditions. As a result, we establish

εiso
k = 2J̃

√
�2 − cos2(k), (21a)

εaniso
k = 2 J

√
�̃

2 − cos2(k). (21b)

The pristine magnon spectrum depicted in Fig. 4(a) illus-
trates a dispersion ranging from 2

√
�2 − 1 to 2�. Upon

introducing the laser field, there is a noticeable alteration

in the magnon dispersion, particularly when the phonon is
coupled to the isotropic or anisotropic bonds. We can fur-
ther analyze these changes through the magnonic density of
states D(E ) = (−1/π )Im

∑
k (E + iη − εk )−1, where η/J =

0.001 serves as a phenomenological broadening parameter.
As shown in Fig. 4(b), the resulting density of states re-
veals prominent features attributed to the band-edge van Hove
singularities. These distinctive contributions are expected to
manifest in the dynamics of observable quantities.

In many ultrafast experiments, it is common to vary the
driving frequencies (ω) to study system dynamics. However,
this approach poses challenges and can even lead to dynamical
phase transitions in achieving a steady state. To investigate
this, we maintain the phonon frequency above the spin band
at ω0/J = 2.5 and vary the laser frequency to explore mutual
dressing effects. While SmFeO3 is known to have a strong gq

compared to other quantum magnets, the precise values of gl

and gq remain unclear. Therefore, we systematically explore
parameter space to identify general phenomena.

When gq = 0, the laser electric field acting on the phonon
quickly undergoes dressing due to the spin’s feedback:

Ẽ (t ) = E (t ) + gl

L

∑
k

[Rkns,k (t ) + Skxs,k (t )]. (22)

This means that the interaction between the phonon and the
laser illustrates the tendency of laser energy to transfer to the
magnons. Consequently, the resonance peak at ω = ω0 shifts
towards lower frequencies due to the nonequilibrium magnon
occupation, as depicted in Fig. 5(a).

In the presence of strong linear SPCs, we observe a sudden
jump in the isotropic magnetic interaction J at a critical drive
frequency ωc. This jump doubles the strength of J compared
to on-resonance modulation and coincides with the creation of
a 2% magnon density per site (see the Appendix). Such a jump
signifies a dynamical first-order phase transition, similar to the
one observed in previous work on a driven fermion chain cou-
pled quadratically to lattice vibrations [23]. However, unlike
the dissipation-induced nonlinearity observed in the fermion
chain, the phase transition here arises directly from nonlin-
earity in the mean-field Hamiltonian, driven only by linear
SPC. Therefore, the mechanism driving the reported phase

-0.2 -0.1 0 0.1 0.2

0

1

2

3 (b)

FIG. 5. Dynamical magnetophononic first-order phase transition. (a) The isotropic magnetic interaction plotted against drive frequency
for various linear SPCs at gq/J = 0.0. At large gl, the appearance of the cusp indicates the occurrence of the first-order phase transition.
(b) Illustration of the effective force in the NESS acting on the driven-dressed-damped phonon at gl/J = 0.5 and gq/J = 0.0, expanding
magnons around the dominant k = 0 mode, characterized by the first harmonic of phonon displacement q1. This confirms the first-order phase
transition at ωc. (c) Similar to (a), but plotted against quadratic SPCs at gl/J = 0.0, demonstrating weak shifts of the phonon resonance, leading
to the absence of a phase transition. Parameters: ω0 = 2.5J , � = 1.2, A0/γph = 0.1, γph/ω0 = 0.05, and γs/J = 0.01.
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transition is intrinsic to the spin system, with the drive serving
merely as a trigger. The peak near ω/J � 2.65 corresponds to
the lower edge of the two-magnon band.

Next, we aim to elucidate the mechanism underlying the
emergence of the phase transition in the NESS by examining
the dominant harmonic of the driven, dressed, and damped
phonons. We construct an effective theoretical framework for
understanding the dynamics by approximating the magnons
with their single dominant zero-momentum (k = 0) mode. To
achieve this, we decompose the phonon displacement in the
NESS using Fourier decomposition, expressed as qph(t ) =
qph + ∑

n 	=0 qneinωt , where q1 represents the dominant first
harmonic. For further details, please refer to the Appendix,
Sec. 1. This decomposition leads to the following cubic
equation:

F = aq3
1 + bq2

1 + cq1 + d = 0, (23)

where the hybridized driving, coupling, and damping pro-
cesses are described by

a = 4g2
lS2

k=0

[
γs

(
ω2 − ω2

0 − γ 2
ph

4

)
+ γphω

2

]
, (24a)

b = −4A0ω0γsg
2
lS2

k=0, (24b)

c = γs

[
ω2 − ω2

0 − γ 2
ph

4

][
ω2 − 4ε2

k=0 − γ 2
s

]
+ γphγ

2
s ω2 − 4γsg

2
lS2

k=0ω0εk=0, (24c)

d = −A0ω0γs
[
ω2 − 4ε2

k=0 − γ 2
s

]
. (24d)

Equation (23) can be interpreted as an effective force exerted
on the phonon within the driven-coupled-damped regime of
the system. To precisely characterize the phase transition, we
examine the solution of this equation just before reaching
ωc. The fact that the solutions of the effective force vanish
at ωc serves as evidence for the occurrence of the phase
transition, as illustrated in Fig. 5(b). The effective force the-
ory not only elucidates the origin of the transition but also
serves as a useful quantitative proxy for determining the
exact ωc.

It is noteworthy that in the vicinity of the first-order phase
transition, we observe a rapid initial increase in the dynamics
of observables for t � 10 ns. This acceleration is attributed
to the heightened magnon density and phonon occupation
facilitated by linear SPC, as detailed in the Appendix, Sec. 1.
This intriguing behavior suggests the formation of an effec-
tive hybridized state on transient timescales, anticipating the
phase transition. A similar analysis, applied to the coupling
of the phonon to the anisotropic magnetic interaction, yields
a dynamical profile somewhat similar to the isotropic case,
albeit with the opposite sign due to the presence of quadratic
SPC. For a detailed investigation of the impact of another set
of parameters, please refer to the Appendix, Sec. 2.

In contrast to the behavior observed with linear SPC, the
response of the system to the drive frequency when quadratic
SPC dominates reveals a simpler NESS, as shown in Fig. 5(c).
In this scenario, no phase transition occurs, at least within
the small to intermediate gq regime. This weaker dynami-
cal response of the nonlinearly coupled spin-phonon system
suggests the existence of a quasidecoupled phase, distinct

2 2.05 2.1 2.15 2.2 2.25 2.3
1

1.005

1.01

1.015

1.02

1.025 no chirp
chirp

FIG. 6. Chirp protocol for tuning enhancement of magnetism and
first-order phase transition in SmFeO3. Linearly chirped isotropic
magnetic interaction with E (t ) from Eq. (25) for ω1/J = 2.3, τ1 =
500 ps and ω2/J = 2, τ2 = 5000 ps. Employing this chirp enables
nearly doubling the size of J̃ compared to the unchirped case before
a second transition occurs at ω/J = 2.1. Parameters: ω0 = 2.5J ,
� = 1.2, A0/γph = 0.1, gq/J = 0, gl/J = 0.5, γph/ω0 = 0.05, and
γs/J = 0.01.

from the nonanalytic response observed in materials driven
by quadratic electron-phonon coupling [23,37,38]. Thus, the
prevalent quadratic SPC in SmFeO3 offers opportunities for
manipulating the spin band under on-resonance LPC while
avoiding phase transitions in off-resonance LPC. However, it
is worth noting that the presence of both linear and quadratic
SPCs does not prevent the occurrence of the first-order phase
transition (see the Appendix).

After discovering the phase transition physics in our model,
we are now investigating its applicability in manipulating the
magnitude of interaction strength. This exploration is moti-
vated by our recent endeavors in electronic materials research
[23]. We consider a linear chirp protocol given by

Echirp(t ) = A0 cos

{
ω1 t +

[
(ω2 − ω1)(t − τ1)

τ2 − τ1

]
t

}
, (25)

where ω1/J = 2.3, τ1 = 500 ps, ω2/J = 2, and τ2 = 5000 ps.
In this procedure, we gradually decrease the laser frequency
from ω1 to ω2, passing through the initial phase transition
point. This process enables the generation of stronger mag-
netic interactions, nearly twice the enhancement compared
to nonchirped interactions, via a hysteresis loop of adiabatic
NESSs, as depicted in Fig. 6. Additionally, it triggers another
first-order phase transition at ω/J = 2.1.

IV. EXPERIMENTAL PERSPECTIVE

Continuous driving inevitably results in sample heating,
necessitating mitigation of thermal effects [22,23]. To observe
nontrivial nonequilibrium spin states, even with relatively
modest phonon occupations, sustaining the spin system at low
temperatures during prolonged steady driving presents a no-
table challenge for conventional cold finger cooling capacity.
Therefore, incorporating a heat sink with a highly conductive
metal becomes essential to efficiently dissipate input power,
preventing any thermal bottleneck from occurring due to its
thermal contact.
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FIG. 7. The absorbed laser power in the NESS for various laser-
field amplitudes at low temperatures of the isotropic Hamiltonian
exhibits the signature of a nonequilibrium phase transition. This
transition occurs due to the competition between energy scales of the
system with various laser amplitudes to reach NESS through driv-
ing, coupling, and damping mechanisms. Specifically, the first-order
phase transition occurs at A0/γph > 0.05 for � = 1.2, gq/J = 0.5,
gl/J = 0.5, γph/ω0 = 0.05, and γs/J = 0.01.

We roughly estimate the timescale for reaching the NESS
and phase transition. For this purpose, we focus on the
dumped power, i.e., the portion of input laser power that
directly flows from the driven phonon to the bath, given
by Pdu(t ) = waρ ω0γphnph(t ). Here, we consider a SmFeO3

sample with a thickness w = 20 nm, area a = 2 mm2, and
molar density ρ � 0.028 mol cm−3 [39]. We assume that the
sample is in contact with a metal block (heat sink) to absorb
thermal energy. The heat sink should be at a low temper-
ature T � 2–5 K with a mass mb � 2–5 g and specific heat
C(T ) � 1 − 3 × 10−4 T J K−2 g−1 to prevent overheating of
the block at the phase transition point with nph

iso � 0.01. This
overheating occurs at

theat = mb
∫ T

0 C(T ) d T

Pdu
iso � 50 ns, (26)

for the isotropic scenario. This timescale to reach the NESS
is significantly longer than the ps timescale obtained in our
simulation. Therefore, the computed long-term behavior is
readily observable if we have a heat sink to mitigate thermal
effects. This implies that the uncovered phase transition can
be experimentally detected under these conditions using quan-
tities such as reflectance [40–43]. The advancement of THz
drive technology is progressing towards a point where a long-
lived monochromatic drive of a single phonon may become
feasible. While this might seem ambitious at present, techno-
logical advancements suggest that such capabilities could be
achievable in the near future.

Additionally, to provide a measurable quantity in the exper-
iment, we consider the NESS energy flow from the drive into
the final stage of dissipation for various degrees of freedom.
To directly measure the magnetic properties of SmFeO3, we
propose the absorbed power

Pab(t ) = −waρ ω0E (t )pph(t ). (27)

In Fig. 7, we present a complementary analysis of Pab(t )
in the NESS, reflecting the dynamics induced by the laser

field. The persistence of the first-order phase transition for the
appropriate laser amplitude at ωc suggests that the observa-
tion of such phenomena is feasible in ultrafast experiments
employing the current pump protocol, as the pump effectively
transfers sufficient energy to the phononic sector.

V. CONCLUSIONS

In contrast to studies that have relied on equilibrium
treatments and static approaches to manipulate the magnetic
responses of a system, we propose a dynamical magne-
tophononic mechanism, modulation of magnetism through
phonons, beyond equilibrium. The rare-earth orthoferrite
SmFeO3, a functional material in both science and industry,
presents potentially unknown features owing to its multiple
magnetic orderings associated with an unusual nonlinear spin-
phonon coupling. However, its intrinsic magnetic exchange
couplings are weak for spintronic applications. To dynami-
cally control the magnetic response of SmFeO3, we apply a
continuous laser field. We consider dissipation effects when
pumping energy into the system to achieve nonequilibrium
steady states at long times. With on-resonance drive of the
phonon, inherently weak Sm-Fe magnetic interactions are en-
hanced, enabling manipulation of the magnonic band, which
holds relevance for spintronic applications.

In connection to experimental setups, we probe the sys-
tem’s responses to the pump field when the laser and phonon
are purposely chosen to be in the off-resonance regime. This
exploration unveils an intriguing phenomenon out of equilib-
rium, termed as dynamical magnetophononic first-order phase
transition. Unlike electron-phonon coupled chains [23,37,38],
where the quadratic model exhibits stronger reactions to a
pump than the linear model, linear spin-phonon coupling
proves sufficient to observe this phenomenon. Moreover, it
is more effective than quadratic coupling in enabling phase
transitions and engineering magnetic interactions. Finally, we
propose a chirp drive protocol to engineer both the first-order
phase transition and the enhancement rate of magnetism.
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FIG. 8. The phase diagrams for magnon density are depicted in (a) for gq = 0, (b) for gl = 0, and (c) for gl = 0.5. Concurrently, (d)–(f)
exhibit the phase diagrams for phonon occupation when phonons are linked to anisotropic bonds (see Fig. 1). Parameters are set as follows:
� = 1.2, ω0 = 2.5J , A0/γph = 0.1, γph/ω0 = 0.05, and γs/J = 0.01.

APPENDIX: DYNAMICAL FIRST-ORDER PHASE
TRANSITION IN THE NESS

In this Appendix, we discuss further details surrounding
the dynamical first-order phase transition in the NESS, focus-
ing on the perspective of spins. Following this, we provide a
comprehensive breakdown of the effective force model intro-
duced in the main body of the text. Additionally, we explore
the phononic responses, particularly in cases where phonons
interact with anisotropic bonds (see Fig. 1). Lastly, we address
how driving, damping, and spin anisotropy influence the first-
order phase transition.

Similar to Figs. 5(a) and 5(c) in the main text, in Figs. 8(a)–
8(c), we aim to examine the spin response to the drive
frequency in the presence of SPCs. When considering only
linear SPC, denoted as gq = 0 [see Fig. 8(a)], we observe
a notable trend shift in responses towards the critical drive
frequency for the phase transition occurrence, mirroring the
behavior of phonon occupation. This shift is accompanied by
the signature of the van Hove singularity of the two-magnon
band around ω/J � 2.6. In the case of only quadratic SPC
[see Fig. 8(b)], we similarly observe no significant deviation
from the on-resonance response (ω = ω0 = 2.5), but the pres-
ence of the van Hove singularity of the one-magnon band
is evident (with the upper band edge at ω/J = 2.4 for � =
1.2). When both linear and quadratic SPCs are present [see
Fig. 8(c)], there is a slight shift in the response compared to
the scenario with only linear strong SPC, indicating that linear
SPC remains dominant for the first-order phase transition in
the NESS.

In Figs. 8(d)–8(f), we explore the system’s response when
the driven IR-active phonons are coupled to the � bond as
illustrated in Fig. 1, affecting only the z component of spins
through the SPC. Despite observing a consistent trend for
the phonon occupation akin to Fig. 5(a) of the main text in
the presence of sole linear (gq = 0) and quadratic (gl = 0)
SPCs, albeit with varying intensities at gq = 0 due to dif-
fering matrix elements Rk in Eq. (12), the presence of both
linear and quadratic SPCs in Fig. 8(f) leads to an opposite
shift. This shift, complementary to the results obtained in the
main text, arises from the negative sign between isotropic and
anisotropic matrix elements in Eq. (12). The persistence of the
phase transition character of the NESS for the anisotropic SPC
implies that most gapped quantum magnets should exhibit the
discovered phenomenon when out of equilibrium.

1. Effective force acting on the driven-dressed-damped phonon

In this section, we meticulously derive the effective force
acting on the phonon for the coupled dynamics obtained
within the Lindblad formalism, focusing on the first harmonic
of phonon displacement. We set gq = 0 in the equations of
motions since the phase transition originates only from the lin-
ear SPC. As discussed in the main text, we consider qph(t ) =
qph + ∑

n 	=1 qneinωt in the NESS (valid for arbitrary harmonic
n). The time derivative of qph(t ) in the NESS is given by
q̇ph(t ) = ∑

n inωqneinωt . For the product of observables in the
equations of motion, we use A(t )B(t ) = ∑

n,n′ An−n′Bn′einωt .
Considering a single mode k = 0 of the spin band edge as the
dominant magnon density, we have

inωqn = ω0 pn − γph

2
qn, (A1a)

inωpn = −ω0qn − 2A0 − 2glSk=0

∑
n′

xk=0
s,n′ qn−n′ − γph

2
pn, (A1b)
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FIG. 9. (a) The effective force in the NESS acting on the driven-dressed-damped phonon is plotted against the first harmonic of phonon
displacement q1. (b) q1 is depicted against the drive frequency, while (c) illustrates the time evolution of phonon occupation for various drive
frequencies. Parameters are set as follows: � = 1.2, A0/γph = 0.1, γph/ω0 = 0.05, γs/J = 0.01, gl/J = 0.5, and gq/J = 0.0.

0 = 2glSk=0

∑
n′

qn−n′yk=0
s,n − γsns,k=0, (A1c)

inωxk=0
s,n = −2εk=0yk=0

s,n − γsx
k=0
s,n , (A1d)

inωyk=0
s,n = 2εk=0xk=0

s,n + 2glSk=0

∑
n′′

(
nk=0

s,n′′ + 1/2
)
qn−n′′ − γsy

k=0
s,n . (A1e)

Invoking dominant harmonics of both phononic and magnonic sectors, i.e., n = ±1, n′ = ±1, and n′′ = 0, we find

q±1 = 2A0ω0

ω2 − ω2
0 − γ 2

ph

4 ± iγphω − 8g2
l ω0S2

k=0εk=0(ns,k=0+1/2)
ω2−4ε2

k=0−γ 2
s ±2iγsω

, (A2a)

ns,k=0 = 2g2
lS2

k=0(iω − γs)q2
1

γs
[
ω2 − 4ε2

k=0 − γ 2
s − 2iγsω

] + 4g2
lS2

k=0(−iω + γs)q2
1

, (A2b)

resulting in a cubic equation for q1 as

4g2
lS2

k=0

[
ω2 − ω2

0 − γ 2
ph

4
+ γph

γs
ω2

]
q3

1 − 4A0ω0g2
lS2

k=0q2
1

+
([

ω2 − ω2
0 − γ 2

ph

4

][
ω2 − 4ε2

k=0 − γ 2
s

] + γphγsω
2 − 4g2

lS2
k=0ω0εk=0

)
q1 − A0ω0

[
ω2 − 4ε2

k=0 − γ 2
s

] = 0, (A3)

where we have taken only the real parts of the coefficients
to align with the numerical results. This equation yields three
solutions when we set it equal to F = 0, which behaves as
an effective force acting on the phonon after applying drive,
coupling to the magnon, and damping to the phononic bath.
Tracking the solutions of this force in Fig. 9(a) for different
drive frequencies and using the same parameter set as in the
main text, we observe three distinct regions: ω < ωc, ω = ωc,
and ω > ωc, where ωc denotes the critical driving frequency
at which the phase transition occurs. For ω < ωc, three roots
appear for the force as a function of q1, indicated by dark
gray and blue lines. For ω > ωc, a single root emerges, as
shown by yellow and green lines, while for ω = ωc, two of
the roots become identical, resulting in the minimization of
the absolute value of the force. This effect is confirmed by
observing that the first-order phase transition in our numerical

q1 [see Fig. 9(b)] perfectly matches ωc obtained from the force
model, even the difference between roots in the minimized
force corresponds to the cusp height in q1.

To delve into the real-time dynamics further, the time evo-
lution of the expectation values of the phonon occupation for
the same drive frequencies confirms the sharp transition of
transient dynamics in the strong coupling regime, where a
sharp spike emerges at long times, as depicted in Fig. 9(c).

As mentioned in the main text, this effective force ac-
curately represents both qualitatively and quantitatively the
phase transition observed in the numerical results. At ωc,
setting the imaginary parts of the second and third solutions of
the above equation to zero yields an analytical expression for
ωc as a function of all parameters. After this step, we obtain a
drive frequency that satisfies the condition of zero imaginary
part for the second or third solutions, given by

ω2
i =

ω2
0(1 − γs) − 4ω2

0 +
√

ω4
0(1 − 2γs − 4γphγs) + 16ε4

k=0 + 8ω2
0ε

2
k=0(1 − γs − 2γphγs)

2(γs − γph)
. (A4)
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FIG. 10. The influence of model parameters on the dynamical first-order phase transition: (a) The impact of driving with parameters set
to � = 1.2, γph/ω0 = 0.05, and γs/J = 0.01. (b) The effect of phonon damping characterized by � = 1.2, A0/γph = 0.1, and γs/J = 0.01.
(c) The influence of spin damping under conditions of � = 1.2, A0/γph = 0.1, and γph/ω0 = 0.05. (d) The impact of spin anisotropy described
by A0/γph = 0.1, γph/ω0 = 0.05, and γs/J = 0.01.

Having ωi, q1 = A0ω0γsg2
l S2

k=0

3g2
l S2

k=0[γs (ω2
i −ω2

0−
γ 2

ph/4 )+γphω
2
i ]

is obtained. Plug-

ging this q1 into Eq. (A3) at ω = ωc, the critical drive
frequency can easily be achieved.

2. Effect of driving, damping, and spin anisotropy on the
dynamical first-order phase transition

To investigate the influence of model parameters on the
observed first-order phase transition, we present in Fig. 10 a
scan of the drive amplitude, phonon damping, spin damping,
and spin anisotropy. Given that the observables considered in
the model consistently reach long-time plateaus, the trend of
the phonon occupation response to various drive amplitudes
should mirror the absorbed power as shown in Figs. 10(a) and
6 of the main text.

However, it is appropriate to inquire whether the phase
transition alters in the long-time steady state when phonon

damping becomes weaker or stronger, as illustrated in
Fig. 10(b). Our analysis reveals that the first-order phase tran-
sition occurs across most phonon damping rates, indicating
that the spin damping [Fig. 10(c)] does not significantly in-
fluence tuning the critical drive frequency. This suggests that
the transition remains independent of the value of γs. This can
be understood from the analysis of the effective force acting
on the phonon, where the contribution from terms involving
spin damping is negligible due to the assumption of a weak
damping regime.

Finally, we explore the impact of spin anisotropy in
Fig. 10(d), considering various spin anisotropies with cor-
responding phonon energies ω0 > 2J�. With the ability to
tune the spin rotation symmetry through � > 1, resulting in
an increased gap size in the magnon dispersion, we do not
observe the first-order phase transition for the same parameter
set. However, one would anticipate observing it with different
parameters, such as a stronger laser field being necessary to
observe the transition when � becomes larger.
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