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Sample complexity of matrix product states at finite temperature
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For quantum many-body systems in one dimension, computational complexity theory reveals that the eval-
uation of ground-state energy remains elusive on quantum computers, contrasting the existence of a classical
algorithm for temperatures higher than the inverse logarithm of the system size. This highlights a qualitative
difference between low- and high-temperature states in terms of computational complexity. Here, we describe
finite-temperature states using the matrix product state formalism. Within the framework of random samplings,
we derive an analytical formula for the required number of samples which provides both quantitative and
qualitative measures of computational complexity. At high and low temperatures, its scaling behavior with
system size is linear and quadratic, respectively, demonstrating a distinct crossover between these numerically
difficult regimes of quantitative difference.
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I. INTRODUCTION

The realization of quantum many-body states at finite tem-
perature in classical or quantum computers is a pivotal topic
as it pertains to the modern research areas of thermaliza-
tion [1,2], many-body localization [3,4], quantum many-body
scars [5,6], and so on, whose clarification often relies heavily
on numerical tools. Recently, quantum simulators have proved
to be powerful platforms for realizing such states in a large
system size in laboratories [7–12], allowing for comparisons
with algorithmic approaches in numerical simulations.

Computational complexity of physical states is related
to the degree of difficulty of computational problems in
relation to the complexity classes and serves as a guide
to such problems. One important class is quantum Merlin-
Arthur (QMA), which tests whether the polynomial size of
a quantum state can be verified within a required polyno-
mial time in a quantum computer. For one-dimensional (1D)
quantum many-body states, it is known that the evaluation
of exact ground-state energy is QMA-complete, indicating
that the problem is difficult even for quantum computers
[13–17]. However, empirically, we can efficiently calculate
their ground states very accurately for large system sizes
even in classical computers using, e.g., the density matrix
renormalization group method [18–20]. To be precise, such
calculations are more established for gapped systems [21–24]
where the entanglement area law holds [25,26], and the de-
grees of difficulty of calculation are closely related to whether
the system is gapped or gapless. However, knowing whether a
given Hamiltonian has a gap or not is already an undecidable
problem in general [27,28].

At finite temperature, preparing thermal states in classical
computers is relatively easier than preparing the ground
state for almost all cases, just as it is easy to prepare finite-
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temperature states in experiments. We schematically show in
Fig. 1(a) the classification known so far for the computational
complexity of states over different temperature regimes and
different spatial dimensions. Recently, rigorous analysis
has progressed in the field of quantum information. For 1D
systems, the approximate tensor network representation of
the Gibbs state is obtained when the inverse temperature

FIG. 1. (a) Schematic illustration of the computational com-
plexity of thermal and ground states. Regions highlighted in red
have efficient classical algorithms, whereas in the blue regions,
the ground-state energy cannot be efficiently calculated even for
quantum computers in general. (b) Temperature dependence of the
required number of samples in MPS-based random sampling meth-
ods we derive in this paper. It scales linearly with the system size N
at high temperatures, and it is proportional to N2 at low temperatures
at leading order, where the initial bond dimension χ is large. The
crossover is characterized by the inverse temperature βc, where �E
is the spectral gap.
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TABLE I. Classification of finite-temperature methods. Physical memory to realize in a computer and the required number of sample
averages as a function of the system size N and the bond dimension χ ; available N and the applicable spatial dimensions are shown.

Method Memory Sample System size Spatial dimension Types of states

Full density operator D2 = eO(N ) 1 �15 Any Gibbs
MPO (density operator) Ndχ 2 1 ∼100 1D or 2D Gibbs
TPQ/FTL D = eO(N ) �e−O(N ) �30 Any Pure
METTS Ndχ 2 ∼100? ∼100 1D or 2D Mixed
TPQ-MPS Ndχ 2 O(N/χ 2) or O(N2/χ 2) ∼100 1D or 2D Nearly pure

β is smaller than the logarithm of the system size N , as
β � log N [29,30]. For higher-dimensional systems, it was
proved that the partition function can be classically simulated
in polynomial time with N at temperatures higher than a
constant independent of N [31,32]. Phase transitions can
occur only in higher spatial dimensions at temperatures lower
than discussed here, but this region is not well understood. It
is considered to be related to an open problem known as the
quantum probabilistic checkable proof (PCP) conjecture in
the context of computational complexity theory [33].

Practical numerical methods have a long history in con-
densed matter physics. The stochastic quantum Monte Carlo
(QMC) method allows large system sizes N but faces a sign
problem [34,35]. High-temperature expansions [36,37] and
numerical linked-cluster expansions [38–40] have been es-
tablished, although the former has a temperature bound of
β−1 � J for a typical energy scale J and the latter fails when
the correlation length diverges.

Methods directly describing thermal states have more vari-
ants (see Table I). The most conventional Gibbs state requires
computational memory of D2, where D is the dimension of
the Hilbert space because it is a maximally mixed state that is
represented by the full-rank density operator. Thermal equi-
librium can be represented by a single pure state as well. The
finite-temperature Lanczos (FTL) methods can handle it using
an appropriate choice of basis with a computational memory
of D [41–44], and another is called the thermal pure quantum
(TPQ) method [45,46]. Because of the concept of typicality
[47–50], it is guaranteed that the required number of samples
is very small, whereas the available N is limited by the growth
of D = dN , where d is the local dimension. To access large
systems, tensor network methods have been actively studied.
Particularly, matrix product states (MPSs) are commonly used
in 1D [51], taking advantage of the time-evolving block dec-
imation (TEBD) algorithm [52–54]. For the Gibbs state, with
the doubled Hilbert space, the matrix product operator (MPO)
[55,56], the purification represented by the MPS [57], and its
analogs [58–60] exist. Besides the Gibbs and TPQ states, we
have many thermal states in between; we previously devel-
oped the TPQ-MPS method [61,62] for the nearly pure state
(see Sec. II C), which belongs to the family of MPS-based
random sampling methods [63–66] but provides the purest
thermal state. The minimally entangled typical thermal state
(METTS) method [67,68] has less purity than TPQ-MPS,
although its purity is being improved by different devices
[69–74].

In principle, all these finite-temperature numerical ap-
proaches start from a high temperature and, in approaching a
low temperature, suffer numerical difficulties. Many of them

belong to the random sampling method, which prepares the
initial random states at high temperature and cools them down
by the imaginary time evolution. In that framework, the nu-
merical difficulty can be measured by the required number
of samples, which we call sample complexity. The sample
complexity crucially depends on the expression power of the
method for the sampled states. Using this idea, we recently
classified the Gibbs state, the TPQ state, and the states in be-
tween them as thermal mixed quantum (TMQ) states [75]. The
Gibbs state method that can basically express a (semiclassical)
product state requires a large sampling number, while the TPQ
methods that can express quantum states with large enough
entanglement require only a few samples. In Table I, we show
the classification of methods in this context; the expression
power of the quantum state is the ability to store entropy in
the form of quantum entanglement in a single sample because
the thermal entropy (stored as the number of samples) and the
quantum entanglement entropy are two sides of the same coin.

Another factor that dictates the numerical difficulty of rep-
resenting the thermal states with MPSs is the bond dimension
χ . Several studies based on rigorous analysis suggested that
χ is bounded by an exponential with β [29,76–78], whereas it
often happens that this bound is practically an overestimation.
In fact, conformal field theory (CFT) analysis showed that
χ grows polynomially with β [79,80], which was confirmed
numerically [81,82].

In this paper, we investigate the required number of sam-
ples in MPS-based methods, focusing on the TPQ-MPS
method, which utilizes a natural description of a TMQ state
very close to the TPQ state. There is a convenient and mea-
surable quantity that has an amplitude proportional to the
required number of samples called the normalized fluctua-
tion of partition function (NFPF) [75]. Here, we propose an
analytical formula for the NFPF which applies from zero to
the highest temperature. Importantly, the leading orders of
the NFPF or the numbers of random samples in terms of N
are different between low- and high-temperature limits [see
Fig. 1(b)]. With numerical demonstrations for several quan-
tum spin models, we verify this formula and demonstrate the
explicit crossover between the two temperature regions, which
are qualitatively different in the language of computational
complexity.

II. RANDOM SAMPLING METHODS AND NFPF

The physical quantity in the thermal equilibrium is de-
scribed as

〈O〉β = Tr[ρG(β )O], (1)
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where a density operator ρG(β ) represents the Gibbs state and
is given as

ρG(β ) = e−βH

Z (β )
, Z (β ) = Tre−βH . (2)

Here, we introduce the framework of the random sampling
method for finite-temperature calculations and a way to eval-
uate their efficiency [65] based on Ref. [75]. This framework
applies to Monte Carlo methods without using a Markov chain
but does not include well-established Markov chain Monte
Carlo methods such as QMC and METTS. However, its ap-
plicability is wide and is not limited to only finite-temperature
calculations; it also applies to other quantum states whose
realization follows distributions other than the Boltzmann dis-
tribution.

A. Random sampling methods

We initially prepare a random state |ψ0〉 that satisfies

|ψ0〉〈ψ0| = cI, (3)

where · · · denotes taking the random average and c is a
system-size-dependent constant, determined naturally by the
choice of |ψ0〉’s, which are kept un-normalized for a reason
we will see shortly. This equation implies that |ψ0〉 represents
one of the states realized in the high-temperature limit. In
practice, what temperature it targets depends on the quality
of the random sampling and the approximations used for
the representation of |ψ0〉. We perform an imaginary time
evolution to cool the temperature down to β−1 to obtain the
corresponding state

|ψβ〉 = e−βH/2|ψ0〉, (4)

where H is the system Hamiltonian. The partition function or
certain physical quantities are obtained by taking the random
average:

Z (β ) = 1

c
〈ψβ |ψβ〉, (5)

〈O〉β = 〈ψβ |O|ψβ〉
〈ψβ |ψβ〉 . (6)

As the ideal random averages are not accessible, we ap-
proximate them by using sample averages in the numerical
simulations as

Zsamp
M (β ) = 1

cM

M∑
i=1

〈
ψ

(i)
β

∣∣ψ (i)
β

〉
, (7)

〈O〉samp
β,M =

∑M
i=1

〈
ψ

(i)
β

∣∣O∣∣ψ (i)
β

〉
∑M

j=1

〈
ψ

( j)
β

∣∣ψ ( j)
β

〉 , (8)

where {|ψ (i)
β 〉}M

i=1 are M independent realizations of |ψβ〉. If
we take a sufficiently large value of M, the law of large num-
bers guarantees that the sample average matches the random
average. In Eq. (8), the norm 〈ψβ |ψβ〉 of each sample serves
as the weight in the sample average, and the larger weight
means that the state after the time evolution remains closer
to the ideal thermal state. When, for example, expanded as
|ψ0〉 = ∑

n an|n〉 with a proper basis set {|n〉}, the raw values
of random coefficients {an} belonging to different samples

include information about their relative importance. For this
reason, the initial norm 〈ψ0|ψ0〉 has a physical meaning, and
|ψ0〉 should be kept un-normalized [83].

Conventionally, the sufficient sample number M required
was empirically determined depending on the physical quan-
tities one wanted to obtain to sufficiently reduce the variance
according to the objective. However, this ambiguity can be
removed by using a quantity we recently introduced, the NFPF
[75]. By using the NFPF, we can decisively discuss M as not
only the sufficient but also the necessary value to qualify the
thermal quantum state on equal footing across different nu-
merical methods we apply in operating the random sampling
method. The value of M or the NFPF depends on how the
initial random states are prepared and on the approximations
of the method.

The NFPF is given as

δz2 = Var(〈ψβ |ψβ〉)

(〈ψβ |ψβ〉)2
. (9)

It quantifies the random fluctuation of the partition function,
Z (β ) = Tre−βH , as

1

Z (β )2

[
Zsamp

M (β ) − Z (β )
]2 = δz2

M
. (10)

Therefore, to obtain the partition function with a relative error
ε, we require Mε samples, given by

Mε = δz2

ε2
. (11)

With Chebyshev’s inequality, we can ascribe a strictly proba-
bilistic interpretation to the value of Mε :

Prob
[∣∣Zsamp

M (β ) − Z (β )
∣∣ � εZ (β )

]
� Mε

M
. (12)

Under the condition

Var(〈ψβ |O|ψβ〉) � (const) × ‖O‖2Var(〈ψβ |ψβ〉), (13)

the NFPF gives a bound of the fluctuation of the physical
quantity O as

(〈O〉samp
β,M − 〈O〉β

)2 � (const) × ‖O‖2 δz2

M
. (14)

This condition typically holds except in a few specific cases,
and indeed, the required sample size for the evaluation of
energy is proportional to Mε [75].

B. NFPF of the TPQ state

As an ideal reference system, we consider the TPQ method,
which uses the entire Hilbert space with the dimension D to
describe the thermal state. There are several different ways
to prepare initial random states in the TPQ method [84]. We
choose to generate the initial state to have the coefficients of
the basis following an independent complex Gaussian dis-
tribution. Importantly, this random state is independent of
the choice of the basis and thus can be expressed as |ψ0〉 =∑

n an|n〉, where {|n〉}n is the energy eigenstates. With this
setting, we can calculate the NFPF of the TPQ method ana-
lytically as

δz2
TPQ = e−Ns2(β ), (15)
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where s2(β ) is the rescaled Rényi-2 entropy of the Gibbs state,

s2(β ) = − 1

N
log Tr[ρG(β )2], (16)

which is called the thermal Rényi-2 entropy. Since the NFPF
decreases exponentially with the system size, the TPQ method
proves to be highly efficient from the perspective of sample
complexity. Moreover, inequality (13) holds for all physi-
cal quantities in the TPQ state. As a consequence, random
fluctuations of physical quantities in the TPQ method are sig-
nificantly reduced, and for appropriately large systems, only a
few samples are necessary.

C. TPQ-MPS method

We briefly explain the TPQ-MPS method [61]. Unlike the
standard MPS form with open edges where the interactions
are absent, we apply the specific form of the MPS that hosts
two auxiliary sites located on both edges. The advantage of
this construction was already proved in two previous works;
in Ref. [61], we proposed the TPQ-MPS method and showed
the volume law entanglement in 1D, and in Ref. [62], we suc-
cessfully applied it to the two-dimensional (2D) honeycomb
Kitaev model. In 1D [61], the number of sample averages
M decreases significantly with decreasing temperature, and
the variance of measured quantities is suppressed at lower
temperatures, in contrast to all the other known methods
including QMC and the standard TPQ method (or the FTL
method) using the full Hilbert space. The reason is as follows;
in typical MPSs, the bond dimension is 1 at both edges and
increases as dn as we approach n = 1, 2, . . . toward the center
site, which is known to be reflected in the Page curve of the
entanglement entropy. This means that due to the boundary
condition, the amount of entanglement entropy stored in the
system is strongly suppressed toward the edge sites. However,
in our construction, the auxiliaries helps us to avoid such
suppression, and the bond dimension and the entanglement
entropy stay almost constant regardless of the location of the
bipartition of the system. The amount of entropy stored thus
follows the volume law that accounts for that of the actual
thermal entropy of the system, allowing the system to be
nearly pure.

The initial state is represented as a random MPS with
auxiliaries as

|ψ0〉 =
χ∑
{α}

d∑
{i}

A[1]i1
α0α1

A[2]i2
α1α2

· · · A[N]iN
αN−1αN

× |α0, i1, i2, . . . , iN , αN 〉. (17)

The auxiliary systems have the same degrees of freedom as
the initial bond dimension χ . We then apply an imaginary
time evolution, Eq. (4), and obtain |ψβ〉 for this construction
and evaluate the physical quantities following Eqs. (7) and
(8). The bond dimension may increase through imaginary
time evolution using the TEBD technique or by applying
the MPO. Previously, we showed that the information on
higher-temperature states is properly discarded through the
truncation process in the TPQ-MPS method [62].

III. SAMPLE COMPLEXITY OF MATRIX
PRODUCT STATES

In this section, we analytically derive a formula for the
NFPF of the TPQ-MPS. By using the formula for the ideal
random average distribution, we are able to perform the ana-
lytical evaluation of the related quantities.

To simplify the formula, we utilize diagram notations of
tensor networks. We first focus on Eq. (17), depicted as

|ψ0〉 = (18)

where the circle represents a matrix A and thin (thick) lines
mean physical (auxiliary) degrees of freedom. We colored
the matrices (circles) differently, implying that each matrix
follows an independent probability distribution. We assume
that all elements of matrices obey an independent complex
Gaussian distribution. A tensor ai which is taken from an
independent complex Gaussian distribution satisfies

aia∗
j = δi j, aia∗

j aka∗
l = δi jδkl + δilδ jk . (19)

These equations are represented in the following tensor net-
work diagrams:

(20)

We will calculate the NFPF of the TPQ-MPS using the above
relations.

A. Noninteracting Hamiltonian

Here, we consider a Hamiltonian which is the sum of
single-site local operators with translational invariance,

H =
N∑

i=1

hi, hi = 1
I ⊗ · · · ⊗

i
h ⊗ · · · ⊗ N

I . (21)

The partition function is defined at each local site inde-
pendently of the other sites as Z (β ) = z(β )N , with z(β ) =
Tre−βh. To evaluate the NFPF, we initially calculate the norm
of the finite-temperature state, which is expressed as

(22)

where represents the operator e−βh. By applying Eq. (20) to

each matrix, we can calculate the random average of the norm
as

〈ψβ |ψβ〉 = · · ·

= χN+1z(β)N = χN+1Z(β).
(23)
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This calculation verifies Eq. (5). In the TPQ-MPS method, it is
found that c = χN+1. Next, we calculate the random average
of the square of the norm:

(24)

This calculation can be recognized within Temperley-Lieb
algebra [85]. For simplicity, we define two symbols, A and
B, as

A = , B = . (25)

they do not commute with each other. Subsequently, the ran-
dom average of the square of the norm can be expressed as
the sum of all arrangement patterns of the noncommutative
symbols A and B:

〈ψβ |ψβ〉2 = AA · · ·A + BA · · ·A + AB · · ·A + · · · .

(26)

Since AN is identical to (〈ψβ |ψβ〉)2, the variance of the norm
is the sum of arrangements that include at least one B:

Var(〈ψβ |ψβ〉) = BA · · ·A + AB · · ·A + · · · + BB · · ·B.

(27)

In order to extract the leading terms of χ from this summation,
we examine the pairs of A and B. The pairs AA and BB each
form two loops that contribute to the value χ2. On the other
hand, the pairs AB and BA produce a single loop representing
χ . As a result, the leading terms have fewer “domain walls”
for A and B, and the most leading terms for χ include only
one “domain” for B. By summing up the terms with single
domain Bl , we derive

Var(〈ψβ |ψβ〉)

= χN
N∑

l=1

(N − l + 1)z(β )2(N−l )z(2β )l + O(χN−2). (28)

To compute the NFPF, we normalize the variance of the
norm as

δz2 = 1

χ2

N∑
l=1

(N − l + 1)

{
z(2β )

z(β )2

}l

+ O
(

1

χ4

)
. (29)

This equation represents a series expansion that can be math-
ematically evaluated and can be simplified when we consider
z(2β )/z(β )2 = e−s2(β ):

δz2 = 1

χ2

N∑
l=1

(N − l + 1)e−ls2(β ) + O
(

1

χ4

)

= 1

χ2

{
N

es2(β ) − 1
− 1 − e−Ns2(β )

(es2(β ) − 1)2

}
+ O

(
1

χ4

)
. (30)

B. Correction factor for interactions

In the previous section, an exact formula for the NFPF of
the noninteracting Hamiltonian was obtained. Now, based on
this, we derive the formula of the NFPF for general interacting
Hamiltonians, which can be done by introducing a single
correlation factor as a numerically determined parameter.

We first analytically investigate the NFPF for the 1D clas-
sical Ising model to get an idea of correlation factors without
bias or approximations. The Hamiltonian is given as

H = −J
N−1∑
i=1

σ z
i σ z

i+1, (31)

which is the g = 0 limit of the transverse-field Ising model
that will be introduced shortly. The partition function is repre-
sented by the transfer matrix as

Z (β ) = v�X N−1v, (32)

where

X (β ) =
[

eβJ e−βJ

e−βJ eβJ

]
, v =

[
1
1

]
. (33)

The free energy in the thermodynamic limit can be computed
thorough the maximal eigenvalue of the transfer matrix:

f (β ) = − 1

β
lim

N→∞
1

N
log Z (β )

= − 1

β
log(2 cosh βJ ). (34)

The thermal Rényi-2 entropy is obtained as

s2(β ) = 2β{ f (2β ) − f (β )}

= log

(
1 + 1

cosh(2βJ )

)
. (35)

Next, we calculate a χ -leading term that appears in the
NFPF. The leading term of the present interacting case can
be discussed in the same manner as the one given for the
noninteracting case in the previous section. First, we separate
the whole system into A and B; as subsystem A, the first m
sites and the last n sites are taken, and for subsystem B, we
have the center l sites with m + n + l = N . Then, the leading
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term corresponding to this bipartition is represented as

1

χ2

TrB[(TrAe−βH )2]

(Tre−βH )2 . (36)

By defining a tensor Y as

s1Y (β )s2
s3

= exp[βJs1(s2 + s3)], (37)

the numerator can be expressed as

TrB[(TrAe−βH )2]

= vT X (β )m−1

vT X (β )m−1
Y (β )T X (2β )l−1Y (β )

X (β )n−1v

X (β )n−1v
. (38)

Consequently, the leading term is calculated as

TrB[(TrAe−βH )2]

(Tre−βH )2 = e−(l−1)s2 (β )

2
. (39)

The NFPF of the classical Ising chain is obtained by replacing
e−ls2(β ) with e−(l−1)s2 (β )/2 in Eq. (30):

δz2 = 1

χ2

N∑
l=1

(N − l + 1)
e−(l−1)s2(β )

2
+ O

(
1

χ4

)

= 1

χ2

es2(β )

d

{
N

es2(β ) − 1
− 1 − e−Ns2(β )

(es2(β ) − 1)2

}
+ O

(
1

χ4

)
.

(40)

Here, d is local degrees of freedom; in the case of spin-half
chains, d = 2.

The two cases we obtained analytically without bias,
Eqs. (30) and (40), have most parts of their forms in common.
It is then natural to introduce a real parameter α to bridge
them as

δz2 � 1

χ2

(
es2(β )

d

)α{
N

es2(β ) − 1
− 1 − e−Ns2(β )

(es2(β ) − 1)2

}
. (41)

We expect this form to be valid for other quantum many-body
systems represented by TPQ-MPS. Indeed, this form is justi-
fied by the following numerical demonstrations in which we
treat α as a fitting parameter.

C. Crossover of sample complexity

It is important to note that the NFPF in Eq. (41) exhibits
different scaling forms in relation to the system size in the
high- and low-temperature regions. When Ns2(β ) � 1, we
can discard the term e−Ns2(β ), and Eq. (41) becomes

δz2 � N

χ2

(
es2(β )

d

)α
1

es2(β ) − 1
(42)

in the large-N limit. The NFPF scales linearly with the sys-
tem size N at high temperature. On the other hand, when
Ns2(β )  1, the exponential functions can be expanded as

e−Ns2(β ) � 1 − Ns2(β ) + N2s2(β )2

2
(43)

es2(β ) � 1 + s2(β ) + s2(β )2

2
. (44)

Therefore, Eq. (41) becomes

δz2 � N2

χ2

1

2dα
(45)

in the large-N limit. The NFPF is proportional to the square
of the system size N at low temperature.

The crossover inverse temperature βc is characterized by
Ns2(βc) ∼ 1. Because the thermal Rényi-2 entropy scales as
s2(β ) ∼ e−β�E in the low-temperature limit, where �E is
the spectral gap, the crossover inverse temperature can be
estimated as

βc ∼ 1

�E
log N. (46)

The crossover of the NFPF appears as a finite-size effect.

IV. NUMERICAL DEMONSTRATIONS

In this section, we demonstrate the validity of Eq. (41) in
two quantum many-body models. At each TEBD step, the
bond dimension χ is determined so as to have the truncation
error smaller than 10−8. We used the ITENSOR library for the
MPS calculations [86].

A. Transverse-field Ising chain

We first consider the transverse-field Ising chain,

H = −J
N−1∑
i=1

σ z
i σ z

i+1 − g
N∑
i

σ x
i , (47)

where σα
i (α = x, y, z) is the Pauli operator at site i. We

parametrize the coupling interaction J and the transverse field
g as J = sin θ and g = cos θ with a single parameter θ that
varies in the range [0, π/2]. It is analytically solved in the
thermodynamic limit [87]. When J = 0 and g > 0, the Hamil-
tonian is represented as a sum of single-site operators treated
in Sec. III A, and when J > 0 and g = 0, we find the 1D
classical Ising model we considered in Sec. III B. The non-
interacting and classical Ising cases correspond to θ = 0 and
θ = π/2, respectively. When 0 � θ < π/4, we have a gapped
paramagnetic phase due to large g; for π/4 < θ � π/2, the
system is in a gapped ferromagnetic Ising phase, and the gap
closes at θ = π/4. Whether the system is gapped or gapless
is related to the nature of the NFPF.

Figures 2(a) and 2(b) show the temperature dependence
of the NFPF δz2 for θ = π/8 and π/4, respectively. The
solid lines represent the formula in Eq. (41). The thermal
Rényi-2 entropy s2(β ) of the transverse-field Ising chain can
be analytically calculated from an exact result, and using its
value, we can fit the mean value of the numerically obtained
NFPF data by a single parameter α. Here, the error bars are
calculated based on the associated errors in the NFPF. In
the gapped paramagnetic case in Fig. 2(a), using α � 0.28,
which is common to three choices of N , the formula and the
data agree well throughout the whole temperature range. All
NFPFs increase at high temperature and reach a plateau at
low temperature. This behavior indicates the fact that low-
and high-temperature regions follow different scaling laws, as
expected from Eqs. (42) and (45). As discussed in Sec. III C,
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FIG. 2. NFPF δz2 obtained with the TPQ-MPS method as a function of inverse temperature β for the transverse-field Ising chain at
(a) θ = π/8 (gapped paramagnetic phase) and (b) θ = π/4 (gapless critical point). We use N = 16, 32, 64 and χ = 20 and take M = 500
samples for each data point. The error bars are calculated by a jackknife analysis. The solid lines are the analytical results in Eq. (41) with
fitting parameter (a) α � 0.28 and (b) α � 0.33. (c) The system size dependence of χ2δz2 for θ = π/8 and χ = 10, 15, 20 at β = 4. (d) The
fitting parameter α for different model parameters θ . The error bars are calculated based on the associated errors in the NFPF. Dashed lines
show analytical conjectures for the two limiting cases, θ = 0 and 1, which are the noninteracting and classical Ising models, respectively.

the crossover temperature βc in Eq. (46) grows logarithmically
with N , consistent with Fig. 2(a).

Figure 2(b), the gapless case, also shows good agreement
with the analytical result, but there are no plateau regions in
contrast to the above example. This is because βc diverges in
gapless systems with �E = 0.

Figure 2(c) shows the system size dependence of χ2δz2.
Because N appears in the numerators of the scaling formulas
(42) and (45), Eq. (41) is considered to be an expansion for
large bond dimensions and small system size.

In Fig. 2(d), we show the evolution of the fitting parameter
α in Eq. (41) as a function of θ . Here, α is calculated for
N = 16 and χ = 20. In the noninteracting and classical Ising
model, numerical results and analytical estimation agree well.
The fitting parameter α interpolates the two limits within the
error bars, where we find a nonmonotonous change at θ ∼
π/4, at which the ground state becomes gapless. We may thus

FIG. 3. NFPF δz2 of S = 1/2 and S = 1 (inset) Heisenberg
chains for N = 16, χ = 20. The solid lines represent the analyti-
cal result in Eq. (41) for fitting parameters α � 0.66 and α � 1.25
(inset).

speculate that the value of α is determined by the nature of the
phase, while the form of Eq. (41) is safely kept throughout the
whole temperature range.

B. Heisenberg chain

We next apply the Heisenberg chain defined as

H = J
N−1∑
i=1

Si · Si+1, (48)

where Sα
i (α = x, y, z) is the spin operator at site i. The

S = 1/2 Heisenberg model is exactly solvable [88], and the
ground state is gapless. The S = 1 case has a Haldane gap
of �E � 0.4105 [89–91]. We treat both cases to compare
gapless and gapped systems. Figure 3 shows the results for
N = 16 and χ = 20, both of which are consistent with the
analytical formula. The thermal Rényi-2 entropy used in the
fitting function is evaluated by the TPQ-MPS method at N =
100. We can find a plateau at low temperature in the inset
of Fig. 3, which indicates the crossover of the system size
scaling. The analytical formula in Eq. (41) is thus expected
to hold.

V. SUMMARY AND DISCUSSION

As one of the measures of difficulty in computing finite-
temperature quantum states, we investigated the NFPF. This
quantity is well defined and measurable for a general random
sampling method that generates a thermal state using the
imaginary time evolution from the high-temperature random
states. The NFPF is proportional to the required number of
samples and reflects the sample complexity of the calculation.
Focusing on the MPS-based random sampling method, we
analytically derived an exact form of the NFPF in Eq. (41)
and demonstrated its validity numerically for several represen-
tative models. Our formula shows a crossover behavior with
varying temperature; at high temperatures, the NFPF scales
linearly with the system size, while at low temperatures, it
is proportional to the square of the system size. This result
gives a practical and quantitative demonstration of the com-
putational complexity of 1D systems shown in Fig. 1(a).
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The computational cost of the MPS-based sampling re-
lies on two quantities, the required number of samples and
the memory cost per sample. Our result and the previous
CFT calculations indicate, respectively, that both the former
and the latter scale polynomially with the system size at
any finite temperature. Because the ground state is known
to be QMA-complete, a question arises: How can such
computationally feasible finite-temperature states bounded
by polynomials continue to the zero-temperature limit? As
we discussed in the Introduction, QMA-completeness may
rely on several nontypical states in 1D models that devi-
ate from CFT predictions at low temperatures such as the
Motzkin chain [92,93]. In these models, the bond dimension
of the thermal state diverges as the temperature approaches
zero. However, explicitly presenting such models as evidence
would imply proving that P �= PSPACE, a claim we cannot
substantiate.

So far, we have considered the 1D models with nearest-
neighbor interactions. However, we previously applied the
TPQ-MPS method to the 2D Kitaev honeycomb model [62],
showing that the method works fairly well, reproducing two
peaks of the specific heat that were previously established
based on the specific Majorana description of the model.
There, the MPS is constructed along the 1D path wrapping the
cylinder in a spiral construction. Because such MPS construc-
tion converts the nearest-neighbor interactions of the original
model to the longer-range interactions, this suggests that the
present scaling relationship may be extended to wider classes.
Typically, the long-range interactions obey 1/rα̃ with distance
r between two particles or spins. Increasing α̃ smoothly in-
terpolates to the short-range interactions. If α̃ > 2, the ground
state maintains an entanglement area law [94,95], and because
of the robust volume law at high temperatures, there should be
a crossover between the two regimes. In such a case, we may
expect our formula (41) to remain applicable, and a crossover
in the NFPF scaling law that detects the difference between
the sampling from an ensemble and the sampling from a pure
ground state may exist. Such long-range interacting systems
are realized in experiments with trapped ions, cold atoms, and
Rydberg atoms [96].

Finally, let us discuss the possibility of straightforwardly
extending our analysis in Sec. III A to higher-dimensional
systems. There, the B domain can no longer exist in the

leading terms in the same manner because the classical
Ising model requires finite energy to form domains in higher
dimensions. Consequently, the NFPF becomes proportional
to the system size, and the crossover observed in 1D no longer
exists. However, it is questionable whether this extension has
practical meaning. The entanglement in the ground state of
higher dimensions is extremely complex compared to that
in 1D, and it remains a topic of ongoing debate; a similar
situation can be expected in thermal states. If this is the case,
our calculation in Sec. III A, which assumes a certain type of
cluster property, likely fails. As the high-dimensional and low-
temperature regime is associated with the unsolved quantum
PCP conjecture in Fig. 1(a), it warrants careful discussion.

In this paper, we have focused on the random sampling
methods using classical computers, but the conversion of the
related classical algorithms to quantum algorithms is now
ongoing [97–105]. Because they are demonstrated virtually
on classical computers or on real quantum computers with
very small sizes, so far it has been difficult to evaluate their
effectiveness. In reality, in near-term quantum computers, the
initial random states are prepared on random circuits of shal-
low depth, and there, the NFPF or the number of samples is
expected to follow the same scaling as our results.

We finally note that our calculations in Sec. III A are sim-
ilar to those treating the Rényi-2 entropy of an evaporating
black hole in Ref. [106], but the physical implications of
these relationships are not yet well understood. Following the
approach in Ref. [106], we can compute cumulants of any
order for the norm of thermal states in MPS-based random
sampling. This analysis pertains to a more detailed efficiency
of the method.
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