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Winding number and Zak phase, as topological invariants, play crucial roles in characterizing the topological
phases of one-dimensional Floquet topological insulators. It is difficult to directly detect Floquet topological
invariants with a unified scheme, especially for low driving frequencies. Here, by defining the dynamic winding
number based on the time-averaged spin textures, we propose to use it to characterize one-dimensional Floquet
topological phases with arbitrarily varying frequencies. In the high-frequency regime, both the conventional
winding number and Zak phase can be fully determined by measuring the dynamic winding number of
time-averaged spin textures, regardless of initial states and initial phases. In the low-frequency regime, only
conventional winding number can accurately describe the system’s topological phase due to the presence of large
topological numbers, the Zak phase only captures the parity of the winding number and fails to characterize
the number of topological edge states. However, one can still correctly characterize the Floquet topological
phases through our dynamic winding number approach, in which stroboscopic measurement of spin textures is
needed and the initial phases should guarantee chiral symmetry of the time-evolution operator. Our paper not
only clarifies the necessity of stroboscopic measurements, but also provides a general dynamic approach for the
detection of Floquet topological insulators.
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I. INTRODUCTION

Floquet topological insulators and their characterization
have attracted a great deal of attention in both theories [1–20]
and experiments [21–29]. A key concept is topological invari-
ants, which characterize the global topological properties of
Bloch wavefunctions and respond to robust topological edge
states [30–35]. Unlike static systems, robust edge modes may
exist in two-dimensional periodically driven systems while the
Chern number of all bands are zero, which is dubbed anoma-
lous Floquet topological phases [14–17,26,27,29]. These
Floquet topological phases can be fully characterized by
winding numbers [14], topological singularities of phase
bands [15] defined in the momentum-time space, or (d − 1)-
dimensional band inversion surfaces [17,29]. Floquet en-
gineering also provides a powerful approach to generate
nonequilibrium topological phases with larger topological in-
variants, which are hard to achieve in static systems [18,20].

It is well known that both the winding number and the
Zak phase can be used to characterize topological phases in
one-dimensional periodic driven systems [36,37]. When the
system satisfies chiral symmetry, the Zak phase is limited to
the values of 0 or π , while the winding number can take any
integer value. Hence, the number of edge states is directly
related to the winding number rather than to the binary Zak
phase. In the low-frequency regions, obtaining the Zak phase
and winding number usually further requires time-domain in-
formation beyond the Floquet bands, which makes it difficult
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to directly detect Floquet topological invariants with arbitrar-
ily driving frequencies. Since dynamic methods have been
successfully used to characterize bulk topologies of static
systems, such as long-time average of chiral position [38–40],
band inversion surfaces [41–45], linked number [46,47], and
dynamic winding number (DWN) [48], generalizing these
dynamic methods to periodically modulated systems could
potentially open a new avenue to detect Floquet topological
invariants. Motivated by dynamic methods, the Floquet topo-
logical invariant can be extracted by emergent topological
patterns in the momentum subspace called band inversion
surfaces [17,29]. Non-Hermitian Floquet topological phases
in one dimension can also be extracted via dynamic winding
number defined with the time average of spin textures [49].
In particular, the method of dynamic winding number does
not require any prior knowledge of topologies before and
after quenched dynamics. Due to the significant differences
between non-Hermitian and Hermitian systems, it is unclear
how to apply the method of dynamic winding number to
periodically driven Hermitian systems with arbitrarily driving
frequencies.

In this paper, we consider a one-dimensional periodi-
cally driven two-band Hermitian model with chiral symmetry,
which supports nontrivial Floquet topological invariants de-
scribed by the conventional winding number (CWN) or Zak
phase. In the high-frequency regime, we have found that the
CWN and Zak phase are one-to-one correspondence, which
can be measured through the DWN. Similar to the static
system, the definition of DWN is based on time-averaged
spin textures that are robust against various initial states and
phases, and stroboscopic measurements of spin textures are
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not needed. In the low-frequency regime, CWN could take
larger value as 2, which corresponds to 0 Zak phase due to the
modulus of 2π . In this case, only CWN can faithfully char-
acterize the topological phases and correctly give the number
of pairs of topological edge states. Unlike the high-frequency
regime, we found that the symmetry of the effective Hamilto-
nian related to the evolution operator is sensitive to the initial
phase of modulation. Therefore, to ensure that the evolution
operator satisfies chiral symmetry, it is necessary not only
to choose the appropriate initial phase but also to perform
stroboscopic measurements of spin textures. According to the
bulk-edge correspondence, the DWN can accurately predict
the number of topologically protected Floquet edge states with
arbitrarily driving frequencies. Compared with Refs. [17,49],
our paper clarifies the necessity of implementing stroboscopic
measurements in Floquet topological insulators and provides
a unified definition of DWN for arbitrary driving frequencies.
Compared to the scheme of quenched dynamics, our method
to extract Floquet topological invariants is robust to various
initial states, without the need to know the topologies before
and after quenched dynamics.

The paper is organized as follows. In Sec. II, we introduce
our physical model and give the definition of topological
invariants in one-dimensional periodically driven systems. In
Sec. III, we give the definition of DWN with arbitrarily driving
frequencies, and the relationship between CWN, Zak phase
and DWN. We focus on whether DWN can be used to simul-
taneously extract topological invariants CWN and Zak phase
with arbitrarily driving frequencies, as well as the necessity
of stroboscopic measurement. In Sec. IV, we give a brief
conclusion and discussion.

II. THE DEFINITION OF TOPOLOGICAL INVARIANTS
WITH ARBITRARY DRIVING FREQUENCIES

We start by considering one-dimensional periodically
driven two-band model. The Hamiltonian in the momentum
space is composed of the Pauli matrices

H (k, t ) = hi(k, t )σi + h j (k, t )σ j . (1)

Here, i �= j and i, j ∈ (x, y, z), k is the quasimomentum,
hi( j)(k, t ) are periodic functions of k and t . Thus, the Hamil-
tonian with quasimomentum and time translation invariance
H (k, t ) = H (k + 2π, t ) = H (k, t + T ), T = 2π/ω is the pe-
riod of time and ω corresponds to the driving frequency.
According to the Floquet theorem [50,51], the Floquet-Bloch
ansatz can be given by |ψk,μ(t )〉 = e−iεk,μt |ϕk,μ(t )〉, where
|ϕk,μ(t )〉 is the Floquet states, εk,μ is the quasienergy of
the Floquet state, and μ = ± expresses the band index. The
Floquet states |ϕk,μ(t )〉 satisfy the eigenvalue equation

H̃ (k, t )|ϕk,μ(t )〉 = εk,μ|ϕk,μ(t )〉,
H̃ (k, t ) = H (k, t ) − i∂t , (2)

where H̃ (k, t ) is the Floquet operator. Due to the periodicity
of time, the Floquet states |ϕk,μ(t )〉 can be expressed in terms
of their Fourier components |ϕk,μ,χ 〉,

|ϕk,μ(t )〉 =
∞∑

χ=−∞
e−iχωt |ϕk,μ,χ 〉, (3)

where |ϕk,μ,χ 〉 is the χ th Floquet state of the μ band. Then
one can obtain the quasienergies εk,μ,χ and the corresponding
Floquet states |ϕk,μ,χ 〉 by diagonalizing the matrix

〈〈ϕk,μ′,χ ′ |H̃ (k, t )|ϕk,μ,χ 〉〉 = Sμ,μ′
χ,χ ′ (k) + χωδχ,χ ′δμ,μ′ ,

Sμ,μ′
χ,χ ′ (k) = 1

T

∫ T

0
sμ,μ′

(k, t )e−i(χ−χ ′ )ωt dt, (4)

where sμ,μ′
(k, t ) is the matrix element of the Hamiltonian

H (k, t ), χωδχ,χ ′ is the Fourier space representation of −i∂t ,
and 〈〈· · ·〉〉 = ∫ T

0 〈· · ·〉dt/T is the composed scalar product,
which gets rid of the time dependence [51]. Generally, for
such a periodically driven system, topological invariants can
be defined by the Floquet states.

A. Conventional winding number (CWN)

We know that the definition of winding number requires
the systems to satisfy chiral symmetry. In order to provide
a definition of CWN for arbitrary driving frequencies, it is
particularly important to determine the chiral symmetry op-
erators for the Floquet systems. In this section, we will give
the chiral symmetry operators corresponding to the effective
static Hamiltonian in both high-frequency and low-frequency
regions, as well as the corresponding definition of CWN.

Because different Floquet blocks mutually couple, we
need to numerically solve Eq. (4). Numerically, one can ob-
tain an effective Hamiltonian by reasonably truncating the
Floquet space. If we consider the truncation number Y =
2n + 1, the effective Hamiltonian H eff can be given by the
2Y ×2Y matrix, via selecting the Floquet blocks ranging from
χ ∈ [−n, n],

H eff (k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
... . .

.

· · · H eff
−1,−1 H eff

−1,0 H eff
−1,1 · · ·

· · · H eff
0,−1 H eff

0,0 H eff
0,1 · · ·

· · · H eff
1,−1 H eff

1,0 H eff
1,1 · · ·

. .
. ...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5)

with

H eff
χ,χ ′ (k) = Sμ,μ′

χ,χ ′ (k) + χωδχ,χ ′δμ,μ′ ,

Sμ,μ′
χ,χ ′ (k) = 1

T

∫ T

0
sμ,μ′

(k, t )e−i(χ−χ ′ )ωt dt

=
(

0 ρχ,χ ′

ρ∗
χ,χ ′ 0

)
. (6)

Here ρχ,χ ′ and ρ∗
χ,χ ′ are a matrix element of Sμ,μ′

χ,χ ′ .
To discuss the symmetry of the effective Hamiltonian (5),

we define an exchange operator ϒ , which satisfies ϒG = G′,
where G = [· · · , A−1, B−1, A0, B0, A1, B1, · · · ]T and
G′ = [· · · , A−1, A0, A1, · · · , B−1, B0, B1, · · · ]T . In the basis
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of the exchange operator, ϒ must be diagonalized through the
unitary matrix U1, which satisfies U1ϒU −1

1 = diag[eig(ϒ)].
Transforming Hamiltonian (5) by using the unitary matrix U1,
we can obtain

H̃ eff = U1H effU −1
1 =

(
R K

K† R

)
, (7)

with

K =

⎛⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
... . .

.

· · · ρ−1,−1 ρ−1,0 ρ−1,1 · · ·
· · · ρ0,−1 ρ0,0 ρ0,1 · · ·
· · · ρ1,−1 ρ1,0 ρ1,1 · · ·
. .

. ...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠,

and

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

2ω

ω

0
−ω

−2ω
.. .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In this way the Hamiltonian H̃ eff also can satisfy chiral
symmetry H̃ eff−1 = −H̃ eff , where the chiral symmetry
operator is  = σz

⊗
�, with Y ×Y matrix

� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. .
.

1
−1

1
−1

1

. .
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for the case of matrix element ρχ,χ ′ = (−1)χ−χ ′

ρ−χ,−χ ′ , and

� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. .
.

1
1

1
1

1

. .
.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for the case of matrix element ρχ,χ ′ = ρ−χ,−χ ′ . The
Hamiltonian (7) can be transformed into a block off-diagonal
form in the basis of chiral symmetric operators, where the
chiral symmetry operator  needs to be diagonalized by the
unitary matrix U2, which satisfies U2U −1

2 = diag[eig()].
Transforming Hamiltonian (7) by using the unitary matrix U2,
we can obtain

U2H̃ effU −1
2 =

(
0 �(k)

�
†(k) 0

)
. (8)

Then the definition of CWN in the low-frequency regime can
be given by

w± = 1

2π i

∮
S
∂kLn{Det[�(k)]}dk

= 1

2π

∮
S
∂kφi jdk, (9)

where S is a closed loop with k varying from 0 to 2π , and
φi j = arctan ( Im{ Det[�(k)]}

Re{ Det[�(k)]} ) is the equilibrium azimuthal angle.

B. CWN in the high-frequency regime

In the high-frequency regime, the second term in the right-
hand side of Eq. (4) dominates, and the couplings between
nearest-neighboring Floquet blocks can be viewed as a per-
turbation. Thus one can obtain an effective static Hamiltonian
H eff given by the 2×2 matrix via selecting the Floquet Block
χ = χ ′ = 0,

H eff (k) =
(

S+,+
0,0 (k) S+,−

0,0 (k)

S−,+
0,0 (k) S−,−

0,0 (k)

)
= heff

i (k)σi + heff
j (k)σ j . (10)

The corresponding quasienergy can be given by

εμ(k) = μ

√[
heff

i (k)
]2 + [

heff
j (k)

]2
.

The characterization of topological property of the system
can be given by Eq. (10). It is worth noting that the ef-
fective Hamiltonian (10) has chiral symmetry H eff (k) =
−H eff (k) with  = iσiσ j . The CWN for different Floquet
bands are the same, which can be denote as

w± = 1

2π

∮
S

dk
heff

j ∂kheff
i − heff

i ∂kheff
j

εμ
2

, (11)

where S is a closed loop with k varying from 0 to 2π . If we de-
fine an equilibrium azimuthal angle φi j (k) = arctan(heff

i /heff
j ),

Eq. (11) can be written as

w± = 1

2π

∮
S

dk
heff

j ∂kheff
i − heff

i ∂kheff
j

εμ
2

= 1

2π

∮
S

dk
heff

j ∂kheff
i − heff

i ∂kheff
j(

heff
i

)2 + (
heff

j

)2

= 1

2π

∮
S
∂kφi jdk. (12)

C. Zak phase

The Zak phase � is closely related to the winding number
by w±π mod 2π in the z-class insulators [52,53]. The Zak
phase, limited to 0 and π due to modulo operation, usually
can predict the existence (with the relevant cumulative phase
being π ) or absence (vanishing cumulative phase) of topo-
logical zero-energy edge states in specific gaps. However,
for nontrivial even winding number supporting topological
edge states, the Zak phase is equal to 0, which cannot predict
the existence of topological edge states. For our periodically
driven systems with arbitrary driving frequencies, it is unclear
when the Zak phase can faithfully characterize the topological
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properties and when the Zak phase fails. To compute the Zak
phase of the Floquet quasienergy spectrum, one usually needs
to truncate the Floquet space [36,37]. All numbers of replicas
of quasienergies need to be chosen, and then all relevant
transitions at the desired energy are kept. The Zak phase for
a specific gap is given by summing up �(μ,χ ) for all bands
below the gap, where �(μ,χ ) = i

∮
k〈ϕk,μ,χ |∂k|ϕk,μ,χ 〉dk. If we

consider the truncation number Y = 2n + 1 (corresponding to
χ ∈ [−n, n]), 2Y Floquet quasienergy bands are obtained. For
simplicity, we mark �(μ,χ ) as �(l ), and |ϕk,μ,χ 〉 as |ϕk,l〉, where
l is the band index. For a gap between the Y th and (Y + 1)th
bands (corresponding to the zero-energy gap), the Zak phase
� can be defined as

� =
Y∑

l=1

�(l ) =
Y∑

l=1

[
i
∮

k
〈ϕk,l |∂k|ϕk,l〉dk

]
. (13)

It should be noted that a reasonable selection of truncation
numbers Y is usually associated with the driving frequency.
For example, one can select the truncation number Y = 1 in
the high-frequency regime and Y = 100 in the low-frequency
regime.

III. EXTRACTING TOPOLOGICAL INVARIANTS USING
DWN FOR ARBITRARILY DRIVING FREQUENCIES

In this section, we will introduce a unified dynamic
approach for measuring topological invariants in both high-
frequency and low-frequency regimes. We first provide the
definition of DWN with arbitrarily driving frequencies, and
then discuss how to extract topological invariants by utilizing
the DWN, including the CWN and Zak phase.

A. High-frequency regime (ω � t1,2)

In the high-frequency regime, we consider an arbitrary ini-
tial state |�k (0)〉 = ∑

μ ck,μ|ϕk,μ〉, and then the time evolution
of |�k (t )〉 satisfies

|�k (t )〉 =
∑

μ

ck,μe−iεk,μt |ϕk,μ〉, (14)

with ck,μ = 〈ϕk,μ|�k (0)〉. According to the time evolution
of the state, the spin textures are given by the expecta-
tion values of the Pauli matrices, 〈�k (t )|σi( j)|�k (t )〉. It is
worth noting that the expected value of the Pauli matrix
is an observable quantity in the experiment, which is re-
lated to the spin population N↑(↓)(k). The spin population
N↑(↓)(k) with different momentums can be measured in the
experiment by spin-resolved time-of-flight absorption imag-
ing [41]. Thus the expected value of the Pauli matrix σz can be
given via the spin population difference, 〈�k (t )|σz|�k (t )〉 =
(N↑(k) − N↑(k))/(N↑(k) + N↑(k)). Similarly, the spin polar-
ization 〈�k (t )|σx(y)|�k (t )〉 also can be transferred to the
spin population difference by applying π/2 pulse, that is,
〈�k (t )|σx(y)|�k (t )〉 = 〈�k (t )|e−i π

2

σy(x)
2 σzei π

2

σy(x)
2 |�k (t )〉. Then,

according to the method in Ref. [48], one can obtain the
long-time averages

σi( j) = lim
t ′→∞

1

t ′

∫ t ′

0
〈�k (t )|σi( j)|�k (t )〉dt, (15)

and the DWN in high-frequency regime can be defined as

wd = 1

2π

∮
S
∂kηi j (k)dk, (16)

where S is a closed loop in the parameter space k, and ηi j (k) =
arctan(σi/σ j ) is the dynamical azimuthal angle. Despite the
fact that the dynamical azimuthal angle depends on the initial
state, it is convergent in the long time. The long-time average
of 〈�k (t )|σi|�k (t )〉 is given by

σi = lim
t ′→∞

1

t ′

∫ t ′

0
〈�k (t )|σi|�k (t )〉dt

= lim
t ′→∞

1

t ′

∫ t ′

0

∑
μ,μ′

ck,μc∗
k,μ′e

−i(εμ−ε∗
μ′ )t 〈ϕk,μ′ |σi|ϕk,μ〉dt .

(17)

For the Hermitian systems with chiral symmetry, the ener-
gies are purely real and εk,± = −εk,∓. Thus, Eq. (17) can be
simplified as

σi
∼=

∑
μ

|ck,μ|2〈ϕk,μ|σi|ϕk,μ〉

= (|ck,+|2 − |ck,−|2)
heff

i

εk,+
. (18)

Here, to avoid missing the information from heff
i , we require

|ck,+|2 �= |ck,−|2. Combining the definitions of φi j (k) and
ηi j (k), we can immediately conclude that the CWN is equal
to the DWN in the high-frequency regime,

w± = wd . (19)

To verify our theory, as an example, we consider a dimer
chain coupled to an ac electric field, with hoppings t1 and t2,
and periodic boundary conditions. The ac electric field E (t ) =
−∂t F (t ) is given by the vector potential F (t ) = ξ sin(ωt + θ ),
where ξ is the driving amplitude, and θ is the initial phase.
By means of the minimal coupling [51], one can arrive at the
time-dependent Hamiltonian

H (k, t ) =
(

0 ℵ
ℵ∗ 0

)
= hx(k, t )σx + hy(k, t )σy, (20)

with

ℵ = t1e−i(k+F (t ))b0 + t2ei(k+F (t ))(a0−b0 ),

hx(k, t ) = t1 cos[(k + F (t ))b0] + t2 cos[(k + F (t ))(a0 − b0)],

hy(k, t ) = t1 sin[(k + F (t ))b0] − t2 sin[(k + F (t ))(a0 − b0)],

where a0 is the lattice translation vector, and b0 is the in-
tradimer distance. For simplicity, we only consider a0 = 1
and b0 = 0, corresponding to the situation that the one-
dimensional chain forms zigzag, and the electric field is in
perpendicular to the t1 bonds. In the high-frequency regime,
an effective static Hamiltonian can be obtained based on pre-
vious analysis

H eff (k) = heff
x (k)σx + heff

y (k)σy. (21)

Here, heff
x (k) = t1 + t2 cos(k)J0(ξ ), heff

y (k) = −t2 sin(k)J0(ξ ),
and J0(ξ ) is the zero-order Bessel function. Note that the
effective Hamiltonian remains invariant in the high-frequency
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FIG. 1. Extracting conventional winding number via dynamic winding number. (Top row) (a) We consider the eigenstates of the system
as the initial states satisfying |c+|2 = 1 and |c−|2 = 0. (b) and (c) respectively correspond to the time evolution of the spin textures
〈�k (t )|σx|�k (t )〉 and 〈�k (t )|σy|�k (t )〉, and (d) the equilibrium azimuthal angle φxy and dynamical azimuthal angle ηxy as functions of k.
(Bottom row) (e) We consider a random initial state satisfying |c+|2 �= |c−|2. (f) and (g) respectively correspond to time evolution of the spin
textures 〈�k (t )|σx|�k (t )〉 and 〈�k (t )|σy|�k (t )〉, and (h) the equilibrium azimuthal angle φxy and dynamical azimuthal angle ηxy as functions of
k. The other parameters are chosen as t1 = 0.3, t2 = 1, ξ = 4, and ω = 10.

regime, regardless of the initial phase θ . To clarify that
the initial state has little influence on the dynamical az-
imuthal angle, we calculate the time evolution of spin textures
〈�k (t )|σx(y)|�k (t )〉 based on different initial states. We further
obtain the dynamical azimuthal angle ηxy by taking their long-
time averages, as shown in Figs. 1(a)–1(h). As an example, we
select t1 = 0.3, t2 = 1, and ξ = 4, which corresponds to the
nontrivial topological phase with CWN w± = 1. In Fig. 1(a),
we first consider the eigenstates of the system as the ini-
tial states, satisfying |c+|2 = 1 and |c−|2 = 0. Figures 1(b)
and 1(c) respectively correspond to the time evolution of
the spin textures 〈�k (t )|σx|�k (t )〉 and 〈�k (t )|σy|�k (t )〉. Ac-
cording to the effective static Hamiltonian and the long-time
averages of spin textures, Fig. 1(d) shows the equilibrium
azimuthal angle φxy and the dynamical azimuthal angle ηxy

as functions of k, respectively. Obviously, the spin textures
remain unchanged over time t , and the dynamical azimuthal
angle ηxy perfectly matches the equilibrium azimuthal angle
φxy. Then the DWN can be obtained via the integral of a
piecewise function

wd = 1

2π

(∫ kc

−π

∂kηxydk +
∫ π

kc

∂kηxydk

)
, (22)

where kc = 0 represents the point of discontinuity in the
variation of ηxy with respect to parameter k. Obviously, the
DWN is equal to 1, which is the same as the CWN. From
the above result, we can see that when one selects the eigen-
state of the system as the initial state, σx(y) can be replaced
with 〈�k (t )|σx(y)|�k (t )〉 at any given time. This substitution
facilitates the extraction of the dynamical azimuthal angle
in the experiment. However, accurately preparing the eigen-
state of the system as an initial state in the experiment
is a challenge. Therefore, we will discuss the impact of a

random initial state on the measurement result, as shown in
Figs. 1(e) and 1(f). In detail, we give the projection of the
random initial state on the eigenstate of the system, which
satisfies a relatively loose condition |ck,+|2 �= |ck,−|2, see
Fig. 1(e). Similarly, we give the time evolution of spin tex-
tures 〈�k (t )|σx(y)|�k (t )〉 and 〈�k (t )|σx(y)|�k (t )〉 in Figs. 1(f)
and 1(g), respectively. Although the spin textures oscillate
with a momentum-dependent period T̃k = π/|εk,μ|, the dy-
namical azimuthal angle still remains consistent with the
equilibrium azimuthal angle. Thus, we can also obtain the
DWN wd = w± = 1. The above results demonstrate that it
is feasible to extract the CWN by using DWN in the high-
frequency regime, which is consistent with our theoretical
prediction.

As a comparison, we also give the �/π , CWN and DWN
as a function of the driving amplitude ξ in the high-frequency
regime, see Fig. 2(a). To verify the bulk-edge correspondence,
we also give the quasienergy spectra of the Hamiltonian (20)
under open boundary condition, as shown in Fig. 2(b). Ob-
viously, the DWN is in good agreement with the CWN and
Zak phase, wd = w± = �/π , and can successfully predict
the topological phase transition and zero-energy modes. In
Fig. 2(c), we present the topological phase diagram in the
parameter plane (ξ, t1) by using the definitions of DWN,
where the red solid and blue-dotted lines represent the phase
boundaries determined by �/π and w±, respectively. The
gray regions correspond to the nontrivial topological phase,
which exhibits the presence of topological zero-energy modes
with wd = w± = �/π = 1. The white regions correspond
to the topologically trivial phase, which lacks topological
zero-energy modes with wd = w± = �/π = 0. Regardless of
trivial or topological regions, our dynamic approach consis-
tently and accurately extracts the Zak phase and CWN in the
high-frequency regime.
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FIG. 2. (a) Topological invariant Zak phase �/π , CWN, and DWN as functions of driving amplitude ξ in parameters t1 = 0.3, t2 = 1, and
� = 10. (b) The quasienergy spectra under open boundary condition. (c) Topological phase diagram in the parameter plane (ξ, t1), the other
parameters are chosen as t2 = 1 and ω = 10.

B. Low-frequency regime (ω � t1,2)

In the low-frequency regime, depending on the symmetry
of the evolution operator, the definition of the DWN needs
to be modified. We also consider an initial state |�k (0)〉 that
satisfies a relatively loose condition |ck,+|2 �= |ck,−|2, where
ck,μ = 〈ϕk,μ|�k (0)〉. |ϕk,μ〉 are the eigenstates of effective
Hamiltonian H eff

s (k). The time evolution of |�k (T )〉 satisfy

|�k (T )〉 = T̃ exp

[
−i

∫ T

0
H (k, t )dt

]
|�k (0)〉

= Us(k, T )|�k (0)〉, (23)

where T̃ denotes the time ordering, and Us(k, T ) repre-
sents time-evolution operator from 0 to T . According to the
evolution operator, the Floquet bands of the first Floquet Bril-
louin zone ([−π/T, π/T ]) are characterized by the effective
Hamiltonian H eff

s (k) ≡ i logUs(k, T )/T . Compared to the
case of effective Hamiltonian H eff , there can exist the same
energy spectrum for the first Floquet Brillouin zone and
identical topology for a zero-energy gap. However, H eff

s (k)
may lose original chiral symmetry due to the existence of
Floquet band couplings in the low-frequency regime. For ex-
ample, the original Hamiltonian (20) clearly satisfies chiral
symmetry σzH (k, t )σ−1

z = −H (k, t ), where the Pauli matrix
σz corresponds to the chiral symmetry operator. However, if
F (t ) = F (−t ), the original chiral symmetry can be retained
σzH eff

s (k)σ−1
z = −H eff

s (k), and if F (t ) �= F (−t ), the original
chiral symmetry obviously will be broken σzH eff

s (k)σ−1
z �=

−H eff
s (k), as shown in Fig. 3. To analyze the above con-

clusion, we can numerically write the effective Hamiltonian
H eff

s (k) in the form of Pauli matrix,

H eff
s (k) = heff

x (k)σx + heff
y (k)σy + heff

z (k)σz,

heff
x (k) = ε+(k)〈u+(k)|σx|u+(k)〉,

heff
y (k) = ε+(k)〈u+(k)|σy|u+(k)〉,

heff
z (k) = ε+(k)〈u+(k)|σz|u+(k)〉, (24)

where ε+(k) and |u+(k)〉 are the quasienergy and the cor-
responding eigenstate of the effective Hamiltonian H eff

s (k),

respectively. Then, if the value of 〈u+(k)|σz|u+(k)〉 is zero for
all quasimomentum k, it means that the effective Hamiltonian
H eff

s (k) will retain the original chiral symmetry, otherwise, the
original chiral symmetry is broken. In Fig. 3, we give the value
of 〈u+(k)|σz|u+(k)〉 as a function of quasimomentum k for
different initial phases θ and driving frequencies ω. When we
choose the initial phases θ = π

2 , 3π
2 [corresponding to F (t ) =

F (−t )], the values of 〈u+(k)|σz|u+(k)〉 are zero for all quasi-
momentum k, regardless of the changes of driving frequencies
ω, see the blue and carmine lines in Figs. 3(a)–3(d). However,
when we choose the initial phases θ = 0, π

3 , π [corresponding
to F (t ) �= F (−t )], the values of 〈u+(k)|σz|u+(k)〉 are sensitive
to the changes of quasi-momentum k, and this dependence
becomes weak with the increase of driving frequency ω, see
the black, red and green lines in Figs. 3(a)–3(d). If the driving
frequency is sufficiently high, the system will always retain
its original chiral symmetry regardless of the changes of the
initial phases, see Fig. 3(d).

To ensure that DWN accurately represents the topological
properties of the original driving system, it is necessary to
restore the original chiral symmetry of H eff

s (k) through cer-
tain constraints. Based on the above discussion, we propose

FIG. 3. The value of 〈u+(k)|σz|u+(k)〉 as a function of quasi-
momentum k for different initial phases and driving frequencies. The
other parameters are chosen as t1 = 0.3, t2 = 1, and ξ = 1.
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FIG. 4. Extracting conventional winding number via dynamic
winding number. (a) and (b) respectively show the time evo-
lution of the stroboscopic spin textures 〈ψ (k, t )|σx|ψ (k, t )〉 and
〈ψ (k, t )|σy|ψ (k, t )〉. (c) Long-time average of stroboscopic spin tex-
tures σx (black line) and σy (blue line) as a function of k, and (d) the
equilibrium azimuthal angle φxy and dynamical azimuthal angle ηxy

as functions of k. The other parameters are chosen as t1=0.3, t2=1,

ξ = 4, and drive frequency ω = 1.2.

two approaches to restore the original chiral symmetry of
the effective Hamiltonian H eff

s (k). The first approach is to
increase the driving frequency ω in order to reduce the cou-
pling between Floquet bands, which is only applicable in
the high-frequency regime. Without limitations on the driv-
ing frequency ω, another approach requires that the periodic
driving function F (t ) be an even function of time t , which
satisfies F (t ) = F (−t ). If we consider the initial phase θ =
(2n−1)π

2 , n = 1, 2, 3, . . ., we have σzH (k, t )σ−1
z = −H (k, t ) =

−H (k,−t ), where σz denotes the chiral symmetry of the orig-
inal Hamiltonian. We have σzUs(k, T )σ−1

z = −Us(k, T ) =
Us(k,−T ), which yields σzH eff

s (k)σ−1
z = −H eff

s (k). Thus, the
effective Hamiltonian H eff

s (k) also has the chiral symmetry σz.
Then, the topology can also be detected via the measurement
of the DWN, which satisfies

wd = 1

2π

∮
S
∂kηi j (k)dk, (25)

with the dynamical azimuthal angle ηi j (k) = arctan(σi/σ j )
based on the stroboscopic long-time-averaged spin textures,

σi = lim
N→∞

1

N

N∑
n=0

〈�k (nT )|σi|�k (nT )〉. (26)

Note that the redefinition of DWN in the low-frequency
regime is also applicable to the high-frequency regime. How-
ever, in the high-frequency regime one does not have to carry
out stroboscopic measurements and properly choose the initial
phase. That is why we separately discuss the regimes of low
and high frequencies.

As an example, we set the initial phase θ = π/2. Based
on the time-dependent Hamiltonian (20), we can obtain
the stroboscopic spin textures 〈�k (nT )|σx(y)|�k (nT )〉,
as shown in Figs. 4(a) and 4(b). The stroboscopic
spin textures 〈�k (nT )|σx(y)|�k (nT )〉 oscillate with a
momentum-dependent period, and their long-time averages

FIG. 5. Extracting conventional winding number via dynamic
winding number. (a) and (b) respectively show the time evo-
lution of the stroboscopic spin textures 〈ψ (k, t )|σx|ψ (k, t )〉 and
〈ψ (k, t )|σy|ψ (k, t )〉. (c) Long-time average of stroboscopic spin tex-
tures σx (black line) and σy (blue line) as a function of k, and
(d) the equilibrium azimuthal angle φxy and dynamical azimuthal
angle ηxy as a function of k. The other parameters are chosen as
t1 = 0.3, t2 = 1, ξ = 1, and drive frequency ω = 1.2.

σx(y) depending on quasimomentum k, see the black and
blue lines in Fig. 4(c). Using σx and σy, one can calculate
the dynamical azimuthal angle ηxy as a function of k, see
the red lines in Fig. 4(d). For comparison, we also plot the
equilibrium azimuthal angle φxy as a function of k, see the
black lines in Fig. 4(d). Combining with the definitions of w±
and wd in Eqs. (9) and (25), we find that the DWN is equal
to 1, which is the same as the CWN w±. Then the Zak phase
� can also be calculated using Eq. (13). We find that the Zak
phase is equal to π , which is closely related to the CWN
and DWN by �/π = w± = wd . This means that the CWN
and Zak phase can also be obtained by measuring wd in the
low-frequency regime with a driving amplitude ξ = 4.

Normally, periodic driving can bring several novel topolog-
ical properties that are usually absent in their static analogs.
Unlike previous findings, our system has discovered that pe-
riodic driving with low frequency and amplitude can induce
another topological property, namely a larger winding num-
ber. Interestingly, the larger winding number can also be
accurately extracted by DWN. We consider the driving ampli-
tude ξ = 1, and the other parameters are the same as those in
Fig. 4. Combining the definitions of CWN in Eq. (9), we give
the equilibrium azimuthal angle φxy as a function of k, see the
black lines in Fig. 5(d), and then obtain the CWN w± = 2.
In Figs. 5(a)–5(c), we give the stroboscopic spin textures
〈�k (nT )|σx(y)|�k (nT )〉 and their long-time averages depend-
ing on quasimomentum k, respectively. Using σx and σy, one
can calculate the dynamical azimuthal angle ηxy as a function
of k, see the red lines in Fig. 5(d). Obviously, combined with
the definitions of wd in Eq. (25), the DWN is equal to 2,
which also is the same as the CWN. However, according to the
Eq. (13), the Zak phase is equal to 0. This means that the Zak
phase is not related to the CWN and DWN, and the DWN can
only accurately extract CWN in low-frequency regime with
a low driving amplitude ξ = 1. Naturally, an open question
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FIG. 6. (a) and (d) show the topological phase diagrams in the parameter plane (ξ, t1) through the definitions of Zak phase and DWN,
respectively. Varying ξ and t1 along the red dashed line in (d), (b), and (c) show the quasienergy spectra under open boundary condition. (e)
and (f) respectively correspond to the topological invariant Zak phase �/π , CWN and DWN as functions of driving amplitude ξ and coupling
strength t1. The other parameters are chosen as t2 = 1 and ω = 1.2.

arises: Which one, the Zak phase or CWN, can accurately
characterize the topological properties of the entire parameter
space in the low-frequency regime? If the Zak phase can
accurately characterize the topological properties of the entire
parameter space, then DWN will not be able to accurately
measure the topological properties of certain regions of the
system. On the contrary, if CWN can accurately depict the
topological characteristics of the entire parameter space, this
means that the topological invariant extracted by DWN is
reliable across the entire parameter space.

To clarify the differences between the Zak phase, CWN,
and DWN to represent the topological properties of the
system, we present the topological phase diagrams in the
parameter plane (ξ, t1) based on the definitions of the Zak
phase, CWN, and DWN, respectively, see Figs. 6(a) and 6(d).
For convenience, we will divide the parameter space into three
distinct regions, as shown in Figs. 6(a) and 6(d). In region II, it
is found that the topological invariant wd = w± = �/π = 1,
while in region III, wd = w± = �/π = 0, which correspond
to the topological and trivial phases, respectively. However,
for region I, the result shows �/π = 0, while both CWN and
DWN are equal to 2. The Zak phase indicates that the region I
is a trivial phase, whereas it is a topologically nontrivial phase
with a large topological number using DWN. To understand
the underlying causes of this discrepancy, setting the coupling
parameter t1 = 0.3, we show the variation of quasienergy and
topological invariant with respect to the driving amplitude
ξ under open boundary condition [Figs. 6(b) and 6(e)]. Ob-
viously, we can see that the quasienergy spectrum exhibits
zero-energy gap closure at ξ = ξa and ξ = ξb as the driving
amplitude ξ increases, where the zero-energy modes exist
within the parameter range ξ ∈ (0, ξb). Combined with the
topological invariants as a function of the driving amplitude
ξ shown in Fig. 6(e), it is evident that the Zak phase cannot
accurately characterize the presence of zero-energy modes in
the low-frequency regime. When ξ is less than ξa, the Zak
phase �/π = 0, while both CWN and DWN are equal to 2.

Furthermore, setting the driving amplitude ξ = 1, we inves-
tigated the variation of quasienergy and topological invariant
with respect to the coupling strength t1 under open boundary
condition [Figs. 6(c) and 6(f)]. Obviously, we also can see that
the quasienergy spectrum exhibits zero-energy gap closure
at t1 = ta and t1 = tb as the coupling parameter t1 increases,
where the zero-energy modes always exist. However, when
t1 is greater than ta but less than tb, the Zak phase �/π = 0,
while both the CWN and DWN are equal to 2. The above re-
sults indicate that, compared to the Zak phase, CWN not only
is better suited for characterizing the topological properties
of the system in the low-frequency regime, but also can be
completely detected by measuring the DWN.

C. Bulk-edge correspondence

Bulk-edge correspondence establishes the exact correspon-
dence between the bulk topological invariant under periodic
boundary condition and topological edge states under open
boundary condition. In the one-dimensional static system,
the emergence of a large topological number typically re-
quires long-range couplings between lattice points. A larger
topological number often corresponds to a larger number
of topological edge states. Interestingly, unlike static system
with long-range couplings, our periodic driving system in
the low-frequency regime can also lead to the occurrence of
large winding numbers (wd = w± = 2), see the yellow area
in Fig. 6(d). To clarify the Bulk-edge correspondence for
appearing a large winding number, we give the quasienergy
and corresponding Floquet edge states (FESs) for different
topological phases in Figs. 7(a) and 7(b), corresponding to the
parameter points p1 (wd = 2) and p2 (wd = 1) in Fig. 6(d).
For the topological phase with DWN wd = 2, it can be
observed that there are four degenerate zero-energy modes
within the zero-energy gap, which correspond to four topo-
logically protected FESs [see Fig. 7(a)]. For the topological
phase with DWN wd = 1, it can be observed that there are

224315-8



DYNAMIC WINDING NUMBER FOR FLOQUET … PHYSICAL REVIEW B 109, 224315 (2024)

FIG. 7. Quasienergy and Floquet edge states (FESs) with different topological nontrivial phase (a) wd = 2 and (b) wd = 1, respectively
corresponding to the parameter points p1 and p2 in Fig. 6(d). The other parameters are chosen as t2 = 1 and ω = 1.2.

two degenerate zero-energy modes within the zero-energy
gap, which correspond to two topologically protected FESs
[see Fig. 7(b)]. The above results demonstrate that the topo-
logical invariant described by DWN still satisfies the principle
of bulk-edge correspondence, and then DWN can accurately
predict the number of topologically protected FESs.

Furthermore, similar to our previous paper [37], periodic
driving can also lead to the generation of nontopological
FESs. This is attributed to the creation of virtual defects at
the boundary.

IV. CONCLUSIONS

We presented a unified approach of DWN to characterize
the one-dimensional Floquet topological phase with arbitrar-
ily driving frequency. Given a time-averaged spin texture or
a stroboscopic time-averaged spin texture in the parameter
space, a DWN is given by a loop integral of the dynami-
cal azimuthal angle gradient. In the high-frequency regime,
the definition of DWN is based on time-averaged spin tex-
tures, which is robust against various initial states and phases.
The CWN and Zak phase in the high-frequency regime can
be directly given by the corresponding DWN, satisfying
the relation � = mod (wdπ, 2π ) = mod (w±π, 2π ). In the
low-frequency regime, the definition of DWN is based on
stroboscopic time-averaged spin textures, which also is robust
against various initial states, but requires the periodic driving

function F (t ) to be an even function of time t , F (t ) = F (−t ).
Surprisingly, the Zak phase cannot faithfully characterize the
topological properties, and the DWN can only accurately ex-
tract the CWN in the low-frequency regime with a low driving
amplitude, satisfying the relation wd = w±.

According to the bulk-edge correspondence, the DWN
can accurately predict the number of topologically protecting
Floquet edge states with arbitrarily driving frequency. Com-
pared with previous methods in Refs. [17,49], our schemes
clarify the necessity of implementing stroboscopic mea-
surements in Floquet topological insulators and provide a
universal definition of DWN in the regimes of arbitrary driv-
ing frequency, which does not request any prior knowledge of
topology before and after a quench, and also is robust against
various initial states.
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