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The linear cross-entropy (LXE) has been recently proposed as a scalable probe of the measurement-driven
phase transition between volume- and area-law-entangled phases of pure-state trajectories in certain monitored
quantum circuits. Here, we demonstrate that the LXE can distinguish distinct area-law-entangled phases of
monitored circuits with symmetries, and extract universal behavior at the critical points separating these phases.
We focus on (1+1)-dimensional monitored circuits with an onsite Z2 symmetry. For an appropriate choice of
initial states, the LXE distinguishes the area-law-entangled spin-glass and paramagnetic phases of the monitored
trajectories. At the critical point, described by two-dimensional percolation, the LXE exhibits universal behavior
which depends sensitively on boundary conditions, and the choice of initial state. With open boundary conditions,
we show that the LXE relates to crossing probabilities in critical percolation, and is thus given by a known
universal function of the aspect ratio of the dynamics, which quantitatively agrees with numerical studies of
the LXE at criticality. The LXE probes correlations of other operators in percolation with periodic boundary
conditions. We show that the LXE is sensitive to the richer phase diagram of the circuit model in the presence of
symmetric unitary gates. Last, we consider the effect of noise during the circuit evolution, and propose potential
solutions to counter it.
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I. INTRODUCTION

Recent studies of quantum many-body systems which are
being measured frequently by an external observer have un-
covered new phases of quantum matter which are manifest
in the pure-state trajectories of the quantum dynamics [1,2].
Novel phase transitions are now known to occur in these
“monitored” quantum dynamics due to the competition be-
tween the entangling nature of chaotic unitary evolution, and
the disentangling action of projective measurements. Quan-
tum circuits with random, local unitary gates and frequent
measurements exhibit a measurement-induced phase transi-
tion (MIPT) as the rate of projective measurements is tuned.
As was first observed numerically and followed later by theo-
retical justifications, for a small enough measurement rate, the
late-time pure-state trajectories sustain a volume-law scaling
of the entanglement entropy [3–9]. As this rate is increased,
however, there will be a MIPT to a phase characterized
by an area-law scaling within these pure-states. Many as-
pects of these transitions were extensively studied previously
[7,8,10–37].

Experimental efforts to observe MIPT have been limited to
relatively small system sizes [38], which are classically sim-
ulable [39,40], mainly due to the so-called “post-selection”
problem: the entanglement structure of the late-time state
of the circuit must be accessed by preparing many identi-
cal copies of the final state, which requires repeating the
experiment exponentially many times to obtain the same
measurement outcomes in each realization of the evolution.
As the number of qubits increases, the post-selection prob-
lem becomes more challenging and eventually impossible

to overcome. Therefore, to experimentally observe MIPT,
it is necessary to find efficient probes that do not rely
on post-selection of measurement outcomes [41,42]. Al-
ternatively, one may study other types of nonequlibrium
phase transitions that share some essential features of
the MIPT, but do not suffer from the post-selection
problem [43].

Post-processing the measurement record is required to
overcome the post-selection problem. In particular, it was
shown in Ref. [7] that the MIPT coincides with a transition
in the amount of information contained in the measurement
record about the initial state of the monitored circuit. Re-
cently, it has been proposed [42] that the circuit averaged
linear cross-entropy (LXE, denoted by χ) can be used to de-
tect the MIPT experimentally in certain random circuits with
projective measurements that cannot be fully simulated on a
classical computer. Starting with two different initial states
and running them through identical quantum circuits, the LXE
measures how the distribution of measurement outcomes cor-
relates with the initial states. It was shown in Refs. [7,42] that
when one starts with two random initial states, in the area-law
phase, measurement outcomes can be used to distinguish the
initial states with finite probability, and the LXE takes val-
ues χ < 1. However, in the volume law phase, measurement
outcomes cannot distinguish the initial states, and χ = 1. For
a circuit with Clifford unitary gates and Pauli measurements,
one can choose to run the evolution with a nonstabilizer initial
state on a quantum simulator and a stabilizer initial state on
a classical computer, and compute the LXE efficiently. In
this setting, the post-selection problem is partially mitigated,
allowing one to detect MIPT in quantum dynamics that are
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not classically simulable [42]. This protocol has been recently
used to detect MIPT experimentally on a superconducting
quantum processor [44]. Nonetheless, it is worth noting that
this approach does not completely solve the post-selection
problem; for a completely generic quantum circuit, computing
the LXE still requires exponentially large classical resources.

In this paper, we study the utility of LXE beyond the
typical volume law to area law phase transition by focusing
on MIPT’s between different area-law-entangled phases that
arise in monitored dynamics with symmetries. More specif-
ically, we study monitored dynamics in (1 + 1)D with an
onsite Z2 symmetry. These circuits can host two area-law-
entangled phases: a “spin-glass” phase which spontaneously
breaks the Z2 symmetry and a paramagnet in which this
symmetry is restored [13,17]. We show that by choosing
appropriate initial states, the LXE can distinguish these
phases.

The critical point separating these two phases is in the
same universality class as two-dimensional critical bond per-
colation [4,45]. We show that depending on the boundary
conditions, and the choice of initial states, the LXE is sen-
sitive to different operators in the percolation conformal field
theory (CFT), and thus encodes universal information about
the critical point separating these monitored quantum phases.
In particular, the LXE between two particular initial states in
a monitored quantum dynamics proceeding for a time T with
open boundary conditions in a system of size L is described by
a universal function of the “aspect ratio” T/L which is related
to the celebrated Cardy formula for crossing probabilities in
critical percolation [46]. With periodic boundary conditions,
the LXE is related to the correlation function of other op-
erators in the percolation CFT, which we demonstrate by
taking advantage of well-understood description of percola-
tion as a two-dimensional Coulomb gas [47,48]. Our analytic
predictions here are confirmed by large-scale numerical sim-
ulations. Our results demonstrate that the LXE can also be
used to understand critical phenomena in monitored quantum
dynamics.

Furthermore, we study the effect of adding Z2 symmetric
unitary operators to the circuit and show that, by carefully
choosing the initial states for different parts of the phase
diagram, one can use LXE to reproduce the phase diagram
studied in Ref. [13]. Our results demonstrate that LXE could
be an effective tool to analyze and study more general MIPT.

Last, we study the effect of noise when it only affects one
of the circuits [42], say the one with the initial state ρ, and
show that in this case, χ (ρ, σ ) vanishes in the thermodynamic
limit even when the noise is Z2-symmetric. We briefly discuss
possible workarounds, while leaving a more detailed study to
a future work.

The rest of this paper is organized as follows. In Sec. II
we define LXE in detail, describe the main circuit model and
show how LXE can be used to detect the MIPT in these
circuits. In Sec. III we focus on the critical point and an-
alytically map LXE to a four-point correlation function in
percolation CFT for open and closed boundary conditions and
show that the results agree with the numerical data. In Sec. IV
we introduce Z2-symmetric unitary gates to the circuit and
obtain the phase diagram. In Sec. V we discuss the effect of

symmetric noise on the general behavior of LXE in random
quantum circuits.

II. MEASUREMENT-ONLY Z2 SYMMETRIC CIRCUIT

A. Normalized linear cross-entropy (LXE)

In this work, we use the normalized linear cross-entropy
(LXE) as defined in Ref. [42] as an order parameter to study
the MIPT between ordered area law phases. Let M denote
the total number of measurements in a monitored circuit C,
and let m = (m1, m2, . . . , mM ) denote a particular sequence
of measurement outcomes. The LXE for circuit C and for
initial states ρ and σ is defined as

χ (ρ, σ ) =
∑

m pσ
m pρ

m∑
m

(
pσ

m

)2 , (1)

where pρ
m and pσ

m are the probabilities of observing the
sequence of measurements m when the input state of the
circuit is ρ and σ , respectively. The summations are over
all possible measurement outcomes m ∈ ZM

2 . We note that
Eq. (1) is equivalent to the second moment (n = 2) of the
Kullback-Leibler divergence as is defined in Ref. [7]. We use
χ to denote the LXE averaged over different circuit realiza-
tions C. If there are more than one type of measurements in
the circuit, e.g., X and ZZ measurements, one can use the
same expression in Eq. (1) to define the LXE for specific
kinds of measurements, by including only the corresponding
outcomes in m.

To gain some intuition about χ , it is helpful to consider two
extreme cases. First, note that if the probability distributions
of the measurement outcomes for the ρ and σ circuits are ex-
actly the same, i.e., pρ

m = pσ
m for all m, we have χ (ρ, σ ) = 1.

In this case, the measurement outcomes carry zero informa-
tion about whether the initial state of the circuit has been ρ or
σ . However, if pρ

m is nonzero only for m with pσ
m = 0 and vice

versa, then the measurement outcomes in principle uniquely
determine which state has been used as the initial state, and
we have χ = 0. Therefore, one can view 1 − χ as a measure
of the information leaked to the environment about the initial
states.

B. Circuit model and initial states

We start by showing that the linear cross-entropy can detect
the MIPT in a measurement-only Z2-symmetric circuit studied
in Refs. [13,45]. Consider a 1D arrangement of L qubits.
The measurement-only dynamics consists of two types of
measurements: two-qubit nearest neighbor ZiZi+1 measure-
ments and single-qubit Xi measurements. Both measurements
respect the global Z2 symmetry generated by

G =
L∏

i=1

Xi. (2)

Each time step of the circuit is comprised of a layer of
ZZ measurements which is followed by a layer of X mea-
surements. The measurements are performed randomly with
probability p for X measurements and probability 1 − p for
ZZ measurements. We assume open boundary conditions un-
less explicitly stated otherwise. A typical realization of the
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(a) (b)

FIG. 1. (a) Typical architecture of the measurement-only Z2 sym-
metric circuit with open boundary conditions. ZZ measurement
(operation acting on two qubits) is applied with probability 1 − p
and X measurement (single qubit operation) with probability p.
(b) Linear cross-entropy in the circuit with circuit depth T = L. The
crossing point (at p = 0.5) is the location of the phase transition from
spin glass (p < 0.5) to paramagnet (p > 0.5). Inset: scaling collapse
with the critical exponent ν = 4/3. We average over Niter = 1000
iterations of the random circuit.

circuit is shown in Fig. 1(a). The depth of the circuit which we
denote by T , will be set to be T = L throughout this section.

As is shown in Ref. [13], there is a MIPT between two dif-
ferent area law phases at the critical probability pc = 1/2. The
phase for p < pc is characterized by a nonvanishing spin-glass
order parameter [13] in the late time states of the circuit and
accordingly is called the spin-glass phase. The other area law
phase for p > pc is called the paramagnetic phase, in which
the spin-glass order parameter vanishes.

Equivalently, one can view the Z2 symmetric circuit as a
faulty implementation of the active error correction scheme
for the quantum repetition code. The code space of the quan-
tum repetition code is specified by the set of ZiZi+1 stabilizers,
and encodes one logical qubit. The symmetry generator G in
Eq. (2) is the logical X and the logical Z can be taken to
be Z1. Accordingly, one can interpret the ZZ measurements
in the random circuit as the syndrome measurements of the
quantum repetition code and the X measurements as errors
caused by the environment. As was shown in Refs. [49,50],
if the initial state of the circuit is in the code space of the
quantum repetition code, within the spin-glass phase one can
recover the initial state from the final state of the circuit after
time T = O(L), whereas within the paramagnetic phase the
initial logical information encoded in the initial state would
be lost within time T = O(1). As such, the entanglement
phase transition at p = pc can be thought of as a recoverability
phase transition in the context of quantum error correction.
This observation is a special case of the broader viewpoint
that MIPT generally can be viewed as a phase transition in
the ability of the random quantum circuit to hide information
from the environment [6,41,51,52].

The error correction viewpoint can be used as a guide to
choose the initial states ρ and σ such that χ (ρ, σ ) would be
an order parameter for the phase transition. According to this
view, if the initial state is in the code space of the quantum
repetition code, then the subsequent measurements in the cir-
cuit should not leak any information about the encoded state
to the environment when p < pc. Hence, if ρ and σ are two

code states of the quantum repetition code, then one would
have χ (ρ, σ ) = 1 throughout the spin-glass phase. To use χ

as an order parameter, then we need to find two code states
ρ and σ such that in the paramagnetic phase χ (ρ, σ ) < 1.
Given the prevalence of X measurements in the paramagnetic
phase, one would expect that if ρ and σ were the eigenstates
of the logical X operator G = ∏L

i=1 Xi with opposite signs, the
measurements in the circuit could tell the difference within
the paramagnetic phase p > pc and hence χ (ρ, σ ) would be
less than 1. Therefore, a potentially suitable choice to detect
the transition between two area law phases in the Z2 symmet-
ric circuit would be the Greenberger-Horne-Zeilinger (GHZ)
states, defined as

|GHZ(±)〉 = 1√
2

(| ↑ . . . ↑〉 ± | ↓ . . . ↓〉), (3)

which satisfy G |GHZ(±)〉 = ± |GHZ(±)〉. In the next section,
based on the mapping of the circuit to a 2D loop model, we
show that the choice of such GHZ-type states gives a natural
interpretation of LXE in terms of correlation functions of 2D
percolation.

Since the GHZ states are stabilizer states and the circuit
consists of Pauli measurements, LXE can be computed ef-
ficiently through Clifford simulation (see Appendix A for
details on computing LXE in Clifford circuits). In Fig. 1(b)
we plot the numerically obtained LXE for the two GHZ initial
states. There are two phases: the spin-glass phase (p < 0.5)
where LXE is reaching χ = 1 in the thermodynamic limit as
expected, and the paramagnet phase p > 0.5 where χ = 0 for
large system sizes. The latter shows that the circuit always
measures G in the paramagnetic phase which is consistent
with viewing the phase transition as a charge-sharpening
phase transition [26,53]. At p = 0.5 there is a clear crossing
which indicates the phase transition.

At the critical point (p = 0.5), LXE does not depend on
system size but does depend on the aspect ratio of the circuit,
as we discuss in detail in Sec. III, where we consider the de-
tailed properties of the critical point and obtain analytic results
using percolation theory. Data collapse of our numerical data
for different system sizes (up to L = 256) shows clearly that
the critical exponent is in the percolation class ν = 4/3, as
expected.

In Appendix B, we study a modified circuit model in which
in addition to ZZ and X measurement, with certain proba-
bilities we also measure ZIZ and XX operators. While the
critical point of this modified circuit model can still be fixed
by X ←→ ZZ duality [13,54], its dynamics no longer maps
exactly to the classical percolation. As such, it allows us to
test generality of our results away from the percolation fixed
point.

C. Scrambling of initial states

It is interesting to see how the cross-entropy changes when
the GHZ states are subject to a Z2 symmetry preserving initial
scrambling stage consisting of random unitaries, which we
denote as U . Here, we take the scrambling stage to consist of a
brick-work arrangement of random 2-qubit unitary gates, with
a depth equal to the system size. As shown in Fig. 2, in this
protocol the cross-entropy can still detect the two phases and
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FIG. 2. LXE in ZZ-X circuit followed by the scrambling step
for initial states |GHZ±〉. In thermodynamic limit the cross-entropy
reaches ≈2/3 in spin-glass phase. Inset: scaling collapse with the
critical exponent ν = 4/3.

the phase transition but its behavior in the spin-glass phase is
different compared to the circuit without the encoding step. In
particular, in the thermodynamic limit the cross-entropy ap-
proaches a constant value close to 2/3 instead of 1 throughout
the spin-glass phase, and again vanishes in the paramagnet.

As we argue in Appendix C, the initial scrambling unitary
might—rather counterintuitively—expose the initially nonlo-
cal difference between |GHZ(+)〉 and |GHZ(−)〉 to local ZZ
measurements, resulting χ to be less than one in the spin-
glass phase. χ still vanishes for p > 0.5 since the symmetric
scrambling conserves the parity charges of |GHZ±〉, which
then gets measured in the paramagnet phase. In Fig. 2 we
show the numerical result and scaling collapse near the critical
point which gives the same bulk critical exponent ν = 4/3,
expected since only the initial states have changed due to the
scrambling stage.

III. CRITICAL POINT

A. Mapping to two-dimensional percolation

Consider a one-dimensional array of L qubits, which are
acted upon by projective measurements of ZjZ j+1 and Xj with
probability 1 − p and p, respectively. A spacetime representa-
tion of this quantum circuit, for a given sequence of projective
measurements, is shown in Fig. 3(a); the“boxes” on horizontal

FIG. 3. The ZZ-X measurement-only circuit (a). The evolving
stabilizers after a Jordan-Wigner transformation may be thought
of as the hulls of percolating clusters on the square lattice, as in
panel (b).

bonds indicate a measurement of the pair of Pauli Z operators
on adjacent sites, while the “circles” on vertical bonds indicate
a measurement of a single-site Pauli X operator on that qubit.

Starting with a stabilizer initial state |ψ0〉 which is invariant
under the symmetry transformation G ≡ ∏

j Xj , the evolving
state of the qubits may be represented by an evolving pairing
of Majorana fermions after a Jordan-Wigner (JW) transfor-
mation. In a system with open boundary conditions, the JW
transformation takes Xj → iγ jη j and ZjZ j+1 → iη jγ j+1. The
dynamics of these Majorana pairs may be understood as fol-
lows [4]. First, we may color the bonds of the lattice where
(i) a ZZ measurement is performed and where (ii) no X
measurement is performed. The resulting square lattice with
shaded bonds (in red) is shown in Fig. 3(b). Because of the
measurement probabilities, each bond of the square lattice is
shaded with probability 1 − p. When p � pc (pc = 1/2 for
the square lattice) the shaded bonds form a percolating cluster
spanning a finite fraction of the lattice. We may now draw the
hulls of the regions of percolating clusters (in green). A closed
circle is drawn around lattice sites from which no shaded
bonds emerge. The resulting fully packed loop configuration
(FPLC) on the square lattice describes the spacetime trajecto-
ries of the Majorana pairs which stabilize the state, as repeated
projective measurements are performed.

B. LXE with open boundary conditions and percolation
crossing probabilities

We now run these dynamics, starting with either of the
following initial states:

|	 (±)
r 〉 ≡ |→ · · ·〉 ⊗ |GHZ(±)

r 〉 ⊗ |→ · · ·〉 , (4)

in which an r-qubit GHZ state |GHZ(±)
r 〉 ∼ |↑ · · ·〉 ± |↓ · · ·〉

is surrounded by spins which are aligned in the +x direc-
tion. Without loss of generality, we take L and r to be even.
We initially consider dynamics with open boundary condi-
tions, starting from initial states |	 (±)

r 〉 in which the r-qubit
GHZ state is centered in the middle of the L-site system.
For convenience of presentation, we number the lattice sites
j ∈ [−L/2, L/2].

We may prepare the initial states |	 (±)
r 〉 by measuring each

of the qubits in the Pauli X basis, and then performing mea-
surements of the two-qubit ZZ stabilizers on adjacent pairs of
the r qubits in the center of the system. Adaptive feedback
may then be used to deterministically prepare |	 (±)

r 〉 based
on the measurement outcomes. The composition of these
two operations can be thought of as a sequence of “forced”
measurements of X and ZZ , as represented in the circuit in
Fig. 4(a) to prepare |	 (±)

r=4〉. A representation of this circuit as
a colored configuration of bonds, following in Fig. 4(a).

We may study the LXE between these two states, and
averaged over realizations of the dynamics χ as various pa-
rameters are tuned. In a given realization of the dynamics
where projective measurements of ZjZ j+1 and Xj are indepen-
dently performed with probability 1 − p and p, respectively,
χ is zero if an operator that distinguishes the two initial states
is measured during the dynamics, and is constant otherwise.
The generators of the stabilizer groups for the two states
|	 (±)

r 〉 can be chosen to be identical, with the exception of
one generator which distinguishes these states. This choice
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FIG. 4. The initial states |	 (±)
r=4〉 may be prepared using the circuit

in panel (a). The observable distinguishing these states may be drawn
as the orange strand in panel (b).

for the stabilizer generators can be made at each time in the
dynamics. At the initial time, we may choose the stabilizer
generator that distinguishes |	 (±)

r 〉 to be Y1(
∏

1< j<r Xj )Yr ,
which becomes the operator iγ1ηr after a Jordan-Wigner
transformation, as indicated by the orange strand in Fig. 4(b).
The spacetime evolution of this operator as described by the
evolving endpoints of the orange strand, describes a particular
choice of stabilizer generator which distinguishes the two
evolving states at any time. A measurement of this operator
corresponds to the endpoints of this strand connecting (form-
ing a closed loop) during the evolution.

The averaged LXE χ is then proportional to the fraction
of trajectories of the orange hull which remain open until
time T . A graphical depiction of such a trajectory is shown
in Fig. 5(a). Calculation of similar quantities, related to the
probability that a single cluster percolates across a finite ge-
ometry, have been obtained [46,55,56] by considering bond
percolation as the q → 1 limit of a q-state Potts model [57].
Here, we review this relation, which we then use to determine
the universal behavior of the linear cross-entropy at the phase
transition.

In its simplest form, the two-dimensional Potts model de-
scribes the interaction of q-state degrees of freedom σr ∈
{1, . . . , q} at each site r on a square lattice via a Hamiltonian
βH = −βJ

∑
〈r,s〉 δσr ,σs . The Potts partition function may be

FIG. 5. With open boundary conditions, the LXE between the
states in Eq. (4) is related to the crossing probability in a rectangle of
dimension L × T of a percolating hull that stretches between a region
of width r at one boundary and any part of the boundary a distance T
away, as shown in panel (a). This quantity is related to the four-point
correlation function of boundary condition changing operators in the
q → 1 limit of a q-state Potts model, as shown in panel (b).

written as

Zq =
∑

�

(eβJ − 1)B(�)qC(�), (5)

where the sum is over configurations of colored bonds � on
the square lattice. Here, B(�) is the number of colored bonds,
while C(�) is the number of connected clusters. Each con-
nected cluster corresponds to a domain of aligned Potts spins.
In the q → 1 limit, this partition sum manifestly describes
percolation on the square lattice, and the boundaries of the
Potts domains become the hulls of percolating clusters.

We now return to the LXE between the states in Eq. (4)
in a system with L qubits, in which the measurement-only
dynamics have been run for a time T . Let Zq now describe
the Potts model on an L × T lattice with free boundary con-
ditions. It is natural to write the linear cross-entropy as χ =
limq→1[Z ′

q/Zq] where the partition sum Z ′
q is only over config-

urations in which a single Potts domain connects any portion
of the boundary at the final time T with the strip of length r at
the initial time, as shown in Fig. 5(a). The counting of these
configurations may be performed by fixing the Potts spins at
the boundaries of the L × T system, and as such, the ratio
Z ′

q/Zq may be regarded as the four-point correlation function
of appropriately chosen boundary-condition-changing (bcc)
operators in the Potts model [46]. Specifically, we may insert
bcc operators at the points x1 = (−L/2, T ), x2 = (−r/2, 0),
x3 = (r/2, 0), and x4 = (L/2, T ), and formally write that

χ = lim
q→1

[〈φ f →1(x1)φ1→ f (x2)φ f →2(x3)φ2→ f (x4)〉],

where φi→ f (x) changes the boundary conditions from a region
where the Potts spins are pinned to be in state i ∈ {1, . . . , q} to
a region where the boundary conditions are free. The insertion
of these operators manifestly forces a Potts domain to connect
the initial and final final-time boundaries as in Fig. 5(a). The
scaling dimension of the operator φi→ f (x) is known as an
analytic function of q, and vanishes in the q → 1 limit [46];
this is sensible, given that χ is identified with a percolation
probability which is invariant under a uniform scaling of L
and T . As a result, the linear cross-entropy is described by a
universal function near criticality

χ (p) = F (L1/ν (p − pc), r/L, T/L), (6)

with the correlation length exponent ν = 4/3.
The four-point correlation function of the boundary-

condition-changing operators on the half-plane, and with the
points x1 < x2 < x3 < x4 on the real axis is known [46,57] to
be given by

C({xi}) = 3�
(

2
3

)
�

(
1
3

)2 (1 − η)1/3
2F1

(
1

3
,

2

3
,

4

3
; 1 − η

)
, (7)

where the cross-ratio η ≡ (x12x34)/(x14x23) with xi j ≡ |xi −
x j |. In Appendix D, we perform a conformal transforma-
tion of the half-plane to a rectangle to relate this four-point
function to the desired correlation function in which the bcc
operators are inserted as shown in Fig. 5(b). The resulting
function agrees quantitatively with the numerically obtained
linear cross-entropy; as an example, starting with the initial
states |	 (±)

L 〉, the averaged linear cross-entropy as a function
of the aspect ratio T/L is shown in Fig. 6(a) for two different
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FIG. 6. LXE at the critical point in two different measurement-
only Z2-symmetric circuits with open boundary conditions is shown
in panel (a), and as a function of aspect ratio T/L. The theoretical
curve is derived from Eq. (7) as explained in the text. In panel (b),
we show the LXE at criticality, revealing the universal, power-law
decay of χ at criticality, as discussed in Eq. (9).

measurement-only dynamics1 which are tuned to the critical
point separating the Z2 spin-glass and paramagnetic phases,
along with the predicted value from the conformal transfor-
mation of Eq. (7). Since the definition of a timestep in the
numerical simulations is arbitrary, an overal rescaling of the
time T has been performed in the numerical data to obtain
agreement with the CFT prediction.

Additionally, the operator-product-expansion

lim
x→y

φ1→ f (x)φ f →2(y) ∼ φ1→2(y), (8)

where φ1→2(y)—the bcc operator which changes the Potts
spins from state 1 to 2, taken in the limit q → 1—has scaling
dimension � = 1/3 [46] implies that as r/L → 0, the cross-
entropy vanishes as [57]

χ
p=pc∼

( r

L

)�

. (9)

1The data points for ZIZ-XX model correspond to the p = q = 1/2
critical point in Fig. 12.

FIG. 7. With periodic boundary conditions, the LXE between
states |	 (±)

L 〉 probes the probability that on a cylinder with compact
direction of length L and height T , that there is no percolating hull
that wraps around the compact direction of the cylinder.

Agreement between this prediction and numerical data is
shown in Fig. 6(b).

C. LXE with periodic boundary conditions

With periodic boundary conditions, the linear cross-
entropy probes other universal properties of the percolation
critical point. In the following discussion, we restrict our
attention to the cross-entropy between the states |	 (±)

L 〉. For
a given realization of the measurement-only dynamics, we
may again color the bonds of the quantum circuit depending
on whether a ZZ or X measurement has been applied, as
described previously. After preparing the initial states |	 (±)

L 〉,
all of the bonds corresponding to the initial time of the quan-
tum circuit are colored. The information about the observable∏L

j=1 Xj which distinguish the two initial states, is extracted
in a given realization of the dynamics, if this region does not
percolate to the final-time boundary of the quantum circuit.
This would require that a percolating hull wraps around the
compact direction of the cylinder, as shown in Fig. 7. As a
result, the LXE in this setting is proportional to the proba-
bility that there is no noncontractible, percolating hull on the
cylinder.

This probability may be computed by observing that per-
colation on the cylinder of height τ ∈ [0, T ] and compact
direction x is described by the following continuum field
theory for a bosonic field ϕ(x, τ ) [47,48,58]:

S[ϕ] = g

4π

∫
dx dτ (∇ϕ)2 + iδ[ϕ(0, T ) − ϕ(0, 0)], (10)

where

g = 2

3
, δ = 1

3
. (11)

While a careful derivation of this result has been presented
in the literature (see, e.g., [58]), we provide a self-contained,
heuristic discussion of this result in Appendix E. The action
in Eq. (10) derives from a continuum description of each con-
nected cluster in percolation as a region of constant “height.”
The action (10) describes the coarse-grained fluctuations of
this continuum height-field ϕ, which is defined to jump ϕ →
ϕ + π across a percolation hull. The second term in the action
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FIG. 8. The LXE with periodic boundary conditions, between
states |	 (±)

L 〉 as a function of the aspect ratio T/L, showing agree-
ment with the predicted behavior in Eq. (13).

is required on the cylinder, so that noncontractible percolation
hulls appear with the same weight as contractible clusters in
the path integral.

As shown in Appendix E, the weights of noncontractible
percolation hulls are affected by the insertion of operators eiαϕ

at the ends of the cylinder, and as a result the LXE, which is
given by the probability that there is no noncontractible per-
colating hull as shown in Fig. 7, can be written as a two-point
correlation function

χ (pc) = 〈eiϕ(0,T )/6e−iϕ(0,0)/6〉, (12)

where the expectation value is taken with respect to the path
integral with the action given in Eq. (10). Evaluating this
correlation function on the cylinder gives

χ (pc) ∼
[

2 cosh

(
2πT

L

)
− 2

]−�

, (13)

where

� = 5

48
(14)

is twice the scaling dimension of the operator exp(iϕ/6).
We compare this prediction for the scaling of the LXE

with aspect ratio with numerical studies of the LXE in dy-
namics with two-qubit ZZ measurements and single-qubit X
measurements. A comparison is made by rescaling time T
in the function (13) by the same factor used when studying
the LXE with open boundary conditions. One free parameter,
given by an overall constant prefactor, is then used to rescale
the resulting function to fit the numerical data. The resulting
quantitative agreement is shown in Fig. 8.

IV. HYBRID CIRCUIT

We now study LXE in the phase diagram of the hybrid
circuit model studied in Ref. [13], where in addition to random
ZZ and X measurements, the circuit includes random 2-qubit
Clifford unitary gates U that respect the Z2 symmetry. To

satisfy this constraint, the unitary gates are required to have a
property U †XXU = XX . In this section we choose the brick-
work architecture, similar to the architecture used in Ref. [13],
and impose open boundary conditions. We choose each brick
to be either XI or ZZ measurement or a random symmetric
unitary U with probabilities p(1 − q), (1 − p)(1 − q), and
q, respectively.2 A typical circuit realization is shown in
Fig. 9(a). The number of time steps in the circuit is equal to
the system size T = L.

With the presence of the random unitary gates, in addition
to the spin-glass (SG) and paramagnetic (PM) phases, the
system can support a volume law phase (VL), and possibly a
critical phase [13] [see Fig. 9(b)]. Besides detecting the phase
transition between the two area law phases, SG and PM, (as
discussed in Sec. II) with an appropriate choice of the initial
states the LXE can detect the phase transitions between SG
and VL and between PM and VL. For the phase transition
between PM and VL we can again choose GHZ states since
we expect LXE to be χ = 0 in PM and χ = 1 in VL in the
thermodynamic limit. Therefore, the same initial states can be
used to detect the phase transition using LXE. However, for
the transition between SG and VL phases, a choice of GHZ
initial states is rather inconvenient, since we expect χ = 1 in
both phases and to be a constant value at the critical point.
For this reason, we choose scrambled GHZ states as described
in Sec. II C to detect the SG to VL phase boundary. We
prepare the scrambled GHZ states by again introducing the
“scrambling” step in the circuit that consists of Z2 symmetric
unitaries for time T = L/2, before running the main circuit for
time T = L/2. As discussed in Sec. II, we expect LXE to be
some nonzero constant in the SG phase in the thermodynamic
limit (see Fig. 2). Therefore, the phase transition becomes
apparent as LXE takes different values in SG and VL phases
(see Fig. 14 in Appendix F).

By changing the values of q and p, we thereby obtain a
phase diagram, as shown in Fig. 9(b), which is consistent with
the phase diagram found before [13,17,50]. First, we observe
that upon increasing the rate of the unitaries q, the spin-glass
and paramagnetic phases eventually give way to a volume
law phase. We note, however, that the critical phase [CP in
the phase diagram Fig. 9(b)] that was found in Ref. [13] is
not exactly apparent for the system sizes that we can reach,
and for the number of circuit samples we can simulate. In
Fig. 9(c) we show the LXE for a horizontal cut through the
phase diagram for q = 0.5, with no scrambling step and with
GHZ initial states. We observe two crossing points at p ≈ 0.4
and p ≈ 0.6. In the nominal critical phase, however, LXE
increases slowly with system size while we expect LXE to be
system size independent in a critical phase. It might be due to
finite size effects and its resolution requires further numerical
simulations which is beyond the scope of this work (see also
Fig. 15 in Appendix F).

2We include single qubit X measurements on the rightmost qubit in
every other layer with the same probability as XI measurements in
the bulk of the circuit, to allow for X measurement on the rightmost
qubit in the brickwork architecture with open boundaries.
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(a) (b) (c)

FIG. 9. Phase diagram of Z2-symmetric quantum circuit. (a) Brickwork architecture of hybrid circuit with open boundary conditions.
Blue operators correspond to measurements (ZZ for two qubits, and X for single qubit measurements) and green operators correspond to
Z2-symmetric unitaries. (b) Phase diagram of the model. Orange dots are numerical data computed for up to L = 512 system size. Number of
performed iterations is 5000. For |GHZ±〉 initial states and in the thermodynamic limit, LXE can be characterized as follows. In the volume
law (VL) phase as well as in the spin-glass (SG) phase, LXE is χ = 1 and in paramagnetic phase (PM), LXE becomes χ = 0. The black
dashed line between VL and CP marks the possible boundary of a critical region [13]. (c) LXE along the horizontal dashed line in panel (b) at
fixed rate of unitaries q = 0.5.

V. LXE WITH SYMMETRIC NOISE

Last, we study the effect of noise on LXE in the Z2 sym-
metric circuit. We focus on the Z2-symmetric single-qubit bit
flip X noise,

EX (ρ) = 1
2ρ + 1

2 XρX, (15)

where after each layer of measurements in the circuit, the
channel EX is applied to each qubit with some small proba-
bility q. Furthermore, following Ref. [42], here we consider
the case when only the ρ circuit is affected by the noise,
imagining that the quantum simulation is performed on a
noisy computer, while the classical simulation is noiseless.
The initial states ρ and σ are chosen to be |GHZ±〉.

As we shall explain below, the X noise would have drasti-
cally different effects depending on whether the cross-entropy
is evaluated using only the X measurement outcomes or all the
measurement outcomes: while the LXE would not be affected
at all by the presence of noise in the former case, in the latter
it will completely vanish in the large system size limit.

A. Keeping track of the outcomes of X measurements only

First, we consider LXE when only X measurement out-
comes are included. Note that in the measurement-only circuit
with |GHZ±〉 initial states, the stabilizer group which de-
scribes the evolving states, GS , retains a special structure. In
particular, the generators of GS can always be taken to be
either purely a Pauli-X string operator or purely a Pauli-Z
string operator. As such, GS may be expressed in the following
form:

GS = GX × GZ , (16)

where GX contains only Pauli-X strings and GZ only con-
tains Pauli-Z strings. Furthermore, due to the specific choice
of gates in the circuit, this structure persists throughout the
circuit. Moreover, whether an Xi measurement is random or
deterministic—and the outcome in case the measurement is
deterministic—can be determined completely from GX alone;

If Xi is in GX , then the measurement is deterministic with an
outcome +1, if −Xi ∈ GX then the measurement is determin-
istic with the outcome −1, and if neither Xi nor −Xi is in GX ,
then the measurement outcome is random. Importantly, the
noise channel EX does not alter GX and only changes GZ .
Moreover, the effect of X and ZZ measurements on GX is
completely independent of GZ . Therefore, as far as the prob-
ability distribution of X measurement outcomes is concerned,
the presence of EX has no effect. As such, the LXE between
the probability distribution of X measurement outcomes in ρ

and σ circuit does not change at all by the presence of the EX

noise channel.

B. Keeping track of the outcomes of all measurements

We now consider the case where the LXE is evaluated
based on all measurement outcomes in the circuit. Figure 10
shows LXE as a function of p, where the noise rate is fixed
at q = 0.01 and suggests that in the thermodynamic limit the

FIG. 10. LXE as a function of p at q = 0.01 of X noise. We keep
track of all measurement outcomes. LXE goes to zero with increasing
the system size.
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FIG. 11. (a) Part of the ρ circuit; (b) corresponding part in the
σ circuit.

LXE will be 0 throughout either of the two phases. Below,
we show that this is indeed the case, and argue that this is the
generic behavior in the presence of noise.

Imagine that the specific sequence of gates shown in
Fig. 11(a) appears somewhere in the ρ circuit. Since the
noise only occurs in the ρ circuit, the corresponding part
in the σ circuit would look like Fig. 11(b). When running
the ρ circuit, say the outcome of the first ZZ measure-
ment is +1. Then the X noise decoheres the state and when
ZZ is measured for the second time, its outcome could be
−1 with probability 1/2. While this sequence of outcomes
is compatible with the ρ circuit, they are clearly incom-
patible with the σ circuit because both measurements in
Fig. 11(b) have to have the same outcome and thus pσ

m = 0.
Given that this specific sequence of gates with the afore-
mentioned outcomes is bound to appear somewhere in the
ρ circuit with probability one in the thermodynamic limit,
any set of measurement outcomes sampled from the ρ cir-
cuit is incompatible with σ circuit with probability 1 and
hence χ (ρ, σ ) = 0.

It is worth noting that the argument above is independent
of the other details of the random circuit model and holds
more generally even in cases with, e.g., topological order
or unitary scrambling. More precisely, if the noise channel
occurs only in one circuit and if it does not commute with
all the measurements which are used to compute LXE, then
LXE will be zero in the thermodynamic limit. Nonetheless,
the reason that LXE is zero, e.g., in the SG phase of the
Z2-symmetric circuit, is not that the measurement outcomes
can distinguish between the two initial states ρ and σ but
rather that they distinguish between the noise-less and noisy
circuit. Indeed, LXE would be still 0 even if ρ = σ . This in
turn suggests that one can first use the measurement outcomes
to “correct” for noise in the ρ circuit, and then compute LXE
between the corrected measurement outcome of the ρ circuit
and measurement outcomes of the σ circuit. A detailed study
of this idea is left for a future work.

VI. SUMMARY AND OUTLOOK

The paper presents a study on the utility of linear cross-
entropy (LXE) as a probe of measurement-induced phase

transitions. Specifically, we focused on Z2 symmetric quan-
tum circuits comprised of random ZZ and X measurements,
which sustains different entanglement phases depending on
the rate of the X measurements. We demonstrated that by
using appropriate initial states, LXE can be used as an order
parameter to detect the phase transition between the spin-glass
phase and the paramagnetic phase in this circuit. Furthermore,
we showed that at the critical point, LXE corresponds to a
four-point correlation function of the underlying conformal
field theory (CFT). We studied scaling properties of the corre-
lation function for open and periodic boundary conditions of
the circuit analytically.

We also explored the richer phase diagram of the circuit
model in the presence of random Z2-symmetric unitary gates
and showed that LXE can probe the phase transitions effec-
tively if proper initial states are chosen. Finally, we considered
and computed the effect of noise on the measurement-only
circuit and proposed potential solutions to counter it.

Looking forward, it will be interesting to explore the LXE
for other monitored circuits, for example to probe the MIPT
between a topological and trivial phase.

In the experimental setting one will be comparing the
midcircuit measurement distribution function when running a
given circuit on a quantum processor with initial state ρ, with
a classical computation performed with the same circuit but
with a different initial state σ . Observing a MIPT will be chal-
lenging due to the noise inherent in the quantum processor.
Indeed, for the spin-glass to paramagnetic transition studied
in this paper, the presence of a bit flip noise channel drives
the LXE to zero for large systems, destroying the crossing
point indicative of the transition, even for a low noise rate;
see Fig. 10. It might be possible to partly address the effects
of noise by first extracting the LXE when the two initial states
are identical, ρ = σ , which would give χ = 1 for a noiseless
quantum processor, but will be suppressed with the noise. This
suppression might allow for a baseline estimate of noise, to
compare with results obtained for two different initial states.
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APPENDIX A: COMPUTING CROSS-ENTROPY
IN CLIFFORD CIRCUITS

In this section, we explain how one can compute LXE
χ (ρ, σ ) when the circuit C is Clifford and the state σ is a
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stabilizer state. We first note that LXE can be written as

χ (ρ, σ ) =
∑

m pρ
m pσ

m∑
m

(
pσ

m

)2 =
〈

pσ
m∑

m′ (pσ
m′ )2

〉
pρ

m

, (A1)

where 〈 · 〉pρ
m

means average over m when m is sampled from
the probability distribution pρ

m. Sampling from the distribution
pρ

m can be done by either running the circuit C with initial state
ρ on a quantum computer or simulating that quantum circuit
on a classical computer when it is possible and recording the
measurement outcomes. Therefore, the task of computing χ

boils down to computing pσ
m/

∑
m′ (pσ

m′ )2 for a given set of
measurement outcomes m. In what follows, first we consider
the case where the set of measurement outcomes m includes
the outcome of all measurements in the circuit. Then we con-
sider the more general case, where m includes only a subset
of measurement outcomes in the circuit.

1. Including all measurement outcomes

In a given stabilizer circuit, i.e., a Clifford circuit with
a stabilizer initial state, each measurement outcome is ei-
ther deterministic or completely random. For a given circuit,
there could be more than one measurement in each layer,
and whether a measurement is deterministic or random could
depend on the order in which different measurements in
a layer are performed. Nevertheless, the total number of
random measurements in a given layer (and hence in the
circuit) is independent of the order in which the measure-
ments are performed. Therefore, without loss of generality,
we may assume a specific order is fixed for the circuit
measurements (e.g., measurements are performed from left
to right). Let Nrand(C, σ ) denote the total number of ran-
dom measurements in circuit C with the initial state σ .
In general, for a given circuit C and initial state σ , the
outcome of a deterministic measurement could depend on
the outcomes of previous random measurements in the cir-
cuit. Therefore, for a given list of measurement outcomes
m, two cases could happen: either the outcomes for all
the deterministic measurements in m are compatible with
the outcomes of random measurements in m, in which
case pσ

m = 2−Nrand(C,σ ), or there is at least one deterministic
measurement outcome in m that is incompatible with the
random measurement outcomes in m, in which case pσ

m = 0.
Noting that the total number of possible compatible measure-
ment outcomes m is equal to 2Nrand(C,σ ), we find that

pσ
m∑

m′
(
pσ

m′
)2 =

{
0 m is not compatible with C and σ ,

1 m is compatible with C and σ .

(A2)

Checking whether a given set of measurement outcomes m
is compatible with C and σ is straightforward in Clifford
circuits. One simply simulates the circuit C, starting from
the initial state σ . Whenever there is a measurement with a
random outcome, one forces the outcome according to the
corresponding value in m. When there is a deterministic
measurement, one computes the outcome and compares it
with the corresponding value in m. If the two values do not
agree, then m is incompatible with C and σ , and one can halt
the simulation. Otherwise, one proceeds with the simulation

until the next measurement. If the simulation finishes without
encountering any incompatible deterministic measurement, it
means m is compatible with C and σ .

2. Including only a subset of measurement outcomes

If m includes only a subset of measurement outcomes in
the circuit, then the corresponding probability pσ

m is obtained
by summing over all possible measurement outcomes for the
rest of the measurements which are not included in m. The
summation could be performed at the circuit level by replac-
ing any measurement whose outcome is not included in m
with a quantum channel with Kraus operators �± where �±
is the projection operator into the ± subspace of the corre-
sponding measured operator. For the Pauli measurements, the
corresponding quantum channel would be a Clifford opera-
tion, mapping stabilizer density matrices to stabilizer density
matrices. Therefore, the resulting quantum circuit C̃ which
is obtained from C by replacing a subset of measurements
with their corresponding quantum channel, is also a Clifford
circuit. Importantly, m includes all the measurements in C̃, so
we may use the result of the previous section to compute pσ

m,
after replacing C with C̃ in Eq. (A2).

APPENDIX B: LONGER-RANGE MEASUREMENT-ONLY
CIRCUIT

In this section we consider a longer-range measurement-
only model where in addition to previously considered ZZ
and X measurements we add two-qubit ZIZ and XX measure-
ments as shown in Fig. 12(a). We measure X with probability
p and ZZ with probability 1 − p, and we assign XX proba-
bility r while ZIZ is measured with probability 1 − r. The
resulting phase diagram is shown in the Fig. 12(b). As an
example of the phase transition between two area law phases,
we show the behavior of LXE at p = 0.5 in Fig. 12(c). The
crossing point for different system sizes appears to be at
r = 0.5. Scaling collapse is performed at ν ≈ 4/3. We show
other cuts of the phase diagram in Fig. 16. As we can see
from the scaling collapse for finite system sizes, the critical
exponents are close to percolation CFT exponents.

APPENDIX C: PROBABILITY OF REVEALING
NONLOCAL INFORMATION BY SCRAMBLING

Consider the stabilizer group of |GHZ±〉 states:

GS = 〈Z1Z2, · · · , ZL−1ZL,±X1X2 · · · XN 〉. (C1)

Let GZ = 〈Z1Z2, · · · , ZL−1ZL〉 be the subgroup generated by
the Z type stabilizers. Let U be a Clifford unitary that re-
spects the Z2 symmetry, i.e., U

∏L
i=1 XiU † = ∏L

i=1 Xi. Let
UGZU † ≡ 〈UZ1Z2U †, · · · ,UZL−1ZLU †〉 denote the image of
GZ under U . If there exists an element g ∈ UGZU † such that
up to a phase,

g =
L∏

i=1

Xi

L∏
j=1

Z
α j

j , (C2)

for some set of α j = 0, 1 values, then one can distinguish
U |GHZ+〉 from U |GHZ−〉 by measuring only Z type sta-
bilizers. For an L qubit system, let q(L) be the probability
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(a) (b) (c)

FIG. 12. Circuit architecture, phase diagram, and the cross-entropy behavior of a longer-range symmetric circuit. (a) Circuit architecture
with closed boundary conditions. Blue operators correspond to two qubit ZZ measurements and single qubit X measurements. Orange operators
are two qubit XX (two qubit operator) measurements and two qubit ZIZ (three qubit operator) measurements. (b) Approximate phase diagram
of the model. We obtain several points at the phase transition line (shown in Fig. 16). Number of performed iterations is Niter = 4000. We initiate
the circuit with |GHZ±〉 initial states. As described in the main text, for these initial states, the spin-glass (SG) phase is characterized by the
cross-entropy reaching χ = 1 in the thermodynamic limit. Paramagnetic phase (PM) is characterized by the cross-entropy reaching χ = 0 in
the thermodynamic limit. The phase transition line (black solid line) is the set of crossing points for different system sizes. The purple vertical
dashed line at p = 0.5 corresponds to a plot in panel (c). (c) A vertical cut along the phase diagram (b) at the rate of X measurements p = 0.5.
There is a clear signature of the phase transition at r ≈ 0.5. The scaling collapse is done for the value of the exponent ν ≈ 4/3.

that such a g exists when U is chosen randomly by a depth L
random local symmetric Clifford circuit with brickwork struc-
ture. While obtaining q(L) analytically might be involved, it
can be easily computed numerically. As is shown in Fig. 13,
q approaches 0.66(1) for large L, which is consistent with the
LXE result presented in Sec. II C of the main text.

APPENDIX D: CONFORMAL TRANSFORMATION

Consider a q-state Potts model on the half-plane. The
operator φ f → j (xi ) at a point xi on the real line changes
the boundary conditions from a region where the Potts spins
are free (x < xi) to a region where the Potts spins are pinned
in the j ∈ {1, . . . , q} state (x > xi). The four-point corre-
lation function 〈φ f →1(x1)φ1→ f (x2)φ f →2(x3)φ2→ f (x4)〉 with
x1 < x2 < x3 < x4 on the real-line is given in the limit q → 1
by the expression

C({xi}) = 3�
(

2
3

)
�

(
1
3

)2 (1 − η)1/3
2F1

(
1

3
,

2

3
,

4

3
; 1 − η

)
, (D1)

where the cross-ratio η ≡ (x12x34)/(x14x23) with xi j ≡ |xi −
x j |. The scaling dimension of the boundary-condition chang-

FIG. 13. The probability that the scrambling of the |GHZ±〉 state
exposes the nonlocal information to Z-type measurements. The x axis
is scaled logarithmically.

ing operators φ f →1, φ1→ f is zero [46] in the q → 1 limit. As
a result, after a conformal transformation w(z) this correla-
tion function becomes C(x1, x2, x3, x4) = C(w1,w2,w3,w4)
where wi ≡ w(xi ).3

We wish to compute the four-point correlation function of
the bcc operators at the boundaries of a rectangular region,
as shown in Fig. 5(b). To do this, we choose the points x4 =
−x1 = y and x3 = −x2 = x in Eq. (D1), with y > 1 > x > 0.
and perform a conformal transformation to map the half-plane
to a rectangle, so that these points map to the desired points
on the boundaries of the rectangular region. The Schwarz-
Christoffel transformation [60], is given by

w(z) ≡ L

2K (1/y2)

∫ z

0

dt√
(1 − t2)[1 − (t2/y2)]

, (D2)

where

K (x) ≡
∫ 1

0

dt√
(1 − t2)(1 − xt2)

(D3)

transforms the points ±1, and ±y on the real line to the
corners of a rectangle. ±1 are mapped to ±L/2, respectively.
Requiring that ±y are mapped to w(±y) = ±(L/2) + iT fixes
the position y by the relation

L

T
= 2K (1/y2)

K (1 − (1/y2))
. (D4)

Finally, we require that ±x are be mapped to ±r/2. This
which fixes the point x implicitly by the relation w(x) = r/2.
This equation may be solved numerically to determine x.

3Recall that in a conformal field theory, the correlation function
〈∏ j φ j (w j )〉 = ∏

j | dw

dz |−h j
w=w j 〈

∏
j φ j (z j )〉, where hj is the scaling di-

mension of φ j [57].

224313-11



MARIA TIKHANOVSKAYA et al. PHYSICAL REVIEW B 109, 224313 (2024)

To conclude, we have shown that the four-point function
(7) with cross-ratio

η ≡ (x − y)2

(x + y)2
(D5)

and with y and x determined implicitly by the above ex-
pressions, is equivalent to the desired four-point function on
the boundaries of a rectangle with x1 = −(L/2) + iT , x2 =
−r/2, x3 = r/2, and x4 = (L/2) + iT . When r � L, we find
that

lim
q→1

[〈φ f →1(x1)φ1→ f (x2)φ f →2(x3)φ2→ f (x4)〉]

= 3�
(

2
3

)
�

(
1
3

)2

(
4K (1/y2)

3y

r

L

)1/3

+ O((r/L)2/3). (D6)

APPENDIX E: HEIGHT FIELD REPRESENTATION
OF CRITICAL PERCOLATION

We review a continuum field-theoretic description of crit-
ical bond percolation in two dimensions which we then
use to determine the behavior of the LXE with periodic
boundary conditions. The derivation of this continuum field
theory has been extensively discussed (see, for example
Refs. [47,58,61]). Here, we will provide a heuristic derivation
that reproduces the known results which have been more
formally and carefully derived in the literature, namely, we
will argue that critical percolation on a cylinder with compact
direction (x) of width L and of length (τ ) T , is described by
the following action for a continuum field ϕ(x, τ ),

S[ϕ] = g

4π

∫
dx dτ (∇ϕ)2 + iδ [ϕ(0, T ) − ϕ(0, 0)], (E1)

which describes the Gaussian fluctuations of a height field ϕ.
Here the parameters are

g = 2
3 , δ = 1

3 . (E2)

Two-dimensional bond percolation, the boundaries (hulls)
of percolating regions may be thought of as enclosing regions
of constant “height.” To consistently define the height for
a given configuration of percolating bonds, we must orient
the hulls, so that the height jumps by a positive or negative
increment depending on the local orientation of the hull. Since
this assigned orientation is arbitrary, it is natural to choose
to sum over both orientations of each hull when recasting
percolation as the statistical mechanics of a fluctuating height
variable [48]. The weights for this height variable are chosen
as follows. An infinitesimal patch of an oriented hull receives
a weight exp[±iθ0 dθ/2π ] with the sign depending on the
assigned orientation, and we choose the constant θ0 = π/3
so that the weight for each closed, contractible hull after
summing over both orientations is 2 cos θ0 = 1 as is required
of critical percolation.

From this microscopic description, in which local weights
are assigned to a given height-field configuration to reproduce
the partition sum for bond percolation, it is natural to postulate
that the field theory for critical percolation is described by
the Gaussian fluctuations of a coarse-grained height field ϕ,
which is described by the action

S1[ϕ] = g

4π

∫
dx dτ (∇ϕ)2. (E3)

This description is incomplete. First, the central charge of this
free boson c = 1 does not match the known central charge
(c = 0) of critical percolation (the fact that percolation has
zero central charge follows trivially from the fact that the
partition function for percolation is Z = 1, independent of the
percolation probability). Second, on a compact manifold, it is
possible to have percolating hulls which wrap around noncon-
tractible cycles, and these will be weighted incorrectly. Ac-
cording to the previous microscopic description, each noncon-
tractible loop will have weight 2 after summing over both ori-
entations, since the total winding angle of such a loop is zero.

Both of these issues may be rectified by introducing back-
ground charges in the continuum field theory. Consider critical
percolation on a cylinder with compact direction of length
L and finite length T . On this manifold, we may add an
additional term to the action

S2[ϕ] = iδ [ϕ(0, T ) − ϕ(0, 0)]. (E4)

This term does not alter the weights of closed, contractible
percolating hulls. If there is a single oriented loop wrap-
ping around the cylinder, however, then the height difference
ϕ(0, T ) − ϕ(0, 0) = ±π , and so we take

δ = 1
3 , (E5)

so that the noncontractible loop appears with the correct
weight 2 cos πδ = 1 after summing over both orientations.

The constant g in Eq. (E3) may be fixed by requiring
that this insertion of a background charge shifts the central
charge to the correct value, c = 0, for percolation. Let Zδ be
the partition function for the height field in the presence of
the ±δ background charges, as described by Eq. (E4). We note
that on the cylinder [57]

Zδ

Z0
= 〈eiδ ϕ(0,T )e−iδ ϕ(0,0)〉0 (E6)

=
(

2π

L

)2�0
[

2 cosh

(
2πT

L

)
− 2

]−�0

. (E7)

Here, the expectation value 〈· · · 〉0 is taken with respect to Z0,
and �0/2 = δ2/4g is the scaling dimension of the operator eiδ .
When T � L this reduces to

Zδ

Z0
∼ e−2π�0T/L. (E8)

Because of this, the free energy of the system with background
charges ±δ, per unit length of the cylinder,

fδ ≡ −T −1 ln Zδ, (E9)

is given by

fδ = f0 + 1

L

π δ2

g
+ · · · , (E10)

where the ellipsis denotes corrections which vanish as T →
∞. For a conformal field theory with central charge c, the free
energy per unit length of the cylinder with compact direction
L is given by f (L) = f (∞) − (πc/6L) [62]. Since the central
charge of a compact boson is 1, the central charge of the new
theory in the presence of background charges is then

c = 1 − 6δ2

g
. (E11)
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As a result, we must choose g = 6δ2 = 2/3 for the theory to
have the desired central charge c = 0.

With these preliminary results in hand, we may now de-
termine the fraction of configurations in critical percolation
for which there are no noncontractible loops on the cylinder.
To forbid noncontractible loops entirely, we must insert a
background charge δ′ = 1/2 so that noncontractible loops

receive zero weight. Then, using Eq. (E6) it is easy to see that

Zδ′

Zδ

=
(

2π

L

)2�′[
2 cosh

(
2πT

L

)
− 2

]−�′

, (E12)

where �′ = [(δ′)2 − δ2]/2g = 5/48.

APPENDIX F: ADDITIONAL PLOTS

In this section, we present additional figures that demonstrate the behavior of LXE under different assumptions. Figure 14
illustrates the LXE behavior along a vertical cut of the phase diagram shown in Fig. 9(b). Figure 15 depicts the typical behavior
of LXE along a vertical axis of the phase diagram in Fig. 9(b) for initial states in the |GHZ±〉 configuration. Furthermore,
Fig. 16 represents the typical behavior of LXE along a vertical axis of the phase diagram in Fig. 12(b) for a longer-range
symmetric circuit.

FIG. 14. Vertical cuts on the phase diagram [Fig. 9(b)]. Left: phase transition between spin-glass and volume law phases (p = 0). The
phase transition is observed at q ≈ 0.64. Initial states are |GHZ±〉 after scrambling with Z2 symmetric unitaries for tscr = L. Right: phase
transition between paramagnet and volume law phases (p = 1). The phase transition is observed at q ≈ 0.75. Initial states are |GHZ±〉.

FIG. 15. Vertical cuts on the phase diagram [Fig. 9(b)]. Left: behavior of the cross-entropy at p = 0.5. Initial states are |GHZ±〉. Right:
phase transition between paramagnet and volume law phases (p = 0.6). The phase transition is observed at q ≈ 0.5. Initial states are |GHZ±〉.

FIG. 16. Cuts on the phase diagrams [Fig. 12(b)] at p = 0.2 (left) and p = 0.8 (right).
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