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We begin a systematic investigation of quench dynamics in higher-dimensional lattice systems considering
the case of noninteracting fermions with conserved particle number. We prepare the system in a translational-
invariant nonequilibrium initial state, the simplest example being a classical configuration with fermions at
fixed positions on the lattice, and let it evolve in time. We characterize the system’s dynamics by measuring
the entanglement between a finite connected region and its complement. We observe the transmutation of
entanglement entropy into thermodynamic entropy and investigate how this process depends on the shape and
orientation of the region with respect to the underlying lattice. Interestingly, we find that irregular regions display
a distinctive multislope entanglement growth, while the dependence on the orientation angle is generically
fairly weak. This is particularly true for regions with a large (discrete) rotational symmetry group. The main
tool of our analysis is the celebrated quasiparticle picture of Calabrese and Cardy, which we generalize to
describe the case at hand. Specifically, we show that for generic initial configurations (even when restricting
to classical ones) one has to allow for the production of multiplets involving n > 2 quasiparticles and carrying
nondiagonal correlations. We obtain quantitatively accurate predictions, tested against exact numerics, and
propose an efficient Monte Carlo based scheme to evaluate them for arbitrary connected regions of generic
higher-dimensional lattices.
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I. INTRODUCTION

Finding an efficient description of quantum matter out of
equilibrium is every bit as important and timely as it is dif-
ficult. Despite the first efforts to attack this problem dating
back to the work of John von Neumann in the late 1920s
[1], almost one century later we are still lacking general tools
to characterize quantum many-body dynamics in an effective
and systematic fashion.

Of course, the fact that this endeavor is difficult does not
mean that no progress has been achieved. In the 94 years
following von Neumann’s work, and especially during the
last two decades, a remarkable effort has been directed to this
problem and significant results have been obtained [2–13]. In
particular, the case of one-dimensional systems turned out to
be the one providing the most important advances. In this case
it is possible to use powerful mathematical structures such
as integrability [4–7,14–16], conformal invariance [12,17,18],
dual unitarity [19–21], and random circuit averaging [22–26]
to find analytical descriptions, while, at the same time, power-
ful numerical methods based on matrix product states [27–31]
are able to follow the evolution of generic many-body sys-
tems, at least for short times.

These remarkable tools allowed us to understand several
consequential concepts pertaining to the dynamics and even-
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tual relaxation of quantum matter out of equilibrium. One key
realization has been that the equilibration process in quantum
many-body systems works locally in space, i.e., local subsys-
tems are eventually described by time-independent statistical
ensembles even though the dynamics of the full system con-
serves probabilities [4]. Another breakthrough has been to
identify the quantum entanglement between a local subsystem
and the rest as the “universal observable” able to characterize
the full relaxation process in an elegant and basis-independent
manner [18,32–34]. In essence, one can describe relaxation as
the process of turning entanglement entropy into thermody-
namic entropy [34–36]. This process displays an astonishing
universality across a huge spectrum of different locally inter-
acting systems which has been explained as the result of a
duality between space and time [37] (see also Refs. [38,39]).

Having now sharpened our theoretical tools it is natural to
wonder whether we can move on from the one-dimensional
setting and start exploring higher-dimensional cases. In this
work we initiate this venture by studying the entanglement
dynamics in a (d > 1)-dimensional lattice system of noninter-
acting fermions with conserved particle number (tight-binding
model), which is driven out of equilibrium by means of a
global quantum quench protocol. The main tool of our analy-
sis is the quasiparticle picture of Ref. [17], which is based on
the assumption that, after the quench, quantum correlations
are transported throughout the system by pairs of correlated
quasiparticles created by the quench. Supplemented with a
few bits of microscopic data [40], this picture gives asymp-
totically exact predictions for the entanglement dynamics of
free [17,41,42] and interacting integrable [40,43,44] theories,
where quasiparticle excitations are infinitely stable. Our work
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parallels similar studies carried out in the context of contin-
uum quantum field theory [45–47]; see also Refs. [48–52] for
other field-theory studies of higher-dimensional quenches.

We show that, to describe the dynamics from translational-
invariant initial configurations where the unit cell contains
|ν| = ν1 . . . νd sites, the quasiparticle picture has to be gen-
eralized in the spirit of Refs. [53–55]. Namely, one has to
admit that, instead of pairs, the correlated quasiparticles form
an n-plet [53]. Moreover, one has to account for the fact that
the quasiparticles generically show complicated, off-diagonal
correlations that can be determined by computing the “particle
entanglement” [56] for a given bipartition of the multiplet
[54,55]. Proceeding in this way we obtain quantitatively ac-
curate predictions, which show how the entanglement entropy
of a region is transformed into thermodynamic entropy by the
time evolution. Then we discuss how this process depends on
shape and orientation of the region. We find that regions that
are more irregular, characterized by different length scales,
display a distinctive multislope entanglement growth. On the
other hand, we see that the dependence on the orientation
becomes increasingly weaker as we increase the discrete-
rotation symmetry group of the region. We test our predictions
against exact numerics, and propose an efficient Monte Carlo
based scheme to compute entanglement dynamics for arbi-
trary connected regions of generic d-dimensional lattices.

This paper is organized as follows. In Sec. II, we introduce
the precise setting considered in this work. In Sec. III we intro-
duce the quasiparticle description of entanglement growth and
test its predictions against exact numerics for various d = 1
and 2 states. In Sec. IV we use the quasiparticle description
to investigate the entanglement growth in d � 1 and, in par-
ticular, how the latter depends on shape and orientation of
the subsystem. Finally, in Sec. V we present our conclusions
and outlook. Additional technical details are included in the
Appendix.

II. SETUP

In this paper we study a global quantum quench protocol in
which a many-body quantum system is prepared in a nonequi-
librium initial state |�〉 and let to evolve according to its
own unitary dynamics. In this section we describe the specific
system and initial state considered and define the observable
of interest.

A. Hamiltonian

We consider a system of spinless fermions arranged, for
convenience, on a square lattice in d spatial dimensions and
linear size L. The dynamics are generated by the Hamiltonian

H = J
∑
〈n,m〉

(c†
ncm + H.c.), (1)

where J is the coupling strength, n ∈ aZd
L denotes a point on

the d-dimensional lattice with spacing a, 〈n, m〉 indicates that
the sum is restricted to nearest neighbors, and finally cn denote
canonical fermionic operators. In the following, the lattice
spacing a will be set to 1 unless explicitly stated.

The Hamiltonian (1) is invariant under one-site translations
and is diagonalized by Fourier transform

H =
∑

k

ε(k)c̃†
kc̃k, ε(k) = 2J

d∑
i=1

cos(ki ), (2)

where {c̃†
k, c̃k} are the Fourier-transformed fermions,

c̃k = 1

Ld/2

∑
n∈Zd

L

eik·ncn, (3)

k ∈ (2π/L)Zd
L is a quasimomentum in the d-dimensional

Brillouin zone, and ki denotes its ith component.

B. Initial state

We focus on initial states that are Gaussian, low-entangled,
invariant under ν-site translations, and with fixed particle
number. Namely, we consider states of the form

|ψν〉 =
⊗

j∈ZL/ν

|ψν, j〉, (4)

where |∗〉ψν, j is written in terms of fermionic operators
within the jth unit cell. In the following, L = (L, . . . , L)
and is a d-dimensional vector, and the operations among d-
dimensional vectors are always intended elementwise L/ν =
(L/ν1, . . . , L/νd ), and, for a given vector n ∈ Nd we set

Zn ≡ Zn1 × · · · × Znd . (5)

This paper will devote particular attention to the subset of
these initial states, denoted by |ψc

ν 〉, where the fermions are at
fixed initial positions, i.e., they can be thought of as classical
configurations. For these states we have∣∣ψc

ν, j

〉 = c†
a1+ν j . . . c†

aN +ν j |0〉, ai ∈ Zν. (6)

Two concrete examples of these states, one in d = 1 and
one in d = 2, are

|ψc
4〉 =

L/ν−1⊗
j=0

c†
4 jc

†
1+4 j |0〉 ≡ ⊗ L/4, (7)

|ψc
2,2〉 =

L/ν−1⊗
j=0

c†
(2,2)· jc

†
(1,1)+(2,2)· j |0〉 ≡ ⊗ L2/4, (8)

A diagrammatic representation of these classical configura-
tions is provided in Fig. 1.

C. Observable of interest

We characterize the evolution of the system by studying
the dynamics of quantum entanglement between a chosen
subsystem A and the rest of the system Ā. Since the state of
the entire system is pure, the entanglement is conveniently
measured by computing the entanglement entropy, i.e., the
von Neumann entropy of the reduced density matrix ρA for
the subsystem A [32]. Namely, we consider

SA(t ) ≡ S(ρA) = −tr(ρA ln ρA). (9)

In a free fermionic system evolving from a Gaussian state
all correlations are encoded in the fermionic two-point func-
tions. In particular, in our case the entanglement entropy is
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(a) (b)

FIG. 1. Examples of initial states defined by Eqs. (4) and (6).
On the accompanying diagrams, both the lattice spacing a, and an
arbitrary subsystem of dimension l , are indicated for later reference.
(a) The d = 1 state in Eq. (7); (b) the d = 2 state in Eq. (8).

expressed as [57]

S(ρ̂A) = −tr[CA ln CA] − tr[(1 − CA) ln(1 − CA)], (10)

where CA is the correlation matrix of the subsystem A. The
latter is obtained from the full correlation matrix

Cn,m = 〈ψ (t )|c†
ncm|ψ (t )〉 (11)

by eliminating rows and columns indexing particles in Ā. As
an example, in Appendix A we report the explicit form of Cn,m

for the states (6).
In a translational-invariant, noninteracting system evolving

from a Gaussian state the correlation matrix at time t can be
computed directly in the thermodynamic limit (Ā → ∞) with
an amount of resources scaling polynomially with the number
of sites of the subsystem A. Therefore, Eq. (10) provides
an efficient tool to characterize the entanglement dynamics.
However, it does not provide direct insight into the relax-
ation process. To achieve the latter, in the next subsection we
present a simple emergent description of the dynamics based
on the propagation of stable quasiparticles [17]. We will show
that, upon supplementing it with a small set of microscopic
data, this quasiparticle picture provides an exact asymptotic
description.

III. QUASIPARTICLE PICTURE

The quasiparticle picture is based on the observation that
noninteracting systems (but also interacting integrable ones
[58,59]) feature stable quasiparticle excitations: in our case
these are simply the momentum modes in Eq. (2). Following
Ref. [17] one can then imagine that at t = 0 the quench pro-
duces a finite density of quasiparticle excitations, which, upon
spreading through the system for t > 0, drive the relaxation
process and the growth of entanglement. To elevate this idea
to a quantitative description one needs to characterize the
motion of the quasiparticles and how they “carry” quantum
correlations through the system. This will be our task for the
rest of this section. The final result is reported in Eqs. (21)
and (23), while in Sec. III A we test it against exact numerical
results and verify that its asymptotic value coincides with the
thermodynamic entropy.

The motion of quasiparticles can be characterized straight-
forwardly. Since the system under examination is noninteract-
ing, over large scales quasiparticles move like free classical
particles and their trajectory is fully specified by their ve-

locities.1 In our case the latter can be directly obtained by
computing the group velocity of the momentum modes, i.e.,

v(k) = ∇ε(k) = −2J[sin(k1), sin(k2), . . . , sin(kd )]. (12)

Understanding how these modes contribute to the growth
of entanglement, however, is far less straightforward and
requires further physical insight.

The key assumption of the quasiparticle picture is that,
while moving, the modes generate entanglement in position
space but not in momentum space: that is, they merely prop-
agate correlations already present in the initial state [17].
Specifically, one assumes that the modes created at the same
position are correlated as specified by the initial state and,
while moving far apart, they spread this correlation through
the system. This means that the entanglement between two
regions can be obtained by finding all the multiplets of cor-
related modes shared between the two regions and summing
up their contributions to the entanglement. Therefore, to find a
quantitative prediction, one has to determine these quantities
[53].

The task is particularly simple when the correlated modes
come in pairs. Indeed, Ref. [40] showed that, in this case,
the relevant contribution can be inferred from the stationary
value of the entanglement entropy. Crucially, however, in our
higher-dimensional setting the initial states generically create
correlations among more than two modes. This can be seen
by expressing the states in terms of the fermionic operators in
momentum space,

|ψν〉 =
⊗

p∈ 2π
L ZL/ν

|ψ̃ν,p〉. (13)

For instance, considering the classical configurations (6) in
Appendix B we find

∣∣ψ̃c
ν,p

〉 = 1

|ν|N/2

N∏
p=1

⎛
⎜⎝ ∑

k∈ 2π
ν
Zν

e−iapkc̃†
p+k

⎞
⎟⎠|0〉, (14)

where |ν| = ν1 . . . νd denotes the volume of the unit cell. As
one can infer from this equation, these states generate corre-
lations among |ν| modes. Requiring |ν| to be equal to 2 for
d � 2 forces all νi but one to be equal to one. Namely, one is
reduced to consider a state that is effectively one dimensional.
The same conclusion holds for all the states (4). Indeed, as
shown in Appendix C, they can all be expressed as in (13)
where |ψ̃ν,p〉 are written in terms of the fermionic operators
with quasimomenta p + k and k ∈ (2π/ν)Zν.

Since, for these larger unit cells, one can no longer infer
the entropy contributions from the stationary state as per
Ref. [40], we instead follow Ref. [54] (see also [55]) and
reconstruct the evolution of the initial correlations using a
semiclassical approach. This produces a closed-form expres-
sion for the entanglement entropy valid at large scales and

1In the case of interacting integrable models the quasiparticles
undergo nontrivial scattering. Their scattering, however, is always
elastic and its sole effect is to renormalize the quasiparticle velocities
[40].
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FIG. 2. Propagation of semiclassical cell modes for d = 1 and
ν = 4.

gives a natural way to compute the entanglement contribu-
tions.

We begin by subdividing the system in hypercubic cells of
linear size �, which is much larger than the lattice spacing
(one for us) but much smaller than the linear size of A, i.e.,

a 
 � 
 |A|1/d . (15)

For convenience we take the hypercubic cells to be composed
by an integer number of unit cells, i.e., �/ν ∈ Nd . We then
perform a partial Fourier transform to define the modes of the
cell

ĉx,k = 1

�d/2

∑
n∈Zd

�

eik·nc�x+n, k ∈ 2π

�
Zd

�. (16)

Intuitively, the idea is to define modes that are localized
in both real and momentum space so that they can have well-
defined trajectories: see the schematic representation in Fig. 2.
Writing the initial state in terms of the modes (16) we have

|ψν〉 =
⊗

x∈ZL/�

⊗
p∈ 2π

�
Z�/ν

|ψ̂ν,(x,p)〉, (17)

where |ψ̂ν,(x,p)〉 coincides with |ψ̃ν,p〉 in Eq. (13) if one
replaces c̃p+k with ĉx,p+k. For instance, for the classical con-
figuration states (6) we have

|ψ̂ν,(x,p)〉 = 1

|ν|N/2

N∏
p=1

⎛
⎜⎝ ∑

k∈ 2π
ν
Zν

e−iapkĉ†
x,p+k

⎞
⎟⎠|0〉. (18)

Assuming that the cell modes move classically in the limit
(15), the reduced density matrix of the subsystem A can be
computed by tracing out all the modes that are not in A at time
t , namely,

ρA(t ) �
⊗

x∈ZL/�

⊗
p∈ 2π

�
Z�/ν

ρA(p, x, t ), (19)

where we introduced

ρA(p, x, t ) = trDA(p,x,t )|ψ̂ν,(x+p)〉〈ψ̂ν,(x+p)|,

DA(p, x, t ) =
{

(x, p + k), k ∈ 2π

ν
Zν : x + v(p + k)t /∈ A

}
.

(20)

In words, Eq. (19) evaluates the reduced density matrix by
tracing over the fermionic modes ( j, p) that are out of the
subsystem A. Plugging the expression (19) into the definition

(9) we have

SA(t ) �
∫
Rd

dx
∫ 2π

ν

0

dp
2π

S(ρA(p, x, t )). (21)

Equation (21) represents the desired quasiparticle expression
for the entanglement entropy at time t .

As we can see from Eq. (20), the contribution of the cor-
related multiplet represented by the momentum p ∈ [0, 2π/ν]
is found by computing the entanglement between the modes
in A and those out of it in the state |ψ̂ν,(x,p)〉. This quantity is a
measure of entanglement between modes, or particles, rather
than between regions of space and is referred to as particle
entanglement [56]. In fact, since the state |ψ̂ν,(x,p)〉 is Gaus-
sian, the entanglement can be computed using the fermionic
correlation matrix as described in Sec. II C. In particular, we
define the |ν| × |ν| correlation matrix Ĉ(p, x) with matrix
elements given by

[Ĉ(p, x)]k,k′ = 〈ψ̂ν,(x,p)|ĉ†
(x,p+k)ĉ(x,p+k′ )|ψ̂ν,(x,p)〉, (22)

where k, k′ ∈ (2π/ν)Zν. We then define the submatrix
ĈA(p, x, t ) corresponding to the modes that are in A at
time t by eliminating rows and columns corresponding to
modes outside of A at time t , i.e., [Ĉ(p, x)]k,k′ such that
(x, p + k), (x, p + k′) ∈ DA(p, x, t ). In terms of this subma-
trix we can finally write

S(ρA(p, x, t )) = −tr[ĈA(p, x, t ) log ĈA(p, x, t )]

− tr{(1 − ĈA(p, x, t )) log [1 − ĈA(p, x, t )]}.
(23)

It is worth emphasizing that, since the dynamics of modes
depends only on the unit-cell size ν, the exact structure of the
initial state enters the entropy dynamics only through these
entropy contributions.

The integral in Eq. (21) is conveniently evaluated by trac-
ing the motion of quasiparticles. Namely, for fixed (p, t ),
one can trace the backward light cone of each mode p + k
being inside the subsystem at time t as a displacement of
the subsystem by −vp+kt . The overlapping regions of these
light cones indicate the origin of multiplets that have multiple
modes inside the subsystem at time t , i.e., those corresponding
to (x, p + k) /∈ DA(p, x, t ) (see Fig. 4 for explicit examples).
Proceeding in this way we can single out all possible splittings
of correlated cell modes contributing to the entanglement (we
call them cell-mode bipartitions) and the spatial regions where
they are produced. The entanglement contribution of each
splitting is then evaluated via Eq. (23). In summary, we can
rewrite Eq. (21) as follows:

SA(t ) =
∫ 2π

ν

0

dp
2π

∑
a∈B

sa(p)Aa(A, p, t ), (24)

where B is the set of all cell-mode bipartitions, sa(p) is
the entanglement contribution of the bipartition a ∈ B, and
Aa(A, p, t ) � 0 is the area of the spatial region producing
multiplets contributing to the bipartition a ∈ B at time t and
for momentum p. If a specific bipartition a ∈ B does not
appear for a given choice of (p, t ) we have Aa(A, p, t ) = 0.

To gain a clearer understanding of how Eq. (24) is put into
practice, we refer the reader to Sec. IV A, which considers the

224310-4



QUENCH DYNAMICS IN LATTICES ABOVE ONE … PHYSICAL REVIEW B 109, 224310 (2024)

FIG. 3. Plots of the entropy over linear dimension SA(t )/|A| against rescaled time for (a) d = 1 states with ν = 4, and (b) d = 2 states
with νx = νy = 4 and a square subsystem. The states that are displayed reflect the number of “independent” states that do not map onto one
other by single-site shifts of the unit cell, i.e., the number of states with unique entropy dynamics for a hypercubic subsystem. To compute
the integral we employ an inverse FFT with (a) 10 000 subdivisions, and (b) 250 × 250 subdivisions. For each state, the quasiparticle solution
(QP) is plotted against the finite-size numeric solution with two different values of linear subsystem length |A| = l in order to illustrate the
rate of convergence. The dashed lines indicate the saturation values obtained from the stationary state solutions. The inset of (b) focuses on the
initial regime, comparing each quasiparticle solution against a straight dashed line tangent to the solution at t = 0.

simplest irreducible form of these areas in d = 2 arising from
a hypercubic lattice and subsystem and the choice νx, νy =
2. In this section, helpful illustrations are given for the areas
Aa(A, p, t ) in both this and the analogous d = 1 case, as well
as the explicit solution to one of these areas; the complete set
of solutions is deferred to Appendix E.

For simple shapes, the areas Aa(A, p, t ) of the various
regions can be determined analytically as a function of (p, t ).
Computing the corresponding entanglement contributions and
integrating Eq. (24) numerically over p one can determine
the time evolution of SA(t ): Section IV A gives a practical
example. Instead, for more general regions we evaluate both
the areas Aa(A, p, t ) and the integral over p by means of a
convenient Monte Carlo scheme that we detail in Appendix D.

A. Test of the quasiparticle formula

The quasiparticle formulas (21) and (23) may be tested
against exact numerical results for finite subsystems A,
whereby the real-space correlation matrix of the subsystem
is obtained in the thermodynamic limit and used in Eq. (10);
a representative example of the comparison is provided in
Fig. 3. As shown in the figure, the finite-size numerics ap-
proach the quasiparticle prediction in the scaling limit

t, |A| → ∞, t/|A| = fixed. (25)

This is in agreement with the expectation that the quasiparticle
description becomes asymptotically exact in this limit.

Another important test of the quasiparticle solution con-
cerns the long-time behavior. Indeed, the entanglement
entropy is known to approach thermodynamic entropy as time
increases [34–36]. This means that the infinite-time value of
Eqs. (21) and (23) should coincide with the thermodynamic
entropy of the stationary state reached by the subsystem A. In

our case the latter is given by

Sth

|A| � −
∫

dp
2π

{n(p) log n(p) + [1 − n(p)] log[1 − n(p)]},

(26)

where the integral is over the full Brillouin zone and n(p) is
the occupation number of the conserved momentum mode p,
i.e.,

n(p) = 〈ψ |c̃†
pc̃p|ψ〉. (27)

Equation (26) is recovered by Eqs. (21) and (23) by noting
that for t = ∞ the only cell-mode bipartitions contributing
are those where a single mode of the multiplet is in the system
and all the others are outside. This is because, as the modes
have different velocities, those starting at the same position
are infinitely far from each other at t = ∞ and only one of
them can be in A. In this limit the matrix ĈA(p, x, t ) becomes
1 × 1 and coincides with the occupation number of the only
mode in the system. Namely,

ĈA(p, x, t ) =
∑

k∈ 2π
ν
Zν

χA[x + v(p + k)t]n(p + k), (28)

where χA(x) is the characteristic function of A, i.e.,
χA(x ∈ A) = 1 and χA(x /∈ A) = 0. Plugging back into (21)
and (23) we then have

SA(∞)

|A| �−
∑

k∈ 2π
ν
Zν

∫ 2π
ν

0

dp
2π

{n(p + k) log n(p + k)

+ [1 − n(p + k)] log[1 − n(p + k)]}

=−
∫

dp
2π

{n(p) log n(p) + [1− n(p)] log[1− n(p)]},

(29)
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where in the second step we combined the |ν| integrals over
reduced Brillouin zones into a single integral over the whole
zone.

IV. RESULTS

In this section we present the predictions for the growth
of the entanglement entropy between a region A and the rest
of the system after a quench from simple translation-invariant
states in d = 1 and 2. First we consider the case of A being a
simple hypercubical region aligned with the lattice axes. Then,
we investigate the effect of rotations with respect to the lattice.
Finally, we study the entanglement growth for more general,
irregular-shaped regions.

A. d = 1 and 2 square subsystems

We begin our discussion considering the case of A being
either a connected segment in d = 1 or a rectangular region
aligned with the lattice (with edges in the x and y directions)
in d = 2. To fix the ideas we consider cases producing four
correlated modes:

(i) d = 1 and ν = 4,
(ii) d = 2 and νx = νy = 2,
and look at the following classical configurations:

(30)

Note that the last two states of each row can be written with
a smaller unit cell, ν = 2 and (νx, νy) = (2, 1), respectively.
This means that their entanglement dynamics can also be
described by pairs of quasiparticles, which is not the case for
the other four.

In all these cases, the entanglement entropy can be effi-
ciently computed by tracing the motion of the quasiparticles
as described in Sec. III [cf. Eq. (24)]. An explicit example
of this is shown in Fig. 4. In particular, for all the states
(30), the relevant cell bipartitions produce three distinct entan-
glement contributions, {sa(p)}a=1,2,3. This effectively means
that we have to specify only three areas {Aa(A, p, t )}a=1,2,3:
see Figs. 4(a) and 4(b) for illustrations of the three areas in
d = 1 and 2, respectively, where in the latter we consider
the more general case of lx = ly to anticipate the section that
follows. An example of the explicit form for one of these
areas, A2(A, p, t ) from Fig. 4(b), is given by

A2(A, p, t ) = 2(lx − X )Y H[min(τx, τy) − t]

+ 2(lx − X )lyH (t − τy)H (τx − t ), (31)

where

τi ≡ li/4 sin(ki ), X,Y ≡ 4 sin(ki )t for i = x, y.

The explicit form for all areas Aa(A, p, t ) is reported in Ap-
pendix E, while the entanglement contributions are reported
in Tables I and II. The resulting quasiparticle predictions are
compared to the exact numerical solutions in Fig. 3. The left
and right panels correspond, respectively, to d = 1 and 2.

Apart from the agreement between quasiparticle solution
and exact numerics for increasing system sizes, which we
have already stressed in Sec. III A, these figures show two

(a)

(b)

FIG. 4. Diagram of the quasiparticle dynamics for (a) a d = 1
state with ν = 4, and (b) a d = 2 state with νx = νy = 2 and rect-
angular subsystem, where lx > ly. The red dashed line marks the
boundary of the subsystem and the three areas {A j (A, p, t )} j=1,2,3

are depicted for (a) 0 < p < π/4 and l/2[sin(p) + cos(p)] < t <

l/4 sin(p), and (b) px = py and t < lx/4 sin(px ). These areas are ob-
tained by tracing the motion of quasiparticles as outlined in Sec. III,
and their explicit solutions are given in Appendix E.

significant features. First, we see that the d = 2 case is clearly
distinguished by the occurrence of a nonlinear initial regime
(see the inset of Fig. 3). Indeed, using the explicit form of
Aa(A, p, t ) we see that Eq. (24) contains a quadratic term in
time proportional to (2s1 − s2 − s3). From the entropy con-
tributions presented in Table II, we see that the magnitude

of this term is largest for , while it is zero for .

This is consistent with the fact that the latter is effectively a
one-dimensional setting.

Another key takeaway from Fig. 3 is the difference be-
tween the entropy plots of states with equal occupation
numbers (27) [the last two states in both lines of Eq. (30)
have n(p) = 1

2 ]. Examples include the slower initial growth of

versus in Fig. 3(a), and of versus

in Fig. 3(b), which share the same saturation value. One can

TABLE I. The entropy contributions {s j (p)} j=1,2,3, defined
by Eq. (24) and Fig. 4(a), for the three independent ν =
4 states of Eq. (30). The explicit value of ∗ is 4 ln 2 −
(2 + √

2)/2 ln[(2 + √
2)/4] − (2 − √

2)/2 ln[(2 − √
2)/4].

s1 2 ln 2 − 3 ln 3/4 ln 2 ln 2
s2 ln 2 ∗ 2 ln 2
s3 ln 2 2 ln 2 2 ln 2
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TABLE II. The entropy contributions {s j (p)} j=1,2,3, defined by
Eq. (24) and Fig. 4(b), for the three independent ν = 4 states of
Eq. (30).

s1 2 ln 2 − 3 ln 3/4 ln 2 ln 2
s2 ln 2 0 2 ln 2
s3 ln 2 2 ln 2 2 ln 2

offer a heuristic explanation of this slower growth: states of
equal charge density but less uniform site occupation impose
more constraints on the initial site hoppings; the plots indi-
cate that these constraints last until correlated quasiparticles
first span the full width of the subsystem. Importantly, since
occupation numbers fully specify the expectation value of all
conserved charges, our result shows that the expectation val-
ues of all conserved charges are not enough to determine the
full-time entanglement dynamics even in the scaling regime
(25).

A stark feature of Tables I and II is that the classical
configurations (30) turn out to give momentum-independent
entanglement contributions. To make sure that this property
does not introduce any qualitative difference in the entangle-
ment dynamics we also consider more general, nonclassical
states described by Eq. (4), where |ψν, j〉 is now a super-
position of states in the |ν|-site unit cell that satisfies the
Gaussianity condition given by Eq. (F11). The entanglement
contributions for these superposition states are reported in Ap-
pendix F while Fig. 5 reports some representative examples.
Although in this case the entanglement contributions become
momentum dependent (cf. Appendix F), we see that the plots
are qualitatively similar to those in Fig. 3 and the agreement
with the exact numerical solution is still excellent for large
enough subsystems.

FIG. 6. Plot of the entropy over linear dimension SA(t )/|A|
against rescaled time for the superposition initial state (|• ◦ // • ◦〉 +
α|• ◦ // ◦ •〉)⊗L2/4 with α = 10

7 and a rectangle-shaped subsystem
with sides

√
r and 1√

r , for r = 1, 5 as angle of rotation θ is varied.
The dashed line shows the saturation value SA(∞) = 0.636 32 for
α = 10

7 .

B. Rotations with respect to the lattice

Let us now consider the dependence of the entanglement
growth on the orientation of A with respect to the underlying
lattice. We begin considering the simple case of a rectangular
region in d = 2 that is rotated by an angle θ with respect to
the lattice.

In this case the explicit calculation of the areas in Eq. (24)
becomes quite tedious and the quasiparticle prediction is more
conveniently obtained integrating Eq. (21) via the Monte
Carlo scheme discussed in Appendix D, which agrees with the
explicit approach. The results for a representative initial state
are reported in Fig. 6. From Fig. 6(a) we see that when the
aspect ratio of the rectangle r � 1 the entanglement dynamics
depends quite markedly on the orientation of the region, with
the rectangle aligned with the lattice showing a slower relax-
ation. Interestingly, however, we see that the dependence on

FIG. 5. Plots of the entropy over linear dimension SA(t )/|A| against rescaled time for (a) d = 1 superposition initial states with ν = 4 such
as |ϕ4〉 ∝ (|• • ◦◦〉 + α|• ◦ •◦〉)⊗L/4, and (b) the d = 2 superposition state with νx = νy = 2 such as |ϕ2,2〉 ∝ (|• ◦ // • ◦〉 + α|• ◦ // ◦ •〉)⊗L2/4

and a square subsystem. In (a), the integral is computed with inverse FFT with 10 000 subdivisions. In (b), exact diagonalization method for
Lx, Ly = 80 and lx, ly = 10, 20 was used. For each α, the quasiparticle solution (QP) is plotted against the numeric solution to show the
convergence rate. The QP solution was obtained by integrating the quasiparticle expression for the entanglement entropy at each time step.
The dashed lines indicate the saturation values for each state. The saturation value is identical for α and 1

α
in both the d = 1 and 2 cases.
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FIG. 7. Entropy density SA(t ) against rescaled time for the superposition initial states (|• ◦ // • ◦〉 + α|• ◦ // ◦ •〉)⊗L2/4 with α = 0.5 and
different subsystems, as angle of rotation θ is varied. For each subsystem considered here, the shape of the region is demonstrated in the inset:
(a) isosceles triangle; (b) equilateral triangle; (c) regular pentagon. The dashed line shows the saturation value given by the stationary state
solution SA(∞) = 0.652 301 for α = 0.5.

rotation angle decreases smoothly with the aspect ratio r such
that whenever the edges lx and ly coincide the dependence on
the rotation angle almost disappears.

To exclude that this is not an artifact of the Monte Carlo
integration routine we reproduced the result for the rotated
square region using the quasiparticle tracing integration of
Eq. (24) finding exact agreement. In this case the relevant ar-
eas depend on the rotation angle (see Fig. 10) and their explicit
expression is reported in Appendix E while the entanglement
contribution associated with each area is reported in Tables I
and II of the previous section.

The behavior in Fig. 6 can be expected as the square
is “more rotationally symmetric” than the rectangle. More
precisely, it is left invariant by greater number of discrete
rotations: its cyclic group is of order 4 rather than 2. To
highlight how the order of the cyclic group of A affects the
orientation dependence, in Fig. 7 we consider polygons with
cyclic group of order q = 1, 3, 5. We see that, as expected,
the dependence on θ decreases with q. A surprising aspect,
however, is how quickly it does so: the θ dependence is
already negligible for q = 3.

FIG. 8. Plot of the entropy density SA(t ) against rescaled time
4t/|A| for the initial state |• ◦ // ◦ •〉 and a star-shaped subsystem,
as angle of rotation θ is varied.

C. General shapes

Finally, we use our quasiparticle approach to investigate
the the entanglement growth of irregular, connected, regions
characterized by different cross sections. Interestingly, we
observe that such regions display an entanglement dynamics
that is qualitatively different from that of regular ones.

For instance, in Fig. 8 we show the entanglement dynamics
of a region in the shape of five-point star (see inset panel
of Fig. 8 for an illustration) for different orientation angles
θ with respect to the underlying lattice. We see that, as ex-
pected, there is essentially no dependence on θ , however, the
entanglement evolution reported in the figure is quite peculiar:
rather than the usual linear increase followed by saturation the
entanglement shows a complicated multislope curve.

This is due to the fact that each cross section of the
figure corresponds to a nonanalyticity of the quasiparticle
prediction in time.2 These special moments correspond to the
points in time where the backward light cones associated to
the fastest quasiparticles separate through a cross section, in
other words, when a sudden gap appears between the light
cones. For instance, for a rectangular region and the states in
the second line of Eq. (30), the quasiparticle solution obtained
integrating Eq. (24) with the Aa(A, p, t ) in Appendix E reads
as

SA(t )

lxly
= 4 f (ζ

√
r) f (ζ/

√
r)s1 + f (ζ

√
r)[1 − 2 f (ζ/

√
r)]s2

+ [1 − 2 f (ζ
√

r)] f (ζ/
√

r)s3, (32)

where we introduced ζ = 2vmaxt/
√

lxly, r = lx/ly, and

f (z) =
{

1
π

z, z � 1
1
2 − 1

π
arcsin

(
1
z

) + 1
π

(z − √
z2 − 1), z > 1.

(33)

2We remark that the presence of points of nonanalyticity in the
quasiparticle prediction is not in contradiction with the fact that, for
any finite subsystem, the entanglement dynamics is smooth. Indeed,
the quasiparticle prediction describes the asymptotic limit (25).
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This function has a nonanalytic point (corresponding to a
discontinuous second derivative) for z = 1: this means that
(32) has nonanalyticities at ζ = √

r and 1/
√

r. An instance
in which these two points are visible is the mid-blue solid
curve of Fig. 6. More irregular regions have many of such
nonanalytic points and originate peculiar-looking curves like
the one in Fig. 8.

V. CONCLUSIONS

In this paper, we studied the spreading of entanglement
in a free fermionic system defined on a lattice of dimension
d � 1 by generalizing the quasiparticle picture of Calabrese
and Cardy [17]. In particular, we showed that if the initial state
has a fixed number of particles, and is invariant under no less
than ν j discrete lattice shifts in the direction j = 1, . . . , d , the
quench produces a multiplet of ν1 . . . νd correlated quasipar-
ticles. This means that only settings that are effectively one
dimensional can produce pairs: in all nondegenerate cases one
has to consider larger multiplets.

Characterizing the spreading of entanglement by generic
multiplets of quasiparticles, we derived a general integral
formula, Eq. (21), for the evolution of the entanglement en-
tropy. Then, we studied its explicit predictions for d = 1, 2
in the case of a square lattice. In particular, we introduced an
efficient Monte Carlo scheme for d � 1 to study the entangle-
ment of arbitrary connected regions in d = 2.

First, we showed that exact diagonalization results recover
the generalized quasiparticle description in the limit of large
subsystems and times, i.e., when the quasiparticle picture is
expected to apply. Then, we studied how the entanglement
dynamics depends on shape and orientation of the subsys-
tem with respect to the underlying lattice. We observed that,
for subsystems with cyclic symmetry group of order larger
than three, the dependence on the orientation is negligible.
Moreover, we showed that irregular regions show a multislope
entanglement growth. Interestingly, our results also provided
simple examples showing that specifying the expectation val-
ues of all conserved charges is not enough to fully determine
the entanglement dynamics, even at leading order. Namely,
we found examples of two different initial states with the
same expectation values for all local conserved charges that
generate different entanglement dynamics.

Our general quasiparticle formulation and its Monte Carlo
implementation provide a flexible and versatile method to
study entanglement dynamics in noninteracting systems.

The approach can directly be applied in charge-conserving
fermionic systems with arbitrary dispersion relation, in-
cluding the case of anisotropic couplings, to study the
entanglement of arbitrary regions in hypercubic lattices of
generic dimensions d > 1. However, it can also be directly
generalized to study systems without charge conservation,
e.g., BCS-like ones, and to systems on arbitrary (regular)
lattices. In all these cases, whenever the initial state is not
one-site shift invariant, the entanglement will generically be
transported by n-plets of correlated quasiparticles quasiparti-
cles with n > 2.

A more immediate future direction for our work, how-
ever, is for us to use our generalized quasiparticle description
to study the restoration of a discrete symmetry broken by
the initial state and the possible occurrence of the quantum
Mpemba effect [60,61]. This can be efficiently done by us-
ing the recently introduced entanglement asymmetry [60,62],
which can be treated using the quasiparticle picture.

Note added. Recently, we became aware of a related work
[63]. The latter also studies entanglement dynamics in higher-
dimensional free fermionic systems (d = 2) but focuses on
special regions that can be treated by the technique of dimen-
sional reduction [64] (see also Refs. [65,66]).
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APPENDIX A: NUMERICAL SOLUTION

The standard approach to obtain the von Neumann en-
tropy of the subsystem is to replace the correlation matrix
of Eq. (10) with the position space correlation matrix CA of
the subsystem. We take the thermodynamic limit to provide
the most accurate comparison with our quasiparticle solution.
This also allows us to solve the elements of the full system
correlation matrix in integral form so that we may construct
CA directly without being limited by system size. First finding
the initial correlations in Fourier space

〈ψν|c†
pcp′ |ψν〉 = 1

|L|
L∑

n,m=1

〈ψ |c†
ncm|ψ〉e−i(n·p−m·p′ ) = 1

|L|
L∑

n,m=1

⎡
⎣ N∑

p=1

L/ν∑
j=1

δn,mδn,ν j−ap

⎤
⎦e−i(n·p−m·p′ )

= 1

|ν|

⎡
⎣ 1

|L/ν|
N∑

p=1

L/ν∑
j=1

ei(p′−p)·(ν j−ap)

⎤
⎦ = 1

|ν|
N∑

p=1

ei(p−p′ )·ap
∑

k∈ 2π
ν
Zν

δp,p′+k. (A1)

224310-9



GIBBINS, JAFARIZADEH, GAMMON-SMITH, AND BERTINI PHYSICAL REVIEW B 109, 224310 (2024)

This gives the time-dependent correlations

〈ψν|c†
n(t )cm(t )|ψν〉 = 1

|L|
∑

p,p′∈ 2π
L ZL/ν

ei(n·p−m·p′ )ei(ε(p′ )−ε(p))t 〈ψν|c†
pcp′ |ψν〉

= 1

|νL|
N∑

p=1

∑
p,p′∈ 2π

L ZL/ν

ei(n·p−m·p′ )ei(ε(p′ )−ε(p))t

⎡
⎢⎣ N∑

p=1

ei(p−p′ )·ap
∑

k∈ 2π
ν
Zν

δp,p′+k

⎤
⎥⎦

= 1

|νL|
N∑

p=1

∑
p∈ 2π

L ZL/ν

∑
k∈ 2π

ν
Zν

eip·(n−m)eik·(m+ap)eit[ε(p−k)−ε(p)]. (A2)

In the thermodynamic limit L → ∞ this becomes

lim
L→∞

〈ψν|c†
n(t )cm(t )|ψν〉 = 1

|ν|
N∑

p=1

∫ 2π

0

dp
2π

∑
k∈ 2π

ν
Zν

eip·(n−m)eik·(m+ap)eit[ε(p−k)−ε(p)]. (A3)

APPENDIX B: FOURIER TRANSFORM OF CLASSICAL
CONFIGURATIONS

The initial state defined by Eq. (6) may be written as

|ψ̃ν〉 =
N∏

p=1

b†
ν,p|0〉; b†

ν,p =
L/ν∏
j=1

c†
ν j−ap

. (B1)

The Fourier transform is defined for a square lattice of spa-
tial dimension D and length Ld along each spatial dimension.
Provided each Ld/νd is an integer, the Fourier transform of
c†
ν· j−ap

may be written as

c†
ν j−ap

= 1

|ν|1/2

∑
p∈ 2π

L ZL/ν

∑
k∈ 2π

ν
Zν

ei(p+k)·(ν j−ap)c̃†
p+k

=
∑

p∈ 2π
L ZL/ν

eip·(ν j−ap)

(
1

|ν|1/2

∑
k∈ 2π

ν
Zν

e−ik·ap c̃†
p+k

)

=
∑

p∈ 2π
L ZL/ν

eip·(ν j−ap)B†
ν,p. (B2)

Applying Eq. (B2) to the operator b†
ν,p of Eq. (B1) gives

the Fourier transform of this operator as

b†
ν,p =

L/ν∏
j=1

( ∑
p∈ 2π

L ZL/ν

eip·(ν j−ap)B†
ν,p

)

=
∏

d

[∑
{σ}

sgn(σ)

( Ld /νd∏
n=1

eipσn (νd n−ap)

)](∏
p

B†
ν,p

)

=
(∏

d

[
det(eipα (νd β−ap) )

]
α,β∈ZLd /νd

)(∏
p

B†
ν,p

)
,

(B3)

where (B†
ν,p)2 = 0 is used to write as a sum over all possible

permutations of n. Using that eipα (νd β−ap) is a Van der Monde

matrix, we can then write its determinant as [67]

det(eipα (νd β−ap) ) =
∏

0�α<β�Ld /νd

e−iap (eiνd α − eiνd β ). (B4)

Since this difference of elements is nonzero for all α = β,
we see that the determinant of this matrix is also nonzero. The
normalization of B†

ν,p then implies that this determinant must
be equal to one. We therefore have

b†
ν,p =

∏
p∈ 2πν

L ZL/ν

B†
ν,p = 1

|ν|1/2

∏
p∈ 2π

L ZL/ν

∑
k∈ 2π

ν
Zν

e−ik·ap c̃†
p+k.

(B5)

Applying this result to the initial state of Eq. (B1) leads to the
Fourier transform of this state given by Eq. (14):

|ψ̃ν〉 =
∏

p∈ 2π
L ZL/ν

(
1

|ν|1/2

N∏
p=1

∑
k∈ 2π

ν
Zν

e−ik·ap c̃†
p+k

)

=
⊗

p∈ 2π
L ZL/ν

|ψ̃ν,p〉.

APPENDIX C: FOURIER TRANSFORM OF GENERAL
INITIAL STATES

Given that the initial state (4) is Gaussian, its density matrix
has the exponential form

ρ̂ =
ν∏

j=1

ν∑
n,m=1

exp[c†
ν j+nAn,mcν j+m]

= exp

[ L/ν∑
j=1

ν∑
n,m=1

c†
ν j+nAn,mcν j+m

]
. (C1)
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The Fourier transform of these operators gives

= exp

[ ∑
p∈ 2π

L ZL/ν

∑
k,k′∈ 2π

ν
Zν

c̃†
p+kÃ(p)

k,k′ c̃p+k′

]

=
∏

p∈ 2π
L ZL/ν

∑
k,k′∈ 2π

ν
Zν

exp
[
c̃†

p+kÃ(p)
k,k′ c̃p+k′

]
(C2)

such that the density matrix takes the form

ρ̂ = |ψν〉〈ψν| =
⊗

p∈ 2π
L ZL/ν

|ψ̃ν,p〉〈ψ̃ν,p|,

where |ψ̃ν,p〉 is a Gaussian state with generalized p depen-
dence conferred by the matrix Ã(p). This gives the Fourier
transform of the initial state given by Eq. (4).

APPENDIX D: MONTE CARLO SCHEME

Here we outline the Monte Carlo scheme to solve Eq. (21).
The quasiparticle solution to the entanglement dynamics can
be written as the integral

SA(t/L)

|A| → 1

|A|
∫
Rd

dx
∫ 2π

ν

0

dp
2π

S(ρA(p, x, t/L)), (D1)

in the limit t, |A| → ∞ with t/|A| = fixed, L is a linear
dimension, and where the integral is over the particle entan-
glement of all multiplets at a given time t . We can numerically
evaluate this integral using a Monte Carlo scheme that mimics
the classical dynamics of the modes in the multiplets and
sums the corresponding entanglement contributions. Note that
sampling over all position space would not be efficient as
most points would not contribute to the entanglement, so
instead we can sample all points inside the subsystem at
time t and evolve these points backward to effectively sam-
ple within a region that may contribute to the entanglement,
so long as we correctly account for any possible double
counting.

The Monte Carlo integration proceeds as follows:
(1) Generate a random position x̃, sampled from a uniform

distribution over the region A. For an irregular region A,
this can most easily be done by uniformly sampling from a
rectangular region that bounds A and only accepts the sam-
ple if the point is in A. If the sample is not in A, then we
continue sampling until we get one that is. This will corre-
spond to the position of a selected mode in the multiplet at
time t .

(2) Generate a random momentum p ∈ [0, 2π/ν], and ran-
domly chose one of the ν modes in the multiplet, labeled
by n. For example, in d = 2, we select the mode labeled by
nx ∈ {0, . . . , νx − 1} and ny = {0, . . . , νy − 1}.

(3) Evolve the mode back to time t = 0. That is, find x =
x̃ + 2J sin(p + n

ν
2π )t .

(4) We now have an initial x and p. We then evolve all
of the modes in the multiplet forward in time to find their
position at time t . For the mode labeled by ni, that is xi(t ) =
x − 2J sin(p + ni

ν
2π )t .

(5) Given the positions of all the modes at time t , we then
note which are inside the region A and compute the corre-
sponding particle entanglement contribution. This generally

(a)

(b)

FIG. 9. Diagram of the quasiparticle dynamics for (a) a ν = 4
initial state, and (b) νx = νy = 2 initial state and rectangular sub-
system with lx > ly. The red dashed line marks the boundary of
the subsystem and the three areas {A j (A, p, t )} j=1,2,3 are depicted
for (a) 0 < p < π/4 and l/2[sin(p) + cos(p)] < t < l/4 sin(p), and
(b) px = py and t < lx/4 sin(px ). These areas are obtained by tracing
the motion of quasiparticles as outlined in Sec. III, and their explicit
solutions are given in Appendix E.

depends on which particles are in the region, as well as on
p. Finally, we divide this entanglement contribution by the
number of modes that are in the region A, and then add this to
the sum. Dividing by the number of modes inside A corrects
for the overcounting of different x̃ and n that correspond to
the same multiplet.

In the end, we are left with a sum over all particle en-
tanglement contributions, which we divide by the number of
samples taken to get the approximation of the integral (D1).
Note that, by also computing the average of the squares of the
particle entanglement contributions, we can also keep track of
the variance σ 2 of the Monte Carlo sampling, and so estimate
the standard error of the mean σ/

√
number of samples.

APPENDIX E: EXPLICIT FORM OF A j FOR
RECTANGULAR REGIONS IN d = 1, 2

Here, we present the analytic solutions to the functions
A j (A, p, t ) defined by Eq. (24). Following Secs. IV A and
IV B, we focus on d = 1 and 2 initial states, where A is a
simple hypercubic subsystem.

We begin with the d = 1 states of Sec. IV A, namely, with
ν = 4 states in a subsystem of length l , whose three areas
{A j (A, p, t )} j=1,2,3 are specified by Fig. 9(a). First, we write
the solutions to A j (A, p, t ) for arbitrary velocity ordering
va > vb > vc > vd . For convenience, we define the natural
times τab = l/(va − vb) and lengths �ab = (va − vb)t , where
we have applied this symmetry of mode velocities vc = −vb
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TABLE III. Full timewise solution of quasiparticle dynamics for ν = 4 states in subsystem of length l .

Time interval Total entropy ν = 4

t < τad 4�ab · s1 + 2�bc · s2

τad < t < τac 2(l − �bc ) · s1 + 2�bc · s2 + (�ad − l ) · s3

τac < t < min (τab, τbc) 2(�ab + �ac − l ) · s1 + 2(l − �ab) · s2 + (l − �bc ) · s3

(i) τab < t < τbc 2(l + �bc ) · s1 + (l − �bc ) · s3

(ii) τbc < t < τab 4�ab · s1 + 2(l − �ab) · s2

t > max (τab, τbc) 4l · s1

and vd = −va, to write

A1(A, p, t ) = 4�abH (τad − t ) + 2(l − �bc)H (τac − t )H (t − τad ) + 2(�ad − �ac − l )H[min(τab, τbc) − t )]

× H (t − τac) + 2(l + �bc)H (τbc − t )H (t − τab) + 4�abH (τab − t )H (t − τbc) + 4lH[t − max(τab, τbc)],

A2(A, p, t ) = 2�bcH (τac − t ) + 2(l − �ab)H[min(τab, τbc) − t]H (t − τac) + 2(l − �ab)H (t − τbc)H (τbc − t ),

A3(A, p, t ) = (�ad − l )H (t − τad )H (τac − t ) + (l − �bc)H (t − τac)(τbc − t ), (E1)

where H (x) is the Heaviside step function. These solutions can be rearranged into a full timewise solution of the quasiparticle
dynamics as shown in Table III, where the contributions {s j} j=1,2,3 for the d = 1 classical configurations of Sec. IV A are defined
in Table I. Next, for these classical configurations, we introduce the integrated areas

A j (A, t ) =
∫ π

0

dp
2π

A j (A, p, t ), (E2)

and then divide the momentum integral of Eq. (E2) into intervals for which the ordering of mode velocities is fixed:

A j (A, t ) =
(∫ π/4

0

dp

2π
+
∫ π/2

π/4

dp

2π

)
A j (A, p, t ). (E3)

We then combine Eqs. (E1) and (E3) to obtain the solution to the integrated areas {A j (A, t )} j=1,2,3. It should be noted that,
while these integrated areas yield the solution to all states of fixed s j (p) = s j , Eq. (E2) can easily be modified to a state-dependent
solution of general s j (p).

We now turn to the d = 2 states of Sec. IV A, namely, to νx = νy = 2 states in a rectangular subsystem of lengths lx, ly aligned
with the lattice, whose three areas {A j (A, p, t )} j=1,2,3 are specified by Fig. 9(b). Our method closely follows the d = 1 case,
where first we write the solutions to A j (A, p, t ) for arbitrary velocity ordering va > vb > vc > vd , ordered by projection onto the
positive x axis. For convenience, we define the natural times τi ≡ li/4 sin(ki ) and lengths X,Y ≡ 4 sin(ki )t for i = x, y, where
we have applied this symmetry of mode velocities vc = −va and vd = −vb, to write

A1(A, p, t ) = 4XY H[min(τx, τy) − t] + 4lxY H (t − τx )H (τy − t ) + 4XlyH (t − τy)H (τx − t ) + 4lxly[H max(τx, τy, t )],

A2(A, p, t ) = 2(lx − X )Y H[min(τx, τy) − t] + 2(lx − X )lyH (t − τy)H (τx − t ),

A3(A, p, t ) = 2(ly − Y )XH[min(τx, τy) − t] + 2(ly − Y )lxH (t − τx )H (τy − t ). (E4)

These solutions can again be rearranged into a full timewise solution of the quasiparticle dynamics as shown in Table IV,
where the contributions {s j} j=1,2,3 for the d = 2 classical configurations of Sec. IV A are defined in Table II.

TABLE IV. Full timewise solution of quasiparticle dynamics for νx = νy = 2 states in a rectangular subsystem of dimensions lx, ly.

Time interval Total entropy νx = νy = 2

t < min (τx, τy) 4XY · s1 + 2(lx − X )Y · s2 + 2(ly − Y )X · s3

(i) τx < t < τy 4lxY · s1 + 2(ly − Y )lx · s3

(ii) τy < t < τx 4Xly · s1 + 2(lx − X )ly · s2

t > max (τx, τy) 4lxly · s1
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FIG. 10. Diagram of the quasiparticle dynamics for a νx = νy =
2 initial state and rotated rectangular subsystem with lx > ly. The
red dashed line marks the boundary of the subsystem and the three
areas A j (A, θ, p, t ), j = 1, 2, 3, are depicted for fixed (p, θ, t ). In
this case, the structure of each of these shaded regions changes with
angle of rotation θ such that the full solutions to A j (A, θ, p, t ) j =
1, . . . , 3 are piecewise functions in p. In particular, this dia-
gram displays the structure for all p such that sin(py )/ sin(px ) ∈
[θ, π/2 − θ ].

Then, as before, we divide the momentum integral of
Eq. (E2) into intervals for which the ordering of mode ve-
locities is fixed,

A j (A, t ) =
(∫ π/2

0

dpx

2π
+
∫ π

π/2

dpx

2π

)

×
(∫ π/2

0

dpy

2π
+
∫ π

π/2

dpy

2π

)
A j (A, p, t ), (E5)

and combine Eqs. (E4) and (E5) to obtain the solution to the
areas {A j} j=1,2,3.

Finally, we generalize (E4) to the case of Sec. IV B,
namely, to νx = νy = 2 states in a rectangular subsystem
of lengths lx, ly and angle of rotation θ , whose three areas
{A j} j=1,2,3 are specified by Fig. 10.

To formulate the solution to {A j} j=1,2,3, we first define the
functions

ψ (k1, k2) = arctan[sin(k1)/ sin(k2)],

v(k1, k2) =
√

sin2(k1) + sin2(k2),

G(x) = xH (x), (E6)

from which we construct a set of functions for the lengths
between various corners and points of intersection of the light
cones for each mode:

a(k, θ, t ) = G[1 − 2t sin(kx ) cos(θ )],

b(k, θ, t ) = G[1 − 2t sin(kx ) sin(θ )],

c(k, θ, t ) = G[1 − 2t sin(ky) cos(θ )],

d (k, θ, t ) = G[1 − 2t sin(ky) sin(θ )],

e(k, θ, t ) = G{1 − 2vt cos[ψ (ky, kx ) − θ ]},
f (k, θ, t ) = G{1 − 2vt | sin[ψ (ky, kx ) − θ ]|},
g(k, θ, t ) = G{1 − 2vt cos[ψ (kx, ky) − θ ]},
h(k, θ, t ) = G{1 − 2vt | sin[ψ (kx, ky) − θ ]|}. (E7)

These light cones are shown in Fig. 10 for fixed (k, t ). Finally,
using these definitions (E6) and (E7), we have

A1(A, θ, p, t ) = 2e(1 − f )H{sin[ψ (ky, kx ) − θ ]} + g(1 − h)H{− sin[ψ (ky, kx ) − θ ]} + (a − e)(b − g),

A2(A, θ, p, t ) = 2e(1 − f )H{− sin[ψ (ky, kx ) − θ ]} + g(1 − h)H{sin[ψ (ky, kx ) − θ ]} + (c − g)(d − e),

A3(A, θ, p, t ) = 4(1 − ab − cd ) + 2(e f + gh).

Strictly, this solution is valid for 0 < θ < π/4. However,
we note that any angle of rotation can be achieved from this
solution by redefining the initial state.

APPENDIX F: ENTANGLEMENT CONTRIBUTIONS FOR
SUPERPOSITION STATES

In this Appendix we report the entanglement contributions
for some superposition states in d = 1 and 2 which we com-
puted via Eq. (23). In d = 1 we consider a superposition state
of the form

(F1)

where we omitted an overall constant ensuring normalization.
The contribution to the entanglement when only one mode of
the multiplet is in or out of the system depends on the mode.

Specifically, we have

sp(k) = −1 − fp(k)

2
ln

(
1 − fp(k)

2

)

− 1 + fp(k)

2
ln

(
1 + fp(k)

2

)
, (F2)

where

fp(k) = α

1 + α2
cos

(
k − 2π

ν
p

)
, (F3)

and p = 0, . . . , 3 identifies the mode. Instead, when only two
modes are in the system we have

sp,q(k) = −λp,q(k) log λp,q(k)

− [1 − λp,q(k)] log[1 − λp,q(k)], (F4)
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with

λp,q = 1

2

{
1 + fp(k)

2
+ fq(k)

2
±
[

| sin[(p − q) 2π
ν

]|
2 ∗ (1 + α2)

+ α2| cos[(p − q) 2π
ν

]|
(1 + α2)

+
(

fp(k)

2
+ fq(k)

2

)2
]1/2}

.

(F5)

In d = 2 we consider the following superposition state:

(F6)

The contribution of a single mode in (or out of) the system
turns out to be mode independent and is given by

s1(k) = −
(

1 − g(kx )

2

)
ln

(
1 − g(kx )

2

)

−
(

1 + g(kx )

2

)
ln

(
1 + g(kx )

2

)
. (F7)

Concerning the contributions of two modes, the only ones
produced by the quasiparticle dynamics are

s2(k) = 2 ln 2 −
(

1 − 1√
1 + α2

)
ln

(
1 − 1√

1 + α2

)

−
(

1 + 1√
1 + α2

)
ln

(
1 + 1√

1 + α2

)
,

s3(k) = ln 2 −
(

1

2
− g(kx )

)
ln

(
1

2
− g(kx )

)

−
(

1

2
+ g(kx )

)
ln

(
1

2
+ g(kx )

)
, (F8)

where g(k) = α cos(k)/(1 + α2). The saturation value for en-
tanglement density is given by

SA,α (∞) =
√

α4 + α2 + 1

α2 + 1
− 1 − ln

(
1

4
+

√
α4 + α2 + 1

4(α2 + 1)

)

(F9)

for both the d = 1 and 2 cases. In the limit α → 0,∞
these contributions recover those presented in the second two
columns of Tables I and II.

We remark that the initial state should be Gaussian in order
for our techniques to apply. This property is not immediately
obvious for superposition states; however, in our translational-
invariant setting we can verify it by restricting to the unit cell.
Specifically, we require a general superposition state such as∣∣ψc

ν, j

〉 = ∑
�i∈Zν

α�c†
�1+ν j . . . c†

�N +ν j |0〉 (F10)

to be annihilated by a new family of canonical fermions fi that
is linearly related to ci and c†

i . Namely, one can write∣∣ψc
ν, j

〉 = ∏
i

f †
i |0〉. (F11)

This is always the case for the superpositions considered here.
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