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We study the performances of an imperfect quantum many-body Otto engine based on free fermion systems.
Starting from the thermodynamic definitions of heat and work along ideal isothermal, adiabatic, and isochoric
transformations, we generalize these expressions in the case when the hypotheses of ideality are relaxed (i.e.,
nonperfect thermalization with the external baths, as well as nonperfect quantum adiabaticity in the unitary
dynamic protocols). These results are used to evaluate the work and the power delivered by an imperfect quantum
many-body heat engine in a finite time, whose working substance is constituted by a quantum Ising chain in a
transverse field. We discuss the emerging optimal working points as functions of the various model parameters.
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I. INTRODUCTION

Thermodynamics is one of the most fascinating topics in
physics. Since the Industrial Revolution, the necessity of un-
derstanding mechanisms underlying the conversion of heat
in useful work has focused efforts of the researchers in this
direction, leading to the statement of the three laws of thermo-
dynamics. Much more recently, with the advent of quantum
technologies and the miniaturization of the devices exchang-
ing heat and work down to the nanoscale, it has become
relevant to understand these issues in the novel scenario of
quantum mechanics. Unfortunately, while the theory of clas-
sical thermodynamics is well posed, its generalization to the
quantum realm raises some conceptual puzzles and is still
an open research field. Seminal works along this direction,
proposing a generalization of the concepts of heat and work
for quantum systems [1,2], date back to the 1980s.

Recently renewed interest in the possibility of quantum
heat engines has led to a prolific scientific production, starting
from the pioneer proposal of the maser as a first example of
the quantum engine [3]. A quantum heat engine is simply de-
fined as an engine constituted by a quantum systems that can
produce work undergoing a suitable thermodynamic cycle. A
series of papers [4–7] have proposed possible realizations of
few-body heat engines, based both on the Carnot cycle [8,9]
and on the Otto cycle [10–13]. Some experimental realizations
have been obtained by means of different platforms [14–19],
as also discussed in Ref. [20].

A promising direction to investigate quantum advantage
is that of engines whose working substance is constituted
by quantum many-body systems [21,22]. Although this re-
search line is hindered by technical difficulties, from both
analytical and numerical points of view, some preliminary
results have been proposed, both with gases of interacting
atoms [23–29] and with interacting quantum spins [30–36].
It has also been shown how criticality may have an impact
on the enhancement of the engine performance [26,34,37].
With few exceptions [38], all results in the literature have been

obtained for ideal engines undergoing perfect thermodynamic
transformations.

In this paper we study a many-body quantum Otto en-
gine with a free fermion medium in which the assumption
of perfect thermodynamic transformations can be relaxed.
We first exploit the exact integrability of the model through
the Bogoliubov–de Gennes formalism to derive some general
analytic expressions for the heat exchanged and the work
produced by a free fermion system of arbitrary size along
some paradigmatic thermodynamic processes: the nonperfect
isochoric (static Hamiltonian system, coupled to an external
bath) and the nonperfect adiabatic (isolated quantum system)
transformation separately, as well as the nonperfect adiabatic
transformation followed by a nonperfect isochoric one. To
model nonunitary processes, we describe the microscopics of
the system-bath dynamics through a thermal bath of harmonic
oscillators at a given temperature, quadratically coupled to the
system, by means of a nonlocal Lindblad master equation,
ensuring thermalization at long times.

In the second part of the paper, we apply the above analytic
results to the quantum Otto cycle with the aim of finding
the best parameters which optimize the engine performances.
In particular, we numerically analyze the work output and
the power delivered by the Ising quantum Otto engine when
quantum adiabaticity is violated, thus generalizing the results
obtained by two of us in Ref. [34] for the ideal scenario and
at finite size. We observe the emergence of a nonmonotonic
behavior in the power with the various parameters of our
model, thus signaling the existence of an optimal working
point.

The paper is structured as follows. In Sec. II we recap the
basic concepts of quantum thermodynamics and clarify the
differences between classical and quantum realms. In Sec. III
we derive the expressions for the heat and the work along
ideal isotherm, adiabatic, and isochoric transformations for a
generic free fermion system that can be coupled to a thermal
bath. We then introduce the quantum Otto cycle (Sec. IV),
whose working substance is a free fermion system, and
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analyze the performance of such an engine operating under the
assumption of nonperfect thermalization and/or quantum adi-
abaticity. In Sec. V we present our numerical simulations for
the case of an Ising Otto engine when nonadiabatic transfor-
mations are taken into account. Finally, in Sec. VI we draw our
conclusions. The Appendixes provide further details on the
system-bath coupling scheme we adopt within the Lindblad
formalism (Appendix A), the ideal Ising Otto engine in the
thermodynamic limit (Appendix B), and the way in which the
Hamiltonian control parameter should be varied to implement
a proper Otto cycle producing useful work (Appendix C).

II. THERMODYNAMICS OF QUANTUM SYSTEMS

One of the basic principles governing the exchange of heat
and work between two or more systems is the first law of
thermodynamics,

dE = δQ − δW, (1)

which formally assesses the energy conservation principle:
the variation of internal energy E of a given system can
be interpreted as the difference between the heat exchanged
with the external environment and the work performed by the
system itself. In the following we adopt the convention that
δQ > 0 (positive) refers to the heat absorbed by the system
and δW > 0 (positive) refers to work performed by the sys-
tem. Notice that, despite that the energy is an observable and
thus its differential dE is exact, those of the heat Q and of the
work W are not. For this reason we indicate their infinitesimal
variation with δQ and δW . While for classical systems, given a
specific thermodynamic transformation, the heat and the work
are well-defined quantities, for quantum systems this is not
always the case and additional care should be taken.

To be more quantitative, we start from the Hamiltonian
H = H (λ) of a generic quantum system, which is supposed to
depend on some macroscopic parameter λ that can be suitably
controlled (e.g., the magnetic field strength or the volume
itself). Its expectation value over the actual (generally mixed)
state ρ(λ) of the system defines the internal energy

E ≡ 〈H〉ρ(λ) = Tr[H (λ) ρ(λ)], (2)

where Tr[ · ] denotes the trace operation, so that

dE = Tr[dH (λ) ρ(λ)] + Tr[H (λ) dρ(λ)]. (3)

The first term in the right-hand side accounts for a modifica-
tion of the spectral structure of the system as a response to a
variation of λ, while the second term describes a variation of
the system state. One could naively identify the first term as
the work done by the system itself, quantifying the mechanical
energy exchanged with the external reservoir, and the second
one as the heat absorbed by the system from the environment
[1,2,4]. However, this interpretation can be misleading, as, for
example, when considering nonthermal reservoirs. In what
follows we consider the heat as the variation of energy due
to the interaction with a thermal reservoir and the work as
the variation of energy due to a change in the Hamiltonian
parameters.

Once the heat exchange has been introduced, one can write
the Clausius inequality, ∑

i

βiQi � 0, (4)

where Qi denotes the various heats exchanged with a set of
surrounding reservoirs at temperatures β−1

i (hereafter we will
always work in units of h̄ = kB = 1). Equation (4) can be
combined with Eq. (1) to show that, for a single working
medium operating between two reservoirs, cold (c) and hot
(h), at different temperatures and varying its energy, only
four operation modes are allowed [10]: (i) heat engine (pro-
duction of work by heat absorption from the hot reservoir,
Qc < 0, Qh > 0, W > 0); (ii) refrigerator (heat transfer from
the cold to the hot bath by energy absorption of the
medium, Qc > 0, Qh < 0, W < 0); (iii) thermal accelerator
(heat transfer from the hot to the cold bath by energy absorp-
tion, Qc < 0, Qh > 0, W < 0); (iv) heater (heating up the
two baths by energy absorption, Qc < 0, Qh < 0, W < 0).

III. THERMODYNAMICS OF FREE FERMION SYSTEMS

We now derive expressions for the work performed and the
heat exchanged by free fermion systems during some paradig-
matic and ideal thermodynamic transformations. Namely, we
focus on perfect isotherm, adiabatic (unitary), and isochoric
transformations.

A. Free fermion systems

We consider a lattice model of spinless fermions coupled
through a generic quadratic Hamiltonian,

H =
∑
i, j

Di, jc
†
i c j + 1

2
(Oi, jc

†
i c†

j + H.c.), (5)

where c(†)
i are anticommuting fermionic annihilation (cre-

ation) operators on the ith site (i = 1, . . . , N), while D
and O are complex N × N matrices satisfying D = D† and
O = −OT (so as to respect the hermiticity of H). By introduc-
ing the Nambu spinor � = (c1, . . . , cN , c†

1, . . . , c†
N )

T
, Eq. (5)

can be written as

H = �†H� + Tr[D], (6)

where the 2N × 2N matrix

H = 1

2

(
D O

−O∗ −D∗

)
(7)

is the so-called Bogoliubov–de Gennes matrix, which can be
diagonalized by a unitary transformation U, such that

HD = U†HU = diag{ε1 . . . εN ,−ε1 . . . − εN }. (8)

Here εk > 0 denote the positive eigenvalues of H,
(k = 1, . . . , N ), while U is a Bogoliubov rotation that
can be cast in the block form

U =
(

u v
v∗ u∗

)
. (9)

This transformation is constructed in such a way to pre-
serve the particle-antiparticle symmetry of the model and
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defines a new set of anticommuting fermions b(†)
k (the Bo-

goliubov quasiparticles) through the relation � = U�, with
� = (b1, . . . , bN , b†

1, . . . , b†
N )

T
. It is always possible to gauge

away the term Tr[D] in Eq. (6) by shifting the Hamiltonian;
thus hereafter we simply neglect it.

Summarizing, in the diagonal basis the Hamiltonian (5)
reads

H =
∑
k>0

ωk (λ)

(
b†

kbk − 1

2

)
(10)

and corresponds to a free fermion model, ωk = 2εk being
the dispersion relation of the (noninteracting) Bogoliubov bk

quasiparticles [39]. The spectrum of this Hamiltonian, which
for our purposes we assume to be nondegenerate, should
depend on the control parameter λ, and therefore we have
ωk ≡ ωk (λ).

B. Ideal isotherm, adiabatic, and isochoric transformations

For a quadratic fermionic system (5) prepared in the ther-
mal state,

ρ = Ze−βH , (11)

we can write the internal energy as

E =
∑

k

ωk (λ)

(
Z−1Tr[b†

kbke−βH ] − 1

2

)
, (12)

where β−1 denotes the temperature and Z = Tr[e−βH ] the par-
tition function. For a thermal density matrix as in Eq. (11), the
populations of the bk quasiparticles follow the Fermi-Dirac
distribution function,

Tr[b†
kbk ρ] = [1 + e−βωk (λ)]−1 ≡ f [β, ωk (λ)], (13)

so that Eq. (12) takes the simple form
E = ∑

k ωk (λ) { f [β, ωk (λ)] − 1/2}. The partition function
can be easily computed to give

Z = e
β

2

∑
k ωk (λ)

∏
k

[1 + e−βωk (λ)]. (14)

The heat exchanged and the work performed by the system
can be thus evaluated straightforwardly in some paradigmatic
transformations according to the following discussion.

1. Ideal isothermal transformation

An ideal isotherm can be obtained by considering a slow
variation of the control parameter λ, such that the system is
assumed to be always in thermal equilibrium with an envi-
ronment at a given fixed temperature β−1. In that case, the
Helmholtz free energy is given by

F = − 1

β
log Z = −κ

2
− 1

β

∑
k

log[1 + e−βωk (λ)], (15)

where κ = ∑
k ωk (λ).

The work performed by the system along an isothermal
variation of the external parameter λ, from λi to λ f , can be
evaluated as the opposite of the variation of the free energy,

which can be expressed in the integral form

W = −�F = −
∫ λ f

λi

∂F
∂λ

dλ

= −
∫ λ f

λi

{ ∑
k

ω′
k (λ)

[
f [β, ωk (λ)] − 1

2

]}
dλ, (16)

where the prime denotes the derivative with respect to λ.
Note that depending on the derivative of spectrum ω′

k (λ),
the integrand in Eq. (16) may behave monotonically with
the temperature β−1. If ω′

k (λ) > 0 ∀k, then the free energy
is an increasing function of β; if ω′

k (λ) < 0 ∀k, then the
trend is reversed (details in Appendix C). The exchanged heat
can be obtained through the first law of thermodynamics (1),
Q = �E + W , and using Eq. (12).

2. Ideal adiabatic transformation

By definition, an adiabatic transformation is such that it
occurs without heat exchange (Q = 0). We thus refer to this
wording at any time the quantum system is isolated (not
coupled to an external environment). This should not be con-
fused with the quantum adiabaticity condition, i.e., when the
unitary evolution satisfies the requirements of the quantum
adiabatic theorem [40] (thus a transformation can be adiabatic
but nonideal, in the sense that it is not quantum adiabatic —
see Sec. IV C).

Since, in general, an adiabatic transformation is not qua-
sistatic, one cannot evaluate the work through the Helmholtz
free energy. However, in the ideal case, the transformation is
induced by a variation of λ, from λi to λ f , which is so slow
that one can invoke the quantum adiabatic theorem [41] (the
spectrum is nondegenerate) and calculate the work done by
the system by exploiting the first law of thermodynamics:

W = −�E = 〈H (λi )〉ρ(λi ) − 〈H (λ f )〉ρ̃(λi ). (17)

Here ρ(λi ) denotes the equilibrium thermal state for a system
described by the Hamiltonian H (λi ) at temperature β−1, at
the beginning of the adiabatic transformation, while ρ̃(λi ) is
the quantum adiabatically evolved state. Such a latter state is
constructed using the projectors on the eigenstates of H (λ f ),
with the same energy-level populations of ρ(λi ); therefore,

W =
∑

k

[ωk (λi) − ωk (λ f )]

{
f [β, ωk (λi)] − 1

2

}
,

= −
∫ λ f

λi

{∑
k

ω′
k (λ)

[
f [β, ωk (λi)] − 1

2

]}
dλ. (18)

Note that in general, as in classical thermodynamics, the
work done by the system in an adiabatic transformation [cf.
Eq. (18)] is not larger than that done in an isothermal transfor-
mation [cf. Eq. (16)]. This follows from the fact that∫ λ f

λi

ω′
k (λ)

1 + eβωk (λ)
dλ �

∫ λ f

λi

ω′
k (λ)

1 + eβωk (λi )
dλ, (19)

which can be proved by solving the integral and using the fact
that − log(1 + e−x ) is a concave function.
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3. Ideal isochoric transformation

An isochoric transformation is such that the system is put
in contact with a thermal reservoir, without variation in the
Hamiltonian parameter λ. No work is thus performed during
this transformation (W = 0). We model this situation in such
a way that the system is prepared in a thermal state ρi at
temperature β−1

1 and is put in contact with a bath at tem-
perature β−1

2 , keeping the Hamiltonian H fixed. After a time
τ > t th, t th being the thermalization time, the system will be
in the thermal equilibrium state ρ f = e−β2H/Tr[e−β2H ]. The
heat exchanged during this process can thus be evaluated as
the difference of Hamiltonian expectation values and reads

Q = 〈H〉ρ f
− 〈H〉ρi

=
∑

k

ωk [ f (β2, ωk ) − f (β1, ωk )].

(20)

In the next section, we discuss how to combine the latter
two transformations to implement an Otto cycle and the gen-
eralization of these results when the assumptions of perfect
thermalization and quantum adiabaticity are relaxed.

IV. THE QUANTUM OTTO CYCLE

In this section we derive the expression for the work
performed by a real quantum Otto engine, i.e., an engine
whose transformations may violate the assumptions of perfect
adiabaticity and/or perfect thermalization. We consider, as a
working substance (medium), a system of coupled fermions,
according to Eq. (5). After a Bogoliubov transformation,
such a Hamiltonian can be mapped into the free-quasiparticle
model Eq. (10) with a dispersion relation ωk (λ). As we shall
see in a moment, the only ingredient needed to assess the
performance of such an engine is the quasiparticle distribution
on the evolved system state.

The quantum Otto cycle operates between the two temper-
atures β−1

c (cold) and β−1
h (hot), and consists of four strokes:

two (thermodynamic) adiabatic transformations (i.e., no heat
exchange with the environment) and two isochoric trans-
formations (i.e., no work on the system) [11]. The system,
initially prepared in the thermal state ρc at temperature β−1

c ,
undergoes the following steps:

1. [Forward adiabatic transformation]: The Hamiltonian
parameter λ is varied in a time T , from λi to λ f ;

2. [Hot isochoric thermalization]: The Hamiltonian
Hf ≡ H (λ f ) is fixed and the system is put in contact
with the reservoir at temperature β−1

h > β−1
c , for a time τ ;

3. [Backward adiabatic transformation]: The Hamiltonian
parameter λ is varied, in a time T from λ f to λi, thus reversing
point 1;

4. [Cold isochoric thermalization]: The Hamiltonian
Hi ≡ H (λi ) is fixed and the system is put in contact with the
reservoir at temperature β−1

c < β−1
h for a time τ .

A. Ideal free fermion cycle

We consider, as a working medium, a quadratic fermionic
system weakly coupled to two thermal reservoirs, as modeled
in Appendix A. By exploiting the results of Sec. III B, the
work performed and heat exchanged for an ideal Otto cycle
(strictly speaking, perfect thermalization and perfect quantum

adiabatic sweeps are ideally obtained in the limits T → ∞,
τ → ∞) can be written as

Qid
h =

∑
k

ωk (λ f ) (� fk )hc , (21a)

Qid
c = −

∑
k

ωk (λi) (� fk )hc , (21b)

W id =
∑

k

[ωk (λ f ) − ωk (λi )] (� fk )hc , (21c)

where

(� fk )hc ≡ f [βh, ωk (λ f )] − f [βc, ωk (λi)]. (21d)

Note that, since after a single ideal cycle the system comes
back to the same initial state, we have �E = 0 and thus
W id = Qid

h + Qid
c follows from the first principle of thermo-

dynamics. The efficiency of the cycle can be thus expressed
as

ηid ≡ W id

Qid
h

= 1 −
∑

k ωk (λi)(� fk )hc∑
q ωq(λ f )(� fq)hc

. (22)

We can obtain some basic considerations by introducing
the ratio

rk (λi, λ f ) ≡ ωk (λi )/ωk (λ f ). (23)

In fact, the sign of (� fk )hc depends on the value assumed
by rk (λi, λ f ). If rk (λi, λ f ) > βh/βc, then (� fk )hc is positive;
otherwise it is negative. Since we have ωk (λ) > 0 ∀k, from
the sign of (� fk )hc we can infer some information on the way
the engine is operating. In particular,

1. If rk (λi, λ f ) > βh/βc ∀k, then Qh > 0 and Qc < 0, thus
the engine works either as a thermal accelerator (if W < 0) or
as a heat engine (if W > 0);

2. If rk (λi, λ f ) > 1 ∀k, then Qh > 0, Qc < 0, and W < 0,
thus the engine is a thermal accelerator;

3. If βh/βc < rk (λi, λ f ) < 1 ∀k, then Qh > 0, Qc < 0, and
W > 0, thus the engine is a heat engine;

4. If rk (λi, λ f ) < βh/βc ∀k, then Qh < 0 and Qc > 0, and
thus the engine is a refrigerator.

These conditions are valid for any system described by a
quadratic fermionic Hamiltonian. It is important to remark
that they are sufficient, but not necessary, conditions [e.g.,
if rk (λi, λ f ) > βh/βc only for some k, it is still possible to
have an engine operating as a thermal accelerator or as a heat
engine].

B. Nonperfect thermalization

We now relax the hypothesis of perfect thermalization by
assuming the system to be in contact with the two reservoirs
for a time τ < t th, where t th is the thermalization time. Ac-
cording to Ref. [42], the nonperfect thermalized distribution
of the quasiparticles reads

〈b†
kbk〉(γ ) = f (β, ωk )(1 − e−J γ ) + 〈b†

kbk〉ρ0
e−J γ , (24)

where we have put γ ≡ 2τ and hereafter we assume
J = 1. Note that J is a parameter which depends on the
bath properties and on the system-bath coupling, as detailed in
Appendix A, and it obviously affects the timescale of thermal-
ization. The of-diagonal correlators and the anomalous ones
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〈bkbq〉 remain zero at any time, provided the initial condition
for the Otto cycle is a thermal state (say, ρc). Equation (24)
ensures that convergence to the perfect thermal behavior is ex-
ponential, although, strictly speaking, perfect thermalization
cannot be reached at any finite time (t th → ∞). Thus the ideal
case would correspond to the limit τ → ∞.

Let us find an expression for the asymptotic distribution of
quasiparticles after n repetitions of the nonperfect thermalized
cycle are implemented. We introduce the diagonal N × N
matrices [43]

Θc(h) = diag{ f [βc(h), ωk (λi( f ) )]}k=1,...,N , (25)

Γ[n]
c(h) = diag

{
Tr

[
b†

kbk ρ̃
[n]
c(h)

]}
k=1,...,N , (26)

where ρ̃
[n]
c(h) denotes the state at the end of the nonperfect

thermalized stroke with the bath at temperature β−1
c(h) of the nth

cycle repetition. The system is initially prepared in the thermal
state ρc at temperature β−1

c , i.e., Γ[0]
c ≡ Θc. Since the asymp-

totic distribution does not depend on the initial condition, this
choice does not affect the generality of the result. Then, at the
end of the ideal adiabatic transformation, the system is put in
contact with the reservoir at temperature β−1

h and reaches the
state ρ

[1]
h , characterized by the distribution

Γ[1]
h = Θh(1 − e−γ ) + Γ[0]

c e−γ . (27a)

After the backward ideal adiabatic transformation is imple-
mented, the system is put in contact with the reservoir at
temperature β−1

c reaching the state ρ[1]
c , characterized by the

distribution

Γ[1]
c = Θc(1 − e−γ ) + Γ[1]

h e−γ . (27b)

The two Eqs. (27) can be easily generalized to the nth itera-
tion, to obtain

Γ[n]
c = (Θc + e−γ Θh)(1 − e−γ ) + Γ[n−1]

c e−2γ , (28a)

Γ[n]
h = (Θh + e−γ Θc)(1 − e−γ ) + Γ[n−1]

h e−2γ . (28b)

By imposing the condition that both the Γ’s on the left- and
on the right-hand side are iteration independent, one gets the
stationary solution

Γ∞
c = h(γ )(Θc + e−γ Θh), (29a)

Γ∞
h = h(γ )(Θh + e−γ Θc), (29b)

where h(γ ) = (1 + e−γ )−1. Considering again Eqs. (28),
the derivative of the kth diagonal element of the matrix
Γ[n]

i (i = c, h) at the nth iteration, with respect to the same
diagonal element of Γ[n−1]

i at the (n − 1)th iteration, reads

∂
(
Γ[n]

i

)
kk

∂
(
Γ[n−1]

i

)
kk

= e−2γ < 1, (30)

and therefore the fixed points in Eq. (29) are stable and the
convergence is exponential in n.
Equations (29) suggest that for the nonperfectly thermalized
cycle (nth), the heat absorbed and the work performed per
cycle are evaluated from Eq. (21) by substituting the rescaled
Fermi functions

f [βc, ωk (λi )] 
→ h(γ ){ f [βc, ωk (λi )] + e−γ f [βh, ωk (λ f )]},
f [βh, ωk (λ f )] 
→ h(γ ){ f [βh, ωk (λ f )] + e−γ f [βc, ωk (λi )]},

FIG. 1. The value of p(δ, γ ) vs the thermalization time γ = 2τ

for different values of the quench duration δ (color scale in the
legend).

thus obtaining

Qn-th
h(c) = g(γ ) Qid

h(c), W n-th = g(γ )W id, (31)

where g(γ ) = (1 − e−γ )h(γ ) = tanh(γ /2), while the labels
“n-th” and “id” respectively stand for “nonperfectly thermal-
ized” and for “ideal cycle.” Therefore it follows that, in this
case, the efficiency of the heat engine ηn-th ≡ W n-th/Qid

h re-
mains the same as for the ideal case [see Eq. (22)].
If W > 0 we can define the power of the engine as a function
of the thermalization time (τ = γ /2) and of the quench time
(T = δ/2),

Pn-th(δ, γ ) ≡ W n-th

δ + γ
= p(δ, γ )W id, (32)

with

p(δ, γ ) ≡ tanh(γ /2)

δ + γ
. (33)

In this case we are not concerned about nonadiabatic effects,
i.e., Eq. (32) is valid if we choose δ such that, according to the
features of the quenches (H(λ), λi, λ f ), the quantum adiabatic
theorem approximately holds (see Sec. IV C). Of course, this
value of δ is model dependent. In Fig. 1 we show the behavior
of p(δ, γ ) versus γ , for different fixed values of δ. Since the
work for the ideal case W id is independent of δ and γ , the
power is maximum for cycle parameters maximizing p(δ, γ ).
Therefore we can optimize the performance by fixing δ (and
assuming that it is suitable for adiabatic theorem to hold)
and maximizing with respect to γ , in order to have some
indication on the best γ for any given quench duration. The
maximization

∂γ p(δ, γ ) = 1

δ + γ

[
1

2 cosh2(γ /2)
− p(δ, γ )

]
= 0 (34)

leads to the stationarity condition

eγ − e−γ

2
− γ = δ. (35)

Let us define S(γ ) = eγ −e−γ

2 − γ . For γ � 1, S(γ ) ∼ eγ /2.
As a consequence, γmax ∼ log(2δ), i.e., the maximum scales
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FIG. 2. The value of γmax that maximizes the power output (blue
curve) and the corresponding value of p(δ, γmax) (orange curve) vs
δ. Dashed lines denote the asymptotic large-δ behaviors analytically
evaluated.

logarithmically with the quench duration. In correspondence
of the maximum we have

p(δ, log(2δ)) ∼ 1

δ

(2δ)1/2 − (2δ)−1/2

(2δ)1/2 + (2δ)−1/2
. (36)

Therefore, for δ → ∞, we have p(δ, γ ) ∼ 1/δ → 0, i.e.,
no power is produced by the engine. We observe that for
γ  1 we have S(γ ) ∼ γ 3/6, leading to γmax ∼ (6δ)1/3, with
δ  1. By substituting this value, we notice that for fast
adiabatic sweeps we have p(δ, γmax) → 0.5, paying attention
that this result holds for regimes in which even for small δ

quantum adiabaticity is still valid. In Fig. 2 we show γmax

(blue curve) and p(δ, γmax) (orange curve) vs δ. The dashed
lines are the expected analytical results for large δ.

C. Real adiabatic processes

We now consider a system prepared in the thermal state ρ1

with an Hamiltonian Hi characterized by a spectrum ωk (λi).
We implement a transformation λi → λ f in a time T such
that the quantum adiabatic regime is no more valid [41]. As
discussed in Sec. III B, the work can be evaluated from the first
law of thermodynamics. However, because of the nonperfect
quantum adiabaticity of the transformation, some excitations
are generated during the dynamics.

The unitary dynamics is generated by the operator
Uev (t ) = T exp [e−i

∫ t
0 dsH (s)], so that

W = 〈Hi〉ρ1
− 〈Hf 〉ρ1(T ), (37)

where ρ1(T ) = Uev(T ) ρ1 U †
ev(T ) denotes the postquench

state. The first term in the right-hand side is known, while
the second one can be easily evaluated in the Nambu spinor
notation, using Eq. (6):

〈Hf 〉ρ1(T ) =
∑
i, j

Tr[�†
i (H f )i j� j Uev(T )ρ1U

†
ev(T )]

=
∑
i, j

Tr
[
�

H†
i (H f )i j�

H
j ρ1

]
, (38)

where we adopted the Heisenberg representation and intro-
duced the time-evolved operators

�H = U †
ev(T )�Uev(T )

= (
cH

1 (T ), . . . , cH
N (T ), cH†

1 (T ), . . . , cH†
N (T )

)T
. (39)

As discussed in Refs. [44,45], these operators can be ex-
pressed in terms of the bk fermions by implementing the
following time-dependent Bogoliubov transformation,

�H = V(T )�, (40)

where V(T ) is a matrix obeying the equation

∂sV(s) = −2iH(s)V(s), (41)

with initial condition V(0) = U(λi). Substituting this result in
Eq. (38), we get

〈Hf 〉ρ1(T ) =
∑
i, j

Tr[�†
i H̃i j� jρ1], (42)

being H̃ = V†(T )H f V(T ). By construction, the state ρ1 is
diagonal in the bk fermions (i.e., 〈b†

qbq′ 〉 = 0, if q �= q′); there-
fore we have

〈Hf 〉ρ1(T ) =
∑

k

ω̃k

{
f [β, ωk (λi)] − 1

2

}
, (43)

where ω̃k ≡ H̃kk (for 1 � k � N), and we used the fact that
V(T ) is a Bogoliubov transformation and so it maintains
particle-hole symmetry (H̃kk = −H̃k+N,k+N ). Collecting all
these results, the work at the end of the adiabatic stroke reads

W =
∑

k

[ωk (λi ) − ω̃k (λ f )]

{
f [β, ωk (λi )] − 1

2

}
. (44)

From a different perspective, in the Heisenberg picture
we can introduce a new set of fermions d (†)

k ≡ bH (†)
k , whose

Nambu spinor � = (d1, . . . , dN , d†
1 , . . . , d†

N )T relates to the
quasiparticle one through the Bogoliubov transformation
Q = U†(λ f )V(T ), � = Q�. In this way we can write

〈�†
k�q〉ρ1(T ) = 〈�†

k�q〉ρ1
=

2N∑
i, j=1

Q∗
ki〈�†

i � j〉ρ1
Qq j . (45)

Note that in the limit of an ideal adiabatic transformation,
the unitary evolution of the eigenvectors of H(λ0) [Eq. (41)]
is such that these are instantaneous eigenvectors of H(t ),
and therefore V†(T ) H f V(T ) = U†(λ f ) H f U(λ f ) = HD

f . So
H̃ = HD

f , and Eq. (37) reduces to Eq. (18).
We also point out that, as shown in Ref. [46], imperfect

quantum adiabatic transformations starting from a thermal
state excite the system more than the ideal quantum adiabatic
ones. As a consequence, the former are expected to produce
less work than latter case. We performed several numeri-
cal simulations and always obtained ω̃k < ωk (λ f ), that is,
W id > W .

D. Nonperfect thermalization and real adiabatic processes

Let us finally assume nonperfect thermalization and real
adiabatic transformations. The system is prepared in the ther-
mal state at temperature β−1

1 , ρ0 ≡ ρ1. We can follow a
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procedure similar to that of Sec. IV B, but we have to identify
two other intermediate steps in the dynamics. Moreover, in
the case of real adiabatic transformations, the nondiagonal
components of the correlator of the Bogoliubov quasiparticles
can be nonvanishing. To account for this effect, we derive the
results using the Nambu spinors and, in analogy with Eq. (26),
define (

Λ[n]
i

)
jl = 〈� j�

†
l 〉ρ[n]

i
, (46)

where ρ
[n]
i represents the state of the system after the nth

thermalization with the bath at temperature β−1
i . We also

define (
Λ[n]

i,T

)
jl = 〈� j�

†
l 〉ρ[n]

i (T ), (47)

with ρ
[n]
i (T ) = U(T )ρ[n]

i U(T )† being the time-evolved den-
sity matrix. We notice that

〈� j�
†
l 〉ρ[n]

i (T ) = Tr
[
� j�

†
l ρ

[n]
1 (T )

]
= Tr

[
� j�

†
l ρ

[n]
1

]
= Tr

∑
mn

[
Q jm�m�†

n Q†
nlρ

[n]
1

]
=

∑
mn

Q jmTr
[
�m�†

n ρ
[n]
1

]
Q†

nl

= (
QΛ[n]

i Q†
)

jl
. (48)

We introduce the diagonal 2N × 2N matrix

Ωc(h) = diag{ f [βc(h),−ωk (λi( f ) )], f [βc(h), ωk (λi( f ) )]}, (49)

with i = c, h. We start in the thermal state Λ[0]
1 = Ωc.

After the first adiabatic stroke we have

Λ[1]
1,T = QΛ[0]

1 Q†. (50)

Then the system is put in contact with the reservoir at tem-
perature β−1

2 for a time τ . Differently from Sec. IV B, in this
case the system at the end of the adiabatic sweep could present
some excitations, so we have to consider also the evolution of
nondiagonal elements of the correlation functions [42]

〈b†
kbq〉(τ ) = 〈b†

kbq〉ρ0
ei(ωk−ωq )τ−γ , (51a)

〈b†
kb†

q〉(τ ) = 〈b†
kb†

q〉ρ0
ei(ωk+ωq )τ−γ , (51b)

〈bkbq〉(τ ) = 〈bkbq〉ρ0
e−i(ωk+ωq )τ−γ . (51c)

At the end of this process we have

Λ[1]
2 = Ωh(1 − e−γ ) + ΦΛ[1]

1,T Φ†e−γ , (52)

where

Φ ≡ diag[e−iω1(hi )τ , . . . , e−iωN (hi )τ , eiω1(hi )τ , . . . , eiωN (hi )τ ].
(53)

We perform the adiabatic transformation ending with

Λ[1]
2,T = Q′�[0]

1 Q′†, (54)

with Q′ being the rotation diagonalizing the Hamiltonian after
the backward adiabatic transformation. Finally, we connect
the system to the reservoir at temperature β−1

1 , obtaining

Λ[1]
1 = Ωc(1 − e−γ ) + Φ′Λ[1]

2,T Φ′†e−γ , (55)

where Φ′ is the same as Φ, but with the final eigenstates
ωk (h f ). In what follows, to simplify the notation we redefine
the matrices Q, Q′ including Φ, Φ′ in their definition [i.e.,
Q = ΦU†(h f ) V(T )]. This does not change the mean value of
the Hamiltonian at the end of the adiabatic sweeps. At the nth
iteration we find

Λ[n]
1,T = QΛ[n−1]

1 Q†, (56a)

Λ[n]
2 = Ωh(1 − e−γ ) + Λ[n]

1,T e−γ , (56b)

Λ[n]
2,T = Q′Λ[n]

2 Q′†, (56c)

Λ[n]
1 = Ωc(1 − e−γ ) + Λ[n]

2,T e−γ . (56d)

Substituting, we obtain

Λ[n]
1,T = QK1Q

† + e−2γ QQ′Λ[n−1]
1,T Q′†Q†, (57a)

Λ[n]
2 = K2 + e−2γ QQ′Λ[n−1]

2 Q′†Q†, (57b)

Λ[n]
2,T = Q′K2Q

′† + e−2γ Q′QΛ[n−1]
2,T Q†Q′†, (57c)

Λ[n]
1 = K1 + e−2γ Q′QΛ[n−1]

1 Q†Q′†, (57d)

having introduced

K1 = (1 − e−γ )(Ωc + e−γ Q′ΩhQ
′†), (58a)

K2 = (1 − e−γ )(Ωh + e−γ QΩcQ
†). (58b)

We can write explicitly the series in the first equation of
dynamical systems Eq. (57), finding

Λ[n+1]
1,T =

n−1∑
k=0

e−2kγ [(QQ′)kQK1Q
†(Q′†Q†)k]

+ e−2nγ
[
(QQ′)nΛ[1]

i,T (Q′†Q†)n
]
. (59)

The asymptotic solution of this equation reads

Λ∞
1,T =

∞∑
k=0

e−2kγ [(QQ′)kQK1Q
†(Q′†Q†)k]. (60)

Similar expressions can be written for the other matrices.
Before concluding, we note that due to the unitarity of the

matrices Q,Q′ and the fact that Ωc(h) is a diagonal matrix with
real elements in [0,1], we have

|[(QQ′)kQK1Q
†(Q′†Q†)k]i j | < (1 − e−2γ ). (61)

This means that the terms in Eq. (60) decay exponentially to
zero with k. In particular, the modulus of each term is smaller
than

ξ (k) ≡ e−2kγ (1 − e−2γ ). (62)

So we can safely approximate the asymptotic value of Λ∞
1

with the first K terms of the series. The convergence of Λn
1,T

to Λ∞
1,T is exponential in n:(

Λ[n+1]
1,T − Λ[n]

1,T

)
i j

∝ e−2γ (n−1). (63)

In what follows we present the results for the performance of
an Ising quantum Otto cycle when nonadiabatic transforma-
tions are implemented.
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V. THE REAL ISING QUANTUM OTTO CYCLE

In this section we focus on a quantum Otto engine, whose
working medium is constituted by a chain of N spin-1/2
systems interacting through the well-known one-dimensional
transverse-field Ising Hamiltonian,

H spin(t ) = −J
N−1∑
i=1

σ x
i σ x

i+1 − h(t )
N∑

i=1

σ z
i , (64)

where σα
i are the Pauli matrices (α = x, y, z) acting on the ith

site. To avoid the presence of degenerate energy eigenstates,
we assume open boundary conditions. Hereafter we also set
J = 1 as the energy scale of the system and set h > 0 without
loss of generality. The model (64) exhibits a zero-temperature
quantum phase transition at hc = 1, from a paramagnetic
(h > hc) to a ferromagnetic (h < hc) phase, after sponta-
neously breaking the Z2 symmetry that rotates spins by a π

angle around the z axis [47,48].
The Hamiltonian (64) can be mapped into a quadratic

fermionic model such as the one in Eq. (5), through a Jordan-
Wigner transformation,

σ−
i = Kici , with Ki = �i−1

j=1σ
z
j , (65)

where σ±
i = (σ x

i ± iσ y
i )/2 are the raising/lowering operators

for the ith spin. The mapped fermionic model is usually
referred to as the Kitaev chain, which maintains the Z2 sym-
metry of the Ising chain, in the form of fermionic parity:
the Ising spin-spin coupling transforms into nearest-neighbor
hopping and p-wave pairing terms, while the transverse field
is mapped into a chemical potential term [49].

One can engineer an Ising quantum Otto cycle by im-
plementing the four transformations (strokes) discussed in
Sec. IV, with the transverse field hi taking the role of the
Hamiltonian control parameter λ [34]. In general, for the
engine being useful, the order of the transformations must be
chosen carefully. As detailed in Appendix C, here we imple-
ment the following procedure, starting from a configuration in
which the working substance (the system) is supposed to be
in the thermal state at the (cold) temperature β−1

c :
(1) The system is decoupled from the external environ-

ment, and the transverse field h(t ) is increased linearly in a
finite time T = δ/2 such that h(t ) = hi + (h f − hi )t/T (with
t ∈ [0, T ]), where h f > hi;

(2) The transverse field is kept fixed at h(t ) = h f , while
the system is put in contact with a hot reservoir at β−1

h for a
finite time τ = γ /2 and allowed to equilibrate with it;

(3) The system is again decoupled from the external en-
vironment, and the transverse field h(t ) is decreased linearly
in a finite time T = δ/2, such that h(t ) = h f + (hi − h f )t/T
(with t ∈ [0, T ]);

(4) The transverse field is kept fixed at h(t ) = hi, while the
system is put in contact with a cold reservoir at β−1

c for a finite
time τ = γ /2 and allowed to equilibrate with it.

A sketch of this cycle is shown in Fig. 3, where the ther-
malization is achieved by coupling each spin to a single local
bath at the same temperature, within the Lindblad framework
(see Appendix A for details).

In Ref. [34] it has been shown that for this choice of the
quench parameters with h f > hi (details in Appendix C),

FIG. 3. Sketch of the Ising quantum Otto cycle consisting of four
strokes: (1) forward adiabatic (increase of the transverse field), (2)
hot isochoric (thermalization with the hot reservoir), (3) backward
adiabatic (decrease of the transverse field), and (4) cold isochoric
(thermalization with the cold reservoir). Note that in the thermaliza-
tion strokes, each spin is assumed to be coupled to a single bath at
the same temperature βh/c in such a way that thermalization to that
nominal temperature βh/c is guaranteed [42].

in the ideal case this engine can operate both as a heat
engine and as a refrigerator, and that the emergence of
criticality in the many-body medium may play an important
role in determining the performance. Below we relax the
assumption of ideal thermodynamic transformations (which
would require an infinite operational time and represents
an unrealistic condition corresponding to zero power) and
discuss the cases where the quantum adiabaticity regime is
not occurring in strokes 1 and 3.

A. Perfect thermalization

Following the results of Sec. IV C, it is straightforward to
derive the expressions for the heat exchanged and the work
performed under the assumption of perfect thermalization
strokes (2 and 4) but quantum nonadiabatic transformations:

Qreal
h =

∑
k

ωk (h f ) f̃ [βh, ωk (h f )] − ω̃k (h f ) f̃ [βc, ωk (hi )],

Qreal
c = −

∑
k

ω̃k (hi ) f̃ [βh, ωk (h f )] − ωk (hi ) f̃ [βc, ωk (hi )],

W real =
∑

k

{[ωk (h f ) − ω̃k (hi )] f̃ [βh, ωk (h f )]

− [ω̃k (h f ) − ωk (hi )] f̃ [βc, ωk (hi )]}, (66)

where f̃ [βh(c), ωk (h f (i) )] ≡ f [βh(c), ωk (h f (i) )]−1/2 and
ω̃

f (i)
k = H̃ f (i)

kk , as defined in Sec. IV C. Note that
W real = Qreal

h + Qreal
c , since the perfect thermalization strokes

reset the system state to the thermal one. We can thus define
the power of the engine as

P real = W real

δ + γ
. (67)

In Fig. 4 we show numerical results for the work (a) and
the power output (b) of an engine made of N = 50 spins
and operating between temperatures β−1

h = 1 and β−1
c = 0.5,
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FIG. 4. (a) The work performed by an imperfect Ising quantum
Otto engine with N = 50 spins operating between two reservoirs
at temperature β−1

h = 1 and β−1
c = 0.5. The quench amplitude is

hf − hi = 0.5. Different colors refer to various quench velocities. We
observe a more pronounced dependence on δ for quenches crossing
the critical point (dotted line). (b) The corresponding power output
for the same parameters of (a). The plot is obtained by assuming a
thermalization time γ = 5. We note that in the ferromagnetic phase
the power exhibits a nonmonotonic behavior in δ.

for a fixed quench amplitude h f − hi = 0.5. Unless specified
otherwise, in the following all simulations have been per-
formed with these parameters. Data are plotted against the
initial transverse field hi, while the various curves refer to
different quench durations δ. To evaluate the power, we fix a
thermalization time of γ = 5 so that, according to Eq. (62),
ξ (1) ≈ 5 × 10−5. Under the assumption of J = 1, this is
sufficient to achieve a nearly perfect thermalization for the
working medium; therefore here the isochoric transformations
can be considered ideal, although occurring in a finite time γ .

An important emerging feature is the sensitivity of the
work on the quench duration δ for quenches occurring in
proximity to the critical point h = 1 (marked by the dotted
line), such that hi � 1 and h f � 1. For the selected range
of δ ∈ [10, 200], this marked dependence disappears when
operating entirely in the paramagnetic phase (hi > 1), due
to considerably larger values of the relevant energy gaps;
in fact, a phenomenology similar to what we observe for h
crossing the critical point can be recovered when considering
much faster quenches (δ  10), becoming comparable with
the spectral gap (we checked that for hi ≈ 1.5, one should

FIG. 5. Power (yellow curve) and work (green curve), evaluated
at hi = 0.76, vs δ (cf. data in Fig. 4). While the work grows monoton-
ically with the quench duration, the power exhibits a nonmonotonic
behavior.

take δ ∼ 1 to detect a clear sensitivity in δ on the scale of
the figure).

Focusing on the region hi � 1 and for sufficiently large
values of δ � 12, we can identify the value hi ≈ 0.76 as the
position of the so-called critical peak, defined as the maximum
value assumed by W real or by P real in the region hi < 1 [34].
Besides that, both the initial field hi and the quench velocity
δ may modify the operation regime of the engine (W < 0,
for hi smaller than a given threshold which depends on δ);
in fact, the energy wasted in excitations could prevent the
engine from producing work, i.e., the system dissipates so
much energy that one would have to perform work on it in
order to operate the cycle. Moreover, while curves for the
work in Fig. 4(a) are monotonic in the quench duration, those
in Fig. 4(b) exhibit different scalings with δ, suggesting the
existence of an optimal working point that maximizes the
power delivered by the engine.

To further investigate this feature, in Fig. 5 we plot the
value of the work (green curve) and of the power (yellow
curve) evaluated at the critical peak (hi = 0.76) as a function
of δ. These data display a clear nonmonotonicity of the power,
contrary to the monotonic behavior of the work. Different pa-
rameters (i.e., quench amplitudes, reservoir temperatures, and
sizes of the medium) do not qualitatively alter this scenario,
although the work and power output at the optimal working
point generally depend on the size of the energy gaps that are
relevant to the unitary dynamics [50].

B. Nonperfect thermalization

We now relax the hypothesis of perfect thermalization. In
this case, in the asymptotic regime we find that

Qreal, n-th
c = Tr

[
H f

d (Λ1,T − Λ2)
]
,

Qreal, n-th
h = Tr

[
Hi

d (Λ2,T − Λ1)
]
,

W real, n-th = Qc + Qh, (68)

where the trace is over the 2N degrees of freedom of the
Bogoliubov matrices. Analogously to what was done in
the previous sections, we introduce the power of the real
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FIG. 6. Work performed by the Ising Otto engine vs the ther-
malization time for different quench durations. Data are for N = 50
spins, hi = 0.76, β−1

h = 1, and β−1
c = 0.5.

unperfected thermalized engine

P real, n-th = W real, n-th

δ + γ
. (69)

Equations (68) for the stationary heat and the work cannot
be expressed analytically. However, we can exploit Eq. (60)
to obtain an approximate expression for the correlation ma-
trix that is suitable for numerical computation. In particular,
we can stop at order K , knowing we are making an error
ε < 8Nξ (K + 1) for work and ε < 4Nξ (K + 1) for heat,
where ξ (K + 1) is defined in Eq. (62). This approximation
breaks down when the modulus of the work computational
derived is of order Nξ (K + 1); in this case we cannot
be sure that we are neglecting relevant terms, while for
|W | � 8Nξ (K + 1) the approximation works.

In Fig. 6 we show the work performed by the engine
at the critical peak [51] as a function of the thermalization
time γ and for different quench durations δ. Curves are all

monotonic, both in δ and in γ , and exhibit a fast (exponen-
tial) convergence to the asymptotic value obtained for the
ideal thermalization (although the thermalization timescale γ

obviously depends on the system-bath coupling details—see
Appendix A). This implies a nonmonotonic behavior of the
power with δ and γ , similarly to the case of quantum nona-
diabatic transformations and perfect thermalization discussed
in Sec. V B. Note also that imperfect thermalization strokes,
especially for very fast quenches, can influence the operation
modes as well.

The corresponding power per spin is plotted in Fig. 7 (color
scale) as a function of δ and γ , for various sizes of the working
medium (the mapped Kitaev chain): N = 20 (a), N = 30 (b),
and N = 50 (c). In each panel the blue dots locate the position
of the local maximum for fixed δ, while the red dot indicates
the global one. The data in the bottom-left corner, below
the white points, refer to a region of the parameter space in
which the Otto cycle is not operating as a heat engine, and
therefore it should not be considered. A comparison between
the three panels reveals that the system size basically affects
the absolute value of the power output, which is maximized
for small N . This is in agreement with the fact that, at criti-
cality, the energy gap closes with the system size and thus the
work extraction for large N is affected by fast quenches. The
functional form of the power (and, consequently, the location
of the maxima) with δ and γ seems to be independent of N .
Finally, the edge of the operation modes, when increasing the
system size, slightly moves towards smaller δ and larger γ .

We notice that even though some nonmonotonicity in γ

emerges, this is not as relevant as for the case discussed in
Fig. 5, suggesting that the role played by the thermalization
time in the optimization of the power output is marginal. This
is not surprising when considering that the thermalization
timescale is smaller than the time needed for implementing
the adiabatic sweep. In our analysis we assumed J = 1; of
course, a different choice (corresponding to an alternative
modeling of the thermal reservoirs and of their coupling to
the working substance, see Appendix A) would have lead to

FIG. 7. Contour plot of the power per spin for the nonideal quantum Ising Otto engine, as a function of δ and γ , for hi = 0.76, β−1
h = 1,

and β−1
c = 0.5. We adopted a logarithmic color scale to better appreciate variations in the parameter space. The three panels refer to different

lengths of the quantum Ising model (i.e., of the mapped Kitaev chain): N = 20 (a), N = 30 (b), and N = 50 (c). The blue dots indicate, for
any δ, the value of γ at which the maximum of the power occurs. The red dot locates the global maximum of the power output. Data in the
bottom-left corners, below the white dots, are not significant since they correspond to a parameter range where the system is not operating as
a heat engine.
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different thermalization timescales, thus quantitatively modi-
fying the analysis of the performances of the engine.

We mention that the analysis performed so far for the heat
engine could be repeated for the refrigerator mode as well.
In the perfect thermalized case, we expect the coefficient of
performance (i.e., the ratio between the heat absorbed from
the cold bath Qc and the work done on the system |W |) to be
maximized by ideal quantum adiabatic processes, as for the
heat engine. On the other hand, for Qc the analysis is more
complicated; in fact, it does not depend on the velocity of the
quench in which h increases but only on the velocity of the
other quench. Therefore the heat absorbed in time from the
cold bath should have a monotonic behavior with the duration
of the quench in which h increases (better results for sudden
quenches) and a nonmonotonic behavior with the duration of
the quench in which h decreases.

VI. CONCLUSIONS

In this work we analyzed the performances of an imperfect
quantum many-body Otto engine based on a free fermion
medium. After recalling the basic concepts of quantum ther-
modynamics and some properties of quadratic fermionic
systems, we briefly discussed the isothermal, the isochoric,
and the adiabatic (unitary) transformation in this context. We
derived analytic expressions for heat and the work exchanged
when such transformations are performed under the hypothe-
ses of perfect thermalization and quantum adiabaticity. Then
we considered isochoric and unitary transformations in which
these hypotheses of ideality are violated (i.e., nonperfect
thermalization due to a finite-time contact with an external
thermal bath, or nonperfect quantum adiabaticity due to a
finite speed in the variation of the Hamiltonian control pa-
rameter). Applying our machinery to the case of a nonperfect
quantum Otto cycle, we have extended results of Ref. [34],
finding that while the work performed is always maximized
in the ideal engine, the power output exhibits a nonmono-
tonic behavior with the thermalization time τ = γ /2 and the
quench time T = δ/2, suggesting the existence of an optimal
working point in the (τ, T ) parameter space.

A possible extension of this research is directed towards
a systematic characterization of quantum heat engines based
on the spectral properties of the Hamiltonian. As an example,
it could be interesting to predict analytically the operational
mode and the performances expected, as well as to derive an-
alytic conditions to identify the optimal working points once
the Hamiltonian details are provided. One could also study
quenches with a time pattern different than linear [52,53]
(e.g., in such a way that the variation of the Hamiltonian
parameters are faster far from criticality and slower near to it)
or more complicated approaches favoring adiabatic dynamics
[54]. These kinds of schemes may help to increase the power
of the engine and thus change its optimal working point.

As a future perspective, it would be also tempting to
generalize our results to working media composed of truly
interacting quantum many-body systems. This may represent
an important step to understanding the role of interactions
in the work extraction process. Moreover, even though here
we mainly focused on the average values of work and
power, additional important information can be obtained by

characterizing the fluctuations of the observed quantities (both
for the ideal and for the real scenario) in order to determine
whether these kinds of engines can be practically useful for
the work production [55–58]. Finally, one could investigate
alternative strategies to enhance the engine performance by
considering a working medium coupled to non-Markovian
[59] or even nonthermal baths [5,60] (e.g., some reservoir
suitably engineered to invert the population of the system).

We hope that our analysis will serve as a guidance to
any possible experimental realizations of many-body quantum
engines that are far from being ideal. Proposals to exper-
imentally realize the Kitaev chain with arrays of coupled
superconducting quantum dots have been recently put forward
[61,62], indicating a possible strategy to build up such kinds
of devices.
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APPENDIX A: THERMALIZATION OF FREE
FERMION SYSTEMS

To perform the two isochoric transformations, we suppose
that the working medium is in contact with an environment
made of N identical thermal baths, described by a continuum
of fermionic harmonic oscillators that ensures proper ther-
malization in the asymptotic long-coupling-time limit. The
environment Hamiltonian reads

Henv =
∑

i

∫
dq εi(q) κ

†
i (q) κi(q), (A1)

with εi(q) � 0 and κ
(†)
i (q) being the annihilation (creation)

fermionic operators. We assume the baths to be independent;
therefore the reduced density matrix of the environment can
be written in the factorized form

ρenv =
⊗

i

ρith bath, (A2)

where ρith bath is the thermal density matrix describing the
ith bath at temperature β−1 (which corresponds to β−1

c and
β−1

h for the thermalization with the cold and hot reservoir,
respectively).

We assume each of the above baths to be coupled to a single
site of the chain through a quadratic, factorizable, Hamilto-
nian:

Hint =
∑

i

∫
dq gi(q) (ci + c†

i ) [κi(q) + κ
†
i (q)]. (A3)

Then we introduce the density of states of the baths

Ji(ω) ≡ π

∫
dq |gi(q)|2 δ[ω − εi(k)] . (A4)

Assuming a very large bath bandwidth with respect to the
system frequencies, one has Ji(ω) � Ji. By tracing out the
environmental degrees of freedom and imposing the Born-
Markov approximation for the baths, we derive, in the energy
eigenbasis, the microscopic Lindblad master equation for the
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reduced density matrix of the system, whose stationary so-
lution is a thermal state at temperature T [42,63]. From this
equation and under the hypothesis of no degeneracies in the
spectrum, we can analytically derive the expressions for the
Bogoliubov quasiparticle correlator at the time τ of the ther-
malization process:

〈b†
kbk〉(τ ) = f (β, ωk )(1 − e−2J τ ) + 〈b†

kbk〉(0) e−2J τ ,

〈b†
kbq〉(τ ) = 〈b†

kbq〉ρ0
ei(ωk−ωq )τ−2J t ,

〈b†
kb†

q〉(τ ) = 〈b†
kb†

q〉ρ0
ei(ωk+ωq )τ−2J t ,

〈bkbq〉(τ ) = 〈bkbq〉ρ0
e−i(ωk+ωq )τ−2J t . (A5)

Note that we assumed the same density of state Ji = J for
all the local baths. The first expression coincides with Eq. (24)
with γ = 2τ , while the other expressions are the ones reported
in Eqs. (51) (in the latter, J = 1).

APPENDIX B: THERMODYNAMIC LIMIT OF THE IDEAL
ISING OTTO ENGINE

In the thermodynamic limit N → +∞, it is possible to
obtain a simple analytical expression for the eigenvalues of
Hspin:

ωk (h) = 2
√

1 + h2 − 2h cos(k), k ∈ (0, π ]. (B1)

In this limit, even though the adiabatic theorem is not valid,
because of the critical closure of the gap for h = 1, it is
instructive to study the behavior of the heat and the work per
spin, defined as

qh(c) = lim
N→+∞

Qh(c)/N, w = lim
N→+∞

W/N. (B2)

By substituting
∑N

k=1 
→ N
π

∫ π

0 dk in Eqs. (21), we find

qid
h = 2

π

∫ π

0
dk ωk (h f ) (� fk )hc , (B3a)

qid
c = − 2

π

∫ π

0
dk ωk (hi ) (� fk )hc , (B3b)

wid = 2

π

∫ π

0
dk [ωk (h f ) − ωk (hi )](� fk )hc , (B3c)

where wid = qid
h + qid

c , while the ratio in Eq. (23) becomes

rk (hi, h f ) =
√

1 + h2
i − 2hi cos(k)

1 + h2
f − 2h f cos(k)

. (B4)

Now, taking the derivative of the square of the ratio,

∂r2
k (hi, h f )

∂k
= 2(h f hi − 1)(h f − hi ) sin(k)[

1 + h2
f − 2h f cos(k)

]2 , (B5)

and using the fact that hi < h f for construction, we obtain that
if hi > h−1

f then ∂kr2
k (hi, h f ) > 0; otherwise, ∂kr2

k (hi, h f ) < 0.

So, if hi > h−1
f , then rk (hi, h f ) is an increasing function for

k ∈ (0, π ], and plugging the dispersion relation in Sec. IV A,
we have

(1) for rk→0+ (hi, h f ) ≡ |1−hi|
|1−h f | >

βh

βc
the system is a heat

engine;

FIG. 8. Operating modes of the ideal Ising Otto engine
in the thermodynamic limit (N → ∞) and for fixed β−1

h = 1,
hf − hi = 0.5. The color code indicates the operating mode: orange
stands for a thermal accelerator, green for a heat engine, red for a
heater, and blue for a refrigerator. All the four modes are possible, as
shown numerically for finite N , in Ref. [34]. The dashed and dashed-
dotted lines represent, respectively, the equations |1 − hi|/|1 − hf | =
βh/βc and (1 + hi )/(1 + hf ) = βh/βc. The intersection point is the
Carnot point. The area in between the white portions of such lines
is a parameter subspace in which the system can only operate as a
refrigerator; the area under the black portions of such lines is where
the system can operate either as a heat engine or a heat accelerator.

(2) for rk=π (hi, h f ) ≡ 1+hi
1+h f

<
βh

βc
the system is a

refrigerator.
On the other hand, if hi < h−1

f , then rκ (hi, h f ) is a decreas-
ing function for k ∈ (0, π ], and thus we have

(1) for rk=π (hi, h f ) ≡ 1+hi
1+h f

>
βh

βc
the system could be a

heat engine or a thermal accelerator;
(2) for rk→0+ (hi, h f ) ≡ |1−hi|

|1−h f | <
βh

βc
the system is a refrig-

erator.
The remaining case hi = h−1

f is a special point, since
in that case rk is constant (rk = hi). This allows us to
say that for βh/βc < hi < 1, the system is a heat engine,
while for hi < βh/βc it performs as a refrigerator. The point
hi = h−1

f = βh/βc is called a Carnot point, since in that case
no work is produced nor is the heat exchanged, and the effi-
ciency of the engine saturates the Carnot bound.

Figure 8 shows a contour plot of the modes in which the
Ising Otto engine in the thermodynamic limit can operate as a
function of the initial field strength hi and of the cold reservoir
temperature β−1

c , while we fix β−1
h = 1 and h f − hi = 0.5

(see caption). This complements the numerical analysis per-
formed in Ref. [34] for finite values of N , since it is obtained
with a fully analytic approach and by directly accessing the
thermodynamic limit.

APPENDIX C: WORK IN THE ISING OTTO ENGINE

In this section we comment on the order of the adiabatic
strokes that is necessary to obtain an Otto engine that can
produce useful work. For classical engines, in which the work
is univocally associated to a variation of mechanical energy,
the situation is rather intuitive: the cold working medium is
adiabatically compressed and then warmed up in order to
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FIG. 9. (a) Behavior of M(h) as a function of the transverse field
h for β−1 = 0.1 (blue curve) and β−1 = 0.5 (red curve). (b) Inset
of panel (a) for quench from hi = 0.25 to hf = 0.5. The arrows
represent in which direction the transverse field must be varied at any
temperature to perform, by implementing sequentially the two trans-
formations, the total work represented by the shaded area. (c) The
same as panel (b) for quench from hi = 1 to hf = 1.5.

further increase the energy that is released during the adiabatic
expansion, thus producing work. This order can be quite easily
extended to the case of few-body quantum engines (e.g., a
collection of noninteracting qubits, as in Ref. [10]), in which
the adiabatic compression (expansion) corresponds to a com-
pression (expansion) of the spectrum of the system.

The situation becomes more involved when considering
many-body quantum systems, since finding a way to stretch
or compress the full eigenspectrum is not obvious. We thus
call a compression (an expansion) any quench that increases
(decreases) the internal energy of the system. In quantum
heat engines the work can be associated to a variation of
some physical quantity that is not necessarily the mechanical
energy. As a consequence, one does not need to keep the order
of the transformations unaltered, and, on the contrary, it can
also be reversed.

As an example, let us consider the Ising quantum engine. In
this case the work is associated to a change of the magnetiza-
tion M(h) (see Refs. [64,65]). Hence, the work performed by
the Ising chain during a quasistatic isothermal transformation
at a fixed temperature β−1 can be evaluated according to
Eq. (16):

W =
∫ h f

hi

dh M(h), with M(h) ≡ −∂F
∂h

. (C1)

In Fig. 9(a) we show the function M(h) for two different tem-
peratures β−1 = 0.1 (blue curve) and β−1 = 0.5 (red curve)

versus the transverse field. If h is varied from smaller to larger
values, the work performed during the transformation is the
area beneath such curves. If the transformation is performed
backward, the work acquires a minus sign, as discussed previ-
ously.

We now consider a sequence of four transformations im-
plementing a Carnot cycle: a forward quasistatic variation of
the transverse field while the system is in thermal equilibrium
at β−1

1 , a thermalization with the bath at temperature β−1
2 ,

a backward quasistatic variation of h while the system is in
thermal equilibrium at β−1

2 , and a thermalization with the bath
at temperature β−1

1 . The total work of such an engine is the
sum of the works performed along the two adiabatic strokes.
Therefore, the temperatures β−1

1 and β−1
2 must be chosen in

order to follow the curves clockwise. As an example, if the
Hamiltonian parameter is varied from hi = 0.25 to h f = 0.5,
as in Fig. 9(b), the only possible choice is β−1

1 = 0.5 and
β−1

2 = 0.1. Conversely, considering a quench from hi = 1 to
h f = 1.5, as in Fig. 9(c), one should choose β−1

1 = 0.1 and
β−1

2 = 0.5. In both figures the shaded area represents the work
performed by the engine.

For a generic fermionic quadratic system as the one in
Eq. (5), the order to perform the cycle can be argued by
looking at the spectrum. If ω′

k (λ) � 0, ∀λ ∈ [λi, λ f ], ∀k (here
λ denotes the control parameter), the work output is positive
(produced by the system) for increasing λ, since, in the inter-
val λ ∈ [λi, λ f ],

−∂F
∂λ

=
∑

k

ω′
k (λ)

[
1

2
− f [β, ωk (λ)]

]
> 0. (C2)

Besides this, we have that

− ∂

∂β

∂F
∂λ

=
∑

k

ω′
k (λ)[ωk (λ)eβωk (λ) f 2[β, ωk (λ)]] > 0,

(C3)

where we used the fact that ωk (λ) > 0 ∀k. Equation (C3)
proves that the work produced is larger at small temperatures.
As a consequence, the order of the cycle should follow that in
Fig. 9(c), in which the forward adiabatic transformation is per-
formed at βc. If, on the other hand, ω′

k (λ) � 0, ∀λ ∈ [λi, λ f ],
∀k, using the same arguments as in the latter case, we con-
clude that to produce work, the order of the transformations
must be reversed.

Even though, to simplify the discussion, here we have only
considered quasistatic transformations (instead of the adia-
batic processes for the Otto cycle, we adopted the isotherm
processes for the Carnot cycle), we can use the above re-
sults to gain some insights for the adiabatic transformation
of the quantum Otto Ising cycle as well. In particular, since
W ad � W iso, a necessary condition for the Otto cycle to oper-
ate as a heat engine is that the Carnot cycle operating between
the same temperatures (β−1

c , β−1
h ) produces work. For exam-

ple, in Fig. 4, to obtain an operative heat engine for quenches
of the Ising chain from hi ∈ [0.5, 2] to h f = hi + 0.5, we have
chosen as the initial temperature β−1

1 ≡ β−1
c = 0.5.
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