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Page curve entanglement dynamics in an analytically solvable model
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The entanglement entropy of black holes is expected to follow the Page curve. After an initial linear increase
with time the entanglement entropy should reach a maximum at the Page time and then decrease. This paper
introduces an exactly solvable model of free fermions that explicitly shows such a Page curve: The entanglement
entropy vanishes asymptotically for late times instead of saturating at a volume law. The bending down of
the Page curve is accompanied by a breakdown of the semiclassical connection between particle current and
entanglement generation, a quantum phase transition in the entanglement Hamiltonian and nonanalytic behavior
of the q → ∞ Rényi entropy. These observations are expected to hold for a larger class of systems beyond the
exactly solvable model analyzed here.
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I. INTRODUCTION

The study of entanglement properties has become an im-
portant tool across many fields of physics from condensed
matter physics to quantum information theory and black hole
physics, bringing about remarkable and fruitful connections
between these different fields. One example is the universal
area law for ground states of local Hamiltonians [1], which is,
e.g., central for computational matrix product methods [2] and
also for holography [3]. Likewise, in nonequilibrium much
can be learned from the entanglement dynamics: Generically,
the entanglement entropy of ergodic systems grows linearly in
time until it saturates at a value given by the volume law for
excited states. For systems with well-defined quasiparticles
the underlying mechanism for this behavior is the local gener-
ation of entangled pairs of quasiparticles, whose propagation
leads to entanglement of separate spatial regions [4]. While
the general validity of this behavior has been confirmed by
many analytical and numerical studies (see, e.g., Ref. [5]),
even for systems with diffusive energy transport [6], a long-
standing debate in black hole physics centers around the very
different entanglement dynamics described by the Page curve
resulting from the decay of a black hole.

The first part of the Page curve, which shows a linearly
increasing entanglement entropy up to the Page time, is
perfectly consistent with the above picture: Hawking’s semi-
classical calculation in 1975 [7] established the production
of particle pairs at the event horizon, with one particle es-
caping to infinity and generating black-body radiation with
the Hawking temperature. The other particle from the pair
falls into the singularity and reduces the mass of the black
hole. The entanglement of these particle pairs leads to linearly
growing entanglement between the black hole and the envi-
ronment (or, equivalently, the Hawking radiation). However,
as pointed out by Page [8,9], once the black hole has decayed
to about half its original mass, there are not enough degrees
of freedom left in the Hilbert space of the black hole to let
the entanglement increase even more. In fact, at this so-called
Page time the entanglement has to decrease again. If one

assumes that the black hole initially formed in a pure state,
then the entanglement entropy ultimately has to vanish once
the black hole completely decays. This behavior is inconsis-
tent with Hawking’s semiclassical calculation and clearly is
also different from the generic nonequilibrium behavior of a
quantum many-body system after a quench discussed above.

Reproducing the Page curve in a fundamental theory of
quantum gravity constitutes one of the major challenges in
black hole physics [10,11]. The main problem is the observa-
tion that the bending down of the Page curve occurs at a time
when the black hole can still be huge and therefore curvature
at the event horizon is small enough for Hawking’s semi-
classical calculation in curved space-time to be trustworthy.
In other words, the bending down of the Page curve occurs
on a scale at which one expects to understand the relevant
laws of nature at the event horizon. This fundamental conflict
between the expected bending down of the Page curve and the
semiclassical calculation underlies the Hawking information
paradox [10,11], and there have been many attempts to resolve
it: nonunitarity [12], small corrections [13], fuzzballs [14],
firewalls [15], and, most recently, the island formula [16,17]
and nonisometric codes [18].

Motivated by this state of affairs, this paper introduces a
simple exactly solvable free fermion system plus environment
model that shows Page-curve-like entanglement dynamics.
This is interesting from a condensed matter point of view
because, as explained above, such entanglement behavior is
different from the generic picture [4–6]. In fact, the dynamics
turns out to be quite intriguing after the equivalent of the Page
time defined as the maximum of the entanglement entropy
curve. This exemplifies the difficulty of using nonrigorous ar-
guments for a quantity as subtle as the entanglement entropy.
Interestingly, the Page curve dynamics of our model is tied to
a quantum phase transition of the entanglement Hamiltonian
and nonanalytic behavior of the q → ∞ Rényi entropy at a
critical time preceding the Page time. In addition, the asymp-
totic quantum state in the environment has properties which
cannot be generated by conventional quench protocols. With
respect to black hole physics this paper makes no claim to
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FIG. 1. System S coupled to environment E . The emptying of
the system into the environment leads to Page curve entanglement
dynamics.

contribute to the fundamental issue of the Hawking informa-
tion paradox, although there are some intriguing parallels that
will be discussed below.

System plus bath quantum many-body models with ran-
dom unitaries that generate a Page curve were previously
discussed in Refs. [19,20]. A model somewhat similar to
the one in this paper was used in Ref. [21]; however, it
yields discontinuous behavior at the Page time and not an
actual bending down of the curve. Recent holographic calcula-
tions using the island formula established that this framework
describes Page curve physics, although the entanglement en-
tropy becomes constant instead of bending down at the Page
time [22–24]. The phenomenon of quantum distillation intro-
duced in Ref. [25] leads to a decreasing entanglement entropy,
but for different reasons than Page curve physics, which is the
focus of this paper.

II. MODEL

We consider a free fermion chain, where the first M lattice
sites are thought of as a system S ,

Hsys = tsys

M−1∑
i=1

(c†
i ci+1 + H.c.), (1)

which is weakly coupled to a large environment E with N �
M sites,

Henv = tenv

N−1∑
i=1

( f †
i fi+1 + H.c.), (2)

via

Hc = g(c†
1 f1 + f †

1 c1), (3)

with the coupling constant g. The full Hamiltonian is

H = Hsys + Henv + Hc, (4)

and in the initial state the system S is completely filled, and
the environment E is empty (Fig. 1),

|�(0)〉 =
M∏

i=1

c†
i |�〉. (5)

Here |�〉 is the vacuum.
The total Hilbert space can be decomposed into system and

environment sites, H = Hsys ⊗ Henv, and we will study the
entanglement entropy with respect to this decomposition. The
total state of system plus environment remains pure for all
times, and therefore, the von Neumann entanglement entropy

is given by

S(vN)(t ) = −TrHenv [ρenv(t ) ln ρenv(t )]

= −TrHsys [ρsys(t ) ln ρsys(t )], (6)

with the reduced density operators ρenv(t ) =
TrHsys |�(t )〉〈�(t )| and ρsys(t ) = TrHenv |�(t )〉〈�(t )|. The
calculation in this paper targets ρsys(t ), for which one has the
following intuitive argument why Page-curve-like behavior is
expected: The initial particle imbalance between the system
S and the environment will lead to a decay of the number of
particles in the system,

m(t )
def= 〈�(t )|

(
M∑

i=1

c†
i ci

)
|�(t )〉. (7)

Initially, m(0) = M, and after a short transient one expects
a constant current ṁ(t ) = I , which can be thought of as the
production of particle-hole pairs at the boundary between
the system and the environment: The holes travel into the
system S , and the particles travel into the environment E .
Semiclassically, particle current and entanglement generation
are proportional to one another [4], so this leads to linear
entanglement growth with a proportionality factor set by the
particle current I . At late times the particles will be spread out
approximately evenly through the system S and environment
E , yielding

lim
t→∞ m(t ) ∝ M2

M + N
, (8)

which vanishes for N � M2. Notice that, strictly speaking,
the long-time limit in (8) requires additional averaging over
a suitable time window in order to suppress fluctuations, but
this detail plays no role in the following. Since the system S
empties completely for N � M2, the quantum state necessar-
ily has a product structure at late times,

|�(t )〉 = |�sys〉 ⊗ |�env(t )〉, (9)

and therefore vanishing entanglement. This shows why Page
curve entanglement dynamics should be expected for this
model.

A more complete picture can be deduced from the obser-
vation that at any given time one can approximately replace
Hsys with the Hilbert space H(eff)

sys for m(t ) spinless fermions
on M lattice sites with

dim H(eff)
sys =

(
M

m(t )

)
. (10)

This approximation leads to

S(vN)(t ) � ln dim H(eff)
sys ≈ m(t ) ln

(
M

m(t )

)

+ [M − m(t )] ln

(
M

M − m(t )

)
, (11)

where we have used the Stirling approximation. This trivially
reproduces the short- and long-time limits and is consistent
with the entanglement entropy being largest when the system
S is half full like for the Page curve. Notice that the under-
lying argument of replacing Hsys with H(eff)

sys is not rigorous
since it neglects fluctuations around the expectation number
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of particles in the system m(t ). However, for our model (4)
we are able to calculate the entanglement entropy exactly and
confirm the intuitive picture developed here.

III. NUMERICAL SOLUTION

The exact calculation of the entanglement entropy relies on
the formalism developed by Eisler and Peschel for obtaining
the reduced density operator for fermionic or bosonic bilinear
Hamiltonians [26]. If this formalism is applied to our model,
we have

ρsys = K exp

⎛
⎝−

M∑
i, j=1

hi jc
†
i c j

⎞
⎠, (12)

with the matrix h determined by the one-particle correlation
matrix Ci j = 〈c†

i c j〉 via

h = ln((1 − C)/C). (13)

The diagonalization of ρsys yields the von Neumann and
all other Rényi entanglement entropies. This formalism also
applies for bilinear nonequilibrium problems in which the
one-particle correlation matrix becomes time dependent [26],

Ci j (t ) = 〈�(0)|c†
i (t ) c j (t )|�(0)〉. (14)

We obtain the time-evolved operators c†
i (t ) and c j (t ) from

the straightforward exact solution of their Heisenberg equa-
tions of motion for the quadratic Hamiltonian H (4), which
can easily be done for N = O(104). This has already been
utilized extensively in the literature for various other one-
dimensional nonequilibrium problems [27–30].

In this paper we use parameters N = 104, M = 25–75, g =
0.35–0.8, and tenv = 4 with the overall energy scale set by the
hopping in the system tsys = 1. The main numerical limita-
tions come from particle reflection at the right boundary of
the environment chain, which travel back to the system S and
prevent a further decay of m(t ). This makes it impossible to go
to much larger values of M or smaller values of g for the given
N = 104 if one wants to see Page curve physics before finite-
size effects become noticeable. All values of the hopping
matrix elements tenv and tsys lead to Page curve physics; our
choice of tenv = 4tsys is determined by comparison with an an-
alytical approximation that becomes exact for tenv � tsys (see
the next section) and the desire to keep finite-size effects under
control (because the particles in the environment travel and
therefore reflect back faster for larger values of tenv). Finally,
the case of a homogeneous chain tsys = g = tenv is special
since it leads to a logarithmic increase of the entanglement
entropy as a function of time vs. the generic linear increase
for an inhomogeneous chain (this is well known from the
literature [29]): Since we are interested in the tunneling limit,
we use g < tsys and stay away from the special homogeneous
point.

IV. ANALYTICAL SOLUTION

The fact that the Hamiltonian (4) is quadratic allows for an
analytical solution in the weak coupling limit g 
 tsys, tenv. In
the first step one diagonalizes the system Hamiltonian Hsys,

FIG. 2. Equivalent description of the model from Fig. 1 in terms
of single-particle levels coupled to a continuum environment (15).
If condition (19) is fulfilled the single-particle levels couple to ef-
fectively disjoint environments, leading to a model of M disjoint
resonant level models (21).

which leads to an equivalent description in terms of single-
particle levels c†

k and ck coupled to the environment,

H =
M∑

k=1

ωk c†
kck +

M∑
k=1

Vk (c†
k f1 + f †

1 ck ) + Henv. (15)

One easily verifies the single-particle energies

ωk = −tsys cos

(
π k

M + 1

)
(16)

and hybridization matrix elements

Vk = g

√
2

M + 1
sin

(
π k

M + 1

)
(17)

for k = 1, . . . , M from the analytical solution of a finite chain.
In the limit N → ∞ one can describe the environment via a
continuum density of states ρ(ε). Each single-particle level
ωk therefore couples predominantly to environment states in
an energy interval around ωk set by the hybridization

	k (ωk ) = πρ(ωk )V 2
k . (18)

If the energy difference between adjacent single-particle lev-
els is much larger than the hybridization, one can think of
these single-particle levels as being coupled to disjoint en-
vironments (see Fig. 2). This condition can be satisfied for
sufficiently small coupling g even in the limit M → ∞ since

|ωk+1 − ωk| ∝ tsys

M
� 	k (ωk ) ∝ g2

M
ρ(ωk ) (19)

is true in the weak coupling limit

g 
 √
tsystenv. (20)

Strictly speaking, there is a fraction g2/tsystenv of single-
particle levels close to k = 1 and k = M where condition (19)
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does not hold since the dispersion relation (16) becomes flat,
but this is negligible in the limit (20).

Putting everything together, in the weak coupling limit (20)
our model (15) can equivalently be written as a collection of
M disjoint resonant level models (RLMs),

H (RLM)
k = ωkc†

kck +
∑

i

Vk (c†
kak,i + a†

k,ick ) +
∑

i

εia
†
k,iak,i,

(21)
with hybridization (18)

	k (ε) = 2πρ(ε) g2

M + 1
sin2

(
π k

M + 1

)
, (22)

where the operators a†
k,i and ak,i are eigenoperators of the

environment Hamiltonian (2). The reduced density operator of
the system ρsys(t ) is then the direct product of reduced density
operators of the M resonant level models

ρsys(t ) =
M⊗

k=1

ρ
(RLM)
k (t ), (23)

with

ρ
(RLM)
k (t ) =

(
nk (t ) 0

0 1 − nk (t )

)
, (24)

where nk (t ) = 〈�(t )|c†
kck|�(t )〉 is the time-dependent occu-

pation number of the impurity orbital. Initially, all impurity
orbitals are occupied, nk (t = 0) = 1, and all bath sites are
empty. As a function of time, the number of particles in the
system is given by m(t ) = ∑M

k=1 nk (t ), and the entanglement
entropy

S(vN)(t ) = −
M∑

k=1

(
nk (t ) ln nk (t ) + [1 − nk (t )] ln[1 − nk (t )]

)
.

(25)

In the wide, flat band limit tenv � tsys we can take the bath
density of states as constant ρ(ωk ) = ρ, and it is known that
the impurity orbital occupation decays purely exponentially in
this wide, flat band limit [31,32]

nk (t ) = e−2	kt . (26)

For large systems M � 1 one arrives at

m(τ )

M
= 1

π

∫ π

0
dk nk (τ ), (27)

S(vN)(τ )

M
= − 1

π

∫ π

0
dk

(
nk (τ ) ln nk (τ )

+[1 − nk (τ )] ln[1 − nk (τ )]
)
, (28)

where

nk (τ ) = e−τ sin2 k, (29)

with the dimensionless parameter

τ = 4πρg2t/M. (30)

Equations (27)–(29) allow us to plot the entanglement en-
tropy as a function of the fractional decay of the system,
S(vN) = S(vN)(m/M ), such that the parameters g and ρ drop
out. The resulting curves (shown in the next section) display

FIG. 3. Decay of the number of particles m(t ) in the system S
as a function of time (top: linear scale, bottom: logarithmic scale).
The universal behavior after rescaling with M implies a finite cur-
rent I (t ) = ṁ(t ) across the boundary for large systems M → ∞
(always keeping the environment even larger, N � M2). Parameters:
tenv = 4, tsys = 1, g = 0.5, N = 104.

the universal behavior in the limit tenv � tsys � g, N, M → ∞
while keeping N � M2.

V. ENTANGLEMENT ENTROPY

Starting from the initial state (5), the system S starts to
empty, as can be seen in Fig. 3, obtained with the numer-
ical solution of the Heisenberg equations of motion. Based
on the discussion of (11), we therefore expect to see Page
curve entanglement dynamics. Figure 4 is obtained with the
numerical solution following the Eisler-Peschel formalism
described above and clearly exhibits this behavior: The en-
tanglement entropy increases approximately linearly at early
times, reaches its maximum at the Page time tP ∝ M, and then
decays again. The entanglement entropy at the Page time is
proportional to the system size, S(vN)(tP)/M ≈ 0.53 ± 0.02.
The proportionality factor is smaller than the Page value ln 2
[8], which is to be expected for a noninteracting system.

Notice that there is no discernible feature at the Page time
in observables like the number of particles in the system m(t )
(Fig. 3). One cannot deduce anything about the bending down
of the entanglement entropy from m(t ) or the particle current
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FIG. 4. Von Neumann entanglement entropy as a function of
time (top: linear scale, bottom: logarithmic scale). The Page curve
behavior is clearly visible with the Page time tP ∝ M and S(vN)(tP ) ∝
M. Parameters: tenv = 4, tsys = 1, g = 0.5, N = 104.

across the boundary I (t ) = ṁ(t ). This also demonstrates the
breakdown of the semiclassical connection between the parti-
cle current and entanglement generation [4]

dS(vN)(t )

dt
∝ I (t ) (31)

beyond the Page time. Due to the highly entangled state that
has dynamically developed up to the Page time, one can no
longer treat particle-hole production at the boundary as lead-
ing to a maximally entangled pair that is not entangled with
other particles.

Since the Page time depends on the coupling g between
the system and the environment, a universal way to depict the
Page curve in our model is to plot the entanglement entropy
as a function of the fraction of particles emitted into the envi-
ronment, 1 − m(t )/M. The corresponding curves for different
values of g are shown in Fig. 5. Specifically, one can observe
that the numerical results agree very well with the analytical
universal curve from Eqs. (27)–(29) (dashed line) for small
values of g.

The remaining deviations at late times are due to the
finiteness of the environment in the numerical simulations:
Each eigenmode of the system effectively couples to N 	k/tenv

modes in the environment, leading to a proportionality factor
(tenv/g)2 in (8). This implies that the exponential decay (26)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1-m(t)/M

S
(v

N
)  /

 M

g=0.80

g=0.65

g=0.50

g=0.35

RLM

FIG. 5. Von Neumann entanglement entropy as a function of the
fraction of particles that have been emitted into the environment
for various system-environment couplings g (3). The curves become
universal in the weak-coupling limit g → 0 and approach the analyt-
ical result from the disjoint resonant level model description (dashed
line). Parameters: tenv = 4, tsys = 1, M = 50, N = 104.

persists only up to a finite residual occupation scaling like
(tenv/g)2 × M/N , which in turn shifts the finite-N entangle-
ment curves above the RLM result. Going to even larger
values of N decreases these small deviations but becomes
numerically expensive and does not provide insights which
seem to justify this effort.

Page curve behavior is also visible in all Rényi entropies

S(q) = 1

1 − q
ln TrHsys (ρsys)q. (32)

This is depicted in Fig. 6 for the purity S(2)(t ) and in
Fig. 7 for the min-entropy S(min)(t ) = limq→∞ S(q)(t ). For
q → 1 one obtains the usual von Neumann entanglement en-
tropy S(vN)(t ) = limq→1 S(q)(t ). Notice that the min-entropy
is determined by just the largest eigenvalue of the Schmidt

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

1-m(t)/M

S
(2

)  /
 M

g=0.80

g=0.65

g=0.50

g=0.35

RLM

FIG. 6. Purity S(2) as a function of the fraction of particles
that have been emitted into the environment for various system-
environment couplings g. The dashed line is the analytical result
from the disjoint resonant level model description. Parameters:
tenv = 4, tsys = 1, M = 50, N = 104.

224308-5



STEFAN KEHREIN PHYSICAL REVIEW B 109, 224308 (2024)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

1-m(t)/M

S
(m

in
)  /

 M

g=0.80

g=0.65

g=0.50

g=0.35

RLM

FIG. 7. Min-entropy S(min) as a function of the fraction of par-
ticles that have been emitted into the environment for various
system-environment couplings g. The dashed line is the analytical
result from the disjoint resonant level model description. The arrows
mark the critical time with nonanalytic behavior of the min-entropy
in the respective curve. Parameters: tenv = 4, tsys = 1, M = 50,

N = 104.

decomposition,

S(min)(t ) = − ln λ1(t ), (33)

with

|�(t )〉 =
M∑

i=1

√
λi |φsys,i(t )〉 ⊗ |�env,i(t )〉 (34)

and λ1 � λ2 � · · · � λM . Interestingly, the min-entropy be-
comes nonanalytic at the time indicated by the arrows in
Fig. 7. This will be discussed in detail in the next section.

VI. NONANALYTIC BEHAVIOR OF S(min)

The nonanalytic behavior of S(min) at a critical time (or,
equivalently, at a critical filling) is difficult to discern from
Fig. 7. However, it can easily be deduced from analyti-
cal considerations. Let us first analyze the disjoint resonant
level model description. Equations (24) and (33) imply, for
large M,

S(min)(τ )

M
= − 1

π

∫ π

0
dk ln[max(nk (τ ), 1 − nk (τ ))]. (35)

This function is plotted in Fig. 8. For τ � τ ∗ = ln 2 one has
nk (τ ) � 1/2 for all k ∈ [0, π ], and therefore,

S(min)(τ )

M
= τ

2
. (36)

For τ > τ ∗ one has instead 1 − nk (τ ) � 1/2 for the inter-
val Iempty of k values centered around π/2 (bottom panel of
Fig. 8) because the decay rates 	k are largest in the middle of
the band,

Iempty = {k ∈ [0, π ] | nk (τ ) < 1/2}. (37)

For τ > τ ∗ one can write

S(min)(τ )

M
= τ

2
− k(τ ), (38)

0

0.2

0.4

0.6

S
(m

in
)  /

 M

RLM

analytic cont.

ln 2

P
 = 0.871

0 0.5 1 1.5

k

0

Empty      Occupied

FIG. 8. Top: The black line shows the min-entropy S(min) of the
disjoint resonant level model description as a function of dimension-
less time τ from (30). The yellow line is the analytic continuation
based on the early time behavior according to (36). Bottom: The
dark region depicts values of the wave vector k with nk (τ ) > 1/2,;
the light region depicts values of k with nk (τ ) < 1/2.

with

k(τ ) = − 1

π

∫
Iempty

dk
(

ln nk (τ ) − ln[1 − nk (τ )]
)

(39)

= τ
1

π

∫
Iempty

dk sin2 k

+ 1

π

∫
Iempty

dk ln(1 − e−τ sin2 k ). (40)

An expansion around τ = τ ∗ + δτ = ln 2 + δτ , δτ � 0
yields

k(τ ∗ + δτ ) = k0 δτ 3/2 + O(δτ 5/2), (41)

with k0 = 8/3π
√

ln 2.
This implies that S(min)(τ ) is nonanalytic at τ = τ ∗, which

is clearly visible in Fig. 8 in the sense that the second time
derivative becomes discontinuous,

lim
τ↑τ ∗

d2

dτ 2

(
S(min)(τ )

M

)
= 0,

lim
τ↓τ ∗

d2

dτ 2

(
S(min)(τ )

M

)
= ∞. (42)

The nonanalytic behavior at τ ∗ = ln 2 marks a well-defined
dynamical transition and precedes the Page time τP defined as
the time when the entanglement entropy reaches its maximum
(notice that this definition of the Page time depends on q, so
here we are referring to q = ∞). From (27) and (28) one can
derive the corresponding fillings for comparison with Fig. 7:
m(τ ∗ )

M = 0.728 and m(τP )
M = 0.678.

While studies of the entanglement entropy often focus on
the von Neumann entanglement entropy, the min-entropy also
has an important quantum information theoretic interpreta-
tion: S(min) determines the one-shot distillable entanglement
[33] and gives the distance to the closest separable state

|D(t )〉 = |φsys(t )〉 ⊗ |�env(t )〉 (43)
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in the sense of the Fubini-Study metric [34]: If one chooses
|D(t )〉 such that |〈D(t )|�(t )〉|2 is maximized, then

− ln |〈D(t )|�(t )〉|2 = S(min)(t ). (44)

In the Schmidt decomposition (34) this means

|D(t )〉 = |φsys,1〉 ⊗ |�env,1〉. (45)

So an increasing min-entropy of |�(t )〉 as a function of time
means a larger distance to the closest unentangled state |D(t )〉.
For τ < τ ∗ the closest separable state is the one with all
resonant level modes occupied,

|φsys,1(τ )〉 =
π∏

k=0

c†
k |�sys〉, (46)

which is actually time independent for τ < τ ∗. For τ > τ ∗ the
closest separable state has the system component

|φsys,1(τ )〉 =
∏

k∈Iocc(τ )

c†
k |�sys〉, (47)

with the interval Iocc(τ ) = {k ∈ [0, π ] | nk (τ ) � 1/2}. This
means that some of the modes of the closest unentangled state
are now empty, as depicted in the bottom panel of Fig. 8.
The sudden appearance of a different closest separable state
at τ = τ ∗ is responsible for the dynamic transition and non-
analytic behavior of S(min)(τ ) at τ = τ ∗.

VII. QUANTUM PHASE TRANSITION
OF THE ENTANGLEMENT HAMILTONIAN

Another point of view of the dynamical transition at τ ∗ can
be obtained from the entanglement Hamiltonian (also called
the modular Hamiltonian) defined as

ρsys(t ) = exp[−Hent (t )]. (48)

Defining the partition function

Zent (β ) = TrHsys exp (−β Hent ) (49)

and

Fent (β ) = −β−1 ln Zent (β ), (50)

one can immediately derive from (32)

S(q) = q

q − 1
Fent (q). (51)

So the Rényi entropies can be thought of as being propor-
tional to the free energy of the entanglement Hamiltonian at
inverse temperature β = q. Therefore, the min-entropy with
q → ∞ corresponds to the zero-temperature limit and is just
the ground state energy of the entanglement Hamiltonian

S(min)(t ) = EGS
ent (t ). (52)

Hence, nonanalytic behavior of the min-entropy is equivalent
to nonanalytic behavior of the ground state energy of the
entanglement Hamiltonian, which is a quantum phase tran-
sition. Notice that because of (48) one has Z (1) = 1, which
implies EGS

ent (t ) � 0. Also one needs to be careful when taking
the limit q → 1 in (51) in order to obtain the von Neumann
entanglement entropy.

For the disjoint resonant level model it is straightforward
to derive the entanglement Hamiltonian from (24),

Hent (τ ) =
∑

k

νk (τ ) c†
kck + a(τ ). (53)

Here the single-particle energies are given by

νk (τ ) = ln(eτ sin2 k − 1), (54)

and the constant

a(τ ) = −
∑

k

ln(1 − e−τ sin2 k ). (55)

For τ < τ ∗ one has νk (τ ) < 0 for all k. Therefore, all modes
are occupied, and the ground state energy is

EGS
ent (τ ) = a(τ ) +

∑
k

νk (τ ). (56)

Once τ > τ ∗, there are unoccupied modes with νk (τ ) > 0,

EGS
ent (τ ) = a(τ ) +

∑
k:νk (τ )<0

νk (τ ). (57)

One can easily verify that (56) agrees with (36) and that (57)
agrees with (38) as expected from (52), so one has a quantum
phase transition of the entanglement Hamiltonian at τ = τ ∗.
This is accompanied by nonanalytic behavior of the particle
number in the ground state of the entanglement Hamiltonian,

mGS
ent

def= 〈GSent |
∑

k

c†
k ck | GSent〉. (58)

One has

mGS
ent (τ ) =

∑
k∈Iocc(τ )

1, (59)

yielding

mGS
ent (τ )

M
=

{
1 τ � τ ∗,
2
π

arcsin
√

τ ∗
τ

τ > τ ∗.
(60)

This expression just corresponds to the occupied region in the
bottom panel of Fig. 8. At the transition one finds

mGS
ent (τ

∗ + δτ )

M
= 1 − 2

π
√

ln 2
δτ 1/2 + O(δτ 3/2) (61)

for δτ > 0.
The entanglement Hamiltonian also allows one to identify

the critical times in the dynamics away from the small g limit
(see Fig. 7). Following Ref. [26], the single-particle energies
νi of the entanglement Hamiltonian are the eigenvalues of
h from (13), so the quantum phase transition of Hent (t ) is
determined by the first eigenvalue crossing zero since this
implies that mGS

ent (τ ) drops from M to M − 1. This is depicted
in Fig. 9, and this analysis locates the critical times and fillings
in Fig. 7.

Looking at the Page curve from the point of view of the
entanglement Hamiltonian also leads to a better understanding
of the behavior of the finite-q Rényi entropies S(q). According
to (51) these can be identified with the free energy at inverse
temperature β = q. Since the quantum phase transition of
Hent (t ) is due to level crossing between sectors with different
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FIG. 9. Single-particle energies νi of the entanglement Hamilto-
nian as a function of time. The overall trend is that the single-particle
energies become larger for later times since this corresponds to
the emptying of the system into the environment. The top panel
shows a zoomed-in plot in which one can more clearly see when the
first eigenvalue crosses zero (marked by red arrow), corresponding
to the quantum phase transition of Hent (t ). Parameters: tenv = 4,

tsys = 1, g = 0.5, M = 50, N = 104.

particle numbers, nonanalytic behavior occurs only at zero
temperature, that is, in the min-entropy. All the finite-q Rényi
entropies remain analytic at all times, with the nonanalytic
behavior at the critical time emerging in the zero-temperature
(q → ∞) limit. So while the critical behavior of S(min) does
not extend to finite q [35], the bending down of the finite-q
entanglement entropies can continuously be traced back to
the quantum phase transition at q = ∞ and the nonanalytic
behavior of the ground state particle number (60).

VIII. LOW-ENERGY VARIANCE STATES

Behavior related to the Page curve can also be seen in the
energy variance of the environment Hamiltonian (2),

�H2
env(t )

def= 〈(Henv − 〈Henv〉t )
2〉t . (62)

Here 〈· · · 〉t indicates that the expectation value is taken with
respect to the state at time t , 〈O〉t = 〈�(t )|O|�(t )〉. �Henv(t )
is indicative of the number of eigenstates that contribute to
the state in the environment. It can vanish only if the environ-
ment is in an eigenstate of Henv. Generically, for independent
unentangled particles the variance �H2

env is proportional to
their number. Interestingly, this is very different in our model,
where we generate a low-variance state with �H2

env(t ) ∝
O(M0) for t → ∞. The argument for this is similar to the
one for the Page curve: The variance of the full Hamiltonian
H = Hsys + Hc + Henv is time invariant and therefore given
by its initial value, to which only the boundary coupling term
contributes,

�H2(t ) = �H2(t = 0) = 〈(Hc − 〈Hc〉0)2〉0 = g2. (63)

Some straightforward manipulation yields
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1-m(t)/M

H
en

v
2
 /

 (
M

 t
sy

s2
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g=0.65

g=0.50

g=0.35

RLM

FIG. 10. Energy variance with respect to the environment Hamil-
tonian (2) as a function of the fraction of particles that have
been emitted into the environment for various system-environment
couplings g. The dashed line is the analytical result from the
disjoint resonant level model description with a limiting value
limt→∞ �H 2

env(t ) = O(M0) corresponding to the generation of a
low-energy variance state in the environment. Parameters: tenv = 4,

tsys = 1, M = 50, N = 104.

�H2
env(t ) = �H2(t ) + �H2

A (t ) + 2〈H〉0 〈HA〉t

−〈{H, eiHt HAe−iHt }〉0, (64)

where HA = Hsys + Hc. Since the system S empties asymptot-
ically for large environments N � M2, the second and third
lines of (64) vanish for t → ∞, and hence,

lim
t→∞ �H2

env(t ) = �H2(t ) = g2. (65)

Figure 10 depicts the scaled energy variance �H2
env(t )/M

for various couplings g from the numerical solution of (64).
One observes that the energy variance �H2

env(t ) reaches it
largest value proportional to system size M when about half
the number of particles has been emitted into the environ-
ment, after which the energy variance becomes smaller again.
For weak system-environment coupling g one can also use
the mapping to the model of disjoint resonant level models
(Fig. 2),

�H2
env(t ) =

M∑
k=1

(
�H (RLM)

k

)2
(t ), (66)

with(
�H (RLM)

k

)2
(t ) = ω2

k nk (t ) [1 − nk (t )] + O(V 2
k ). (67)

For M � 1 this gives

�H2
env(τ )

M
= t2

sys

π

∫ π

0
dk cos2(k) nk (τ ) [1 − nk (τ )], (68)

with nk (τ ) from (29). The resulting curve is depicted in
Fig. 10: It agrees very well with the numerical solution and
shows the generation of a low-variance state in the environ-
ment as the system S continues to emit particles into the
environment after the Page time.
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|Φsys(0) Hsys

ρsys(tP)

t → ∞

FIG. 11. Schematic picture of the dynamics leading to the Page
curve. The fully colored regions depict the size of the effective
Hilbert space that is necessary in order to represent ρsys(t ) at differ-
ent times t . Darker colors correspond to later times. In our model,
eventually, the particle current forces the system S into a small
effective Hilbert space H(eff)

sys (∞). Although the state ρenv(t ) in the
environment at late times has a complicated nonlocal structure, its
von Neumann entropy is bounded by ln dimH(eff)

sys (∞). Similar sce-
narios could also be realized in other models by forcing mechanisms
like energy or spin currents.

IX. INTERPRETATION AND GENERALIZATIONS

From the point of view of an observer in the system S
the dynamical behavior of the entanglement or the energy
variance is not surprising. Initially, the system and the envi-
ronment are in an unentangled product state (5). The process
of emitting particles into the environment generates a com-
plicated state in the system S that is entangled with the
environment, but ultimately, this process continues for so long
that the system S is driven into a very small effective Hilbert
space H(eff)

sys (t → ∞). Therefore, entanglement and environ-
ment energy variance are forced to decrease again since the
asymptotic small effective Hilbert space does not permit larger
values. Figure 11 gives a schematic picture of this process.
Notice that in our model we have dim H(eff)

sys (t → ∞) = 1 for
N � M2 and hence S(vN)(t → ∞) = 0. However, even for
smaller ratios N/M2 one can expect to see Page curve behavior
in the sense that the entanglement entropy decreases after
the Page time, although it will not decrease all the way to
zero if dim H(eff)

sys (t → ∞) > 1. Such finite-size behavior is
depicted in Fig. 12 and would be important for experimental
realizations in which one might not achieve N/M2 → 0. Like-
wise, the observations made here will carry over to interacting
systems or higher dimensions since the mechanism in Fig. 11
is universal (however, then one is numerically limited to much
smaller systems).

While the decrease of the entanglement entropy after the
Page time tP can easily be understood from the system point
of view, a nonomniscient observer in the environment will
find it puzzling: The environment keeps absorbing particles
that have the curious property of reducing its entanglement
entropy and decreasing the energy variance. This behav-
ior is reminiscent of gas particles carefully reassembling

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

t / M

S
(v

N
)  / 

M

N=75

N=100

N=200

N=300

N=104

FIG. 12. Von Neumann entanglement entropy as a function of
time for varying environment sizes N . The system size is M = 50;
other parameters are tenv = tsys = 1 and g = 0.65. For this set of
parameters the decrease of the entanglement entropy after the Page
time starts to set in for N/M ≈ 1.5 and is clearly noticeable once
N/M � 4. The eventual increase of the entanglement entropy for
even longer times (as the curves start to deviate from the N = 104

curve) is due to the system not emptying out completely into the
environment and particles being reflected at the right boundary of
the environment.

themselves in one half of a gas cylinder that they were ini-
tially released from. Of course, one can always achieve a
decreasing entropy in time-reversal-invariant systems by first
running time backwards to −t0 < 0 from an initially ordered
state |�(0)〉 and then using this state |�(−t0)〉 as the starting
point for forward time evolution: In the time interval [−t0, 0]
the entropy then has to decrease. However, this decrease as
a function of time is very unstable for generic systems, and
even small perturbations will drive the entropy up again in the
time interval [−t0, 0]. This apparent contradiction between the
second law of thermodynamics and microscopic time-reversal
invariance was at the center of the Boltzmann-Loschmidt de-
bate and has been resolved by the understanding of chaotic
behavior in generic many-particle systems. Another possibil-
ity to generate a decreasing entanglement entropy exists in
integrable models with (nearly) linear dispersion relation: For
appropriately chosen finite environment sizes one can achieve
a refocusing of the quasiparticles that leads to periodic dips of
the entanglement entropy [36].

In contrast to such fine-tuned and highly sensitive scenar-
ios with decreasing entropy, models that follow Fig. 11 like
the exactly solvable model analyzed in this paper show a
robust decrease of the entanglement entropy after the Page
time. Notice that at the Page time the entanglement entropy
can be made arbitrarily large by increasing M. Even time-
dependent perturbations to the system or the environment will
not change the qualitative behavior of decreasing entangle-
ment entropy after the Page time as long as the system S
empties into the environment, i.e., as long as Fig. 11 remains
applicable. An observer limited to the environment with no
knowledge of the full initial state would conclude from such a
robust decrease of the entanglement entropy that one is watch-
ing a movie running backwards. The dynamical buildup of
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long-range entanglement between Hsys and Henv up to the
Page time is ultimately responsible for the robust Page curve
behavior: Particles emitted into the environment after the Page
time carry entanglement across the boundary, leading to the
bending down of the Page curve. This behavior is robust as
long as time evolution is unitary and one does not couple to
additional external degrees of freedom. It should be empha-
sized that one cannot make similarly general statements about
a bending down of coarse-grained entropies based on Fig. 11
since that would depend on the specific coarse-graining pro-
cedure employed [11].

Interestingly, in our model the bending down of the von
Neumann and all other Rényi entanglement entropies can be
related to a quantum phase transition of the entanglement
Hamiltonian accompanied by nonanalytic behavior of the
min-entropy [see (42) and Fig. 8]. Therefore, the increasing
and decreasing parts of the Page curve are separated by a crit-
ical point of S(min) (strictly speaking, the critical point slightly
precedes the Page time, so this is a qualitative statement about
the overall behavior). Currently, it is unclear whether this
observation of a dynamical transition can be generalized to
the other forcing mechanisms from Fig. 11, which would be
very intriguing. At least for models with a conserved charge
this seems very likely since the quantum phase transition of
the entanglement Hamiltonian is driven by a level crossing
between different sectors of the conserved charge, which is
unaffected by interactions. More work will be required to
explore these questions.

X. SUMMARY

This paper introduced an exactly solvable model as an
example for the general scenario depicted in Fig. 11 resulting
in a Page curve. Unitary time evolution leads to an increase
of the entanglement entropy until the Page time consistent
with the semiclassical proportionality between particle cur-
rent and entanglement generation (31). At the Page time the
entanglement entropy is proportional to the number of parti-
cles M initially in the system S . Beyond the Page time the
entanglement entropy decreases again, and the semiclassical
picture breaks down. The scenario depicted in Fig. 11 gener-
ates entanglement dynamics different from the saturation at
the volume law scenario commonly discussed in the literature
without the need for any fine tuning.

We have therefore constructed a solvable model that il-
lustrates Polchinski’s burning piece of coal [37]: The early
photons are entangled with the remaining coal, but when the
coal has burned completely, the outgoing photons must be in

a pure state (assuming the coal was initially in a pure state).
While this is fundamentally different from a black hole due
to the lack of an event horizon [37], one can make two ob-
servations in this exactly solvable model that have analogs in
black hole physics: (1) The semiclassical picture (31) breaks
down for a subtle quantity like the entanglement entropy once
the system S in Hsys has evolved to a sufficiently complex
state at the Page time [18]. (2) The q → ∞ Rényi entropy
S(min) exhibits nonanalytic behavior at a critical time which
slightly precedes the Page time (Fig. 8). The sudden onset of
a nonanalytic contribution according to (38) shows a certain
resemblance to the island formula and the resulting nonana-
lytic behavior in holographic models [16,17]. In our model
the nonanalytic contribution can be traced back to the sudden
emergence of a new closest (in the sense of the Fubini-Study
metric) separable state (47) to the time-evolved initial state.
Whether there is an underlying connection between these
observations in holography and our model is a question for
future study. In any case the quantum phase transition of
the entanglement Hamiltonian discussed above is driven by
a mechanism which deserves further study from the quantum
many-body point of view, especially regarding generalizations
to interacting models with or without conserved charges and
the implications for the finite-q Rényi entropies.

Finally, one related interesting property of the state in the
environment is that its energy variance decreases after the
Page time (Fig. 10), corresponding to fewer eigenstates of
Henv contributing to it. Asymptotically, for t � tP the energy
variance �H2

env becomes independent of the number of par-
ticles M in the environment (65), which is different from the
usual linear dependence on M for independently injected par-
ticles into Henv. Such states with reduced energy uncertainty at
nonzero excitation energy could be of interest experimentally.
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