
PHYSICAL REVIEW B 109, 224307 (2024)

Biorthogonal topological charge pumping in non-Hermitian systems

Zhenming Zhang,1 Tianyu Li ,2 Xi-Wang Luo,1,3,* and Wei Yi1,3,†

1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

3CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China

(Received 5 February 2024; revised 29 March 2024; accepted 31 May 2024; published 17 June 2024)

We study charge pumping in generic non-Hermitian settings and show that quantized charge pumping is only
guaranteed under a biorthogonal formalism therein, where the charge transport is evaluated using the left and
right eigenvectors of the non-Hermitian Hamiltonian. Specifically, for biorthogonal charge pumping in generic
one-dimensional non-Hermitian models, we demonstrate how quantized transport is related to the Chern number
in the parameter space. When the non-Hermitian model possesses the non-Hermitian skin effect, under which
Bloch states in the bulk are deformed and localize toward boundaries, we propose a scenario where the pumped
charge is related to the non-Bloch Chern number defined in the parameter space involving the generalized
Brillouin zone. We illustrate the validity of our analytic results using concrete examples and, in the context
of the biorthogonal charge pumping, discuss in detail a recent experiment where quantized charge pumping was
observed in a lossy environment.
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I. INTRODUCTION

Topological charge pumping, first considered by Thouless
in 1983, describes the quantized transport of particles along a
one-dimensional lattice potential under slow but cyclic drive
[1,2]. Since the transported charge per driving cycle is dictated
by a Chern number defined on a (1 + 1)D momentum-time
manifold, the phenomenon is intrinsically topological and
serves as an important paradigm in the study of topological
matter [3–5]. To date, Thouless pumping has been experimen-
tally observed in synthetic configurations such as photonics
and waveguide arrays [6–10], and ultracold atoms in op-
tical lattice potentials [11–13]. Its many variants, such as
the quantized transport under fast cyclic drive [14–17] (as
in the context of Floquet topological matter), or that un-
der dissipation in open systems [18,19], have also attracted
much attention. Particularly, since physical systems are in-
evitably coupled to their environment, whether quantized
charge pumping persists in the presence of dissipation is an
important issue and closely related to potential applications in
open systems.

In this work, we study charge pumping in generic one-
dimensional non-Hermitian models, in an effort to unveil its
quantization condition. The non-Hermiticity discussed here
signifies the intrinsic openness of the system under study
[20,21], which can be enforced either by introducing gain
and loss in classical settings [22,23] through postselection
in the dynamics of open quantum systems [24,25] or, more
generally, by vectorizing the open-system density matrix so
that its Liouvillian dynamics is mapped to that driven by a
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non-Hermitian effective Hamiltonian [26–29]. Without loss
of generality, here we focus on the dynamics under a non-
Hermitian Hamiltonian, regardless of its physical origin.

In the standard Thouless pumping, the quantized particle
transport arises for a fully filled band under a periodic mod-
ulation of the corresponding one-dimensional lattice potential
in the adiabatic regime. The adiabaticity requires that the time
scale of the modulation be much smaller than that associated
with the band gap. On extending the scenario to the non-
Hermitian case, two crucial questions naturally arise. First,
given that the right eigenstates of non-Hermitian Hamiltoni-
ans are nonorthonormal in general, the charge transport per
cycle may no longer be quantized. This is because the charge
transfer is related to the expectation value of the position
operator, where the orthonormality between eigenstates in
the same band is crucial [24]. Second, eigenstates of non-
Hermitian systems often acquire complex eigenvalues with
distinct imaginary components. The exponentially different
growth of the eigenstates during the nonunitary time evolution
can be detrimental to the adiabatic condition [30]. Further-
more, in non-Hermitian topological systems, the introduction
of open boundaries can give rise to the non-Hermitian skin
effect [31–44], deforming the Bloch states in the bulk and
necessitating the so-called non-Bloch topological invariants
to account for the band topology under the open boundary
condition [31–33]. It is then tempting to ask whether a dy-
namic pumping process exists where the quantized transport
corresponds to a non-Bloch topological invariant following
the non-Bloch band theory.

We propose to address the questions above through the for-
mulation of biorthogonal transport, where a quantized charge
pumping is ensured through the biorthonormality of the left
and right eigenstates of the non-Hermitian model. This is
inspired by existing studies where biorthogonal formalisms
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are adopted to study the anomalous boundary modes and
localization in non-Hermitian models [45–48], the quantized
charge pumping in pseudo-Hermitian systems under the peri-
odic boundary condition [49], and the non-Bloch topological
invariants [41,50,51]. Here, regardless of the boundary condi-
tion, we consider a general charge pumping procedure where
the system is initialized in a fully filled band and subject
to periodic modulation in the parameter space. We discuss
the adiabatic condition in non-Hermitian pumping processes,
arguing that an approximate adiabaticity can be achieved at
intermediate time scales. Under these conditions, we demon-
strate that a quantized charge pumping is guaranteed under the
biorthogonal formulation, which is related to a Chern number
defined in the parameter space. In the presence of the non-
Hermitian skin effect and under the open boundary condition,
this gives rise to a direct correspondence between the quan-
tized charge transfer and the non-Bloch Chern number. The
formalism of biorthogonal charge pumping thus complements
previous discussions of biorthogonal chiral displacement and
non-Bloch quench [41,50,51] and further highlights the util-
ity of non-Bloch band theory in describing the dynamic
topological phenomena in the non-Hermitian setting. We
then confirm the validity of our general analysis using con-
crete examples. Importantly, quantized non-Hermitian charge
pumping was recently observed in plasmonic waveguide ar-
rays without invoking the biorthogonal formalism. We show
that the experimentally observed quantized charge pumping
is only approximate. It derives from particular features of
the implemented Hamiltonian and is therefore not applicable
to more general non-Hermitian models. Based on existing
experimental probe of the biorthogonal chiral displacement
[51], we expect that the biorthogonal charge pumping can be
demonstrated in both quantum and classical systems [52–54],
where non-Hermitian dynamics have been engineered and
controlled.

The work is organized as follows. In Sec. II, we review the
standard Thouless pumping in the Hermitian case. We then
present the general framework of biorthogonal pumping in
Sec. III. In Sec. IV, we discuss concrete examples, particularly
in the light of a recent experiment on non-Hermitian pumping.
We summarize in Sec. V.

II. THOULESS PUMPING IN THE HERMITIAN CASE

In the standard Thouless pumping, a fully filled band of a
one-dimensional dimerized chain (the Rice-Mele model [55])
is subject to a cyclic but slow modulation of the Hamilto-
nian. Without loss of generality, in the following discussion,
we consider a tight-binding Hamiltonian Ĥ (t ) with time-
dependent parameters. The instantaneous bulk eigenstates are
given as

|�k (t )〉 = 1√
N

∑
m

eimk |m〉 ⊗ |uk (t )〉 , (1)

where k ∈ [0, 2π ) is the quasimomentum in the first Brillouin
zone (BZ), m is the unit-cell index, N is the total num-
ber of unit cells, and |uk (t )〉 is the eigenstate of the Bloch
Hamiltonian Ĥ (k, t ), with Ĥ (k, t ) |uk (t )〉 = εk (t ) |uk (t )〉 and
εk (t ) is the dispersion. Here the full Hilbert space is spanned
by |m, s〉 = |m〉 ⊗ |s〉, where s is the sublattice index (two

dimensional for the dimerized chain). It follows that |uk〉
represents the wave function within a unit cell and |k〉 =

1√
N

∑
m eikm|m〉 gives the plane-wave state in the space

spanned by {|m〉}. In the following, we refer to m as the site
index and s as the index of the internal degrees of freedom
on each site. We omit the band index for the fully filled
band, but for any other band, we have Ĥ (k, t ) |uk,n(t )〉 =
εk,n(t ) |uk,n(t )〉, where n is the band index, and εk,n and
|uk,n(t )〉 are the corresponding band dispersion and eigenstate,
respectively.

The particle transfer (or the pumped charge) over one cycle
of parameter modulation (of the period T ) is given by the
average displacement of the time-evolved band, which can be
written as

�x̄ =
∫ T

0
dt ∂t x̄(t ), (2)

where x̄(t ) is the average position of the band, defined as

x̄(t ) :=
∫

BZ

dk

2π
〈�̃k (t )|x̂|�̃k (t )〉. (3)

Here |�̃k (t )〉 represents the time-evolved state, which is ini-
tialized as the eigenstate of the Hamiltonian at t = 0 and
driven by Ĥ (t ). It can be written in the Bloch-like form as

|�̃k (t )〉 = 1√
N

∑
m

eimk|m〉 ⊗ |ũk (t )〉, (4)

where |ũk (t )〉 is initialized as |uk (0)〉 and driven by the Bloch
Hamiltonian Ĥ (k, t ). According to the Schrödinger equation,
we obtain

∂t x̄(t ) = −i
∫

BZ

dk

2π
〈�̃k (t )|[x̂, Ĥ (t )]|�̃k (t )〉 (5)

and, equivalently,

∂t x̄(t ) =
∫

BZ

dk

2π
〈ũk (t )| ∂Ĥ (k, t )

∂k
|ũk (t )〉 . (6)

Under the time-dependent perturbation, the time-evolved
internal state is given by

|ũk (t )〉 ≈ eiκ (k,t ) |uk (t )〉 +
∑

n

an |uk,n(t )〉 , (7)

where the phase factor κ (k, t ) contains both the
geometric- and dynamic-phase contributions κ (k, t ) =∫ t

0 dτ [i〈uk (τ )|∂τ uk (τ )〉 − εk (τ )]. We choose the parallel-
transport gauge in which 〈uk (τ )|∂τ uk (τ )〉 = 0, so that κ (k, t )
only contains the dynamic phase. It follows that an is given
by

an = i eiκ (k,t ) 〈uk,n(t )|∂t |uk (t )〉
εk,n − εk

. (8)

In Eq. (6), we identify the total velocity in each k sector
vk := 〈ũk (t )| [∂kĤ (k, t )] |ũk (t )〉, which is given by

vk = ∂εk (t )

∂k
− i[〈∂kuk (t )|∂t uk (t )〉 − 〈∂t uk (t )|∂kuk (t )〉]

:= ∂εk (t )

∂k
+ 	kt . (9)
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Here the first term is the group velocity and the second is the
anomalous contribution from the Berry curvature 	kt of the
Hamiltonian Ĥ (k, t ), defined over the (1 + 1)D momentum-
time manifold. Since the integral of the group velocity over the
momentum-time manifold vanishes, it follows that the total
charge pumped over one cycle is equal to the quantized Chern
number C

�x̄ =
∫ T

0
dt

∫
BZ

dk

2π
vk =

∫ T

0
dt

∫
BZ

dk

2π
	kt = C. (10)

An alternative description of the Thouless pumping is
through the displacement of the Wannier center over one
cycle. Here the Wannier states are defined as follows:

|w j (t )〉 := 1√
N

∑
k∈BZ

e−i jk |�̃k (t )〉 . (11)

According to Eq. (3), we have

x̄(t ) = 1

N

∑
j

〈w j (t )|x̂|w j (t )〉. (12)

Here we further identify the time-evolved Wannier center of
site j as x j (t ) := 〈w j (t )|x̂|w j (t )〉, which, to the leading order
of the time-dependent perturbation, is

x j (t ) = j + i

2π

∫
dk〈uk (t )|∂kuk (t )〉. (13)

Noting that the Wannier centers of different sites only differ
by a time-independent site index j, we have

�x j =
∫ T

0
dt ∂t x j (t ) =

∫ T

0
dt

∫
BZ

dk

2π
	kt = C, (14)

recovering the result of �x̄ in Eq. (10).
Note that the above discussions naturally assume the pe-

riodic boundary condition (PBC). In the Hermitian case,
charge pumping in the bulk under the open boundary con-
dition (OBC) is rarely discussed explicitly, since, aside from
a small number of edge modes, the bulk eigenstates and
eigenenergies are insensitive to the boundary conditions in
the thermodynamic limit. Hence, regardless of the boundary
conditions, one may formally resort to a unified prescription
of the Thouless pumping, that is, the average displacement of
all eigenstates in a fully filled band

�x̄ = x̄(T ) − x̄(0), (15)

where x̄(t ) = ∑
i 〈�i(t )| x̂ |�i(t )〉 /N and i is the state label.

Under the OBC, the summation runs over all time-evolved
eigenstates |�i〉 in the said band and �x̄ approaches the Chern
number in the thermodynamic limit. Under the PBC, the sum-
mation runs over all quasimomenta in the BZ and �x̄ recovers
the Chern number exactly. As we show below, such a unified
prescription forms the basis for quantized charge transport
in non-Hermitian settings where the boundary condition may
affect the bulk states.

III. BIORTHOGONAL PUMPING
IN NON-HERMITIAN SETTINGS

In this section, we extend the Thouless pumping discussed
above to non-Hermitian systems. Two remarks are in order
before we start.

First, the Thouless pumping theory is based on adiabatic
driving. This is straightforward in Hermitian systems with a
finite band gap. However, the situation becomes complicated
in non-Hermitian systems, where the eigenspectrum, along
with the band gap, becomes complex. Here the adiabatic ap-
proximation corresponds to the assumption that an eigenstate
in a given band only acquires a phase factor during the time
evolution. Similar to the Hermitian case, a necessary condition
is that the system parameter cannot vary too fast compared to
the real component of the band gap. However, the existence
of the imaginary component of the band gap may still lead to
deviations from adiabaticity in the long-time limit.

Specifically, for a general non-Hermitian time-dependent
Hamiltonian Ĥ (t ), there exist instantaneous left and
right eigenstates |ψL,R

n (t )〉, which satisfy Ĥ (t ) |ψR
n (t )〉 =

En |ψR
n (t )〉 and Ĥ† |ψL

n (t )〉 = E∗
n |ψL

n (t )〉. In the spirit of
Eq. (8), the adiabatic condition for the initial right eigenstate
|ψR

n (0)〉 [under the drive of Ĥ (t )] is given by [30]

∣∣〈ψL
n (t )

∣∣ψ̇R
m(t )

〉∣∣
|ωnm(t )| exp

[
− Im

∫ t

0
ωnm(τ )dτ

]
	 1 (16)

for m 
= n, where ωnm = En − Em. Note that in non-Hermitian
models with complex dispersions, it is the exponential factor
in Eq. (16) that determines the adiabaticity under a sufficiently
long evolution time. More specifically, for a non-Hermitian
pumping process, the adiabatic condition does not necessarily
imply an infinitely long evolution time. From a practical point
of view, if the driving period T is appropriate, such that
Eq. (16) is satisfied, the dynamics can then be regarded as in
the adiabatic regime. Furthermore, Eq. (16) is sufficient to en-
sure adiabaticity of the right eigenstates and hence useful for
calculating time-dependent expectation values involving only
time-evolved right eigenstates. However, for the biorthogonal
formalism that we introduce in this section, expectation values
are taken using both the time-evolved left and right eigen-
states. Since the eigenvalues of Ĥ†(t ) are complex conjugate
to those of Ĥ (t ), in the long-time limit, the adiabatic condi-
tion Eq. (16) does not simultaneously apply to the evolution
of the left and right eigenstates, provided the corresponding
eigenvalues are complex. In this case, the only viable option
is the intermediate time, where the adiabatic condition can be
approximately satisfied by both the left and right eigenstates.
We will discuss in more detail the manifestations of these
conditions with concrete examples in Sec. IV. In this section,
we only consider systems and pumping processes satisfying
the approximate adiabatic condition.

The second remark is related to boundary conditions. A
noteworthy feature of non-Hermitian systems is the potential
impact of boundary conditions on the bulk eigenstates through
the non-Hermitian skin effect. Hence it is expected that differ-
ent boundary conditions may call for distinct formulation of
charge pumping in non-Hermitian systems.
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A. Pumping under the PBC

We first discuss pumping under the PBC, where the quasi-
momenta k are still good quantum numbers. While the general
charge-pumping formalism connects the total velocity and
average displacement respectively with the Berry curvature
and Chern number, there is however one important difference.
A non-Hermitian Hamiltonian Ĥ (t ) features distinct left and
right eigenstates, which are biorthonormal. As a result, the
instantaneous left and right bulk eigenstates are

∣∣�L,R
k (t )

〉 = 1√
N

∑
m

eimk |m〉 ⊗ ∣∣uL,R
k (t )

〉
, (17)

where the left and right eigenstates of the Bloch Hamil-
tonian respectively satisfy Ĥ (k, t )|uR

k (t )〉 = εk (t )|uR
k (t )〉 and

Ĥ†(k, t )|uL
k (t )〉 = ε∗

k (t )|uL
k (t )〉, now with complex εk . It fol-

lows that one may define the biorthogonal Berry curvatures

	
αβ

kt = −i
[〈
∂kuα

k (t )
∣∣∂t u

β

k (t )
〉 − 〈

∂t u
α
k (t )

∣∣∂kuβ

k (t )
〉]
, (18)

with the normalization condition 〈uα
k |uβ

k 〉 = 1, where α, β ∈
{L, R}. Previous studies have pointed out that, while these
Berry curvatures can be different in general, when integrated
over the momentum-time manifold, they would give the same
Chern number [56]. For instance, we have

C =
∫ T

0
dt

∫
BZ

dk

2π
	RR

kt =
∫ T

0
dt

∫
BZ

dk

2π
	LR

kt . (19)

However, the presence of biorthogonal eigenstates also
gives rise to different ways of defining the average position

x̄αβ (t ) :=
∫

BZ

dk

2π

〈
�̃α

k (t )
∣∣x̂∣∣�̃β

k (t )
〉
, (20)

where the time-evolved left and right states |�̃R
k (t )〉 and

|�̃L
k (t )〉 are driven by Ĥ (t ) and Ĥ†(t ), respectively. Without

loss of generality, here we mainly discuss the biorthogonal
form x̄LR and the conventional one x̄RR.

Following the discussion in Sec. II, we first examine the
total velocity. Using the Schrödinger equation, we obtain

∂t x̄
LR(t ) =

∫
BZ

dk

2π

〈
ũL

k (t )
∣∣[∂kĤ (k, t )]

∣∣ũR
k (t )

〉
, (21)

where the time-evolved left and right states |ũR
k (t )〉 and |ũL

k (t )〉
are driven by Ĥ (k, t ) and Ĥ†(k, t ), respectively, and satisfy
|ũL,R

k (0)〉 = |uL,R
k (0)〉.

Similarly to the Hermitian case, we define the biorthogonal
total velocity as

vLR
k (t ) := 〈

ũL
k (t )

∣∣[∂kĤ (k, t )]
∣∣ũR

k (t )
〉
. (22)

Assuming the evolution is approximately adiabatic, we have
(using the same convention on the band index n)∣∣ũR

k (t )
〉 ≈ eiκ (k,t )

∣∣uR
k (t )

〉 + ∑
n

aR
n

∣∣uR
k,n(t )

〉
, (23)

∣∣ũL
k (t )

〉 ≈ eiκ∗(k,t )
∣∣uL

k (t )
〉 + ∑

n

aL
n

∣∣uL
k,n(t )

〉
, (24)

where κ (k, t ) = ∫ t
0 dτ [i〈uL

k (τ )|∂τ uR
k (τ )〉 − εk (τ )], and

Ĥ (k, t )|uR
k,n(t )〉=εk,n|uR

k,n(t )〉, Ĥ†(k, t )|uL
k,n(t )〉=ε∗

k,n|uL
k,n(t )〉.

We choose the parallel-transport gauge in which

〈uL
k (t )|∂t uR

k (t )〉 = 0 and it follows that κ (k, t )=− ∫ T
o dτεk (τ ).

The coefficients aL,R
n are given by

aR
n = i eiκ (k,t )

〈
uL

k,n(t )
∣∣∂t uR

k (t )
〉

εk,n(t ) − εk (t )
, (25)

aL
n = i eiκ∗(k,t )

〈
uR

k,n(t )
∣∣∂t uL

k (t )
〉

ε∗
k,n(t ) − ε∗

k (t )
. (26)

Substituting Eqs. (23) and (24) into Eq. (22), we see that the
biorthogonal velocity vLR

k (t ) relates to the Berry curvature in
a fashion similar to Eq. (9). Namely, we have

vLR
k (t ) = ∂εk (t )

∂k
+ 	LR

kt . (27)

Since the group velocity ∂εk (t )
∂k vanishes when integrated over

the momentum-time manifold, the biorthogonal displacement
�x̄LR = ∫ T

0 dt
∫

BZ
dk
2π

vLR
k is quantized and recovers the Chern

number.
Equivalently, we can also construct a quantized pumping

through the Wannier center by adopting the biorthogonal for-
malism. Specifically, we define the time-evolved biorthogonal
Wannier states∣∣w̃L,R

j (t )
〉 = 1√

N

∑
k

e−i jk
∣∣�̃L,R

k (t )
〉
, (28)

where |�̃R
k (t )〉=eiκ (k,t )|�R

k (t )〉 and |�̃L
k (t )〉=eiκ∗(k,t )|�L

k (t )〉.
According to the definition of the biorthogonal Wannier states,
the average displacement can be equivalently expressed as the
average Wannier center

x̄LR(t ) = 1

N

∑
j

〈
w̃L

j (t )
∣∣x̂∣∣w̃R

j (t )
〉
. (29)

The time-evolved biorthogonal Wannier center is then

xLR
j (t ) := 〈

w̃L
j (t )

∣∣x̂∣∣w̃R
j (t )

〉
(30)

= j + i
∫

BZ

dk

2π

〈
uL

k (t )
∣∣ ∂kuR

k (t )
〉
. (31)

It is straightforward to show that the shift of the Wannier
center, evaluated through the biorthogonal Wannier states, is
quantized and equal to the Chern number

�xLR
j =

∫ T

0
dt ∂t x

LR
j (t ) = C. (32)

However, when discussing the conventional case x̄RR, a
prime issue arises: since the band dispersion generally ac-
quires imaginary components in non-Hermitian models, the
norm of |�̃R

k (t )〉 (or of |ũR
k (t )〉) suffers from an exponential

growth or decay and cannot be canceled out as in the case
of the biorthogonal formalism. Specifically, ∂t x̄RR(t ) corre-
sponds to the unnormalized Berry curvature and its integral
over the momentum-time manifold is not quantized. To avoid
this problem, we can introduce the average renormalized po-
sition:

x̄re(t ) := 1

2π

∫
BZ

dk

〈
�̃R

k (t )
∣∣ x̂

∣∣�̃R
k (t )

〉
〈
�̃R

k (t )
∣∣�̃R

k (t )
〉

= 1

2π

∫
dk re

〈
�̃R

k (t )
∣∣x̂∣∣�̃R

k (t )
〉
re, (33)
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where, under adiabatic assumption, |�̃R
k (t )〉re =

ei Reκ (k,t ) |�R
k (t )〉. It follows that

∂t x̄
re(t ) =

∫
BZ

dk

2π
	RR

kt , (34)

which means that the quantized pumping can be recovered
by introducing the average renormalized position. However,
Eq. (34) is not equivalent to the total velocity or the Wannier-
center shift in the non-Hermitian case.

More concretely, following the derivations leading to
Eq. (5), we have

∂t x̄
RR = i

∫
BZ

dk

2π

〈
�̃R

k (t )
∣∣[Ĥ†(t )x̂ − x̂Ĥ (t )]

∣∣�̃R
k (t )

〉
. (35)

Due to the non-Hermiticity of the Hamiltonian, it cannot
be equivalently represented by the total velocity calculated
through the right eigenstates. Therefore, the connection be-
tween the velocity and ∂t x̄RR, as in Eq. (6), is lost. Similarly,
one can show that the average renormalized position defined
above cannot be connected to the total velocity (calculated
through the right eigenstates) either.

For the time-evolved Wannier center without resorting to
the biorthogonal formalism, we have

xRR
j (t ) :=

〈
w̃R

j (t )
∣∣x̂∣∣w̃R

j (t )
〉

〈
w̃R

j (t )
∣∣w̃R

j (t )
〉 . (36)

Note that the initial right Wannier state |w̃R
j (0)〉 is an equal

weight superposition (with a phase factor) of the right Bloch
states. Under the adiabatic time evolution driven by the
non-Hermitian Hamiltonian, however, Imεk at different quasi-
momentum k would cause exponential growth or decay of the
relative weight in the superposition. After one cycle, the right
Wannier state would be dominated by the Bloch state with the
largest imaginary eigenenergy component. This is the reason
why �xRR

j fails to recover the quantized Chern number here.
Nevertheless, if the imaginary part of the band dispersion
is flat (or nearly flat), then xRR

j (t ) will be equivalent to (or
nearly equivalent to) x̄re(t ), leading to a quantized pumping.
An example of this particular case is given in Sec. IV B.

B. Pumping under the OBC

We now consider charge pumping under the OBC in a
non-Hermitian system, where the boundary effect can play
a significant role. For this purpose, we consider the time
evolution of a fully filled band under the OBC, where the
occupied left and right time-evolved states are denoted as
|�̃L,R

i (t )〉, with i being the state index. Similar to the previous
cases, |�̃L,R

i (t )〉 are respectively the left and right eigenstates
of the Hamiltonian at t = 0 (with the normalization condition
〈�L

i |�R
i 〉 = 1) and subject to evolutions driven by Ĥ† and

Ĥ , respectively. The average biorthogonal position of all the
eigenstates is then

x̄LR(t ) := 1

N

∑
i

〈
�̃L

i (t )
∣∣ x̂

∣∣�̃R
i (t )

〉
, (37)

where the summation runs over all the states in the filled
band. Note that discrete edge states exist under the OBC, but
their contribution to the summation is insignificant and thus

is neglected in the subsequent discussions. In the following,
we will show that the shift of the average position over one
driving cycle is quantized and, in the presence of the non-
Hermitian skin effect, yields the non-Bloch Chern number
defined across a generalized Brillouin zone of the momentum-
time manifold. Before discussing the pumping process, we
first examine the static non-Hermitian Hamiltonian.

1. Generalized Brillouin zone

The generalized Brillouin zone is a generic means to label
eigenstates under the OBC in non-Hermitian systems. In a
general class of non-Hermitian systems, bulk eigenstates can
be significantly affected by the boundary condition [43,44].
Under the OBC, for instance, all eigenstates accumulate to the
open boundaries, invalidating the conventional Bloch-wave
description of bulk states. An efficient way to characterize the
deformed bulk states is to invoke the non-Bloch band theory
and organize them in the generalized Brillouin zone [31,33].
Indeed, such a practice is crucial for the restoration of the
bulk-boundary correspondence in non-Hermitian topological
models with the non-Hermitian skin effect. Specifically, fol-
lowing the non-Bloch band theory, we denote the static right
bulk eigenstates as

∣∣�R
β

〉 = 1

N
∑

m

βm |m〉 ⊗ ∣∣uR
β

〉
, (38)

where N is the normalization factor that ensures 〈�R
β |�R

β 〉=1
and |uR

β〉 are the eigenstates of Ĥ (β ). Here the non-Bloch
Hamiltonian Ĥ (β ) in the generalized Brillioun zone is ob-
tained by making the substitution eik → β ∈ C in the Bloch
Hamiltonian Ĥ (k) under the PBC. While β can be calculated
from the eigenproblem of the system under the OBC, all the
β from different eigenstates typically form a closed loop on
the complex plane, dubbed the generalized Brillouin zone. For
non-Hermitian models without the non-Hermitian skin effect,
the trajectory of β is reduced to a unit circle on the complex
plane, recovering the conventional Brillouin zone.

Based on the insight above, we adopt the parametrization
β = |β|eiθ , where θ ∈ [0, 2π ) labels eigenstates in the gen-
eralized Brillouin zone, just as the quasimomentum k in the
conventional Brillouin zone. The right bulk eigenstates are
then labeled as |�R

θ 〉. We further introduce the left eigenstates
|�L

θ 〉, which satisfy the biorthogonal relation
〈
�L

θ ′
∣∣�R

θ

〉 = 2πδ(θ ′ − θ ). (39)

Neglecting the few discrete edge states, we can express the av-
erage biorthogonal position as an average over the generalized
Brillouin zone

x̄LR = 1

N

∑
i

〈
�L

i

∣∣ x̂
∣∣�R

i

〉 =
∫

dθ

2π

〈
�L

θ

∣∣ x̂
∣∣�R

θ

〉
, (40)

where the summation (over i) runs over all the eigenstates in
the filled band.

We then define the biorthogonal Wannier states

∣∣wL,R
j

〉
:= 1√

N

∑
θ

e−i jθ
∣∣�L,R

θ

〉
, (41)
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which may not be localized in the bulk, but can instead ac-
cumulate toward the boundary due to the non-Hermitian skin
effect. It is straightforward to show that the Wannier states
satisfy biorthogonality, with 〈wL

i |wR
j 〉 = δi j . It follows that

x̄LR = 1

N

∑
j

〈
wL

j

∣∣x̂∣∣wR
j

〉
, (42)

recovering the result of �x̄LR.
Next, we consider the geometric implication of the

biorthogonal Wannier center defined through the Wannier
states in Eq. (41). For simplicity, we consider the case where
the generalized Brillouin zone is circular, leaving detailed
discussions of the noncircular case in the Appendix A. We
note that the two cases lead to the same result of quantized
pumping.

In the case of a circular generalized Brillouin zone, the
modulus of β is fixed. The left eigenstates then satisfy |�L

θ 〉 ∝∑
m(β∗)−m |m〉 ⊗ |uL

θ 〉, with |uL
θ 〉 denoting the eigenstates of

H†(β ) and satisfying 〈uL
θ |uR

θ 〉 = 1. We then have
〈
wL

j

∣∣x̂∣∣wR
j

〉

= i
∑

m

∫
dθ dθ ′

(2π )2
eim(k̄−k̄′ )ei j(θ ′−θ )

×
(

−i j
〈
uL

θ ′
∣∣uR

θ

〉 − m
∂�

∂θ

〈
uL

θ ′
∣∣uR

θ

〉 + 〈
uL

θ ′
∣∣∂θ

∣∣uR
θ

〉)
. (43)

In the derivations above, we have defined k̄ := −i ln β and
� := Imk̄. Because the generalized Brillouin zone is circular,
we have k̄ − k̄′ = θ − θ ′ and ∂�

∂θ
= 0. It follows that

〈
wL

j

∣∣x̂∣∣wR
j

〉 = j + i
∫

dθ

2π

〈
uL

θ

∣∣∂θ

∣∣uR
θ

〉
, (44)

which is formally similar to Eq. (13) and Eq. (30), where the
quantity i

∫
dθ
2π

〈uL
θ |∂θ |uR

θ 〉 is identified as the non-Bloch Berry
phase.

2. Pumping under the OBC

We are now in a position to examine the pumping
process. We denote the instantaneous left and right eigen-
states as |�L,R

θ (t )〉, with Ĥ (t ) |�R
θ (t )〉 = εθ (t ) |�R

θ (t )〉 and
Ĥ†(t ) |�L

θ (t )〉 = ε∗
θ (t ) |�L

θ (t )〉, respectively. Assuming adia-
baticity, the time-evolved states are∣∣�̃R

θ (t )
〉 = exp[iκ (θ, t )]

∣∣�R
θ (t )

〉
, (45)

∣∣�̃L
θ (t )

〉 = exp[iκ∗(θ, t )]
∣∣�L

θ (t )
〉
, (46)

where κ (θ, t ) = ∫ t
0 dτ [i〈�L

θ (τ )|∂τ�
R
θ (τ )〉 − εθ (τ )].

Following the definition in Eq. (37), the average displace-
ment over one cycle is

�x̄LR = x̄LR(T ) − x̄LR(0). (47)

In the case that the generalized Brillouin zone remains
circular during the pumping process, according to Eq. (44),
we obtain

x̄LR(t ) = 1 + N

2
+ i

∫
dθ

2π

〈
uL

θ (t )
∣∣∂θ

∣∣uR
θ (t )

〉
, (48)

where the first term is a time-independent constant and |uL
θ (t )〉

and |uR
θ (t )〉 are respectively the instantaneous eigenstates of

Ĥ†(β, t ) and Ĥ (β, t ). It follows that

�x̄LR =
∫ T

0
dt ∂t x̄

LR(t ) = CnB, (49)

where CnB is the non-Bloch Chern number calculated over the
manifold spanned by the generalized Brillouin zone and time

CnB = 1

2π i

∫ T

0
dt

∫
dθ εi j

〈
∂iu

L
θ (t )

∣∣∂ ju
R
θ (t )

〉
, (50)

where εθt = −εtθ = 1. Hence the biorthogonal displacement
is still quantized.

In the case where the generalized Brillouin zone remains
circular, the biorthogonal displacement of an arbitrary Wan-
nier center in the bulk gives the non-Bloch Chern number
according to Eqs. (44), (48), and (49). In the more general
case where the generalized Brillouin zone is noncircular, the
displacement of a single Wannier center, as in Eq. (44), is no
longer quantized to the Chern number. Nevertheless, as we
show in the Appendix A, Eq. (49) is still valid in this case.

3. Displacement without the biorthogonal formalism

Instead of the average position under the biorthogonal
construction, one might be tempted to consider the average
position using only right time-evolved states

x̄RR(t ) =
∫

dθ

2π

〈
�̃R

θ (t )
∣∣ x̂

∣∣�̃R
θ (t )

〉
. (51)

While such a construction corresponds more directly to phys-
ical measurements, we show in the following that average
displacements calculated in this way are not quantized, except
for special cases.

A first problem with x̄RR(t ) is that the generally different
imaginary components of εθ would give rise to distinct growth
rates in different θ sectors. These factors cannot be canceled,
unlike in the biorthogonal case. Nevertheless, one can avoid
such a problem by introducing a renormalized average posi-
tion

x̄re(t ) := 1

N

∑
i

〈
�̃R

i (t )
∣∣ x̂

∣∣�̃R
i (t )

〉
〈
�̃R

i (t )
∣∣�̃R

i (t )
〉 (52)

=
∫

dθ

2π
re
〈
�̃R

θ (t )
∣∣x̂∣∣�̃R

θ (t )
〉
re, (53)

where i runs over all time-evolved states in the given band and
the renormalized state |�̃R

θ (t )〉re = exp[i Reκ (θ, t )] |�R
θ (t )〉. It

follows that

x̄re(t ) =
∑

j

∫
dθ ′dθ

(2π )2
j ei j(θ ′−θ )〈�R

θ ′ (t )
∣∣�R

θ (t )
〉

+ i

N

∑
j

∫
dθ

2π
e−2 j�

〈
uR

θ (t )
∣∣∂θ

∣∣uR
θ (t )

〉
. (54)

The expression above differs significantly from Eq. (48). The
first term on the right-hand side of Eq. (54) is not a time-
independent constant, since 〈�R

θ ′ (t )|�R
θ (t )〉 
= 2πδ(θ − θ ′),

and the second term features an additional exponential factor
e−2 j�(θ,t ). Note that the time dependence of � comes from
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the time-dependent Hamiltonian, whose instantaneous eigen-
states under the OBC lead to a time-dependent generalized
Brillioun zone, in a similar fashion to Eqs. (38). It follows the
shift of x̄re(t ) over one cycle would not give the non-Bloch
Chern number.

However, in the absence of the non-Hermitian skin effect,
� = 0, and eigenstates belonging to different θ sectors of the
same band are orthogonal. It is then straightforward to show
that

x̄re(t ) = N + 1

2
+ i

∫
dθ

2π

〈
uR

θ (t )
∣∣∂θ

∣∣uR
θ (t )

〉
. (55)

Since the generalized Brillouin zone is equal to the Brillouin
zone in the absence of the non-Hermitian skin effect, the shift
of x̄re(t ) over one cycle satisfies

�x̄re =
∫ T

0
dt

∫
dk

2π
	RR

kt = C, (56)

where 	RR
kt is defined by Eq. (18). Therefore, for systems

without the non-Hermitian skin effect, the only difficulty
in achieving a quantized pumping without resorting to the
biorthogonal formalism is the exponential growth or decay,
dictated by the imaginary components of the eigenenergies.
For systems with a flat or nearly flat imaginary band, quan-
tized pumping can still be observed (through the standard
definition of expectation values using only right eigenstates),
as shown in Sec. IV B.

IV. EXAMPLES

In this section, we illustrate our results above using con-
crete examples.

A. Nonreciprocal Rice-Mele model

We start with the nonreciprocal Rice-Mele model

Ĥ (t ) =
∑

i

w(t )(â†
i+1b̂i + H.c.) +

∑
�(t )(â†

i âi − b̂†
i b̂i )

+
∑

i

(v−(t )â†
i b̂i + v+(t )b̂†

i âi ), (57)

where âi and b̂i are respectively the annihilation operators of
the two sublattice sites in the ith unit cell, w(t ) = 1, v±(t ) =
μ + cos(ωt ) ± γ , and �(t ) = sin(ωt ). The time-dependent
parameters v±(t ) and �(t ) undergo cyclic modulations, with
the period given by T = 2π/ω. As the initial condition, we
assume that the band with the smaller real eigenenergies is
fully occupied at t = 0. In Fig. 1(a), this corresponds to the
band to the left of the vertical dashed line. First, we discuss
the adiabatic condition. In Fig. 1(b), we show the average
biorthogonal displacement �x̄LR for different driving peri-
ods T of the nonreciprocal Rice-Mele model. As expected,
�x̄LR only approaches the quantized value of unity in the
intermediate-time regime. In the following discussions of the
nonreciprocal Rice-Mele model, we always choose this inter-
mediate time regime to ensure approximate adiabaticity.

For charge pumping under the PBC, we numerically cal-
culate the total velocity vLR

k (t ) using Eq. (22) and integrate
it over the momentum-time manifold to obtain the average
biorthogonal displacement �x̄LR as shown in Fig. 2(a). As the

FIG. 1. (a) Eigenspectrum under the OBC (red) and PBC (blue)
at t = 0 for Hamiltonian (57). (b) The biorthogonal average dis-
placement �x̄LR as a function of the pumping period T . For all
calculations, we take μ = 1 and γ = 0.3. The color represents the
imaginary part of �x̄LR and the arrow indicates the parameter we
choose for the non-Hermitian pumping. We set w(0) as the unit of
energy.

parameter μ increases, the biorthogonal displacement starts
quantized at 1, but vanishes when μ becomes sufficiently
large. The result is consistent with the calculated Chern num-
ber over the momentum-time manifold as shown by the red
line in Fig. 2(a). The shaded regime corresponds to a gapless
region where the Chern number cannot be defined. To pro-
vide details, in Fig. 2(b), we show the time evolution of the
average biorthogonal position x̄LR(t ) = ∫ t

0 dτ
∫

dk
2π

vLR(τ ) for
μ = 1 and μ = 3, respectively, where the quantized transport
is visible.

FIG. 2. Biorthogonal pumping of the nonreciprocal Rice-Mele
model (57). (a) The biorthogonal displacement (blue “×”) under
the PBC, calculated by integrating vLR

k in Eq. (22). The red line
represents the Chern number of the momentum-time manifold and
the shaded regime corresponds to a gapless region where the Chern
number cannot be defined. (b) The time evolution of the biorthogonal
position x̄LR(t ) at μ = 1 and μ = 3, respectively. (c) The average
biorthogonal displacement �x̄LR (blue “×”) and the renormalized
displacement �x̄re (red “+”) under the OBC, as functions of μ.
The red line represents the non-Bloch Chern number CnB and the
phase transition occurs at μ = 1 + √

1 + γ 2. (d) The time evolution
of x̄LR(t ) and x̄re(t ) for μ = 1 under the OBC. We take γ = 0.3 for
all calculations. For pumping period, we take T = 50 in (a), (b) and
T = 15 in (c), (d).
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For charge pumping under the OBC, we numerically cal-
culate the average biorthogonal position x̄LR(t ) defined by
Eq. (37). Figure 2(c) shows the displacement of the average
biorthogonal position over one cycle �x̄LR (blue). To verify
the analytic results shown in Eq. (49), we plot the non-Bloch
Chern number, as shown by the red line in Fig. 2(c), where
the phase transition occurs at μ = 1 +

√
1 + γ 2. For compar-

ison, we also show the numerically calculated displacement
of the renormalized position x̄re(t ) (red) defined by Eq. (52).
As expected, only the biorthogonal average displacement is
quantized, and consistent with the non-Bloch Chern number.
In Fig. 2(d), we plot the time evolution of x̄LR(t ) and x̄re(t )
to provide more details, where only the biorthogonal average
displacement is visibly quantized.

B. Generalized reciprocal Rice-Mele model

As an example for non-Hermitian models without the
non-Hermitian skin effect, we consider a generalized recip-
rocal Rice-Mele model whose charge pumping was recently
experimentally reported in Ref. [18]. The time-dependent
Hamiltonian can be written as

Ĥ (t ) =
∑

j

(J1(t )b̂†
j â j + J2(t )â†

j+1b̂ j + H.c.)

+
∑

j

([ua(t ) − iγa(t )]â†
j â j + [ub(t ) − iγb(t )]b̂†

j b̂ j ),

(58)

where âi and b̂i are respectively the annihilation operators
for the a and b sublattice sites of the ith unit cell.
Following Ref. [18], the time-dependent parameters are
ua(t ) = −u0 cos(ωt + φ), ub(t ) = ua(t − T/2), J1(t ) =
J0e−λ[1−sin(ωt+φ)] − μ, J2(t ) = J0e−λ[1+sin(ωt+φ)], γa(t ) =
−γ0�(x)[ua(t )] cos(ωt + φ), and γb(t ) = γa(t − T/2). Here
�(x) is the Heaviside step function.

In Ref. [18], a quantized charge pumping was observed
in the context of Floquet dynamics and, associated with
the winding of the quasienergy around the Floquet-Brillouin
zone, an intrinsically distinct topological structure in Flo-
quet dynamics with finite period T . This is curious since
the experimentally observed charge pumping is generally
not characterized by the biorthogonal formalism. In the fol-
lowing, we will clarify this apparent discrepancy with our
theory. We note from the outset that, while the title of
Ref. [18] implies a fast (and hence nonadiabatic) pumping
process that necessitates a Floquet treatment, further analysis
shows that the pumping process therein is only fast in the
dissipationless Hermitian limit. In the non-Hermitian case,
the adiabatic condition is modified according to Eq. (16)
under the presence of imaginary gaps. We have checked
that the non-Hermitian adiabatic condition (16) is satisfied
for all the non-Hermitian parameters and initial states in
Ref. [18]. It follows that our theory of non-Hermitian charge
pumping applies.

First, we consider the initial state and the adiabatic condi-
tion. In the experiment, the system is initialized on a single
sublattice site a in a given unit cell of the bulk. This corre-
sponds to an equal-weight superposition of the Bloch states
and is essentially a Wannier state of the so-called “upper”

0 0.5 1
-0.6

-0.4

-0.2

0

0 10 20 30
-1

-0.5

0

0.5

1(a) (b)

FIG. 3. (a) Imaginary components of the two instantaneous
bands of the time-dependent Hamiltonian (58). The colors are used
to distinguish different bands. (b) The displacements of the conven-
tional Wannier centers �xRR

j for the two bands, for different pumping
periods T . We take μ = 0, u0 = J0 = 1, φ = −π , λ = 1.75, and
γ0 = 0.3 for our calculations. We set J0 as the unit of energy.

band, the band with smaller negative imaginary components
[the blue band in Fig. 3(a)]. The model Hamiltonian is special
in the sense that the imaginary components of upper-band dis-
persion are nearly flat and, during the time evolution, always
lie above the other band [dubbed the “lower” band, shown in
red in Fig. 3(a)]. This ensures that (i) the adiabatic condition
Eq. (16) of the time-evolved right eigenstates in the “upper”
band holds, as the occupation of the “lower” band becomes
exponentially suppressed over time, and (ii) the equal su-
perposition of the Bloch states approximately holds during
the time evolution. Together, these conditions dictate that the
displacement calculated using only the right eigenstates is
approximately quantized over a wider range of time scales. In
Fig. 3(b), we show the displacement of the Wannier centers
for different driving periods and for systems initialized in
different bands. Therein, the blue curve corresponds to the
experimental observation, but when the system is initialized
in lower band, the pumped charge is no longer quantized, as
the adiabatic condition breaks down.

For a direct comparison, we show in Figs. 4(a) and 4(b)
both �xRR

j and �xLR
j under the PBC. While the calculated

�xLR
j agrees with the quantized Chern number (red) through-

out the transition point at μ = 1, the quantization of �xRR
j

breaks down for μ > 1, where the flatness of the imaginary
dispersion becomes worse. This explicitly shows that the ob-
servation in Ref. [18] is coincidental rather than the norm.
Finally, because the system does not have the non-Hermitian
skin effect, the calculations under the OBC give similar re-
sults, as shown in Figs. 4(c) and 4(d).

V. CONCLUSION

In conclusion, we show that quantized charge pumping in
one-dimensional non-Hermitian models generally exists, but
requires a biorthogonal formalism. For this, an approximate
adiabatic condition should be met, such that the time-evolved
eigenstates of the system only acquire a complex phase fac-
tor. We demonstrate that, for our biorthogonal construction,
an approximate adiabatic condition exists at the intermediate
time scales so that the charge-pumping problem can still be
discussed. We discuss non-Hermitian pumping for models
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FIG. 4. Biorthogonal pumping for Hamiltonian (58). (a) The dis-
placement of the biorthogonal Wannier center �xLR

j (blue “×”) and
that of the conventional Wannier center �xRR

j (yellow “+”) under the
PBC. The red line indicates the corresponding Chern number. (b) The
time evolution of xLR

j (t ) (blue) and xRR
j (t ) (yellow) for μ = 2, under

the PBC. (c) The displacement of the biorthogonal Wannier center
�xLR

j (blue “×”) and that of the conventional Wannier center �xRR
j

(yellow “+”) under the OBC. The red line indicates the correspond-
ing Chern number. (d) The time evolution of xLR

j (t ) and xRR
j (t ) for

μ = 2 under the OBC. For the pumping period, we take T = 13 in
(a),(b) and T = 5|μ| + 10 in (c),(d). Other parameters are the same
as those in Fig. 3.

with the non-Hermitian skin effect and show the quantized
biorthogonal pumping can be described by a non-Bloch Chern
number defined in the parameter space involving the gener-
alized Brillouin zone. Our results thus also demonstrate the
utility of the non-Bloch band theory in non-Hermitian dy-
namics. While the expectation values calculated with the right
eigenstates correspond to physical observables in a quantum
system, it is also possible to experimentally construct and
detect biorthogonal expectation values [50,51]. As a first at-
tempt toward this goal, in Ref. [51], the time-evolved left and
right states are constructed from quantum-state tomography,
after independently enforcing time evolutions under H and
H† on the same initial state. This enables the calculation
of the biorthogonal chiral displacement, yielding the correct
non-Hermitian topological invariant. While the attempt makes
use of the flexible control of photonics, it is hopeful that
a similar idea can be adopted to implement non-Hermitian
pumping in other physical platforms. For future studies, it is
interesting to consider variants of the Thouless pumping in
non-Hermitian settings, where we expect that a biorthogonal
formalism should also apply.
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APPENDIX: AVERAGE BIORTHOGONAL
DISPLACEMENT FOR NONCIRCULAR

GENERALIZED BRILLOUIN ZONES

In Sec. III B, we proved that the average biorthogonal
displacement �x̄LR is quantized and equal to the non-
Bloch Chern number when the generalized Brillouin zone
remains circular. Here, we will give a more general proof,
showing that the average displacement is still quantized to
the non-Bloch Chern number for noncircular generalized
Brillouin zones.

We start with a finite-size system in which the generalized
Brillouin zone consists of discrete states labeled by {βi |i =
1, 2, . . . , N}. The corresponding right and left eigenstates are,
respectively,

∣∣�R
i

〉 =
N∑

m=1

βm
i |m〉 ⊗ ∣∣uR

i

〉
:= ∣∣βR

i

〉 ⊗ ∣∣uR
i

〉
, (A1)

〈
�L

i

∣∣ =
∑

m

(M )im 〈m| ⊗ 〈
uL

i

∣∣ := 〈
βL

i

∣∣ ⊗ 〈
uL

i

∣∣ , (A2)

where |uR,L
i 〉 are the eigenstates of Ĥ (βi ) and Ĥ†(βi ), respec-

tively. The elements of the N × N matrix M are determined by
the biorthogonal relation: Mim = (V −1)im/uL1

i , where 〈uL
i | =

(uL1
i , uL2

i ) in the sublattice basis. Without loss of general-
ity, we consider a two-band system and V is the invertible
2N × 2N matrix whose columns are the right eigenvectors of
the Hamiltonian Ĥ

Vmi = βm
i uR1

i , V(m+N )i = βm
i uR2

i ,

Vm(i+N ) = β̃m
i ũR1

i , V(m+N )(i+N ) = β̃m
i ũR2

i . (A3)

Here m, i = 1, 2, . . . , N , and we denote the eigenstates of
the two band as |βR

i 〉 ⊗ |uR
i 〉 and |β̃R

i 〉 ⊗ |ũR
i 〉, respectively.

We also denote |uR
i 〉 = (uR1

i , uR2
i )T and |ũR

i 〉 = (ũR1
i , ũR2

i )T in
the sublattice basis. Note that the matrix V here is always
invertible, assuming the absence of exceptional points for the
non-Hermitian Hamiltonian.

In the thermodynamic limit, the index i can be replaced by
a continuous variable θ ∈ [0, 2π ). We then have β = β(θ ),
k̄ = k̄(θ ) = −i ln β, and � = �(θ ) = Im(k̄). Since the matrix
M is now of infinite dimension, we make a formal substitution
here: Mim → Mθm.

Having obtained a concrete expression for the eigenstates,
we now proceed to calculate the average biorthogonal posi-
tion. We first calculate x̂ |�θ 〉 as follows:

x̂
∣∣�R

θ

〉 =
N∑

m=1

m eik̄m |m〉 ⊗ ∣∣uR
θ

〉

= −i
N∑

m=1

(∂θeiθm)e−�m |m〉 ⊗ ∣∣uR
θ

〉

= −i∂θ

∣∣�R
θ

〉 + i |βR〉 ⊗ ∣∣∂θuR
θ

〉

− i
∑

m

mβm ∂�

∂θ
|m〉 ⊗ ∣∣uR

θ

〉
. (A4)
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We then have

x̄LR =
∫

dθ

2π

〈
�L

θ

∣∣x̂∣∣�R
θ

〉

= − i
∫

dθ

2π

〈
�L

θ

∣∣∂θ�
R
θ

〉 + i
∫

dθ

2π

〈
uL

θ

∣∣∂θuR
θ

〉

− i
∑

m

m
∫

dθ

2π
Mθmβm ∂�

∂θ
, (A5)

where the first term is a time-independent constant, as

−i
∫

dθ

2π

〈
�L

θ

∣∣∂θ

∣∣�R
θ

〉 = 1 + N

2
. (A6)

Here the second term in the last line of Eq. (A5) gives the
non-Bloch Berry phase, which cannot be obtained from a
single Wannier center when the generalized Brillouin zone
is noncircular. The third term looks complicated, but, as we
show later, its contribution to the pumped charge vanishes in
the pumping process.

Specifically, for the adiabatic evolution, both the general-
ized Brillouin zone and |uL,R

θ 〉 become time dependent

x̄LR(t ) = 1 + N

2
+ i

∫
dθ

2π

〈
uL

θ (t )
∣∣∂θuR

θ (t )
〉

− i
∑

m

m
∫

dθ

2π
[M(t )]θmβm(t )

∂�(t )

∂θ
, (A7)

where x̄LR(t ) is defined in Eq. (37) and |uL,R
θ (t )〉 are the in-

stantaneous eigenstates of Ĥ†(β, t ) and Ĥ (β, t ), respectively.
The average biorthogonal displacement over one cycle is then

�x̄LR =
∫ T

0
dt ∂t x̄

LR(t )

= CnB − i
∑

m

m
∫

dθ

2π

∫ T

0
dt ∂t

[
Mθmβm ∂�

∂θ

]
. (A8)

Importantly, since the generalized Brillouin zone is a contin-
uous and periodic function of the time t , the second term in
Eq. (A8) vanishes. Hence the average biorthogonal displace-
ment over one pumping cycle is quantized to the non-Bloch
Chern number.
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