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Krylov complexity and dynamical phase transition in the quenched Lipkin-Meshkov-Glick model
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Investigating the time evolution of complexity in quantum systems entails evaluating the spreading of the
system’s state across a defined basis in its corresponding Hilbert space. Recently, the Krylov basis has been
identified as the one that minimizes this spreading. In this study, we develop a numerical exploration of the
Krylov complexity in quantum states following a quench in the Lipkin-Meshkov-Glick model. Our results reveal
that the long-term averaged Krylov complexity acts as an order parameter for this model. It effectively discrim-
inates between the two dynamic phases induced by the quench, sharing a critical point with the conventional
order parameter. Additionally, we examine the inverse participation ratio and the Shannon entropy in both the
Krylov basis and the energy basis. A matching dynamic behavior is observed in both bases when the initial state
possesses a specific symmetry. This behavior is analytically explained by establishing the equivalence between
the Krylov basis and the prequench energy eigenbasis.
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I. INTRODUCTION

Quantifying the complexity of physical phenomena has
been a long-standing area of research [1]. Various measures,
such as the entropy generated during the time evolution of a
quantum state [2], algorithmic randomness [3], and quantum
Kolmogorov complexity [4], have been utilized to charac-
terize complexity. While existing measures capture specific
features, some fail to encompass other aspects and exhibit
ambiguities due to the specific basis choices involved in their
definitions.

Chaotic systems are expected to be more complex than in-
tegrable ones, a notion often attributed to phenomena like the
butterfly effect [5,6]. In the realm of quantum systems, this ef-
fect is typically characterized by the exponential growth of the
noncommutativity of local operators over time, as quantified
by out-of-time order correlators. However, this exponential
increase is not consistently observed in chaotic systems and
may even manifest in nonchaotic ones [7–9].

A novel measure of complexity has recently been pro-
posed, relying on the spread of operators across a specifically
ordered basis known as the Krylov basis [10]. This basis
provides the description of the dynamics in terms of a sin-
gle particle moving in a semi-infinite chain, with hopping
rates set by the Lanczos coefficients obtained during the
computation of the Krylov basis [11]. A large body of liter-
ature has followed, addressing fundamental properties of this
measure [12–23], its generalizations for other kinds of evolu-
tion [24–29], and applications, e.g., to characterize phases of
matter [30–32], and for quantum control [33,34]. The Krylov
complexity involves a choice of inner product between oper-
ators, raising questions about the optimal inner product for
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minimizing complexity. This challenge was addressed with
the extension of the Krylov complexity for quantum state
evolution presented in Ref. [35]. It was shown that the Krylov
basis minimizes the proposed complexity definition. As a re-
sult, the Krylov complexity of quantum states, also known as
the spread complexity, emerges as an unambiguous measure,
eliminating the need for an inner product choice. It has been
explored in the Sachdev-Ye-Kitaev (SYK) model [10,14],
the XXZ model [16], the Su-Schrieffer-Heeger model [31],
evolutions governed by dynamical symmetry groups associ-
ated with specific Lie algebras [17,19,26], and random matrix
models [19,35], among others. Additionally, it has been ap-
plied to analyze the transition from integrability to a chaotic
regime [22,36].

The exploration of dynamics following a global quench
in quantum many-body systems is widely used to probe a
system in nonequilibrium statistical mechanics [37]. Global
quenches induce rapid departures from equilibrium, along
with coherence in the energy spectrum, producing intrigu-
ing effects, such as dynamical quantum phase transitions
(DQPTs) [38,39]. These transitions arise in quenched many-
body systems and manifest as cusps in the Loschmidt echo
or survival probability, i.e., nonanalytic behavior in the time
domain for certain initial states. This paper contributes to their
study by investigating the evolution of Krylov complexity
in quantum states following a quench in the paradigmatic
Lipkin-Meshkov-Glick (LMG) model [40]. Our study of the
LMG model, which may exhibit a DQPT depending on the
quench [41], reveals that the long-time averaged Krylov com-
plexity serves as an order parameter for the DQPT. The Krylov
complexity manifests distinct behavior over time in both dy-
namical phases induced by the quench and remarkably mirrors
the oscillations and revivals seen in one of the components
of the total magnetization, a conventional dynamical order
parameter in spin systems.
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In order to understand this fact, we conduct a numer-
ical study of the inverse participation ratio (IPR) and the
Shannon entropy over time in both the Krylov basis and the
prequench energy basis. Remarkably, these two quantities can
display identical behavior in both bases. Finally, by deriving
the Krylov basis for the case of a quench starting at a null
magnetic field, we analytically demonstrate its equivalence to
the prequench energy basis. This analytical result explains the
identical temporal behavior of IPR and Shannon entropy in
these two bases and also why Krylov complexity is an order
parameter for the considered model at null magnetic field.

Two early studies of the Krylov complexity in the LMG
model have been reported. The first one [42] addresses scram-
bling dominated by classical saddle points in the model, and
the second [32] identifies the spread complexity as a probe for
the equilibrium quantum phase transition. However, none of
these two works explore the phenomenon of DPQTs.

The paper is structured as follows: Section II provides a
review of key concepts related to dynamical phase transitions
while Sec. III introduces the theory of Krylov complexity of
quantum states. The goal of these two sections is twofold:
setting the notation of the paper and making it self-contained.
Section IV offers an overview of the dynamical phase transi-
tion in the LMG model, and Sec. V presents our results. We
present our conclusions in Sec. VI.

II. DYNAMICAL QUANTUM PHASE TRANSITION

Let us consider a quantum many-body system described
by a Hamiltonian H (h), which depends on an externally
controlled parameter h. At the initial time, the system is pre-
pared in the ground state |ψ (0)〉 ≡ |ψ0〉 of the Hamiltonian
H (h0) ≡ H0. After a sudden change, quench, during which the
value of h changes from h0 to h f , the system is left to evolve
under H (h f ) ≡ Hf . In this context, the central quantity in the
theory of dynamical quantum phase transition is the return
probability amplitude

G(t ) = 〈ψ0|ψt 〉 = 〈ψ0|e−iHf t |ψ0〉, (1)

also known as the survial amplitude [43–46] and the
Loschmidt amplitude [47].

The characterization of the DQPT relies on a formal anal-
ogy between G(t ) and a special case of the boundary partition
function ZB = 〈ψ1|e−RH |ψ2〉, with R being the distance be-
tween the boundaries |ψ1〉 and |ψ2〉 [48]. In this case, R has
to be interpreted as a spatiotemporal distance, in which one
of its components is the complex time it playing the role
of the inverse temperature β, as guaranteed by relativistic
quantum field theory. For more details, see also [49]. Thereby,
formally, G(t ) is the boundary partition function with R = it
and |ψ1〉 = |ψ2〉 = |ψ0〉. The corresponding probability

L(t ) = |G(t )|2. (2)

is called return probability, survival probability, or Loschmidt
echo.

The DQPT is then defined in terms of the Fisher or
Lee-Yang zeros [50,51] of this partition function. Consider
the return amplitude with complex time t → z = t + iτ . A
transition occurs every time the zeros of G(z) cross the real-
time axis of the complex plane, and these crossings indicate

the critical times of the dynamics. This analogy with the
equilibrium quantum phase transition leads us to another im-
portant quantity in the dynamical case, a quantity that can be
understood as the dynamical version of the free energy, the
rate function

r(t ) = − 1

N
log [L(t )], (3)

with N being the size of the system. At the critical times,
L(t ) is zero, and the rate function becomes nonanalytic. It
is important to observe that this behavior only emerges in
the thermodynamic limit where N → ∞ and the Fisher zeros
accumulate in a line or in a continuous region [38].

The above-described phenomenon was termed DPT-II to
differentiate it from another related phenomenon known as
DPT-I. DPT-II was initially investigated in the transverse field
Ising model [47] and, since then, it has been explored in var-
ious quantum many-body systems. These encompass short-
and long-range interacting quantum spin chains [41,49,52–
55], two-dimensional spin systems [56,57], nonintegrable sys-
tems [58], and optical systems [59], to name a few examples.
For an in-depth review of DPT-II, covering both theoretical
studies and experimental realizations, see Ref. [38].

In the transverse field Ising model, the condition for the
Fisher zeros to cross the real-time axis in the complex plane
is that the quench crosses the critical point of the equilib-
rium quantum phase transition (QPT). Such a connection
was thought to be a general feature of quantum many-body
systems presenting a DQPT. However, several exceptions
appeared later on, highlighting the nonexistence of a one-
to-one correspondence between dynamical and equilibrium
QPTs [38].

While DPT-II is investigated through the lens of the return
probability, DPT-I is featured by the Landau order param-
eter of the system. This order parameter, a quantity whose
derivative undergoes nonanalytic changes at a critical point of
the quench parameter, serves to distinguish dynamical phases.
Typically, the order parameter involves the time average of
some physical quantity, such as the magnetization in spin
chains. It is noteworthy that this dynamical critical point might
not align with the critical point of the equilibrium QPT. DPT-
I has been examined in various systems, and we point the
reader to Refs. [39,60] for comprehensive reviews on both its
theoretical and experimental aspects.

Connections between DPT-I and DPT-II were also ex-
plored. As an example, in Ref. [61], a link is established
between microscopic probabilities and the order parameter
in the XXZ model when the initial state exhibits broken
symmetry. In the transverse field Ising model with power-law
decaying interaction, Ref. [53] demonstrates that DPT-II oc-
curs only when crossing the dynamical critical point of DPT-I.
The study also reveals that the Z2-type symmetry, explicitly
broken in the initial state, is restored in a long-time limit and
at the critical times of DPT-II.

More recently, a connection between DPT-I and DPT-II
and the excited-state quantum phase transition (ESQPT) in
quantum many-body systems with infinite-range interactions
has been established [62]. The authors in Ref. [62] define
a generalized microcanonical ensemble by introducing three
noncommuting charges and consider the presence of dynami-
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cal order parameters. In the thermodynamic limit, these order
parameters are nonzero if the energy E is less than the ES-
QPT critical energy Ec, but they always vanish when E > Ec.
Concerning DPT-II, it was demonstrated that nonanalyticities
in the rate function r(t ) only occur if the energy of the system
after the quench is greater than Ec, being absent if E < Ec.
The same theoretical framework was applied to a finite-range
interacting system in Ref. [63].

The main focus of this study is to investigate the complex-
ity of the dynamics associated with DPT-I in the paradigmatic
Lipkin-Meshkov-Glick (LMG) model [40].

III. KRYLOV COMPLEXITY OF QUANTUM STATES

Next, we introduce a notion of complexity of the quantum
dynamics based on the spreading of |ψt 〉 over the system
Hilbert space or, rather, the subspace spanned by the quantum
evolution known as the Krylov space. For this reason, this
quantity is also referred to as spread complexity [31,35].

Let us start by writing the evolved state in the form

|ψt 〉 =
∞∑

n=0

(it )n

n!
Hn|ψ0〉. (4)

The successive application of H to the initial state generates
the set of quantum states

{|ψ0〉, H |ψ0〉, H2|ψ0〉, . . . } = {Hn|ψ0〉}n�0, (5)

which describes the spreading of the initial state over the
Hilbert space during time evolution. The subspace spanned
by {Hn|ψ0〉}n�0 is known as the Krylov space. The measure
of complexity that we consider in this work was introduced in
Ref. [35], and it is given by

CB(t ) =
∑

n

cn|〈ψt |Bn〉|2, (6)

where B represents, for the time being, a basis in the Hilbert
space, whose elements are denoted as {|Bn〉}n. Intuitively, we
expect that complex dynamics lead to larger spreads over
this basis. Thus, some constraints must be imposed on the
coefficients cn. For a real and positive-definite measure of
complexity, regardless of the state of the system, cn > 0 is
required. The coefficients should vary with n and grow mono-
tonically with n to assign higher complexity to components
|〈ψt |Bn〉|2 with higher index n. Note that the choice of con-
stants coefficients cn = c is excluded as the complexity would
reduce to the sum over all probabilities pn(t ) = |〈ψt |Bn〉|2
times c, yielding c at all t .

A basis-independent complexity measure can be obtained
from CB(t ) by performing a special minimization process,
resulting in

C(t ) = min
B

CB(t ). (7)

Of course, it is always possible to construct a basis at the
initial time such that |ψ0〉 = |B0〉 has a nonzero overlap only
with one state of the basis, thereby minimizing complexity.
Instead, we consider a functional minimization of (6) which
takes into account the spread of the state. For this purpose, it
is natural to look at the set {Hn|ψ0〉}n�0 spanning the Krylov
space since it includes only the portion of the Hilbert space
visited by the system over time evolution.

The Krylov complexity, a precedent of the spread complex-
ity, was first introduced in Ref. [10] in the context of operator
evolution, i.e., in the Heisenberg picture. Based on this con-
cept, a universal hypothesis for the maximum growth of local
operators in quantum many-body systems was presented.
Later, Balasubramanian and collaborators [35] extended the
idea to the evolution of quantum states in the Schrödinger
picture and proved that the basis which minimizes (6) for
cn = n is the so-called Krylov basis. The Krylov basis is
generated performing Gram-Schmidt orthogonalization on the
set {Hn|ψ0〉}n�0. We denote the Krylov basis as K and its
elements as {|Kn〉}n.

Alternatively, the Krylov basis can be generated using the
Lanczos algorithm [11,64], which is a well-known recursive
method used to generate an orthogonal basis. Starting with
the initial state as the first Krylov state |K0〉 = |ψ0〉, the
next state is obtained as |K1〉 = 1

b1
H |K0〉 with b1 = 〈K1|K1〉1/2

being the normalization constant. The subsequent states
{|Kn〉}n�2 are generated via the following recursion method:

|An〉 = H |Kn−1〉 − an−1|Kn−1〉 − bn−1|Kn−2〉, (8)

|Kn〉 = b−1
n |An〉. (9)

The constants an and bn, with b0 = 0, are called Lanczos
coefficients and they are defined as

an = 〈Kn|H |Kn〉, bn = 〈Kn|Kn〉1/2. (10)

Isolating the first term in the right-hand side of Eq. (8),

H |Kn−1〉 = an−1|Kn−1〉 + bn|Kn〉 + bn−1|Kn−2〉, (11)

we observe that the Hamiltonian is tridiagonal in the Krylov
basis {|Kn〉}n. We note that the Lanczos algorithm can lead to
roundoff errors [65], affecting the orthogonality between the
states. For this reason, it may be necessary to reorthogonalize
the states.

The authors of Ref. [35] proved that the Krylov basis
minimizes Eq. (6) in a specific way. Formally, let

SB = (
C(0)
B ,C(1)

B ,C(2)
B , . . .

)
(12)

be the sequence of derivatives of CB(t ) calculated at t = 0,
that is,

C(m)
B ≡ C(m)

B (0) = dm

dtm
CB(t )

∣∣∣∣
t=0

, m = 0, 1, 2, . . . . (13)

We say that SB1 < SB2 if there is some k such that C(m)
B1

=
C(m)
B2

for m < k and C(m)
B1

< C(m)
B2

for m = k. Thus, for any basis
B, SK � SB with the equality corresponding to the case B =
K [35]. This is the minimization that we referred to above as
functional minimization.

The Lanczos coefficients determine the matrix represen-
tation of the generator of evolution in Krylov space. Their
specific role in quantum dynamics is still subject to investi-
gation. The complexity growth in both pictures can be seen as
a hopping single particle in a one-dimensional semi-infinite
chain with the Lanczos coefficients representing the hopping
terms. Thus, it is expected that complex dynamics makes the
wave packet of the hopping particle delocalize quickly in the
semi-infinite chain. It is also for this reason that one chooses
cn = n in the definition of complexity since, upon this choice,
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the complexity is the average position of the hopping particle
in the semi-infinite chain. In what follows, we refer to this
chain as the Krylov chain.

IV. DPT-I IN THE LMG MODEL

Let us consider a spin chain described by the Hamiltonian

H (h) = − J

N
S2

z − hSx, (14)

where Sα = ∑N
i=1 σα

i /2 (α = x, y, z) are collective spin oper-
ators, with σα

i denoting the α Pauli matrix acting on the ith
site of a chain of N = 2 j sites and total angular momentum
j. This Hamiltonian is a particular case of the well-known
Lipkin-Meshkov-Glick model [40]. The constant J denotes
the ferromagnetic coupling between the spins in the z di-
rection while h represents the strength of the magnetic field
applied along the x axis. This Hamiltonian describes an en-
semble of N spin- 1

2 systems subject to all-to-all pairwise
interactions in the presence of a magnetic field.

Considering a quench h0 → h f > 0, we show in Fig. 1(a)
the bifurcation diagram of Hamiltonian (14) for the time-
averaged magnetization (order parameter for this model)

Sz = lim
T →∞

1

T

∫ T

0
〈ψ (t )|Sz|ψ (t )〉dt, (15)

as a function of the quench parameter h, which characterizes
DPT-I in this model. The initial state was taken to be the
collective spin aligning with the −z direction, the south pole
of the Bloch sphere representation. This state corresponds to
one of the twofold-degenerate ground states of H0 [66], de-
noted as | ↓〉z. Throughout this paper, we use J = 1. The order
parameter Sz delineates two distinct dynamical phases: a dy-
namical ferromagnetic phase for h < 1

2 , where magnetization
oscillates around a finite value depending on the initial state,
leading to Sz �= 0, and a dynamical paramagnetic phase for
h � 1

2 , where magnetization oscillates around zero, yielding
Sz = 0. The critical point separating these phases is at hc = 1

2 .
The DPT-I in this model has been extensively stud-

ied [41,53,67]. The dynamical critical point, denoted as hc,
can be determined analytically for the Hamiltonian (14),
resulting in hc = (h0 + J )/2 [68]. As the system size in-
creases, the behavior of Sz converges towards the mean-
field solution, highlighting the exact nature of the mean-
field solution for the LMG model in the thermodynamic
limit [66].

An essential aspect of DPT-I in this context is the sym-
metry of the initial state. This critical phenomenon is only
observed when the initial state of the dynamics exhibits
broken symmetry [53]. The LMG model feature spin-flip sym-
metry [69], represented by the operator �̂ = eiπ (Ŝx− j). This
symmetry dictates that H does not couple standard eigenba-
sis | j, mz〉 states (eigenvectors of S2 and Sz) with even and
odd mz. Under these conditions, a quench within the same
dynamical phase produces oscillations in the system around
a broken-symmetry effective state, while a quench crossing
the dynamical critical point produces oscillations around a
symmetric effective state. These oscillations are characterized
by long-lived steady states, and they are usually linked to
prethermalization [70].

(a)

(b)

(c)

FIG. 1. Magnetization as an order parameter. (a) Shows the time-
averaged magnetization Sz as a function of quench h0 = 0 → hf =
h. The initial state is |ψ0〉 = | ↓〉z. In the thermodynamic limit, Sz

signals the dynamical phase transition at the critical point h = 1
2 ,

thus identifying two dynamical critical phases. (b), (c) Show the
magnetization Sz(t ) as a function of time for a quench in the fer-
romagnetic phase (h = 0.3) and a quench crossing the critical point
to the paramagnetic phase (hf = 0.8), respectively. In both phases,
revivals are suppressed in the thermodynamic limit.

Figures 1(b) and 1(c) illustrate instances of magnetization
behavior over time, depicting a quench within the same phase
and crossing the dynamical critical point, respectively. The
observed revivals in these figures arise from finite-size effects
within the system. As the system size N increases, these
revivals disappear. In the following section, we demonstrate
that the time-averaged Krylov complexity can also serve as an
order parameter for this system.

V. RESULTS

We start by discussing the spread complexity’s behavior
and its long-time average. To understand why Krylov com-
plexity can be taken as an order parameter for the DPT-I in
the LMG model, we proceed with the analysis of two other
quantities, the inverse participation ratio, and the Shannon
entropy, considering the energy and the Krylov basis.
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A. Krylov complexity of quantum states in the LMG model

We turn to the spread complexity given in Eq. (6). We argue
that the long-time average of the Krylov complexity

C = lim
T →∞

1

T

∫ T

0
CK(t )dt (16)

behaves as a dynamical order parameter in the DPT-I of this
model.

Using the setup described in the last section, Fig. 2(a)
shows the normalized time-averaged complexity as a function
of the quenching intensity h0 < h f � 1 for several values
of h0. Remarkably, C exhibits the same qualitative behavior
as the dynamical order parameter Sz, with the only differ-
ence being the numerical values assumed in both dynamical
phases.

Moreover, we note that C/ j exhibits the same dynami-
cal critical point as Sz, whose dependence with h0 is hc =
(h0 + J )/2. This is ensured by the fact that as N increases,
the nonanalytical point of C approaches the exact value hc,
as can be seen from Fig. 2(b) for an example with h0 = 0.1,
which implies that as N increases the derivative of C with
respect to h f reaches even higher values and shall diverge in
the thermodynamic limit N → ∞ [see the inset at Fig. 2(b)].
This fact was also verified for other values of h0 and holds
true.

As with the magnetization Sz(t ), the Krylov complexity
exhibits distinct behavior in each dynamical phase over time.
This characteristic is depicted in Figs. 2(c)–2(f). Extensive
numerical calculations suggest that, in the thermodynamic
limit, and for h0 = 0, the complexity oscillates around a finite
value, consistently remaining below unity for a quench within
the ferromagnetic phase. Conversely, it oscillates and later
stagnates on the unit value for a quench into the paramag-
netic phase. As we increase h0, we observe the same pattern
for quenches within the same phase, however, it stagnates
on progressively smaller values than unity, hence making its
time average C display smaller plateaus as can be seen from
Fig. 2(a) for h f > hc. Despite a smaller plateau, C seems
to reach a constant and maximum value for h f > hc, which
suggests that DPT-I causes the maximum spreading regime of
the dynamics. Based on these findings, we can argue that we
use the time-averaged Krylov complexity to indicate a DPT-I.

We additionally examined how the time-averaged com-
plexity varies concerning the ground-state manifold. The
LMG model possesses a twofold-degenerate ground state,
representing the north and south poles in the Bloch sphere
representation of the collective spin variables Sα (α =
x, y, z). Interestingly, both of these initial ground states
lead to the same pattern in the behavior of the Krylov
complexity over time. Consequently, the long-time aver-
age C as a function of h exhibits a qualitative similarity
to Sz.

Given that DPT-I is associated with a dynamical symmetry
breaking, it is reasonable to anticipate that the sensitivity
of the Krylov basis extends to the symmetry of the model.
Therefore, a deeper relationship between the Krylov basis and
the energy one should exist. This aspect will be investigated
in the concluding part of this section.

(a)

(b)

(c) (d)

(e) (f)

FIG. 2. Krylov complexity as an order parameter. (a) Shows the
normalized time-averaged Krylov complexity C/ j as a function of
hf for several values of h0 and N = 200. C exhibits exactly the same
transition as Sz at the dynamical critical point given by hc = (h0 +
J )/2 and represented by the vertical lines. (b) Shows the normalized
time-averaged Krylov complexity C/ j for h0 = 0.1 and several val-
ues of N as a function of hf . As N increases, the nonanalytical point
of C approaches the dynamical critical point hc = (h0 + J )/2 = 0.55
(black vertical line), indicating that C exhibits the expected behavior
of an order parameter in the thermodynamic limit (N → ∞), while
the inset shows its normalized derivative with respect to hf reaching
higher values at hc as N increases. (c)–(f) Show examples of CK(t ) as
a function of time for different quenches within the same phase [(c),
(d)] and crossing hc [(e), (f)]. We see that CK(t ) exhibits the same
pattern of oscillations as Sz(t ). In all panels, we used |ψ0〉 = | ↓〉z,
and in (a) and (b), we used T = 150.

B. Inverse participation ratio

To analyze the relation between the energy basis and the
Krylov basis, we first consider the inverse participation ratio
(IPR) in each one of these bases. The IPR is given by

IPR(t ) =
∑

k

|〈k|ψ (t )〉|4 =
∑

k

p2
k (t ), (17)

for some basis whose elements we generically denote as {|k〉}.
As its name suggests, the IPR measures how many states
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(b)

(a)

FIG. 3. Inverse Participation Ratio. (a) Shows IPR for a quench
hf = 0.3, while (b) shows the same quantity but for a quench cross-
ing the critical point (hf = 0.8). We take N = 200 in both panels.
Exactly the same behavior is observed if the initial state is taken as
the second ground state, | ↑〉z.

of the chosen basis effectively participate in the course of
the time evolution of the system. Using the analogy with the
Krylov chain, it means that the IPR should measure the level
of localization of |ψt 〉 in this chain for a nontrivial time evo-
lution since at t = 0, |ψ0〉 is sharply localized in the first site
of the Krylov chain as demands the first step of the Lanczos
algorithm.

Considering the same protocol as before, we compute the
IPR for two distinct bases: the prequench energy eigenbasis
(the eigenvectors of H0) and the Krylov basis. Two instances
of the results are shown in Fig. 3. Interestingly, the IPR com-
puted in both bases are identical. However, this coincidence
only happens when we start with h0 = 0, when the initial
energy spectra are doubly degenerate. Extensive numerical
analysis shows that they are different otherwise (see Appendix
for some examples of this mismatch). Another property of IPR
that we observed numerically is the independence with respect
to which ground state is taken as the initial state, thus giving
the same result also for the second ground state |ψ0〉 = | ↑〉z.

Two other aspects of the IPR are noteworthy. The first one
is the appearance of periodic peaks that decay in amplitude
along the dynamics. These peaks are due to partial revivals
in the dynamics, that is, the state of the system periodically
returns almost completely to the initial state, a feature ex-
pected for systems that exhibit DQPT including the LMG
model [52,71]. This fact can also be seen by noticing that
the first term of the sum in the IPR is the squared survival
probability

IPR(t ) = L2(t ) +
∑
k>0

p2
k (t ), (18)

which characterizes DQPT as described in Sec. II, and the
relation above holds for both the prequench energy basis and
the Krylov basis in our protocol. Therefore, the IPR is also
controlled by the survival probability. The second aspect of
the IPR that we highlight is the decay rate. We observe that
the closer the quench from the dynamical critical point, the
more states participate in the dynamics, and hence, the faster
the IPR decreases. An increase in the number of Krylov states
effectively participating in the dynamics was observed for
quenches crossing the equilibrium QPT of the LMG model
in Ref. [32] as well.

The reason for the match when h0 = 0 will be analytically
explored later in this paper. However, before presenting this
analysis, let us consider another interesting quantity, the Shan-
non entropy.

C. K entropy: Shannon entropy in the Krylov basis

Considering a probability distribution pn, the Shannon
entropy

E (t ) = −
∑

n

pn(t ) log[pn(t )] (19)

is a measure of the uncertainty of the system or the classical
information contained in the system. We are here interested in
the entropy associated with both bases discussed in the previ-
ous section: the Krylov basis, for which pn(t ) = |〈Kn|ψ (t )〉|2,
and the initial energy basis, whose probabilities are pn(t ) =
|〈E0

n |ψ (t )〉|2. The Shannon entropy in the Krylov basis was
introduced in Ref. [12] and is also known as the K entropy. It
is a measure of the complexity of the dynamics. The authors
of Ref. [35] argued that the complexity defined as the expo-
nential of this quantity measures the minimum Hilbert space
dimension required to store the probability distribution pn(t ).

By comparing the Shannon entropy in both bases, a perfect
match is again observed. Also, such a feature only occurs
when we start at h0 = 0. An example is shown in Fig. 4 for
the same parameters used in Fig. 3 and we show instances of
deviation from this behavior when h0 �= 0 in the Appendix.

We note that the probabilities pn(t ) = |〈E0
n |ψ (t )〉|2 are the

populations of the density matrix in the energy eigenbasis
and, thus, the entropy associated with such distribution is the
diagonal entropy, proposed as the thermodynamic entropy for
closed quantum systems [72]. Since pn(t ) = |〈Kn|ψ (t )〉|2 can
be seen as the probability density associated with site n in
the semi-infinite Krylov lattice, naturally, the corresponding
Shannon entropy EK(t ) can be interpreted as the uncertainty in
the spreading of the initial state through the Krylov subspace.

The numerical results described above indicate a deeper
match beyond the average spread. The goal of the next sub-
section is to investigate why this happens.

D. Derivation of the Krylov basis for h0 = 0

Let us consider quenches starting from h0 = 0. In this case,
it is possible to derive analytical results involving the Krylov
basis. The eigenstates of the prequench Hamiltonian

H0 = − 1

2 j
S2

z (20)
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(b)

(a)

FIG. 4. Shannon entropy. (a) Shows the results for the quench
h = 0.3, while (b) considers the case h = 0.8. In both cases, the ini-
tial state is |ψ0〉 = | ↓〉z and N = 200 as in the previous calculations.
Similar results are obtained considering the second ground state of
the LMG model for h0 = 0, which we denote by | ↑〉.

are the usual angular momentum basis | j, mz〉, with the index
mz ∈ {− j,− j + 1, . . . , j − 1, j} specifying the 2 j + 1 spin
projections. Of course, the ground states denoted by | ↑〉z and
| ↓〉z mentioned previously are examples of these eigenstates.
Then, the quench is performed in the magnetic field h such
that the postquench Hamiltonian can be written in terms of
ladder operators

Hf = − 1

2 j
S2

z − h f

2
(S+ + S−). (21)

Now we observe that the set of operators {Sz, S+, S−} are
the operators defining the well-known SU(2) algebra, thus the
following commutation relations hold:

[Sz, S±] = ±S±, [S+, S−] = 2Sz. (22)

The action of the Hamiltonian given in Eq. (21) on one of the
basis states | j, mz〉 is

Hf | j, mz〉 = c0| j, mz〉 + c+| j, mz + 1〉 + c−| j, mz − 1〉,
(23)

where c0 = −m2
z /2 j, c+ = − h

2

√
j( j + 1) − mz(mz + 1), and

c− = − h
2

√
j( j + 1) − mz(mz − 1). Comparing Eq. (23) with

Eq. (11), we immediately see that the states satisfying the
Lanczos algorithm for |ψ0〉 = | j, mz〉 are precisely the set
{| j, mz〉} up to a factor ±1, that is

|Ki〉 = ±| j, mz〉. (24)

Therefore, we conclude that the Krylov states are proportional
to the prequench energy eigenstates. This explains why both

0 50 100 150 200
mz

0

10

20

30

b m
z

hf = 0.3

hf = 0.5

hf = 0.7

FIG. 5. Lanczos coefficients. Comparison between the numerical
(dots) and analytical (yellow lines) coefficients for N = 200 and
|ψ0〉 = | ↓〉z. They feature perfect agreement showing that bmz =
c+(mz ) and attesting that the Krylov states are the usual angular
momentum states | j, mz〉 if the initial state is equal to any one of
the ground states.

the IPR and the Shannon entropy are the same in both bases.
The action of Hf on the state | j, mz〉, Eq. (23), provides us

an analytical expression for the Lanczos coefficients, which
correspond to the constant c−. For convenience, we relabel the
index mz as mz → − j + mz such that now mz runs through the
set {0, 1, . . . , 2 j}. With this change, the constant c− becomes

c−(mz ) = h f

2

√
mz(2 j − mz + 1), (25)

where we absorbed the minus sign in the state | j, mz〉. Figure 5
shows the perfect agreement between the Lanczsos coeffi-
cients calculated numerically using the Hamiltonian (14) and
the Lanczos algorithm (9) and the analytical expression for
c−, proving that c−(mz ) = bmz .

Since |Kmz 〉 = ±| j, mz〉, the Krylov basis must share the
same symmetries as the prequench energy basis. This fact
turns the Krylov basis sensitive to the break or restoration of
the spin-flip symmetry if a quench is performed in the LMG
model, which explains the ability of the Krylov complexity
to characterize DPT-I. Moreover, note that we can write the
expression of the Krylov complexity in the form

CK(t ) =
2 j∑

mz=0

mz|〈ψt |Kmz 〉|2. (26)

Considering now the expression of Sz(t ),

Sz(t ) = 〈ψt |Ŝz|ψt 〉, (27)

and employing the completeness of the angular momentum
basis

∑2 j
mz=0 | j,− j + mz〉〈 j,− j + mz| = I, we can readily

show that

CK(t ) = Sz(t ) + j, (28)

thus confirming that

C = Sz + j. (29)

The above discussion proves that the Krylov complexity must
have the same time behavior as the magnetization. We thus
conclude that its time average is an order parameter for this
model.

Finally, we note that when |ψ0〉 = | j, mz〉 for any mz,
dim (K) = dim (H), i.e., the dimension of the Krylov
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subspace is equal to the dimension of the Hilbert space. These
initial states explore the whole Hilbert space, showing a kind
of ergodicity. We emphasize that this is not a feature of all
quantum systems.

VI. CONCLUSION

Understanding the complex nature of the temporal evo-
lution of many-body quantum systems holds fundamental
significance across various research fields. This study con-
tributes to this area by examining the Krylov complexity
(spread complexity) and its connection to the dynamical phase
transition within the LMG model. In essence, we show that
the time-averaged Krylov complexity acts as an order param-
eter in this context. This conclusion stems from a numerical
investigation encompassing not only the Krylov complexity
but also the inverse participation ratio and Shannon entropy
within the Krylov basis. This analysis suggests a relation
between the Krylov basis and the energy eigenbasis. A fur-
ther analytical study establishes that the time-averaged Krylov
complexity effectively signals the dynamical phase transition
in this model using the equivalence between the Krylov and
the energy bases.

It is important to note that a thorough numerical in-
vestigation reveals that this connection is valid exclusively
in instances where the symmetry of the model is broken,
as shown analytically. This prompts questions about how
the Krylov complexity behaves under general changes of
symmetry. Addressing this question will certainly deepen
our comprehension of the dynamics inherent in many-body
systems.

Our findings also provide insights into the thermodynamics
of critical systems of this nature. While the thermodynam-
ics of equilibrium phase transitions is well established, the
same cannot be said for its dynamic counterpart. Our results
indicate that, in the case of the LMG model, the K entropy
serves as the quantum thermodynamic entropy. This assertion
is grounded in the definition of diagonal entropy [72] and

0 50
0

1

I
P

R
(t

) (a)
h0 = 0.1
hf = 0.4

0 50
0

1 (b)
h0 = 0.2
hf = 0.4

0 50
t

0

1

I
P

R
(t

) (c)
h0 = 0.1
hf = 0.4

0 50
t

0

1 (d)
h0 = 0.2
hf = 0.8

FIG. 6. Inverse participation ratio when h0 �= 0. (a), (b) Show
IPR for quenches lying in the dynamical ferromagnetic phase, while
(c) and (d) show IPR for quenches crossing the dynamical critical
point for h0 �= 0. The inset in (a) only shows a zoom of an interval of
the curves to help in the visualization. In all the panels, the solid line
refers to the energy basis, while the dashed line refers to the Krylov
basis (N = 200). We observe a mismatch between the curves for all
the cases, which indicates that the prequench energy basis and the
Krylov basis are different from each other when h0 �= 0.

the gauge theory of quantum thermodynamics outlined in
Ref. [73]. Furthermore, this observation aligns with earlier
investigations into the thermodynamics of DQPTs, where a
thermodynamic entropy in quantum phase space not only sig-
nals the transition but also, on average, exhibits a monotonic
increase over time [74]. Consequently, our results suggest
a profound connection between DPQTs and the process of
thermalization.

An intriguing observation emerges when considering
the interconnectedness of symmetry and thermalization in
thermodynamics, suggesting a profound link between the in-
quiries addressed in the preceding paragraphs.

Whether the time-averaged Krylov complexity can func-
tion as an order parameter for DPT-I in systems beyond the
LMG model remains an open question. Additionally, eluci-
dating the broader applicability of the connection between
Krylov and energy bases is crucial. Addressing these ques-
tions should provide valuable insights into the underlying
nature of this dynamical critical behavior.
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APPENDIX: IPR AND K ENTROPY IN THE CASE h0 �= 0

In this Appendix, we discuss the IPR and the Shannon
entropy in quenches starting at h0 �= 0. Figure 6 shows four
different instances of quenches starting at h0 �= 0 and the re-
spective evolution of the IPR. In all these cases, a mismatch is
observed between the IPR in the prequench energy basis (solid
lines) and in the Krylov basis (dashed lines). This mismatch

0 200
0.00

0.02

E(
t)

/j

(a)

h0 = 0.1
hf = 0.4

0 200
0.00

0.02

(b)

h0 = 0.2
hf = 0.4

0 200
t

0.00

0.05

E(
t)

/j

(c)

h0 = 0.3
hf = 0.8

0 200
t

0.00

0.05

(d)

h0 = 0.4
hf = 0.8

FIG. 7. Shannon entropy when h0 �= 0. (a), (b) Show the Shan-
non entropy for quenches lying in the dynamical ferromagnetic phase
and (c) and (d) show the Shannon entropy for quenches crossing the
dynamical critical point (N = 200). In all the panels, the solid line
refers to the prequench energy basis, while the dashed line refers to
the Krylov basis. Similarly to the IPR, we can see a clear mismatch
between the Shannon entropy calculated in both bases when h0 �= 0.
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happens irrespective of whether the quench lies in the same
phase as the prequench Hamiltonian or if the quench crosses
the dynamic critical point. Similar features can be seen in the
Shannon entropy. For the same values of h0 and h f as in Fig. 6,
Fig. 7 displays the mismatch between the Shannon entropy
in the prequench energy basis (solid lines) and in the Krylov
basis (dashed lines).

Interestingly, as Fig. 6 indicates, |ψt 〉 displays greater de-
localization in the Krylov basis than in the energy basis when
h0 �= 0. This result is in accordance with the respective be-
havior of the Shannon entropy since greater delocalization in
the Krylov basis shall imply greater uncertainty regarding the
spread of |ψ0〉 through the Krylov subspace, exactly what we
see from Fig. 7.
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