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Collective spin oscillations in a magnetized graphene sheet
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We investigate collective spin excitations of graphene electrons with short-ranged interactions and subject to
the external Zeeman magnetic field. We find that in addition to the familiar Silin spin wave, a collective spin-flip
excitation that reduces to the uniform precession when the wave’s momentum approaches zero, the magnetized
graphene supports another collective mode visible in the transverse spin susceptibility: a collective spin-current
mode. Unlike the Silin wave, this mode is not dictated by the spin-rotational symmetry but rather owns its
existence to the pseudospin structure of the graphene lattice. We find the collective excitation to become sharply
defined in a finite interval of the wave’s momenta, the range of which is determined by the interaction and the
magnetization.
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I. INTRODUCTION

The spin response of paramagnetic metals subjected to
the external magnetic field represents one of the storied re-
search directions in condensed matter physics. These studies,
initiated by Silin in 1958 within the framework of the Lan-
dau Fermi-liquid theory [1,2], produced a detailed theoretical
understanding of collective spin oscillations of itinerant in-
teracting fermion systems [3–5] whose key features were
successfully tested by experiments [6]. The principal predic-
tion of these studies, which focus on single-band conductors
with parabolic electron dispersion, is the emergence of the
transverse collective spin mode below the particle-hole con-
tinuum. This downward dispersing collective mode originates
from the Zeeman frequency at zero wave vector where it rep-
resents the collective precession of the total magnetic moment
as required by the Larmor theorem. The very existence of
this mode as a collective excitation of the Fermi liquid is
based on the interacting nature of the latter and allows one to
qualitatively distinguish the interacting Fermi liquid ground
state from the noninteracting Fermi gas state.

Our paper is devoted to the calculation of the dynamic
spin susceptibility of the Zeeman-field-magnetized monolayer
graphene at the charge-neutrality point (filled valence band
and empty conduction band when the Zeeman field is turned
off). This limit is opposite to the standard case of the single-
band conductor described above, in which the Zeeman energy
is several orders of magnitude smaller than the Fermi energy.

To the best of our knowledge, the spin sector of graphene
has been relatively underexplored. Collective spin excita-
tions of nonmagnetized graphene were studied early on [7]
and claimed the existence of the coherent spin-1 branch be-
low the particle-hole continuum. However, this finding was
subsequently refuted [8]. Two recent papers [9,10] studied
charge-neutral collective modes of monolayer graphene, in-
cluding the case with finite ωB, but focused on the intervalley
excitations in the electron-doped regime when EF � ωB. A
Silin-like spin mode of doped graphene was also studied via a
time-dependent spin-density-functional response theory [11].

The equilibrium properties of a single graphene sheet
partially polarized by an in-plane magnetic field—the setup
considered in this paper—have been theoretically analyzed in
Ref. [12]. It was found that at temperatures significantly below
the Zeeman splitting scale ωB, the long-range Coulomb in-
teraction drives graphene into the correlated exciton insulator
state. Our investigation of the dynamic spin response at the
energies of order ωB is complementary to such a low-energy
and temperature range where the exciton insulator is predicted
to occur.

The limit that we consider corresponds to the interesting
situation of Zeeman energy ωB exceeding the Fermi energy EF

(which is exactly zero at the charge-neutrality point). We show
below that it leads to the appearance of a collective spin mode
associated with oscillations of the spin current that is found to
coexist with the usual transverse Larmor-Silin spin wave.

The rest of the paper is organized as follows: In Sec. II,
we introduce the model of a magnetized graphene sheet and
discuss the origin of the spin collective modes qualitatively.
In Sec. III, we study the interacting Green’s functions of the
system, present the expression for the relevant polarization
functions, calculated in the Appendixes, and use them to
solve the Bethe-Salpeter equation for the vertex function. In
Sec. IV, we determine the spectra of collective modes. Finally,
in Sec. V, we summarize and discuss the quantitative results
of this paper.

II. THE MODEL AND QUALITATIVE
PICTURE OF COLLECTIVE MODES

In this section, we present a model of an undoped interact-
ing graphene sheet in an external Zeeman field, and discuss
the qualitative picture of spin and spin-pseudospin collective
modes in this system.

A. Model of undoped magnetized graphene

We consider two-dimensional Dirac fermions in the pres-
ence of an applied external magnetic field. We direct the z
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axis in the spin space along the x axis in the real space, such
that in the real-space coordinates the magnetic field is given
by B = (−B0, 0, 0), B0 > 0. Such magnetic field is purely
Zeeman and does not affect the orbital motion of electrons.
The negative sign of the magnetic field is chosen for conve-
nience to compensate for the negative sign of the electron
charge. This means that the energy of spin-up electrons is
decreased by the magnetic field whereas the energy of spin-
down electrons is increased by it. Since we do not consider
effects of spin-orbit or dipolar coupling, the fact that the z axis
in the spin space points along the x axis in the real space does
not lead to any difficulties.

Associated with the Zeeman field is the spin splitting of
the energy bands, ωB = gμBB0/2, where g is the electron
g-factor and μB is the Bohr magneton. Below, the two real
spin states are denoted with ↑,↓; the operators acting on
these states are denoted with Pauli matrices τ0, τ. The two
sublattice indices, which we will also refer to as pseudospin,
are denoted with A, B; the operators acting on the pseudospin
states are denoted with Pauli matrices σ0, σ. The Hamiltonian
for a Dirac point is written in the Kronecker product space of
spin and pseudospin. We will use letters from the beginning
of the Greek alphabet to label states in the four-dimensional
Kronecker product space spanned by (↑ A,↑ B,↓ A,↓ B).
The corresponding field operators, �̂α (r), and the annihila-
tion operators for the electrons in momentum space, ĉkα , are
related by �̂α (r) = ∑

k eikrĉkα , with the normalization area set
to unity. We will also work in units in which the electron Fermi
velocity and the Planck’s constant are set to unity.

The noninteracting part of the Hamiltonian for a given
Dirac point can be written as

Ĥ =
∑

k

ĉ†
k,α[τ0 ⊗ σ · k − ωBτz ⊗ σ0]αβ ĉk,β . (1)

The Zeeman field modifies the energy bands, E s
τ (k) =

−τωB + svk, where s = 1 corresponds to the upper Dirac
cones (conduction bands for a given spin τ ), and s = −1
corresponds to the lower Dirac cones (valence bands for a
given spin τ ). This is consistent with the energy of spin-up
electrons being decreased by the magnetic field, and the en-
ergy of spin-down electrons being increased by it, as shown in
Fig. 1.

To study collective modes of the system, we choose a
simplified form of interaction:

Ĥint = 1

2

∑
p,k,q

Uqĉ†
k+q,α ĉ†

p−q,β ĉp,β ĉk,α. (2)

The short-range part of such an interaction Hamiltonian con-
tains both the intrasublattice Hubbard interaction and the
intersublattice Coulomb repulsion. These types of interactions
obviously should have different strengths, but in graphene
they are only different by about a factor of 2 [13]. Hence,
for simplicity we consider the interaction of higher spin-
sublattice symmetry, Eq. (2). This spurious symmetry does
not lead to any qualitative effects in the present context. The
important aspect of the chosen interaction Hamiltonian is that
it conserves both real spin and pseudospin, as explained in the
next section.

FIG. 1. Scheme of the band structure and occupied states along
the kx axis in the momentum space. Dashed red lines represent the
conduction band states for spin-up (displaced downward in energy)
and spin-down (displaced upward in energy) states. Solid blue lines
are the valence bands for the two spin states. Vertical dotted lines
separate regions of finite spin or pseudospin polarizations. The spin
and pseudospin polarizations of the states are indicated with vertical
and horizontal arrows positioned on the dispersion lines.

B. Qualitative picture of collective modes

We focus on the neutral collective modes of the system,
limiting ourselves to those involving collective transverse spin
motions and excluding pure charge (plasmon) excitations.

First, consider the spin and pseudospin polarization
patterns in the noninteracting ground state of the system, as
shown in Fig. 1. Since we are using units with Dirac speed
set to unity, the scales for the relevant single-particle energies
and momenta are all given by the Zeeman splitting of the
bands, ωB.

We note that the ground state is spin polarized along the
Zeeman field. At zero chemical potential, there is an excess
δn↑ > 0 of spin-up electrons and an equal deficit δn↓ < 0
of spin-down electrons, where 	n = δn↑ − δn↓ = 2δn↑ =
ω2

B/2π . The net spin polarization persists in the interacting
ground state, and implies that small spin-density deviations
from the direction of the Zeeman field will precess around this
field. The Larmor theorem, which stems from the commuta-
tivity of the interaction Hamiltonian with the total spin opera-
tor, guarantees that uniform spin precession occurs at the fre-
quency of 2ωB even in an interacting system. The result of the
celebrated works of Silin [1,2] is that this collective precession
stays coherent even at finite wave vector, resulting in the
existence of a collective wave of transverse spin fluctuations.

We do find the Silin-like wave in magnetized graphene,
see Eq. (41), and the text around it. It can be crudely
thought of as collective oscillations of a transverse Zeeman
field, 〈�†

α (r)[τx,y ⊗ σ0]αβ�β (r)〉, where summation over re-
peated indices is implied. In other words, it corresponds to
fluctuations of interband coherence between occupied and
unoccupied states with opposite spin polarizations, but the
same pseudospin polarization. In the long-wavelength limit,
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these states are confined to |k| < ωB, and the corresponding
dispersion lines run parallel to each other in Fig. 1, and are
separated by energy of 2ωB, which sets the frequency of the
collective oscillation at zero wave vector.

The view of the Silin mode as oscillations of interband
coherences allows one to see what unique features the Dirac
spectrum of graphene brings into the problem, and ask more
questions. The states with the same pseudospin but opposite
real spin orientations belong to pairs of either conduction or
valence bands, which got split by the Zeeman field. In this
sense, these coherences are the direct analogs of those appear-
ing in a single-band Fermi liquid considered by Silin. In the
case of graphene, with its Dirac band structure, one can then
ask if there are oscillations of coherences between occupied
and unoccupied states of both opposite spin and pseudospin
polarizations. The corresponding dispersion lines have oppo-
site slopes in Fig. 1, and exist for all k′s. Such oscillations
would correspond to a hybrid spin-pseudospin collective field,
〈�†

α (r)[τi ⊗ σ j]αβ�β (r)〉. We do find that such hybrid collec-
tive modes exist for i, j = 1, 2 and have a dispersion given
by Eq. (42). These modes are overdamped at small wave
vector q, but do become well-defined for weak interactions
before disappearing into a particle-hole continuum associated
with spin-flip intraband transitions. Here and below, intraband
refers to transitions between spin-split bands of the same
pseudospin polarization. These would be either degenerate
conduction or valence bands without the Zeeman field.

The existence of these hybrid spin-pseudospin modes is not
due to any symmetry, since the total pseudospin operator does
not commute with the noninteracting part of the Hamiltonian,
hence there is no Larmor theorem for the precession of the
corresponding observable, even though the interaction Hamil-
tonian conserves the pseudospin.

We can proceed to study the collective excitations that
involve transverse spin fluctuations in two ways. First, given
the nature of the spin-pseudospin collective field described
above, we can formally consider the linear response of the
system to a generalized Zeeman field, which has the matrix
structure of τi ⊗ σ j , with i = 1, 2. The j = 0 component of
such a field corresponds to the conventional Zeeman field. For
noninteracting electrons, this linear response is determined
by three types of polarization bubbles, schematically shown
in Fig. 2. The spectrum of the collective modes can then be
inferred from the pole structure of the corresponding matrix
generalized susceptibility, obtained from bubbles of Fig. 2 by
dressing them with interaction lines.

Instead of the above approach, in this paper we will inter-
pret the hybrid spin-pseudospin modes as oscillations of the
spin current, and argue that the corresponding collective mode
spectrum can be obtained from the conventional transverse
dynamical spin susceptibility, χ⊥(q, ω). Indeed, for Hamilto-
nian (1) the single-particle velocity operator coincides with
the pseudospin polarization function, σ, which means that
the collective field 〈�†

α (r)[τi ⊗ σ j]αβ�β (r)〉 coincides with
the unsymmetrized spin current operator. This means that
nonuniform fluctuations of this field will give rise to net spin
density fluctuations, as can be easily seen from the continuity
equation for the spin density. We thus expect the spin-current
collective modes to appear as resonances in the transverse
dynamical spin susceptibility at q 
= 0. It is also clear that the

FIG. 2. Polarization functions of electrons, which determine
their response to a generalized Zeeman field with nontrivial matrix
structure in the pseudospin space; see the discussion in Sec. II. The
solid lines are the single-particle Green’s functions for spin-up and
spin-down electrons, G↑,↓, which are matrices in the pseudospin
space. The quantities in parentheses should be read line by line: those
on the left-hand side of the graphical equation are the spin-spin, P;
spin-spin-current, H; and spin-current-spin-current, K; polarization
functions defined further in Sec. III B. Each line on the right-hand
side gives a pair of the corresponding vertices.

Silin mode, being a spin transverse spin wave, can also be
studied via the same transverse spin susceptibility, as done in
Ref. [14] for a U (1) spin liquid with a Fermi surface. Since
χ⊥(q, ω) is determined by a single electronic polarization
loop shown in Fig. 3, the spin-current-spin-current suscepti-
bility, K, and the spin-current-spin-density susceptibility, H,
shown in Fig. 2 will enter the calculations through the vertex
function � in Fig. 3. All these polarization functions are
calculated in the Appendixes, while in the main text we use
the results to study the collective modes in the system.

III. MAGNETIZED GRAPHENE
WITH SHORT-RANGE INTERACTIONS

In this section, we present the zero-temperature Green’s
function and polarization functions for the model defined by
Eqs. (1) and (2) and use these results to solve the Bethe-
Salpeter equation for the full spin-spin polarization function,
diagrammatically defined in Fig. 3.

A. Electron self-energy and the single-particle Green’s functions

We first determine the combined effect of the magnetic
field and interaction on the electron self-energy, specializing
to the case of a short-range interaction. The electron self-
energy, to the first order in Uq, includes contributions from
two diagrams, illustrated in Figs. 4(a) and 4(b), where solid
lines indicate electron Green’s functions, see Eq. (A2), and

FIG. 3. Polarization functions of electrons determining their
transverse dynamical spin susceptibility. The shaded part is the ver-
tex function, �, while the solid lines are the single-particle Green’s
functions of interacting electrons
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(a) (b)

FIG. 4. First-order electron self-energy diagrams: (a) exchange
term and (b) tadpole term.

dashed lines correspond to the electron-electron interaction.
The exchange contribution, Fig. 4(a), is

̂τ
a (p) = i

∑
k

U|p−k|
∫

dε

2π
Ĝτ

ε,keiε 0+. (3)

The factor eiε 0+ selects the correct normal ordering of electron
operators in the Green’s function. The Hartree contribution,
Fig. 4(b), is

̂τ
b (p) = −iU0

∑
k,τ ′

∫
dε

2π
Ĝτ ′

ε,keiε 0+. (4)

For the short-range interaction, Uq ≡ u, the exchange con-
tribution cancels the τ ′ = τ part of the Hartree contribution,
leaving only the term τ ′ = τ̄ , where the bar in τ̄ indicates the
spin opposite to spin τ :

̂τ (p) = −iu
∑

k

∫
dε

2π
Ĝ τ̄

ε,keiε 0+

= − iu

2

∑
k,s=±1

∫
dε

2π

eiε 0+

ε + τ̄ωB − sk + iητ̄
s (k)0+ .

(5)

The odd in k term σ̂k vanishes upon the k integration. The
value ητ̄

s (k) is positive for empty states and negative for filled
states. In particular, for spin-down electrons,

η↑
s (k) =

{
sign(k − ωB), s = +1

−1, s = −1,
(6)

and spin-down electrons,

η↓
s (k) =

{
1, s = +1

sign(ωB − k), s = −1.
(7)

Evaluating the energy integral by closing the integration con-
tour in the upper half-plane and subtracting the infinite but
field-independent contribution at ωB = 0, we obtain the self-
energy, τ (p) = uδnτ̄ /2. For multiple Dirac points (e.g., N =
2), the self-energy is further multiplied by the number of the
Dirac points: τ (p) = Nuδnτ̄ /2.

With the self-energy included, the single-particle causal
Green’s function becomes

Ĝτ
ε,k = 1

2

∑
s=±1

1 + sσ̂k

ε − Eτ
s (k) − τ + is0+ . (8)

The expression for the Green’s function shows that the
self-energy effect for the short-range interaction reduces to the
renormalization of the Zeeman energy in the single-particle

Hamiltonian. For N = 2 and δn↑ = −δn↓ = 	n/2, this
renormalization is given by

ωB → ω̃B = ωB + u	n/2. (9)

Consequently, the value of the net spin polarization, 	n,
must be found from a self-consistent equation:

	n = ω̃2
B

2π
. (10)

B. Polarization functions

As explained in Sec. II, we need three types of polarization
functions to describe transverse spin response of the system.
These are shown diagramatically in Fig. 2. The analytic ex-
pressions for these functions are as follows.

The transverse spin-spin polarization function, P , as a
function of external frequency ω and momentum q, is given
by

P (ω, q) = −iNTrσ
∑

k

∫
dε

2π
Ĝ↓

ε+, k+ Ĝ
↑
ε−, k− , (11)

where N = 2 is the number of Dirac cones and ε± = ε ± ω/2,
k± = k ± q/2.

The spin-current-spin-current polarization function is
given by

K(ω, q) = −iNTrσ
∑

k

∫
dε

2π
Ĝ↓

ε+,k+σxĜ↑
ε−,k−σx. (12)

Finally, the mixed spin-spin-current polarization function
is

H(ω, q) = −i
N

2
Trσ

∑
k

∫
dε

2π
G↓

ε+,k+σxĜ↑
ε−,k− . (13)

The Green’s functions entering the expressions for the po-
larization functions include the self-energy correction, Eq. (8).
The full calculation of these functions is given in the Ap-
pendixes. Here we quote the final results, needed for the
analysis of the collective modes below.

It is convenient to present the polarization functions as
functions of the shifted value of the frequency ω,

� ≡ ω − 2ωB − u	n = ω − 2ω̃B, (14)

where the definition of ω̃B is the same as given in Eq. (9).
We start with the spin-spin polarization, P (ω, q); see

Appendix A for details. We present its form for � < 0, |�| >

q, and ωB � q, which is the relevant region for the determi-
nation of the collective mode spectrum:

P (ω, q) = − Nω2
B

2π
√

�2 − q2
− i

Nq2

16
√

�2 − q2
. (15)

The structure of the imaginary part of P (ω, q) for general
ω, q, and the spin-flip particle-hole continuum is shown in
Fig. 5. The boundaries of the intraband and the interband
portions of the particle-hole excitation continuum are given
by |�| = q. At q = 0, the two boundaries merge at the point
ω = 2ωB + u	n. We note in passing that this represents a
seeming violation of the Larmor theorem, which predicts
that the boundaries should merge at ω = 2ωB, independent
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FIG. 5. Shaded region shows where imaginary part of polariza-
tion function P coming from intraband (blue-shaded) and interband
(orange-shaded) transitions is nonzero.

of the interaction. This inconsistency is resolved by noticing
that in the full spin-spin polarization function, Fig. 3, the
self-energy corrections in the Green’s functions should be
accompanied with an infinite series of the ladder corrections
(the diagrams with no intersection of interaction lines or inner
electron loops). A simple geometric series calculation shows
that taking the ladder diagram into account amounts to the
following modification of the polarization function:

P (ω, 0) → �(ω, 0) = P
1 + (u/2)P = N	n

ω − 2ωB
, (16)

which is independent of the interaction u and thus consistent
with the Larmor theorem.

The spin-current-spin-current polarization function, calcu-
lated in Appendix B, is given in the � < 0, |�| > q, and
ωB � q region by

K(ω, q) = Nω2
B�

2πq2

(
− 1 + |�|√

�2 − q2

)
− 2N�̃

− i
N�2

16
√

�2 − q2
. (17)

In the above expression, �̃ is the momentum cutoff for the
linear Dirac dispersion; see Appendix B for details. This linear
UV divergence of the spin-current polarization function is also
present in the charge current correlation function [15,16]. In
the expressions for observables, �̃ enters only in combination
of u�̃, as shown in Sec. IV. For weak interaction, u�̃  1,
�̃ disappears from the results, while for strong interaction,
u�̃ � 1, the low-energy model, Eqs. (1) and (2), is not a valid
starting point.

Finally, the expression for the hybrid spin-spin-current po-
larization function, treated in Appendix C, is given by

H(ω, q) = Nω2
B

4πq

(
− 1 + |�|√

�2 − q2

)
− iNq�

32
√

�2 − q2
.

(18)

(a)

(b)

FIG. 6. (a) Total polarization function. (b) Vertex summation to
all orders in interaction.

This polarization function describes the coupling between
spin and spin current fluctuations, which must decouple in
the q → 0 limit, as dictated by the spin continuity equation.
Expanding H(ω, q), near q ≈ 0, we obtain

H(ω, q) = Nω2
Bq

8π�2
, (19)

as expected.

C. Bethe-Salpeter equation

The full spin-spin polarization function, �, which deter-
mines the transverse spin susceptibility, is obtained by adding
vertex corrections to the bubble for P , see Figs. 2 and 3. We
calculate the vertex corrections in the ladder approximation,
which amounts to the following modification of the electron
loop, illustrated in Figs. 6(a) and 6(b):

�(ω, q) = −iTrσ
∑

p

∫
dε

2π
Ĝ↓

ε+,p+ �̂ω,p,qĜ↑
ε−,p− . (20)

The vertex function �̂ω,p,q obeys the Bethe-Salpeter integral
equation,

�̂ω,q = 1 + iu
∑

k

∫
dε

2π
Ĝ↓

ε+,k+ �̂ω,qĜ↑
ε−,k− , (21)

graphically shown in Fig. 6(b).
The independence of the interaction constant u of the mo-

mentum q means that the right-hand side of Eq. (21) does
not depend on momentum p. This ensures that the vertex
function depends only on the transferred frequency ω and
momentum q. For an isotropic system, we can conclude that
the dependence of the vertex function �̂ω,q on the direction of
q has the form

�̂ω,q = �0(ω, q) + �1(ω, q) σ̂q. (22)

Substitution of the ansatz (22) into Eq. (21) leads to two
energy-momentum integrals. The first of those integrals is

−2i
∑

k

∫
dε

2π
Ĝ↓

ε+,k+ Ĝ
↑
ε−,k− = P (ω, q) + 2H(ω, q)σ̂q, (23)

where P (ω, q) is the polarization function obtained in
Appendix A and presented in Eq. (15). Function H(ω, q) is
found in Appendix C and Eq. (18).
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The second energy-momentum integral differs from the
first on by the presence of the additional spin operator in the
integrand:

−2i
∑

k

∫
dε

2π
Ĝ↓

ε+,k+ σ̂qĜ↑
ε−,k− = K(ω, q)σ̂q + 2H(ω, q).

(24)

The function K(ω, q) is the spin current correlation function
for the noninteracting electrons; see Appendix B and Eq. (17).
Substitution of Eq. (22) into Eq. (21) gives the matrix equa-
tion (arguments omitted for brevity),

2�0 + 2σ̂q�1 = 2−u(P + 2Hσ̂q)�0 − u(Kσ̂q + 2H)�1,

(25)

which amounts to two coupled scalar equations,

�0(2 + uP ) + 2�1uH = 2,
(26)

2�0uH + �1(2 + uK) = 0,

whose solutions are

�0 = 4 + 4uK
(2 + uP )(2 + uK) − 4u2H2

, (27a)

�1 = − 4uH
(2 + uP )(2 + uK) − 4u2H2

. (27b)

Knowledge of the vertex function leads to the final expres-
sion for the polarization function (20):

�(ω, q) = 2
(2 + uK)P − 4uH2

(2 + uP )(2 + uK) − 4u2H2
. (28)

The polarization function (28) has the same general form as
the polarization function obtained in Ref. [17] for ωB = 0, but
the functions P , K , and H in Eq. (28) depend on the magnetic
field.

In the absence of interactions, u = 0, Eq. (28) reduces to
Eq. (15). At zero momentum, H(ω, 0) = 0 [see Eq. (C16)
in Appendix C], and P (ω, 0) = N	n/�, so the polarization
function becomes

�(ω, 0) = 2P
2 + uP = N	n

ω − 2ωB
, (29)

in agreement with Eq. (16).

IV. DISPERSION OF COLLECTIVE MODES

The poles of the polarization function in the ladder approx-
imation (28) are determined by the equation

(2 + uP )(2 + uK) − 4u2H2 = 0, (30)

yielding the spectrum of the collective modes. The functions
P , K, and H are given by Eqs. (15), (17), and (18), respec-
tively. These expressions for the functions P , K, and H apply
provided that |�| > q, and ωB � q, which is also the regime
where the collective modes exist.

The functions P , K, and H satisfy the following relations
that follow from Eqs. (15), (17), and (18):

K(ω, q) = 2�

q
H(ω, q) − 2N�̃, (31)

�

2q
P (ω, q) − H(ω, q) = 	n

q
. (32)

These relations allows us to simplify Eq. (30) to

2 + u[(1 − uN�̃)P + K + 2u	nH/q] = 0, (33)

where the factor of 1 − uN�̃ originates from the diverging
(last) term in (B10). In what follows, we assume that the
interaction is sufficiently weak, uN�̃  1, such that we can
replace 1 − uN�̃ with unity. This is a sensible approximation,
since the idealized form of the interaction Hamiltonian used
in this paper, Eq. (2), already implies that we can only reveal
the structure of the collective mode spectrum rather than its
quantitative details. The limit of weak interaction does not
affect the applicability of the Larmor theorem, which holds
regardless of the interaction strength, see Eq. (29), i.e., it does
not affect the frequency of the Silin mode at zero momentum,
fixed to be 2ωB. In the opposite limit of very strong interac-
tions, uN�̃ � 1, the low-energy model defined with Eqs. (1)
and (2) is not a valid starting point of any analysis anyway.

Equation (33) determines the real part and imaginary part
(attenuation) of the dispersion of the collective modes. We
will analyze it for sufficiently weak interaction, u2	n  1. In
this, the attenuation of a collective mode is small compared to
its frequency, and one can treat the imaginary part of Eq. (33)
as a perturbation. We note that this does not imply that the
collective modes are well-defined. We will address this issue
below in Eq. (44).

Introducing the new dimensionless variables according to
(cf. Appendix E) z = |�|/u	n and q0 = q/u	n, and noting
that � < 0, Eq. (33) reduces to√

z2 − q2
0

(
q2

0 − 1 + z
) − (

q2
0 − z + z2

) = 0, (34)

where we have used N = 2 for graphene. The corresponding
dispersions of the collective modes are shown in Fig. 7.

We can also obtain the behavior of the dispersions at low q
analytically. For this purpose, it is sufficient to expand Eq. (34)
to the fourth order in q0  z. This yields the following
equation:

(z − 1)(2z − 1) = q2
0

(
1 + z − 1

4z2

)
. (35)

It now follows that two solutions z1(q0) and z2(q0) exist,
which in the limit of q0 → 0, behave as z1 → 1 and z2 → 1/2,
respectively. To the second order in q2

0, we find

z1(q0) ≈ 1 + q2
0, (36a)

z2(q0) ≈ 1
2 − 1

2 q2
0. (36b)

The polarization function (28) can also be written in terms of
the new variables, z and q0, as

�(z, q0) = −
(

2

u

)
ψ (z, q0)

χ (z, q0) + iζ (z, q0)
, (37)
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where zeros of χ (z, q0) = 0 correspond to the roots z1 and z2 in (36). The function ψ (z, q0) determines the residues (spectral
weights) of these modes as

φ(zi, q0) = −
(2

u

)ψ (zi, q0)(z − zi )

χ (zi, q0)
, (38)

where ψ (z, q0) = 8z3(q2
0 +

√
z2 − q2

0 − z)/q2
0. For small momentum q0  z, ψ (z, q0) ≈ 4z2(2z − 1) and

�(z, q0) ≈ −
(2

u

) 4z2(2z − 1)

4z2(z − 1)(2z − 1) + q2
0(1 − z − 4z2) − i Mu

2

(
q2

0 − z + z2
)
z3

. (39)

The residues of the two poles at z1 and z2 are

φ(zi, q0) = −
(

2

u

){
1 − 7

4 q2
0, i = 1

q2
0, i = 2.

(40)

At zero momentum, q0 = 0, only the z1(q0) mode has a
nonzero weight, where z1 → 1 (which in the usual variable
corresponds to ω = 2ωB), with �(z, 0) = −(2/u)/(z − 1).
This mode is analogous to the Silin spin wave in conventional
conductors [1,2] and has the downward dispersion

ω+ ≈ 2ωB − q2

u	n
, (41)

starting at the resonance frequency 2ωB. The result ω+(0) =
2ωB for the Silin model is general, and does not depend on the
assumptions made in this paper.

The second mode z2(q0) has the vanishing spectral weight
at q0 → 0, in agreement with the Larmor theorem. It has the
upward dispersion:

ω− ≈ 2ωB + u	n

2
+ q2

2u	n
. (42)

FIG. 7. Dispersions of the Silin mode (ω+, blue line), and the
SPS mode (ω−, red line) for u	n/2ωB = 0.25. Inset: Behavior of the
SPS mode near the intraband particle-hole continuum boundary. The
error bars represent the ratio ω′′

−(q)/(ω′
−(q) − ω′

−(0)) to arbitrary
scale, illustrating the SPS being overdamped for q → 0, and its
progressive sharpening with increasing q; see the discussion below
Eq. (44)

We note that in the present model and for weak interactions,
ω−(0) = ωB + ω̃B, but this result is nonuniversal.

For the imaginary parts in the denominator of Eq. (37), as
determined from ζ (ω±), we obtain that

ζ (z, q0) = −u2	n

2

(
q2

0 − z + z2
)
z3. (43)

The polarization function for small momenta q  ωB is thus

�(ω, q) = 2	n

ω − ω+ + i uq2

4

+ 2q2

u2	n
[
ω − ω− + i u3	n2

64

] . (44)

We finish this section with a discussion of attenuation of
the two modes. A mode is well-defined if one can build a
wave packet that propagates by at least a wavelength before
the mode decays. For a general dispersion ω(q) = ω′(q) −
iω′′(q), a well-defined mode satisfies∣∣∣∣dω′(q)

dq

∣∣∣∣ 1

ω′′(q)
>

1

q
. (45)

For the Silin-type mode with ω+(q) = 2ωB − q2/u	n −
iuq2/4, condition (45) implies that the mode is well-defined
for u	n1/2 < 1, which defines the weak-interaction limit in
which all the equations above were obtained.

In turn, the dispersion of the spin-current mode has a
Landau damping with a finite rate at q → 0: ω− = 2ωB +
u	n/2 + q2/2u	n − iu3	n2/64, hence this mode is over-
damped at small q. The condition (45) determines the value
of q = Q for which the mode becomes well-defined: Q ∼
u2	n3/2. The spectrum of the spin-current mode ends at q =
u	n/2. This can be seen from Eq. (34) by substituting z = q0

in it, which yields the point where the dispersion touches the
boundary of the intraband continuum of spin-flip particle-hole
excitations. This value of q is parametrically larger than Q for
weak interaction, u	n1/2 < 1.

V. SUMMARY AND CONCLUSIONS

Equation (44) summarizes our main finding: transverse
spin susceptibility of magnetized graphene supports two col-
lective excitations that live below the intraband particle-hole
continuum. The main of these collective modes—the Larmor-
Silin mode—contributes most to �(ω, q) and is a well-known
feature of every magnetized conductor, single band or not.
Its existence is guaranteed by the spin-rotational symmetry of
the electron Hamiltonian and the Larmor theorem that follows
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from that. The second, the spin-current mode [with the disper-
sion ω−(q)], is the key finding of our work. Its existence is not
symmetry protected and is therefore particular to graphene.

While both collective spin modes disperse quadratically,
the spin-current mode is less well-defined. According to (44),
its imaginary part at q → 0 is finite and controlled by interac-
tion, ∝ u3	n2. Therefore at small q this mode will appear as a
nondispersing resonance. Nonetheless, its intensity increases
with q and hence the spin-current contribution to �(ω, q)
increases with q too, which makes it a measurable feature of
the dynamical response function.

It would be very interesting to look for the spin-current
mode experimentally with the help of an optical THz tech-
nique or something similar. To date, experimental attempts
to probe the spin sector of graphene are essentially nonex-
istent. We are aware of a magnetotransport study [18] where
the in-plane magnetic field up to 30 T has been applied. It
appears that the field-induced Zeeman splitting of electron
bands, which the authors of the study estimate to be of the
order 3 meV, remains well masked by electrostatic potential
fluctuations. The evolution of the spin-current mode from the
pristine case of the undoped graphene studied here to the case
of a doped, and possibly massive, Dirac band represents an-
other experimentally relevant line of investigations. Given that
the spin-current mode is absent in Silin’s problem of a single
parabolic band, we expect that sufficiently strong doping will
suppress this excitation. We hope our work may provide addi-
tional motivation for more determined experimental efforts in
this promising research direction.

Our findings bear surprising similarity with the dynamical
spin response of the magnetized Heisenberg spin-1/2 chain
studied in Refs. [19–21]. The similarity concerns the existence
of the two collective modes—Larmor and spin current—in the
small momentum region of the transverse spin susceptibility.
In the one-dimensional setting, the properties of these two
modes are analytically determined by the Kac-Moody alge-
bra of the emergent low-energy generators of spin rotations
[20]. Their location on the energy axis (at q = 0) and their
dispersions were also confirmed numerically, and were later
measured in the electron spin-resonance experiment [21] that
succeeded in extracting the strength of the interaction between
spin fluctuations of the Heisenberg chain.

In this regard, we would like to point out one more promis-
ing connection to the physics of two-dimensional frustrated
spin models. It has to do with the Dirac quantum spin liquid
which has been argued theoretically to realize in the quantum
Heisenberg model on frustrated kagome and triangular lattices
[22]. Recent theoretical studies [23] and an intriguing exper-
iment [24] has renewed interest in physical properties of this
exotic spin-liquid state. Our investigation of the dynamical
spin susceptibility of the magnetized graphene corresponds,
in the language of Ref. [22], to that of the Fermi-pocket state
of the magnetized Dirac spin liquid.

ACKNOWLEDGMENTS

O.A.S. thanks L. Balents, L. Glazman, and D. Maslov
for numerous discussions, insightful remarks, and probing
questions, and also E. Henriksen for pointing out an exper-
imental study [18]. D.A.P. is grateful to M. Katsnelson for

useful discussions. O.A.S. is supported by the NSF CMMT
program under Grant No. DMR-1928919. The work of D.A.P.
was supported by the National Science Foundation Grant No.
DMR-2138008.

APPENDIX A: SPIN-SPIN POLARIZATION FUNCTION

In this and subsequent Appendix sections, we derive all
the quantitative results of this work for a single Dirac point.
In the main text, however, we will recover N = 2 accounting
for the two Dirac points in graphene. Since we are proposing
another collective mode in a well-known system, we show the
pertinent calculations in great detail.

For brevity, the calculations are performed for noninter-
acting electrons. The polarization functions of interacting
electrons are then obtained by including the electron self-
energy, which simply amounts to the renormalization of the
Zeeman energy, ωB → ω̃B, as described above in relation
to Eq. (9).

We start with the transverse spin polarization function of a
single Dirac point, given by

P (ω, q) = −iTrσ
∑

k

∫
dε

2π
Ĝ↓

ε+, k+ Ĝ
↑
ε−, k− , (A1)

where ε± = ε ± ω/2, k± = k ± q/2, and the Green’s func-
tion of graphene is written in pseudospin space as

Ĝτ
ε,k = 1

2

∑
s=±1

1 + sσ̂k

ε − Eτ
s (k) + is0+ . (A2)

In this expression, σ̂k = σ̂ · k/k is the projection of the
pseudospin Pauli matrix onto the direction of the electron
momentum k and τ can take one of the two values, ↑ or ↓.
Integration over the energy variable ε yields

P (ω, q) =
∑
s,s′

∑
k

(n↑
s′ (k) − n↓

s (|k + q|)Fss′ (k, q)

ω − E↓
s (|k + q|) + E↑

s′ (k) + i0+ , (A3)

where the factor Fss′ (k, q) = |〈k + q, s|k, s′〉|2 characterizes
the overlap of the band states:

Fss′ (k, q) = 1
4 Tr[(1 + s′σ̂k)(1 + sσ̂k+q)]

= 1
2 (1 + ss′ cos θk,k+q). (A4)

Here θk,k+q is the angle between vectors k and k + q and
nτ

s (k) = (exp (Eτ
s (k)/T ) + 1)−1 is the Fermi-Dirac distribu-

tion. The factor Fss′ (k, q) accounts for the chiral properties of
graphene and is responsible for the suppression of backscat-
tering processes. For intrinsic graphene with no magnetic
field, Fss′ (k, q) vanishes for θk,k+q = π for intraband transi-
tions, s = s′, and also vanishes for θk,k+q = 0 for interband
transitions, s = −s′. The trace of linear in σ̂k terms vanishes.

To calculate the integral in Eq. (A3), we choose the abso-
lute values k and p = |k + q| as the new variables to replace
the angle variable θk in the integral over d2k = k dk dθk with
p. To make use of the new variables, we first notice the
identity:∫ ∞

0
d p

p

kq
δ

(
p2 − k2 − q2

2kq
− cos θk

)
= 1. (A5)
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The integral over dθk now leads to the following expression:∫ 2π

0
dθkδ

(
p2 − k2 − q2

2kq
− cos θk

)

= 4kq√
((p + k)2 − q2)(q2 − (p − k)2)

, (A6)

provided that |p − k| < q < p + k (and zero otherwise). The
polarization function, Eq. (A3), now reduces to

P (ω, q) = 74
∫

dkd p

(2π )2

kp√
((k + p)2 − q2)(q2 − (k − p)2)

× (n↑
s′ (k) − n↓

s (p))

ω − E↓
s (p) + E↑

s′ (k) + i0+ Fss′ (k, q). (A7)

Using the argument of the delta-function in Eq. (A5) to ex-
press cos θk, we obtain the factor Fs,s′ via p and k:

Fs,s(k, q) = (k + p)2 − q2

2kp
,

Fs,−s(k, q) = q2 − (p − k)2

2kp
. (A8)

Both the intraband transitions, s = s′, and the interband tran-
sitions, s′ = −s, contribute to the polarization function (A7).
Below we will look at these contributions to both the real and
imaginary parts of the polarization function.

1. Intraband transitions

Let us first consider the intraband terms, s = s′, in
Eq. (A7). Two processes where an electron with momentum
k and spin ↑ absorbs external momentum q and transitions
to the state with momentum k + q = p and spin ↓ exist.
The corresponding energy change is E↑

s (k) → E↓
s (p). The two

contributions correspond to the transitions within the lower
cone s = −1, where E↓

−1(p) − E↑
−1(k) = 2ωB − vp + vk, and

within the upper cone s = 1, where E↓
1 (p) − E↑

1 (k) = 2ωB +
vp − vk. Note that n↑

−1(k) − n↓
−1(p) = �(ωB − p). The pres-

ence of the Heaviside step function �(ωB − p) indicates that
the momentum of the final state must be less than ωB. Sim-
ilarly, for the upper cone we have n↑

1 (k) − n↓
1 (p) = �(ωB −

k), indicating that the initial state must have momentum less
than ωB/h̄v. The contribution of the intraband transitions into
the polarization function (A7) then reduces to

Pintra(ω, q) =
∫ ∞

0

dk d p

(2π )2

√
(k + p)2 − q2

q2 − (k − p)2

×
(

�(ωB − p)

� + p − k + i0+ + �(ωB − k)

� − p + k + i0+

)
,

(A9)

where the notation � = ω − 2ωB is used for the shifted
frequency, measured from 2ωB. Because in the remaining
integrals over d p dk in Eq. (A9), the integrand depends only
on the sum k + p and the difference k − p, rotation of the
integration variables, k + p = qx, and k − p = qy, allows one

to factorize the integrals as follows:

Pintra(ω, q) = q2
∫ ∞

0

dxdy

(2π )2

√
x2 − 1

1 − y2

θ (2ωB − q(x − y))
� − qy + i0+ .

(A10)

The imaginary part of the polarization function arises from the
δ(� − qy) contribution to the integral in Eq. (A10):

P ′′
intra(ω, q) = − q2

∫ ∞

1

dx

4π

∫ 1

−1
dy

√
x2 − 1

1 − y2

× θ (2ωB − q(x − y))δ(� − qy). (A11)

Assuming that both ω > 0 and q > 0, the y − integral elim-
inates the delta function and is nonzero only for q > |�|.
The remaining x − integral is calculated in Appendix D and
is nonzero for ω > q:

P ′′
intra(ω, q) = − 1

8π
√

q2 − �2

×
(

ω
√

ω2 − q2 − q2 ln

(
ω +

√
ω2 − q2

q

))
.

(A12)

Real electron-hole excitations exist in the range of the ω, q
space where the polarization function is nonzero (indicated
by shading in Fig. 5). This range is defined by the following
conditions: ω > q > |�|. In the absence of magnetic field,
ωB = 0, � = ω, the imaginary part of the polarization func-
tion vanishes since no intraband transitions are possible in
intrinsic graphene at zero magnetic field and zero temperature.

The real part of the polarization function is given by the
principal value of the integral in Eq. (A10):

P ′
intra(ω, q) = q2P

∫ ∞

1

dx
√

x2 − 1

(2π )2

∫ 1

−1
dy

× �(2ωB − q(x − y))√
1 − y2(� − qy)

. (A13)

For values of the external momentum that are small compared
with the magnetic field, q  ωB, the term qy in the argument
of the step function can be neglected and the two integrals in
Eq. (A13) factorize. Large arguments are important in the x
integral, which simply yields a factor of 2ω2

B/q2. The remain-
ing integral

P ′
intra(ω, q) = ω2

B

2π2

∫ 1

−1
dy

1√
1 − y2(|�| + qy)

(A14)

can be evaluated by the substitution, y = cos φ, and is nonzero
for |�| > q (see Appendix D for details). The contribution of
the intraband transitions to the real part of the polarization
function is thus

P ′
intra(ω, q) = − ω2

B

2π
√

�2 − q2
. (A15)

It is proportional to the second power of the magnetic field,
ω2

B, which is the measure of the number of electrons and holes
produced by the magnetic field.
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2. Interband transitions

The interband transitions, s = −s′, in Eq. (A7) correspond
to the processes where a spin-up electron with momentum k
and energy E↑

s (k) absorbs external momentum q and tran-
sitions to the spin-down state with momentum k + q = p
and energy E↓

−s(p). For the transitions from the lower cone
s = −1 to the upper cone s = 1, the energy change is E↓

1 (p) −
E↑

−1(k) = 2ωB + vp + vk and n↑
−1(k) − n↓

1 (p) = 1. For the
transition from the upper cone s = 1 to the lower cone s =
−1, the energy change is E↓

−1(p) − E↑
1 (k) = 2ωB − vp − vk

and n↑
1 (k) − n↓

−1(p) = �(ωB − k) − �(p − ωB). The latter
transitions are possible if the initial state has momentum less

than ωB and the final state has momentum greater than ωB. The
contribution from the interband transitions to the polarization
function Eq. (A7) is

Pinter(ω, q)

=
∫

dkd p

(2π )2

√
q2 − (p − k)2

(k + p)2 − q2)

×
(

1

� − p − k + i0+ + �(ωB − k) − �(p − ωB)

� + p + k + i0+

)
.

(A16)

Introducing the rotated variables, k + p = qx, and k − p = qy, the integrals are factorized as follows:

Pinter(ω, q) = q2

2

∫
dxdy

(2π )2

√
1 − y2

x2 − 1

(
1

� − qx + i0+ + �(2ωB − q(x − y)) − �(q(x + y) − 2ωB)

� + qx + i0+

)
. (A17)

The real and imaginary parts of this expression can be obtained in a way that is similar to the one used above for the case
of the intraband transitions, cf. Eq. (A10). In particular, the imaginary part of the polarization function arises from the delta
functions associated with the poles at � = qx and is given by

P ′′
inter(ω, q) = − q2

8π
√

�2 − q2

∫ 1

−1
dy

√
1 − y2(�(�)�(� − q) + �(−�)θ (|�| − q)(�(qy + ω) − �(qy − ω))). (A18)

The remaining integral is elementary:

P ′′
inter(ω, q) = − 1

8π
√

�2 − q2

[
�(�)�(� − q)

πq2

2
+ �(−�)�(|�| − q)

×
(

�(ω − q)
πq2

2
+ �(q − ω)

(
ω

√
q2 − ω2 + q2 arcsin

(
ω

q

)))]
. (A19)

The imaginary part P ′′
inter is nonzero in two regions where

the electron-hole excitations can exist: (a) � > 0,� > q and
(b) � < 0,� < −q, indicated by the orange shading in Fig. 5.
In the latter region (where, as shown below, collective excita-
tions reside), the imaginary part is (also assuming q < ω)

P ′′
inter(ω, q) = − q2

16
√

�2 − q2
. (A20)

The contribution of the interband transitions to the real part
of the polarization function is given by the principal value of
the integral in Eq. (A17). For ωB � q, we can neglect y in
the step functions in the second term since y ∈ (−1, 1). The
integrals over x and y factorize, with the y integral simply
bringing the factor π/2:

P ′
inter(ω, q) = q2

8π

(
P

∫ ∞

1
dx

qx√
x2 − 1(�2 − q2x2)

+ P
∫ 2ωB/q

1

dx√
x2 − 1(� + qx)

)
. (A21)

The first integral is nonzero provided that q > |�|. Assuming
that ωB � q, the upper limit in the second integral can
also be extended to ∞. The second integral is calculated in
Appendix D. In the region of interest for the collective modes,

−q < � < 0, the real part becomes

P ′
inter(ω, q) = − q2

16π
√

�2 − q2
ln

2|�|
q

. (A22)

Note that the interband contribution into the polarization
function is small compared with the intraband contribution,
Pinter/Pintra ∼ q2/ω2

B and may be ignored in the calculations
of the dispersion relation of collective excitations, performed
in Sec. IV.

The above calculations have been performed for a single
Dirac point. The obtained polarization function, including
both the real and imaginary parts and the contributions from
intraband and interband transitions, P = Pintra + Pinter, has
the following form in the region � < 0, |�| > q, and ωB � q:

P (ω, q) = − Nω2
B

2π
√

�2 − q2
− i

Nq2

16
√

�2 − q2
, (A23)

where we introduced the number N of the Dirac points (N = 2
for graphene).
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APPENDIX B: SPIN-CURRENT-SPIN-CURRENT
POLARIZATION FUNCTION

The spin current correlation function is given by the ex-
pression

K(ω, q) = −iTrσ
∑

k

∫
dε

2π
Ĝ↓

ε+,k+σxĜ↑
ε−,k−σx. (B1)

Integrating over the energy variable, we obtain

K(ω, q) =
∑
s,s′

∑
k

(n↑
s′ (k) − n↓

s (|k + q|)Gss′ (k, q)

ω − E↓
s (|k + q|) + E↑

s′ (k) + i0+ . (B2)

Note that the form of this expression is similar to that of the
polarization function in Eq. (A3) with the factor Fss′ (k, q)
replaced by Gss′ (k, q):

Gss′ (k, q) = 1
4 Tr[(1 + s′σ̂k)σ x(1 + sσ̂k+q)σ x]

= 1
4 (2 + ss′Tr(σiσxσ jσx )k̂i(k̂ + q̂) j ). (B3)

The trace in the second term gives Tr(σiσxσ jσx )k̂i(k̂ + q̂) j =
2[k̂x(k̂+q̂)x −k̂y(k̂+q̂)y]=2(cos θ cos β − sin θ sin β ), where
θ and β are, respectively, the angles k and k+q make with q:

Gss′ (k, q) = 1

2

(
1 + ss′ k(2 cos2 θ − 1) + q cos θ

|k + q|
)

. (B4)

The integral can be calculated using the same method as
above by taking absolute values k and p = |k + q| as the new
variables and replacing the angle variable θk in the integral
over d2k = k dk dθk with p.

The factor Gs,s′ can be written in terms of the factor Fs,s′

[see Eq. (A4)] as

Gs,s′ (k, q) = (p − ss′k)2

q2
Fs,s′ (k, q). (B5)

The contribution of the intraband transitions, s′ = s, into
the spin current correlation function is

Kintra(ω, q) = q2

4π2

∫ ∞

1
dx

√
x2 − 1

∫ 1

−1
dy

y2√
1 − y2

× θ (2ωB − q(x − y))

� − qy + i0+ . (B6)

In the region where collective modes exist, � < 0 and |�| >

q, the imaginary part of K(ω, q) is zero. For the real part, we
get

Kintra(ω, q) =
∫ 2ωB

1

dx

4π2

√
x2 − q2

∫ 1

−1

dy y2√
1 − y2(� + qy)

.

(B7)

The x integral brings the factor 2ω2
B/q2. The y integral is

calculated the Appendix D and gives

Kintra(ω, q) = |�|
8π

(
2ωB

q

)2
(

1 − |�|√
�2 − q2

)
. (B8)

For the interband transitions, s′ = −s, we can write

Kinter(ω, q)

= 1

8π2q2

∫ ∞

q
dx

x2√
x2 − q2

∫ q

−q
dy

√
q2 − y2

×
(

1

� − x
+ θ (2ωB − x + y) − θ (x + y − 2ωB)

� + x

)
.

(B9)

The above integral is power-law divergent and is cut off
at the upper limit by the momentum cutoff �. This diver-
gence can be most easily evaluated by separating the � = 0
contribution:

Kinter(ω, q)

= − |�|
8π2q2

∫ ∞

q
dx

x√
x2 − q2

∫ q

−q
dy

√
q2 − y2

×
(

1

� − x
− θ (2ωB − x + y) − θ (x + y − 2ωB)

� + x

)

− 2N�̃, (B10)

where �̃ = (� − ωB)/8π . The linear UV divergence of the
spin current correlation function, (B10), results from the linear
relativistic dispersion. It is also present in the charge current
correlation function [15,16].

The first integral above is regular and has a form similar
to Eq. (C10). The total current-current correlation function,
K = Kintra + Kinter, that combines both the intraband (B8) and
the interband (B10) contributions in regions � < 0, |�| > q,
and ωB � q is

K(ω, q) = Nω2
B�

2πq2

(
−1 + |�|√

�2 − q2

)
− 2N�̃

− i
N�2

16
√

�2 − q2
, (B11)

where we introduced the number N of the Dirac points (N = 2
for graphene).

APPENDIX C: SPIN-SPIN-CURRENT
POLARIZATION FUNCTION

The hybrid spin-spin-current polarization function is given
by

H(ω, q) = − i

2
Trσ

∑
k

∫
dε

2π
Ĝ↑

ε−,k−σ xĜ↓
ε+,k+ . (C1)

Integration over the energy variable gives

H(ω, q) =
∑
s,s′

∫
dk

(2π )2

(n↑
s′ (Ek− ) − n↓

s (Ek+ ))hss′ (k, q)

ω − E s
↓(k+) + E s′

↑ (k−) + i0+ .

(C2)

We note that the form of the above equation is iden-
tical to that of the polarization function in Eq. (A3)
except the factor Fss′ (k, q) is replaced with hss′ (k, q)

224302-11



AGARWAL, STARYKH, PESIN, AND MISHCHENKO PHYSICAL REVIEW B 109, 224302 (2024)

given by

hss′ (k, q) = 1
4 Tr[(1 + s′σ̂k)σ x(1 + sσ̂k+q)]

= 1
2 (s′ cos θ + s cos β ), (C3)

where θ and β are, respectively, the angles k and k + q makes
with q. Note that

hss′ (k, q) = s′ cos θ + s
k cos θ + q

|k + q| . (C4)

To calculate the integral, we use the same procedure as used
above in Appendix A, taking the absolute values k and p =
|k + q| as new variables, to replace the angle variable θk in
the integral over d2k = k dk dθk with p.

H(ω, q) = 4
∫

dkd p

(2π )2

kp√
((k + p)2 − q2)(q2 − (k − p)2)

× (n↑
s′ (Ek) − n↓

s (Ep))

ω − E s
↓(p) + E s′

↑ (k) + i0+ hss′ (k, q), (C5)

where the factor hss′ (k, q) is

hss′ (k, q) = s
(p − ss′k)

q
Fs,s′ (k, q). (C6)

From here, it follows easily to write the expression of
H(ω, q) using the same procedure as in Appendix A
for polarization function for both intraband and interband
transitions.

1. Intraband transitions

For intraband transitions, s′ = s, we can write

Hintra(ω, q)

= q2

8π2

∫ ∞

1
dx

√
x2 − 1

∫ 1

−1
dy

y√
1 − y2

× θ (2ωB − q(x − y))

� − qy + i0+ . (C7)

We are looking for the collective mode in the region
where |�| < 0 and |�| > q, and where the imaginary
part of the above equation vanishes. For the real part,
we get

Hintra(ω, q) =
∫ 2ωB

1

dx

8π2

√
x2 − q2

∫ 1

−1

dy y√
1 − y2(� − qy)

.

(C8)

The x integral gives a factor of 2ω2
B/q2. The y integral is

calculated in Appendix D and gives

Hintra(ω, q) = − ω2
B

4πq

(
1 − |�|√

�2 − q2

)
. (C9)

2. Interband transitions

For interband transitions, s′ = −s, we can write

Hinter(ω, q) = q2

16π2

∫ ∞

1
dx

x√
x2 − 1

∫ 1

−1
dy

√
1 − y2

(
1

� − qx
− θ (2ωB − q(x − y)) − θ (q(x + y) − 2ωB)

� + qx

)
. (C10)

We now look at the real part of the polarization function coming from interband transitions given by the principal value of the
integral in Eq. (C10). For ωB � q, we can neglect y in the two step functions in the second term since y ∈ (−1, 1). In doing so,
x and y integrals become independent; the y integral gives a factor of π/2 and the above equation becomes

H′
inter(ω, q) = q2

16π

(∫ ∞

1

dx �x√
x2 − 1(�2 − q2x2)

−
∫ 2ωB

q

1

dx x√
x2 − 1(� + qx)

)
. (C11)

Note that the above integrals are taken in principal value
sense, so the first integral vanishes for |�| > q. The second
integral is calculated in Appendix D. For small q, we have

H′
inter(ω, q) = − q

16π

(
ln

2ωB

q
+ �√

�2 − q2
ln

2|�|
q

)
.

(C12)

The imaginary part for � < 0 and |�| > q is given by

H′′
inter(ω, q) = − �q

16π
√

�2 − q2

∫ 1

−1
dy

√
1 − y2(θ (qy + ω)

− θ (qy − ω)). (C13)

The above integral has been calculated before [see Eq. (A18)
and the following section for discussion]. In the region of
interest, ω � q,

H′′
inter(ω, q) = − �q

32
√

�2 − q2
. (C14)

The function H(ω, q) = Hintra + Hinter, combining the real
and imaginary parts for intraband and interband transitions,
including the two Dirac points is

H(ω, q) = Nω2
B

4πq

(
− 1 + |�|√

�2 − q2

)
− iNq�

32
√

�2 − q2
.

(C15)

Expanding H(ω, q), near q ≈ 0,

H(ω, q) = Nω2
Bq

8π�2
. (C16)

APPENDIX D: EVALUATION OF INTEGRALS

(i) The x integral encountered in Eq. (A11) can be easily
calculated by substituting x = cosh t ,

I1 =
∫ ω/q

1
dx

√
x2 − 1 =

∫ b

0
dt sinh2 t, (D1)
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where b = cosh−1(ω/q). The above integral is straightfor-
ward to calculate and gives

I1 = 1

4
(sinh(2b) − 2b)

= 1

2q2

(
ω

√
ω2 − q2 − q2 log

(
ω +

√
ω2 − q2

q

))
. (D2)

(ii) The y integral in Eq. (A14) is calculated by substituting
y = cos φ, giving us a simple known integral of the form

I2 =
∫ 1

−1

dy√
1 − y2

1

|�| + qy
= 1

q

∫ π

0

dφ

a + cos φ
, (D3)

where a = |�/q| > 1. The above integral is a well-known
integral and utilizes a contour integration in the complex
plane. We integrate this over a unit circle in the complex plane,
z = eiφ centered at the origin:

I2 = −i

q

∮
dz

z2 + 2az + 1
= π

q
√

a2 − 1
. (D4)

(iii) The next y integral to be calculated from Eq. (B7) can
be solved again by substitution y = cos φ,

I3 =
∫ 1

−1
dy

y2√
1 − y2(� + qy)

, (D5)

where, a = |�/q|, and with a little algebraic manipulation is
related to the integral above (a > 1) as

I3 = −1

q

∫ π

0

dφ cos2 φ

a − cos φ
= 1

q

∫ π

0
dφ (a + cos φ) − a2I2

= π

q

(
a − a2

√
a2 − 1

)
. (D6)

(iv) Another y integral that we need in Eq. (C8) is solved
similarly as above:

I4 =
∫ 1

−1
dy

y√
1 − y2(� − qy)

= −π

q
+ |�|

q
I2. (D7)

(v) The last integral to be calculated in Eq. (C11) is

I5 =
∫ �B

1

dx x√
x2 − 1(� + qx)

= 1

q

∫ �B

1

dx√
x2 − 1

+ 1

q

∫ �B

1

dx �√
x2 − 1(|�| − qx)

, (D8)

where �B = 2ωB/q. The first integral is simply ln �B. The
second integral is solved by the substitution x = cosh t =
(et + e−t )/2. And again, substituting z = et in the second
integral,

I5 = 1

q
ln �B − 2�

q2

∫ 2�

1
dz

1

(z − �/q)2 − (�2/q2 − 1)
.

(D9)

The above integral is a logarithmic function, where the upper
limit can be extended to ∞ to give

I5 = 1

q

(
ln �B − �√

�2 − q2
ln

√
�2 − q2 − |�|

q

)
. (D10)

APPENDIX E: EVALUATIONS OF THE COLLECTIVE
MODE SPECTRA

In terms of the new dimensionless variables introduced as
z = |�|/M and q0 = q/M, the functions P , K , and H:

P (z, q0) = − N

u
√

z2 − q2
0

− i
MNq2

0

16
√

z2 − q2
0

, (E1a)

K(z, q0) = − Nz

uq2
0

⎛
⎜⎝−1 + z√

z2 − q2
0

⎞
⎟⎠ − 2N�̃

− i
NMz2

16
√

z2 − q2
0

, (E1b)

H(z, q0) = N

2uq0

⎛
⎜⎝−1 + z√

z2 − q2
0

⎞
⎟⎠ + iNMq0z

32
√

z2 − q2
0

.

(E1c)

Substituting the above functions in the polarization function
expression, Eq. (28), and considering the case of weak inter-
actions, uN�̃  1, we obtain

�(z, q0) = −
(

2

u

) q2
0 +

√
z2 − q2

0 − z√
z2 − q2

0

(
q2

0 − 1 + z
) − (

q2
0 − z + z2

) − i Mu
16

(
q2

0 − z + z2
)
q2

0

. (E2)

To study the collective mode dispersion for q0  z, we have to expand the denominator of �(z, q0) to the fourth order in q0.
At the same time, the leading term in the expansion of the numerator can be determined to the second order in q0. As a result,
we obtain a simplified expression for the full polarization function:

�(z, q0) ≈ −
(

2

u

)
4z2(2z − 1)

4z2(z − 1)(2z − 1) + q2
0

(
1 − z − 4z2

) − i Mu
2

(
q2

0 − z + z2
)
z3

. (E3)
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