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Orientational polarizability of solids induced by the Jahn-Teller and pseudo-Jahn-Teller effects
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We show that, in solids with Jahn-Teller effect (JTE) or pseudo-JTE (PJTE) centers, local dipolar displace-
ments may occur, which are almost freely rotating in external electric fields (like in polar liquids), thus realizing
solid-state orientational polarizability predicted by Debye [Phys. Z. 13, 97 (1912)]. As illustrative examples, we
consider impurity ions in noncentrosymmetric cubic crystals with a degenerate ground state coupled to polar
modes of nearest neighboring ligands via the JTE and local centers in centrosymmetric crystals with electronic
pseudodegeneracy realizing the PJTE. In the JTE T � t2 problem in a tetrahedral site, the vibronic coupling
to trigonal modes creates off-center shifted dipolar distortions of the dopant along one of the four equivalent
minima of the adiabatic potential energy surface. Resonating between these wells by tunneling or over-the-barrier
transitions, the dipoles perform hindered rotations in space, like molecular dipoles in polar liquids and gases. In
external electric fields, the local dipolar minima become nonequivalent with the dipolar distortion trapped in
the specific well, which is lowered by the applied field in the same direction in all the centers, thus realizing
the solid-state orientational polarizability. Distinguished from the JTE case, the PJTE may produce off-center
shifted dipolar distortions in both centrosymmetric and noncentrosymmetric sites, with the disordered local
dipolar distortions resonating between the equivalent wells at each PJTE site. Under the applied electric field,
the system becomes trapped in the lower well along the field. According to numeric estimates, the orientational
contribution to polarizability is by orders of magnitude larger than the one from the displacive shifts of the
charged units, quite similar to the orientational polarizability of polar liquids and gases.
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I. INTRODUCTION

Debye [1] assumed that there may be solids containing
rotating local dipoles (like in polar liquids), which may be
subjects of orientational polarizability at temperatures above
some freezing point. In such solids, the local induced polar-
ization P in relatively weak electric fields is proportional to
the average value 〈p〉 of its electric dipole moment. Debye’s
estimate shows that this orientational polarizability may be
larger than the electronic and nuclear displacive contributions
by orders of magnitude.

Debye’s [1] hypothetical assumption had no factual back-
ground then and did not find confirmation until the present
works, yet it raised two questions: (a) Can local dipoles occur
in centrosymmetric crystals, and (b) if there are such local
dipole formations, are their bumpy (free or hindered) rotations
possible in the solid crystal-field environment?

Although anomalously high polarizability χ was soon
found in some cubic perovskites (e.g., in BaTiO3, at room
temperature, χ is of the order of 1200–10 000), its orienta-
tional nature was not understood until Bersuker [2] interpreted
it as the characteristic feature of the local, freely rotating
dipoles, produced by the vibronic coupling. For barium ti-
tanate, he deduced the off-center dipolar instability of the Ti4+
ions in BaTiO3 from the pseudo-Jahn-Teller effect (PJTE) [2].

The idea of spontaneous symmetry breaking in poly-
atomic systems emerged when Landau, in his discussion with
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Teller [3], formulated the groundbreaking statement about
the structural instability of symmetric molecules in the state
of electronic degeneracy, presently known as the Jahn-Teller
effect (JTE, see also Refs. [4–10]). In a cluster with the JTE,
as described by Van Vleck [11], the adiabatic potential energy
surface (APES) has a conical shape near the high-symmetry
point of electronic degeneracy and a wrapped trough around
it with a broken symmetry at each point. The energy gained
from dropping to its bottom is called the Jahn-Teller (JT)
stabilization energy EJT. Small-radius nuclear motion along
the JT trough is an ensemble movement of a relatively large
number of atoms; they undergo a pseudorotation.

As it was soon realized, the exact electron degeneracy
is not the only source of spontaneous symmetry break-
ing. A relatively small splitting � of the degenerate term
at the high-symmetry point [12] or any other two suffi-
ciently close in energy electronic states of different origin
[2] (electronic quasidegeneracy) may lead to the formation of
lower-symmetry minima on the lowest branch of the APES,
the phenomenon known today as the PJTE [2,7,8]. These
discoveries underwent tremendous developments, also result-
ing in the so-called hidden JTE and PJTE [9]. Together, this
series of JTEs destroyed the classical image of polyatomic for-
mations with stable geometries, allowing for local dynamics
along a wrapped trough on the APES shaped by the JTEs.
Moreover, it opened options for explaining the structure and
properties of polyatomic systems, including solids. Nuclear
motion along the JTE or PJTE trough lies in the background
of the orientational mechanism of polarizability, which was
predicted by Debye more than a century ago.
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With the JTE- and PJTE-induced local dipolar instabilities,
orientational polarizability in solids becomes a straightfor-
ward and physically transparent phenomenon. In the absence
of external perturbations, the JTE-induced off-center displace-
ments of a local center are of a dynamic nature. The tunneling
or over-the-barrier transitions between equivalent minima are
like rotations of dipoles in polar liquids. Under an applied
electric field, the wells on the APES become nonequivalent,
and the rotating dipole gets stuck in the lowest one. Hence, the
local dipoles become field oriented in the same direction in all
centers, thus realizing solid-state orientational polarizability,
like polar liquids and gases.

In cubic crystal structures, local dipoles are due to off-
center atomic displacements. Doping may result in JTE-
induced local dipolar instability, significantly changing
impurity-induced electric properties. Some dopants can be un-
stable to such displacements, even if the host crystal is stable
to distortions. In noncentrosymmetric cubic crystals, the T2

mode includes local dipole-active nuclear displacements in
the first coordination sphere. Indeed, according to the neu-
tronography data, local polar distortions in a wide temperature
range were observed in the doped crystal ZnO:Ni2+ [13,14],
which indicates a strong JTE in impurity tetrahedral sites
[NiO4]. Most interesting is the drastic increase in permittivity
of the ZnO crystal, >250 times, with just a 2% doping with
Ni2+ ions [15]. Early theoretical models and some experimen-
tal data are listed in Ref. [16].

In this paper, we give a complete theoretical description
of the orientational contribution to permittivity due to the
JTE and PJTE, which emerge as deviations from the Born-
Oppenheimer approximation and are the cause of spontaneous
symmetry breaking in polyatomic systems, including the lo-
cal off-center instability in crystals under consideration [7,8].
In centrosymmetric crystals, off-center displacements are of
odd symmetry, and they cannot be active in the JTE due to
the parity selection rule. However, in the presence of two
entangled states of opposite parity with a sufficiently small
energy gap �, odd-parity modes can be off-center unstable
if the vibronic coupling in the corresponding PJTE meets
the instability condition for these modes [2,7,12]. These can
be ions with a closed-shell electron configuration like, for
instance, the ground states of Li+, Na+, Mg2+, Al3+, or Ti4+

in cubic sites of the crystal lattices with the structure of alkali
halide, fluorite, or perovskite crystals.

On the other hand, in noncentrosymmetric crystals, the
parity restriction does not apply, and the off-center instabil-
ity can be due to a JTE for degenerate ground states. In
tetrahedral symmetry, polar vector components transform as
the irreducible representation T2. As T2 modes are active
in the JTE for an orbital triplet term, we consider dopants
with the ground-state term T1 or T2. Concerning the solids with
JTE centers, the emphasis in this paper will be on tetrahedral
dopant sites [NiS4]6−

in ZnS: Ni2+, [NiSe4]6− in ZnSe: Ni2+,
and [NiO4]6−

in ZnO: Ni2+.
Sections II and III below introduce the basic concepts and

formulas employed in the rest of this paper. Section II briefly
describes separating the dopant off-center distortions and the
so-called Born charge, which models their contribution to the
polar displacements.

FIG. 1. The three sets of symmetry-adapted T2 type displace-
ments �r, �t , and �q in the tetrahedral cluster [MB4] with the dopant
M (red circle) and ligand tetrahedron B4 (blue circles). (a) The z
component of the off-center displacement �r of the dopant M. (b) The
z component of the rigid shift �t of the ligand tetrahedron B4. (c) The
z component of the angle-bending mode �q.

Section III discusses the dynamics of the nuclei with the
impurity ion tunneling between the equivalent wells of the
APES. It includes the vibronic Hamiltonian in the so-called
cluster model for a tetrahedron [MB4], octahedron [MB6], and
cube [MB8] with the dopant ion M at its center and empha-
sizing the bonding nature of the JT type dipolar instability. To
describe and evaluate the orientational polarizability, we apply
the vibronic theory of dipolar instability [2], further developed
for ferroelectric perovskites (see the latest in Ref. [17], sec.
6.2 in Ref. [7], and sec. 8.3 in Ref. [8]). The origin of the
dipolar instability in the JTE is illustrated by the tetrahedral
dopant site [MB4] and in the PJTE in the centrosymmetric
octahedral and cubic sites [MB6] and [MB8].

Section IV presents our main results on orientational po-
larizability. It includes the JTE in temperature, angular, and
field dependences of the electric susceptibility. We assume
the JT coupling is sufficiently strong to justify the adiabatic
approximation in the APES minima.

Section V illustrates the mechanism of orientational po-
larizability in cases when the local dipolar instability is due
to the PJTE, notably in BaTiO3. Section VI applies the JTE-
and PJTE-induced polarization to evaluate the corresponding
orientational susceptibility of the high-symmetry tetrahedral,
octahedral, and cubic sites. Finally, Secs. VII and VIII discuss
the applicability of the results to specific systems and compare
them with the experimental data.

II. POLAR MODES IN TETRAHEDRAL, OCTAHEDRAL,
AND CUBIC SITES

We begin with tetrahedral unit cells in cubic crystals. The
binary semiconductors AII BVI and AIIIBV, with the spha-
lerite or wurtzite structure, such as ZnS or GaAs, may serve
as typical examples of this kind. The dopant ion M substi-
tutes the regular cation A, and it is tetrahedrally coordinated
in both cases, surrounded by four anions (Fig. 1). We ne-
glect the possible lower-symmetry crystal field corrections for
simplicity, assuming tetrahedral symmetry Td of the dopant
site.

The problem is simplified significantly in the so-called
cluster model. It reduces the consideration to just the dopant
and its nearest neighbors. In the case of tetrahedral sites, the
corresponding cluster is a five-atom molecule [MB4] with the
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FIG. 2. The z component of the dipolar displacement �R = �r − �t
of the central atom M (red circle) relative to nearest-neighbor ligands
(shown in blue) in (a) tetrahedron [MB4], (b) octahedron [MB6], and
(c) eight-coordinated cube [MB8].

metal M at its center and four ligands B at the vertices of the
regular tetrahedron. Justification for the cluster model is at the
end of Sec. III A.

For the regular tetrahedron [MB4], the components of a
polar vector form the basis of the irreducible representa-
tion T2. The five-atom tetrahedral molecule [MB4] has three
linearly independent symmetry-adapted sets of T2 modes.
Figure 1 shows the z component of each of the three sets,
�r, �t , and �q [18]. Missing components x and y can be ob-
tained by symmetry transformations of the group Td applied
to the displayed z component. The vector �r = (x, y, z) stands
for off-center Cartesian displacements of the central atom
M [Fig. 1(a)]. The set �t = 1

2 (�r1 + �r2 + �r3 + �r4) represents
the rigid shift of the ligand tetrahedron B4 [Fig. 1(b)]. It is
composed of the displacements of the four ligands �rk with
k = 1, 2, 3, and 4, numbered as in Fig. 1(a). The third set
�q = 1

2 (�r2 + �r3 − �r1 − �r4) includes angle-bending ligand dis-
placements [Fig. 1(c)].

Rigid shifts of the entire tetrahedron [MB4] do not change
the bond lengths and angles of the cluster. Consequently,
we neglect the vibronic coupling to this mode and as-
sume the center of mass of the tetrahedron [MB4] at rest,
(4m�t + M�r)/(4m + M ) = 0, where M is the mass of the
central atom M and m is the mass of the ligand B. The
angle-bending displacement �q [Fig. 1(c)], being orthogonal to
�r and �t , keeps the center of mass of the tetrahedron B4 at rest.
Also, we set �q = 0, as it is not essential to forming the dipole
moment of the cluster AB4]. Then �t = −M�r/(4m). Relative
to the rigid tetrahedron B4, the off-center dipolar mode is �R =
�r − �t [Fig. 2(a)]. Its effective mass is m∗ = 4mM/(4m + M ).
In the case of [NiO4], where M = 58 u and m = 16 u, we
get �t = −M�r/(4m) ≈ −0.91�r, while the effective mass is
m∗ ≈ 30 u. Similarly, for [NiS4] with m = 32 u, we come to
�t ≈ −0.45�r and m∗ ≈ 40 u. For [NiSe4] with m = 80, we find
�t ≈ −0.18�r and m∗ ≈ 49 u, and for [NiTe4] with m = 130, we
get �t ≈ −0.11�r and m∗ ≈ 52 u.

In centrosymmetric cubic sites [MB6] and [MB8] with
symmetry Oh, the parity of polar vectors is odd. Their com-

ponents form the basis of the irreducible representation T1u.
Like the tetrahedral case, both the octahedral site [MB6]
and the cubic site [MB8] include three linearly indepen-
dent symmetry-adapted sets of T1u modes, �r, �t , and �q. The
physical meaning of the latter is like the one discussed
above. Neglecting rigid shifts of [MB6] and assuming that
its center of mass remains at rest at the origin, we get:
(6m�t + M�r)/(6m + M ) = 0. Also, as above, we set �q = 0.
Then the off-center dipolar mode is �R = �r − �t [Fig. 2(b)], and
therefore, �t = −M�r/(6m). Similarly, for cubic clusters [AB8]
with eight anions B, the dipolar mode is �R = �r − �t [Fig. 2(c)],
and we find �t = −M�r/(8m).

Induced by an alternating electric field �E (ν) of fre-
quency ν, the electric dipole moment �p(ν) of the clusters
[MB4], [MB6], or [MB8] includes both nuclear and electronic
contributions �p(ν) = �pn(ν) + �pel(ν). In a high-frequency
electromagnetic wave, due to inertia, the nuclear contribu-
tion is relatively small, and therefore, pn(ν) � pel(ν). In a
static external field, when ν = 0, the nuclear contribution
dominates pn(0) > pel(0). For example, in ZnO:Ni2+ at 2%
doping, the ratio p(∞)/p(0) < 0.004 [15]. In what follows,
we consider constant electric fields with ν = 0 involving just
the nuclear contribution �p ≈ �pn. Also, assuming low dopant
concentrations, we neglect cooperative phenomena in the im-
purity subsystem.

To quantify the nuclear dipole moment �pn, we express the
dipolar shift of a positive dopant relative to negative ligands in
terms of the Cartesian coordinates of each atom. In the tetra-
hedral case of [MB4], we have �R = �r − �t = �r − M�r/(4m) =
[(4m + M )/(4m)]�r. For example, in the host crystals ZnO,
ZnS, ZnSe, or ZnTe, the oxidation state of Zn is +2. In a
rough estimate, its electric charge, reduced by covalency, is
somewhat less, ∼ 1.5e. Accordingly, in diatomic host crystals
like ZnO or ZnS, the electric charge of each anion is close to
− 1.5e. Consequently, the electric charge of the tetrahedron
B4 is 4(−1.5e) = −6e. Then �pn ≈ e(1.5�r − 6�t ). Plugging
in �t = −M�r/(4m), we come to �pn ≈ [1.5(m + M )/m]e�r. For
example, in the case of [NiO4] with M = 58 u and m = 16 u,
we find �pn ≈ 7e�r. To simplify, we assign the effective charge
to the dopant, the so-called Born charge ZBe [19], with ZB ≈
1.5(m + M )/m. This assumption reduces the polarization of
the entire cluster to the off-center shift of the dopant �r. Then
the induced dipole moment of the cluster is �p ≈ �pn = eZB�r.
For [NiO4], [NiS4], [NiSe4], and [NiTe4], the corresponding
values of ZB are ∼7, 4, 3, and 2, respectively.

The off-center displacement of the central atom relative
to the rigid octahedron B6 is �R = �r − �t = [(6m + M )/(6m)]�r.
For [LiCl6] with M = 7 u and m = 35 u, we find �t ≈ −0.03�r.
Similarly, for [TiO6] with M = 48 u and m = 16 u, we
get �t = −0.5�r. For [LiO6] with M = 7 and m = 16, we get
�t ≈ −0.07�r, and for [NbO6] with M = 93 and m = 16, �t ≈
−0.97�r. Similarly, in the case of a cubic site [MB8], we get

TABLE I. Rough estimates of Born charges ZB (in units of e) for some octahedral and cubic clusters [MB6] and [MB8].

Crystal KCl:Li+ KCl:Cu2+ KTaO3:Li+ KTaO3:Nb5+ KNbO3 BaTiO3 RbCl:Ag2+

Cluster [LiCl6] [CuCl6] [LiO6] [NbO6] [NbO6] [TiO6] [AgCl8]
ZB 1 2 2 9 9 7 2
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TABLE II. Examples of 3d impurity ions with an orbital triplet 2S+1T ground state in tetrahedral sites [MB4] (see Ref. [20]).

High spin (weak-field ligands, small e-t2-splitting) Low spin (strong-field ligands, large e-t2-splitting)

dn Dopant Configuration Ground state Configuration Ground state

d3 V2+, Cr3+ (e∗ ↑)2(t∗
2 ↑)1 4T1

d4 Cr2+, Mn3+ (e∗ ↑)2(t∗
2 ↑)2 5T2

d5 Mn2+, Fe3+ (e∗ ↑)2(e∗ ↓)2(t∗
2 ↑)1 2T2

d6 Fe2+, Co3+ (e∗ ↑)2(e∗ ↓)2(t∗
2 ↑)2 3T1

d8 Ni2+ (e∗ ↑)2(e∗ ↓)2(t∗
2 ↑)3(t∗

2 ↓)1 3T1
3T1 [21]

d9 Cu2+ (e∗ ↑)2(e∗ ↓)2(t∗
2 ↑)3(t∗

2 ↓)2 2T2 (e∗ ↓)2(t∗
2 ↑)3(t∗

2 ↓)2 2T2 [21]

�t = [(8m + M )/(8m)]�r. Table I shows the rough estimates of
Born charges for some octahedral and cubic clusters.

III. JTE AND PJTE IN TETRAHEDRAL
AND CUBIC CENTERS

In the tetrahedral site [MB4] with the symmetry Td , com-
ponents of polar vectors form the basis of the irreducible
representation T2; hence, the dipolar T2 modes contribute
to its dipole moment. Therefore, following the JT theorem
[4], tetrahedral and cubic polyatomic systems in the electron
threefold degenerate state T1 or T2 may be unstable about the
trigonal t2 polar distortions. As the triplet terms are coupled
to both tetragonal and trigonal vibrations e and t2, this brings
us to the T � (e + t2) JTE problem [7,8], yielding an APES
with trigonal wells when vibronic coupling to the t2 modes
dominates [12]. To simplify further consideration, we assume
that the vibronic coupling to the tetragonal e modes is ne-
glectably weak, reducing the JT problem to T � t2.

The electron triplet ground states T1 and T2 are due to
the electron population of a specific sequence of the lowest-
energy one-electron molecular orbitals (MOs) [20]. For a
transition-metal 3dn ion M in [MB4], the tetrahedral crys-
tal field splits the five atomic orbitals 3d into a low-energy
twofold degenerate orbital e(3d) and a higher-energy three-
fold orbital t2(3d) (in octahedral and cubic fields, this splitting
is inverse). The resultant sequence of MOs is determined by
the covalent chemical bonding of the central atom M with
the four ligands B [20]; the open-shell five valence 3d or-
bitals form antibonding MOs with lower-energy orbital e∗
and higher-energy orbital t∗

2 . Following the Pauli principle,
the electrons occupy the lowest-energy MOs in opposite-spin
pairs on each of them in the ground state. Subject to the rela-
tive strength of the interatomic repulsion vs the crystal field,
this electron population scheme results in either a low- or a
high-spin electron configuration. The two options depend on
the crystal-field strength of the ligand, the e − t2-splitting, or
in other words, on the position of ligand B in the spectrochem-
ical series [20]. Table II shows examples of transition-metal
dopants in [MB4] sites in tetrahedral Td symmetry with the
ground-state 2S+1T term [20] (with the same dopant M, high-
spin, and low-spin cases representing different B ligands).

In addition to the vibronic coupling, in all these cases,
the effects of spin-orbital interaction play an essential role
in reducing the JTE. This paper focuses on the orientational
polarization in solids induced by vibronic effects (the JTE and
PJTE), the implication of spin-orbital coupling being left for
a later publication.

Compared with the interatomic distances in the impu-
rity cluster, polar displacements of its atoms are relatively
small. We expand the Hamiltonian of the impurity site in
terms of the off-center displacements of the central ion M.
The JTE Hamiltonian for a T1 or T2 state takes the standard
form H = H0 + Hph + HJT. For certainty, in what follows,
we assume the electron term to be T1; in the case of a T2

term, all the formulas and the corresponding conclusions
remain the same. Here, H0 is the electron Hamiltonian, H0 =
E0[|α)(α| + |β )(β| + |γ )(γ |]. It represents the degenerate T1

term with the reference energy E0 of the three degenerate
orbital states |α), |β ), and |γ ); indices α, β, and γ label rows
of the irreducible representation T1. Here and in what follows
below, to distinguish the ground-state vibronic wave functions
|α〉, |β〉, and |γ 〉 from the orbital states |α), |β), and |γ ) of the
electron T1 term with the same transformation properties, we
use angular brackets for the former and parentheses for the
latter. In the case of the JTE, the electron Hamiltonian H0 is
proportional to the unit matrix |α)(α| + |β )(β| + |γ )(γ |, an
invariant of any unitary transformations. Selecting the refer-
ence energy E0 = 0 eliminates H0 from further consideration.
On the other hand, in the case of a PJTE, considered in
Sec. III B below, the Hamiltonian H0 includes the energy gap
between the participating electron terms. It is not proportional
to the unit matrix, and setting E0 = 0 does not eliminate H0.

Here, Hph = Tph + Uph is the phonon Hamiltonian of the
crystal lattice, Tph is the kinetic energy, and Uph is the har-
monic potential energy of the nuclei. Applying the cluster
model (its justification is at the end of Sec. III C) reduces
the phonon degrees of freedom to the nine vibrations of the
tetrahedron [MB4]. As discussed in Sec. II, by introducing the
Born charge, we reduce the dipolar modes to the off-center
shift of the central atom �r = (x, y, z). In this approximation,

Tph = 1
2

(
p2

x + p2
y + p2

z

)
, Uph = 1

2ω2
0(x2 + y2 + z2), (1)

where px, py, and pz are linear momenta conjugated to the
mass-weighted coordinates x, y, and z, respectively, and ω0 is
the reference (bare) frequency of the dipolar mode.

Assuming that the radius of the impurity center is suffi-
ciently small, we add the linear electron-vibrational (vibronic)
coupling interactions to just the off-center Cartesian displace-
ments of the dopant x, y, and z. Hence, HJT = V (xCx + yCy +
zCz) is the Hamiltonian of linear JT (vibronic) coupling at the
impurity site [7,8]. The 3 × 3 matrices:

Cx = −|β )(γ | − |γ )(β|,
Cy = −|α)(γ | − |γ )(α|, (2)

Cz = −|α)(β| − |β )(α|,
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FIG. 3. Equipotential cross-sections of the lower-sheet adiabatic
potential energy surface (APES) U0(x, y, z). Bold dots (just one is
seen) denote the symmetry directions [111] (direction of the trigonal
minimum a), [1̄11̄] (direction of the minimum b), etc. Circles with
the dots indicate trigonal wells. The minimum d is on the back side
of this sphere and is not seen. The crosses indicate saddle points. The
red curve ac shows the paths of steepest descent from the orthorhom-
bic saddle point on the symmetry axis [100] to the minimum points
a and c.

represent electron operators (∂H/∂x)0, (∂H/∂y)0, and
(∂H/∂z)0 in the symmetry-adapted basis set of the three de-
generate orbital states |α), |β ), and |γ ). The index 0 indicates
the regular tetrahedron [MB4]. According to the Wigner-
Eckart theorem, for matrices Cx, Cy, and Cz, matrix elements
are the corresponding Clebsch-Gordan coefficients. The com-
mon factor V is the reduced matrix element of these operators,
the so-called vibronic coupling constant. It incorporates the
common factor 1/�2 of each Clebsch-Gordan coefficient.
Since HJT includes electron matrices Cx, Cy, and Cz, it is also
a 3 × 3 matrix operating in the basis space of three orbital
states |α), |β ), and |γ ).

Still, after all the approximations have been applied, the
vibronic Hamiltonian H = H0 + Hph + HJT is too complex.
The next step is the adiabatic separation of nuclear motion.
For applicability, the energy gap between the ground-state
electron term and the upper one has to be large enough com-
pared with the local vibrations frequency h̄ωo. Due to the
JTE, the high-symmetry configuration is unstable. However,
in most cases, the vibronic coupling is sufficiently strong, and
the degenerate T1 term splitting is sufficiently large to allow
the adiabatic approximation.

A. JTE-induced APES in systems with an electronic T1 term

In the adiabatic approximation, at its first step, we neglect
the kinetic energy Tph of the nuclei. Then the Hamiltonian H =
Tph + Uph + HJT simplifies to just the potential energy matrix
UJT = Uph + HJT, with Uph from Eq. (1), and HJT = V (xCx +
yCy + zCz ). Eigenvalues of this 3 × 3 matrix are the APESs
for nuclei [7,8]. The vibronic coupling term dominates at the
small vicinity of the high-symmetry on-center position of the
dopant, creating a conic intersection of the APES with the off-
center JTE instability of the dopant at �r = 0. At larger values

FIG. 4. Strong off-center instability in tetrahedral sites [MB4]
due to the Jahn-Teller effect (JTE) T1

⊗
t2 problem and the cor-

responding ground-state energy-level diagram. (a) Four off-center
equilibrium adiabatic potential energy surface (APES) minima po-
sitions (white circles labeled a, b, c, and d) of the dopant M (red
circle). (b) Tunneling lifts this degeneracy resulting in the ground-
state tunneling triplet term T1 and excited tunneling singlet A2. The
corresponding energy gap between them is 4
 (Sec. III C). (c) Stark-
effect splitting (not to scale) of the ground-state tunneling T1 term.

of x, y, and z, combined with the elastic energy of nuclei Uph,
the vibronic coupling term determines low-symmetry wells on
the lower branch of the APES U0(�r).

According to Öpik and Pryce [12] (see also Refs. [7,8]), in
this case, there are four symmetry-equivalent trigonal wells:
a, b, c, and d on the lowest branch of the APES. Instead of the
high-symmetry on-center position at �r = 0, stable positions
(minima of the APES) of the JTE dopant are at the low-
symmetry off-center trigonal points (Fig. 3):

�ra = r0〈1, 1, 1〉,
�rb = r0(1,−1,−1),

(3)
�rc = r0(−1, 1,−1),

�rd = r0(−1,−1, 1),

with r0 = 2V/(3ω2
0 ) [12]. In each of the trigonal wells, the

off-center shift of the dopant is R0 =
√

x2 + y2 + z2 = r0

√
3,

and the overall symmetry of the cluster reduces to trigo-
nal Td → C3v [Fig. 4(a)]. The electron T1 term splits into
the ground-state trigonal singlet and the excited-state dou-
blet T1 → A2 + E . The corresponding ground-state potential
energy is U0(C3v ) = U0(�ra) = U0(�rb) = U0(�rc) = U0(�rd ) =
−EJT, which is the so-called JTE stabilization energy EJT =
2V 2/(3ω2

0 ) [12]. At each point with the coordinates in Eq. (3),
the trigonal E term is above the trigonal singlet by the energy
gap of 3EJT [12].

The saddle points at the top of the APES barriers sep-
arate trigonal wells. One of them is at �r = 1.5r0(0, 0, 1),
corresponding to the off-center shift of the central atom
in one of the six symmetry-equivalent directions of the
improper-rotational fourth-order axes. By reducing the tetra-
hedral symmetry to pyramidal Td → C2v , this distortion drops
the potential energy down to the value of U0(C2v ) = − 3

4 EJT

[12]. The red curve on the sphere of Fig. 3 is the path of
steepest descent from this saddle point to the trigonal wells
a and d . The height of the corresponding potential barriers is
�U0 = U0(C2v ) − U0(C3v ) = − 3

4 EJT − EJT = 1
4 EJT.
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Due to the JTE for the T term, either T1
⊗

t2 or T2
⊗

t2,
the ground-state branch U0(�r) of the APES is a wrapped two-
dimensional trough. Generally, the size of potential barriers on
its bottom depends on the vibronic coupling to the tetragonal
E modes and the higher-order terms of vibronic interaction. In
addition to the abovementioned extremes, the APES has other
stationary points. For illustration, Fig. 3 qualitatively conveys
the landscape of U0(�r) by its equipotential cross-sections with
the sphere x2 + y2 + z2 = r2.

The above results are accurate to the extent they follow the
symmetry of the dopant site. For example, all the extremes
are on the symmetry axes of the tetrahedron, an exact out-
come that does not depend on the accepted approximations
[22–25]. They are due to the symmetry invariance of the lower
branch APES in the subspace of the off-center coordinates
�r = 〈x, y, z〉. In this respect, the landscape of the APES is
similar in all cases of the JTE and PJTE involving the T2 mode.
The wrapped two-dimensional trough is a general feature
for all these cases. In what follows, the low-energy part of
the energy-level diagram is most important for the effects of
orientational polarizability. Note, however, that the vibronic
coupling constants and the frequencies of dipole oscillations
are approximate. Accordingly, the magnitude of the off-center
shift R0 and the JTE stabilizing energy EJT are subject to the
adopted model.

Assume that the system is constrained to angular motion
on the sphere x2 + y2 + z2 = r2. On the trough, where x =
R0sinθcosϕ, y = R0sinθsinϕ, and z = R0cosθ , it moves along
the angles θ and ϕ. The so-called Devonshire model yields
an approximate expression for the bottom of the lower branch
of the APES U0(�r) [26], which in its extended version is as
follows [27]:

W (θ, ϕ) ≈ kEJT[V4(θ, ϕ) cos μ + V6(θ, ϕ) sin μ]. (4)

The two terms:

V4(θ, ϕ) = Y 0
4 (θ, ϕ) +

√
5

14

[
Y 4

4 (θ, ϕ) + Y −4
4 (θ, ϕ)

]
,

and

V6(θ, ϕ) = Y 0
6 (θ, ϕ) +

√
21

231

[
Y 6

6 (θ, ϕ) + Y −6
6 (θ, ϕ)

]
,

are low-order cubic harmonics. The two adjustment parame-
ters k and μ determine the strength of the potential and the
relative contribution of V4(θ , ϕ) and V6(θ , ϕ). Their numeric
values result from U0(�r) at selected points, say, minima and
saddle points, estimated in electronic structure calculations.
At μ = 0, we have the original Devonshire’s model with just
the fourth-order term, W(θ , ϕ) = kEJTV4(θ , ϕ) [26], coinciding
with O’Brien’s [28] approximate potential for the JTE in the
linear T � (e + t2) case. When μ � 0, the potential W(θ ,
ϕ) includes the sixth-order term V6(θ , ϕ) providing energy
adjustment for saddle points. At a positive value of k, the
wrapped trough has six tetragonal wells. For k < 0, there are
eight trigonal wells. By varying the parameter μ � 0, we can
have three different types of absolute minima. At k > 0, with
μ in the interval (−65 °, 26 °], we get six tetragonal wells, with
μ in (26 °, 173 °), there are 12 orthorhombic minima, and at

μ in the interval (173 °, 295 °), the wrapped trough has eight
trigonal wells [27].

B. APES of nondegenerate electron terms shaped by a PJTE

Irrelevant to the JTE, spontaneous symmetry breaking may
occur due to a PJTE, provided its vibronic entanglement with
an excited state is strong enough [2,5–10,12]. As in Eqs. (1)
and (2), the corresponding coupling constants are matrix el-
ements of the operators of vibronic interaction (∂H/∂Q
γ )0,
mixing the electron ground state |
1γ1) with an excited state
|
2γ2). Here, the index 0 indicates the regular polyhedron
[MBn]; Q
γ are symmetry-adapted normal modes of vibra-
tions; index Гγ specifies transformation properties of Q
γ in
the corresponding symmetry group; Г, 
1, and 
2 stand for
irreducible representations; and γ , γ1, and γ2 indicate their
respective rows. Generally, the vibronic entanglement with the
PJTE may include more electron terms than just two energy
levels. Even in this two-level setup, the number of cases with
the PJTE is significantly greater than the ones with the JTE.

Consider central-symmetric cubic sites with the point
group Oh, like the six-coordinated [MB6] or eight-coordinated
[MB8] clusters. For the dopant M, its off-center displacement
�r = (x, y, z) transforms as Г = T1u. According to group-
theoretical selection rules, within the basis set of degenerate
states of the same electron ground term 
1, for the vibronic
operators (∂H/∂x)0, (∂H/∂y)0, and (∂H/∂z)0, all their matrix
elements (
1γ1|(∂H/∂ri )0|
1γ2) equal zero due to the parity
restrictions. Therefore, no JTE is possible with the involve-
ment of the dipolar coordinates T1u. However, for electronic
terms 
1 and 
2 of opposite parity, this restriction is lifted, and
the matrix elements are not zero (
1γ1|(∂H/∂ri )0|
2γ2) �=
0, provided the product 
1 × 
2 includes T1u. Entangling
electron states of opposite parity can contribute to vibronic
symmetry breaking if the PJTE is strong enough [2,5–10,12].

For a cubic symmetry Oh, its ground electron term can be
even 
1 = A1g, A2g, Eg, T1g, T2g or odd 
1 = A1u, A2u, Eu, T1u,
T2u. In a two-level setup, under condition T1u ∈ 
1 × 
2 with
the PJTE-active T1u mode, there can be several cases with an
even ground state (A1g + T1u) � t1u, (A2g + T2u) � t1u, (Eg +
T1u) � t1u, (Eg + T2u) � t1u, etc., or an odd one (A1u + T1g) �
t1u, (A2u + T2g) � t1u, (Eu + T1g) � t1u, (Eu + T2g) � t1u, etc.
In its turn, the first excited electron term T1u may couple to
other excited terms Гg of opposite parity via the dipolar modes
T1u whenever the group-theoretical selection rule for the cor-
responding matrix elements applies T1u × T1u = 
g. All these
arguments are relevant to the clusters with an orbital singlet
ground state A2g, A1u, or A2u. In all these cases, the vibronic
Hamiltonian is similar, and at strong vibronic coupling, the
lower-branch APES has the same landscape with similar wells
and saddle points as in the JTE case.

In a three-level setup, more cases are possible (A1g + A2g +
T1u) � t1u, (A1g + T1u + T2u) � t1u, etc. In all these cases,
extremes of the lower-branch APES are on cubic symmetry
axes. This exact outcome does not depend on the accepted
approximations. It is due to the symmetry invariance of the
lower branch APES in the subspace of the off-center coordi-
nates �r = (x, y, z) [22–25]. In this respect, qualitatively, the
landscape of the APES is similar in all cases of the JTE and
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TABLE III. Examples of M(3dn) impurity ions with the ground state 2S+1A1 or 2S+1A2 in tetrahedral sites [MB4] (see Ref. [20]).

High spin (weak field, small e-t2-splitting) Low spin (strong field, large e-t2-splitting)

dn Dopant Configuration Ground state Configuration Ground state

d2 Ti2+, V3+ (e∗ ↑)2 3A2
3A2 [21]

d4 Cr2+, Mn3+ (e∗ ↑)2(e∗ ↓)2 1A1

d5 Mn2+, Fe3+ (e∗ ↑)2(t∗
2 ↑)3 6A1

d7 Co2+, Ni3+ (e∗ ↑)2(e∗ ↓)2(t∗
2 ↑)3 4A2

4A2 [21]
d10 Cu+, Zn2+ (e∗ ↑)2(e∗ ↓)2(t∗

2 ↑)3(t∗
2 ↓)3 1A1

PJTE involving the T1u mode; it has the same minima and
saddle points.

In what follows, we explore the tunneling model, de-
scribing the dopant dynamics by a single parameter Г, the
reciprocal probability of quantum tunneling through poten-
tial barriers between symmetry-equivalent wells on the lower
branch of the APES. Therefore, it does not matter which PJTE
case is under consideration. Here, the critical feature is the
energy-level diagram of the ground-state tunneling multiplet,
which depends on the characteristic features of the APES.
Therefore, as an example, in what follows, we consider PJTE
for just the two-level case with a ground-state orbital singlet
(A1 + T2) � t2 or (A2 + T1) � t2 for a tetrahedral cluster [MB4]
and (A1g + T1u) � t1u or (A2g + T2u) � t1u for centrosymmetric
clusters [MB6], [MB8], or [MB12].

Assume that the ground state of the dopant is an orbital
singlet 1A1, like in the closed-shell low-spin case of Mn2+ in
a tetrahedral site [MB4] or Ti4+ in an octahedral site [MB6].
The absolute minimum of the ground-state APES may be
off-center shifted with �r �= 0 if the vibronic coupling to the
T1u mode is sufficiently strong [2,6], meaning the vibronic
coupling constant F = 〈A1|(∂H/∂r j )0|T2γ 〉 is strong enough.
Table I lists several examples of off-center instability due
to the PJTE. Table III shows examples of transition-metal
dopants in tetrahedral sites [MB4] with a singlet ground state
2S+1A1 or 2S+1A2.

Table IV shows several examples of transition-metal
dopants in octahedral and cubic sites [MB6] or [MB8] of Oh

symmetry with a singlet ground-state 2S+1A1g or 2S+1A2g [20].
For cubic perovskites, the crucial role of the PJTE in the
off-center symmetry breaking was revealed more than half
a century ago [2]; it was further developed in recent years
[16,17,29]. For example, the vibronic coupling of the ground
state A1g to the excited T1u term determines the ferroelectric
instability of Ti4+ in BaTiO3 [2,7].

The vibronic coupling creates a symmetry-destabilizing
vibronic force with the force constant Kv = 4F 2/�, where
2� is the energy gap separating the excited T1u term from the
ground state A1g. The off-center instability occurs when the
symmetry-destabilizing value Kv is larger than the symmetry-
restoring reference elasticity Kv > K0 [2,7,8]. In this case,
in the close vicinity of the high-symmetry point at �r = 0,
the lowest branch of the APES has the shape of an open-
down paraboloid. The coupling constant F reflects the rate of
change of the covalence bonding induced by the off-center
displacements. It leads to an enhancement of the chemical
bonding of the ligands to the cation M with its off-center shift
[7–9,30].

In the simplest case of a linear (A2g + T1u) � t2 problem
with a strong PJTE, a two-dimensional equipotential trough of
minima occurs at the bottom of the potential U0(�r). Generally,
the PJTE may include more than just linear vibronic coupling
and more than just one excited electron term T1u. These effects
add warping to the trough, producing minimum and saddle
points on its bottom. As mentioned above, their symmetry
transformation properties depend on the undistorted crystal
structure, not the approximations employed in their treatment
[22–25]. They are due to the symmetry invariance of the lower
branch APES in the T1u subspace of the off-center coordinates
�r = (x, y, z).

In what follows, we consider the case of strong vibronic
coupling and low temperatures when the nuclear motion is
localized at the bottom of the trough of the APES. Like
the JTE in the tetrahedral site, introducing spherical coordi-
nates x = R0sinθcosϕ, y = R0sinθsinϕ, and z = R0cosθ , we
assume that the dopant moves along θ and ϕ directions. Then
the same Devonshire model of Eq. (4) applies to the angular
dependence of the lower branch of the APES in the PJTE
case as well. We approximate the wrapped trough in terms
of lower-order cubic harmonics V4(θ , ϕ) and V6(θ , ϕ).

TABLE IV. Examples of M(3dn) impurity ions with singlet ground states 2S+1A1g or 2S+1A2g in octahedral and cubic sites [MB6] or [MB8]
(see Ref. [20]).

High spin (weak field, small e-t2-splitting) Low spin (strong field, large e-t2-splitting)

dn Dopant Configuration Ground state Configuration Ground state

d0 Sc3+, Ti4+ 1A1g
1A1g

d3 V2+, Cr3+ (t∗
2g ↑)3 4A2g

4A2g [21]
d5 Mn2+, Fe3+ (t∗

2g ↑)3(e∗
g ↑)2 6A1g

d6 Fe2+, Co3+ (t∗
2 ↑)3(t∗

2 ↓)3 1A1g

d8 Ni2+, Cu3+ (t∗
2g ↑)3(t∗

2g ↓)3(e∗
g ↑)2 3A2g

3A2g [21]
d10 Cu+, Zn2+ (t∗

2 ↑)3(t∗
2 ↓)3(e∗ ↑)2(e∗ ↓)2 1A1g
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By applying the modified Devonshire-O’Brien potential
of Eq. (4), we employ its cubic symmetry and the essential
property of parity. In the case of the JTE, inversion in the
(θ , ϕ) space changes the adiabatic ground-state wave function
|0) to that of the opposite sign. Therefore, in the adiabatic
approximation, to avoid the ambiguity of the vibronic wave
function, its nuclear factor must include the so-called Berry
phase ϕB = π [10,31–34]. In the PJTE case, inversion in the
(θ , ϕ) space does not change the electronic wave function
of the adiabatic approximation, and the Berry phase is zero
ϕB = 0.

C. Local vibronic dynamics and tunneling splitting
of energy levels

In the tetrahedron site [MB4] with the dominant vibronic
coupling to the T2 mode and in the central-symmetric cases
[MB6] or [MB8] with the coupling to the T1u mode, the APES
of the ground electron term has several symmetry-equivalent
wells [5–10]. They transform into one another under the op-
erations of the dopant-site symmetry group. If the wells are
sufficiently deep, all the nuclear motion is randomly localized
in one of the wells, where the dopant is off-center displaced.
Alternatively, in the case of relatively low potential barriers,
the atomic motion is reduced to tunneling between the wells
or hindered rotations of the wave of low-symmetry distortion
around the site. Although in all these cases the average value
of the local dipole moment is zero, an applied electric field
violates the equivalency of the wells. It localizes the off-center
displacement of the dopant, producing a dipole moment at the
dopant site. Accordingly, the dipole moment aligns with the
applied electric field.

The local JTE-induced multiwell landscape of the lower
branch of the APES with a wrapped trough in Eq. (4) pre-
serves the overall tetrahedral (octahedral, cubic) symmetry of
the site. For simplicity, in what follows, we assume that its
orthorhombic potential barriers are significantly large, so the
trigonal wells are sufficiently deep. In the tetrahedral case, the
off-center positions of the dopant are at the bottom of wells a,
b, c, and d [Fig. 4(a)], where the dopant-site symmetry is C3v .
At the bottom of the kth well, where �r = �rk and the electronic
ground-state wave function is |k), the Born-Oppenheimer
ground state |k〉 is an electron-vibrational product |k〉 = |k)χ0

(�r − �rk). Due to the tetrahedral symmetry, for all k and j of the
set a, b, c, and d , the overlap integrals and matrix elements of
the Hamiltonian are equal: 〈k|H | j〉 = 〈a|H |b〉 = Hab, 〈k| j〉 =
〈a|b〉 = Sab = S if k �= j, and all 〈k|H |k〉 = 〈a|H |a〉 = Hab if
k = j. If the potential barriers are infinitely high, the ground-
state nuclear motion is locked in one of the wells, and the
ground state is fourfold degenerate [Fig. 4(b)]. In this basis
of the four localized functions, the simplified JT Hamiltonian
takes the following matrix form [35,36]:

4HJT = 
(|a〉〈b| + |a〉〈c| + |a〉〈d| + |b〉〈c| + |b〉〈d|
+ |c〉〈d|) + H.T. (5)

The left superscript indicates the order of the square matrix,
and H.T. means Hermitian transpose.

Tunneling through finite-size barriers restores the bro-
ken tetrahedral symmetry C3v → Td . The Born-Oppenheimer
ground states |k〉 form the basis of a reducible representation.

Tunneling lifts the fourfold degeneracy, yielding A2 + T1

states [Fig. 4(b)]. Using symmetry projection, we transform
the four Born-Oppenheimer ground states |k〉 with k = a, b,
c, and d to the four symmetry-adapted states [7,8,35–40],
|A2〉 = 1

2 (|a〉 + |b〉 + |c〉 + |d〉), |Т1α〉 = 1
2 (|a〉 + |b〉 − |c〉 −

|d〉), |Т1β〉 = 1
2 (|a〉 − |b〉 + |c〉 − |d〉), and |T1γ 〉 = 1

2 (|a〉 −
|b〉 − |c〉 + |d〉). The respective energy levels are EA2 =
〈A2|H |A2〉 = (Haa + 3Hab)/(1 + 3S) = E0 + 3
, and ET 1 =
〈T1α|H |T1α〉 = (Haa − Hab)/(1 − S) = E0 − 
. Here, E0 =
1
4 (EA2 + 3ET 1) ≈ Haa, and 
 = 1

4 (EA2 − ET 1) ≈ Hab − HaaS
In what follows, we set the read-off mean-value energy of the
ground state to zero. Then E(A2) = 3
, E(T1) = −
, and
the tunneling splitting energy gap is E(A2) − E(T1) ≈ 4


[Fig. 4(b)].
Compared with the saddle points of the orthorhombic po-

tential barriers, the conical intersection at �r = 0 is high in
energy, U0(0) − U0 (C2v ) = 3

4 EJT. For example, in the case of
ZnO: Ni2+, the potential barriers are ∼360 cm−1. The conical
intersection of the APES is sufficiently high in energy, and
the excited vibronic states near this point become populated
at the temperature close to (or above) 700 K. Therefore, at
room temperature, the probability of a nuclear path traversing
the trough through the conical intersection is negligible. Ac-
cordingly, such a path with the dopant crossing the center of
the tetrahedron does not contribute to electric susceptibility.
Instead, typical for the JTE, the leading source of orientation
polarizability is the round motion from one trigonal minimum
to another along the bottom of the wrapped trough, bypassing
the conic intersection at �r = 0. Turning the dipole around the
cone is easier under an electric field than moving the dopant
through the center. Therefore, like polar liquids, solids with
JTE centers possess orientation polarizability.

In a reasonable approximation, the slow angular motion
along the wrapped trough follows the path of the steepest
descent (the red curve in Fig. 3). In all perpendicular direc-
tions, the nuclear motions remain as small vibrations. This
approximation reduces the multimode vibronic problem to the
simple case of one-dimensional tunneling along the bottom
of the wrapped trough. All the other degrees of freedom,
being locally orthogonal to the path of steepest descent,
are separated [38]. For the tunneling parameter Г, the best
result follows from the Wentzel-Kramers-Brillouin (WKB)
approach [38,39], expressing the tunneling parameter Г in
terms of the tunneling integral along the path of steepest
descent from the orthorhombic saddle point to the neighboring
trigonal wells [7,38–40]:


 ≈ 5h̄ω0 exp

(
− 5EJT

4h̄ω0

)
. (6)

When Г � 1
2 h̄ω0, the JTE is moderate to strong. This con-

dition translates into the inequality EJT � 2h̄ω0. For example,
in the case of ZnO: Ni2+, using the above estimates, we have
�ω0 ≈ 15 meV ≈ 121 cm−1 and EJT ≈ 60 meV ≈ 480 cm−1,
which indicates a strong JTE. From Eq. (7), in this case, we
get Г ≈ 0.5 meV ≈ 4.0 cm−1.

The off-center shift of the dopant distorts the first coordi-
nation sphere. Its elastic and dipole-dipole electric interaction
with the second coordination sphere causes a similar distor-
tion to the next one. The distorted second sphere deforms the
third one, etc. Though decreasing in magnitude with distance
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FIG. 5. Four cases of strong pseudo-Jahn-Teller effect (PJTE) with off-center instability and the corresponding tunneling splitting of the
ground-state multiplet. (a) Trigonal wells in strong-coupling tetrahedral site with a PJTE (A2 + T1) � t2. (b)–(d) The 6-, 8-, and 12-well models
in centrosymmetric sites [MB6], [MB8], and [MB12], respectively.

from the dopant, this polaron-type crystal lattice distortion
covers a vast region around the dopant site, contributing to
an additional local polarization of the crystal [36]. As the
local dipole rotates around the dopant site, it involves angular
motion of all this polarized region of lattice distortion with an
increased (dressed) rotational inertia.

As mentioned above, the landscape of the multimode
APES is like that of the cluster [MB4]. The number of
wells and saddle points on its lower branch is the same
as in the crystal-lattice multimode JTE [7]. Most impor-
tantly, in all these cases, there is just one tunneling path,
the line of steepest descent (the red curve in Fig. 4). No
matter how many vibrational modes are involved in the JTE,
tunneling is a one-dimensional phenomenon. According to
Eq. (5), one parameter EJT/h̄ω0 determines the tunneling
splitting of the corresponding energy levels. The qualita-
tive similarity of the APES in the local and multimode
cases provides the option of introducing the so-called clus-
ter model [41], which treats the multimode impurity system
as a molecule [MB4]. After all but the tunneling degree of
freedom are separated, no significant difference remains be-
tween the treatment of the crystal impurity problem and just
the cluster [MB4], as the number of other degrees of free-
dom does not matter. We treat the vibronic coupling constant
V and the bare frequency ω0 of the cluster model as phe-
nomenological parameters subject to further adjustment to the
experimental data.

Employing the extended and somewhat modified Devon-
shire model for the cases of off-center instability in 6, 8, and
12 wells [35,36], we briefly list below the most important
results regarding dipole tunneling in tetrahedral and cubic
systems with the PJTE. Compared with the JTE, there is
a substantial difference in applying the Devonshire model
to the PJTE case. In the latter, inversion in the electronic
space {x, y, z} does not change the sign of the adiabatic
ground-state wave function |0). Therefore, opposite to the JTE
case, if the ground electron state is an orbital singlet, the
Berry phase is zero ϕB = 0; therefore, the ground state is a

nondegenerate vibronic singlet. For example, for the tetrahe-
dral cluster [MB4] with a ground-state singlet term A2, the
PJTE for the quadratic (A2 + T1) � t2 problem with relatively
strong vibronic coupling to t2 modes results in trigonal wells
on the lower branch of the APES, like the ones considered
in Sec. III B. The corresponding tunneling states |A2〉, |T1α〉,
|T1β〉, and |T1γ 〉 are like those in the abovementioned case of
the JTE, with the only difference in the order of the tunneling
energy levels. The vibronic ground state in the PJTE problem
is |A2〉 [Fig. 5(a)]. Therefore, the above consideration of the
tunneling splitting in the JTE problem applies to the PJTE
case, assuming that Г is negative.

In centrosymmetric clusters [MB6], [MB8], and [MB12],
depending on the relative strength of higher-order vibronic
coupling, the APES can have six tetragonal, eight trigonal,
or 12 orthorhombic symmetry-equivalent wells [Figs. 5(b)–
5(d)]. The tunneling dynamics in all these cases was
considered by Gomez et al. [35]. In the case of six wells,
the distance between diametrically distant minima a − d ,
b − e, and c − f is greater than the distance between ad-
jacent minima a − b, b − d , etc. Therefore, the overlap
integrals of the oscillator states in the corresponding wells
are different in magnitude 〈χ0(�r − �ra)| χ0(�r − �rb)〉 > 〈χ0(�r −
�ra)|χ0 (�r − �rd )〉. Including only the dominant contributions
and setting the read-off mean-value energy to zero, we
approximate the tunneling Hamiltonian by the following
matrix 6 × 6:

6HpJT = − 
(|a〉〈b| + |a〉〈c| + |a〉〈е| + |a〉〈 f | + |b〉〈c|
+ |b〉〈d| + |b〉〈 f |) − 
(|c〉〈d| + |c〉〈e|
+ |d〉〈e| + |d〉〈 f | + |e〉〈 f |) + H.T. (7)

As above, the superscript indicates the order of the square
matrix, and H.T. means Hermitian transpose. Like the case of
four trigonal wells, the operator of symmetry projection trans-
forms the six Born-Oppenheimer ground states |k〉 to the six
symmetry-adapted states |A1g〉, |T1uα〉, |T1uβ〉, |T1uγ 〉, |Egθ〉,
and |Egε〉 that diagonalize the PJTE Hamiltonian in Eq. (8).
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Its tunneling eigenvalues are E(A1g) = −4
, E(T1u) = 0, and
E(Eg) = 2
. Accordingly, the tunneling splitting is E(Eg) −
E(A1g) ≈ 6
 [Fig. 5(b)]. Similarly, in the case of eight trigonal

or 12 orthorhombic wells [Figs. 5(c) and 5(d)], neglecting
the minor contributions, the tunneling Hamiltonians of the
respective PJTE are as follows:

8HpJT = 
(|a〉〈b| + |a〉〈d| + |a〉〈е| + |b〉〈c| + |b〉〈 f | + |c〉〈d| + |c〉〈g| + |d〉〈h|)
× 
(|e〉〈 f | + |e〉〈h| + | f 〉〈g| + |g〉〈h|) + H.T.,

12HpJT = − 
(|a〉〈e| + |a〉〈h| + |a〉〈k| + |a〉〈l| + |b〉〈e| + |b〉〈h| + |b〉〈m| + |b〉〈n|)
− 
(|c〉〈 f | + |c〉〈g| + |c〉〈m| + |c〉〈n| + |d〉〈 f | + |d〉〈g| + |d〉〈k| + |d〉〈l|)
− 
(|e〉〈k| + |e〉〈n| + | f 〉〈k| + | f 〉〈n| + |g〉〈l| + |g〉〈m| + |h〉〈l| + |h〉〈m|) + H.T. (8)

For details of the tunneling dynamics and the correspond-
ing tunneling splitting energy-level diagram evaluation, see
Gomez et al. [35].

IV. STARK EFFECT AND ORIENTATIONAL
POLARIZATION OF THE JT DOPANT

As discussed in Sec. III A, due to the JTE problem T1
⊗

t2
at each tetrahedral site of the [MB4] cluster, the ground-
state branch of the APES U0( �R) has symmetry-equivalent
trigonal wells (Fig. 3), and in each well, the symmetry of
the dopant site is lowered to trigonal Td → C3v (Fig. 4).
In the centrosymmetric cases [MB6], [MB8], and [MB12] with
the PJTE (A1g + T1u) � t1u problem, the symmetry breaking
in trigonal wells is Oh → C3v . Off-center distortion �r yields
a local dipole moment �p = eZB�r/

√
m∗ = p0�r/R0, where m∗

is the effective mass of the local off-center mode, and R0 =
r0

√
3, according to Eq. (3), is the radius of the trough, while

p0 = eZBR0/
√

m∗. In the absence of an external electric field
�E = 0, the wells are symmetry equivalent, providing for the
resonance of the localized wave functions in the trigonal
wells. Subject to the temperature population of the excited
vibronic states, the JTE-induced nuclear motion (mainly that
of the dopant ion) is either tunneling through orthorhombic
barriers from one trigonal well to another or hopping over the
potential barriers, realizing the hindered rotation. The dopant
localization probability is spread evenly over the wells at the
bottom of the two-dimensional trough of the APES. In each
well, there is a nonzero polar distortion �r �= 0 with equal val-
ues |�r| = |�ra| = |�rb| = |�rc| = |�rd | = R0 �= 0, and the trigonal
directions of �r are symmetry equivalent [Fig. 4(a)]. Therefore,
the average dopant displacement is zero 〈�r〉 = 0. The angular
brackets stand for the temperature average over all the tunnel-
ing states under consideration 〈�r〉 = 1

Z Tr(e−βH �r), with Z =
Tr(e−βH ) being the partition function, and β = 1/kBT . As
�p = p0�r/R0, the average dipole moment 〈 �p〉 is proportional
to 〈�r〉. Therefore, at �E = 0, when 〈�r〉 = 0, the average dipole
moment is zero 〈 �p〉 = 0 [Fig. 6(a)].

A nonzero electric field �E �= 0 applies a torque on each
local dipole, turning it into alignment along �E . The dopant
site acquires an induced dipole moment of nonzero magnitude
〈 �p〉 �= 0. With the electric field removed, its value returns to
zero due to thermal fluctuations. By definition, the polariza-
tion per site is the mean value of the induced electric dipole
moment per unit volume �P = 〈�p〉/a3, where a is the lattice
constant. Thus, a nonzero electric field induces an orienta-
tional (nondisplacive) polarization of the crystal �P �= 0.

In the following section, we evaluate the nonzero average
value of the dipole moment induced by the applied electric
field in tetrahedral clusters [MB4]. The electric field pertur-
bation is W = − �E · �p = −�r(p0/R0). Consider relatively low
temperatures kBT � h̄ω0. In this case, only the ground-state
tunneling energy levels of Fig. 4(b) are temperature populated,
and the contribution of all other excited states is negligible.
Within the basis set of the four Born-Oppenheimer localized
states |a〉, |b〉, |c〉, and |d〉, off-diagonal matrix elements of
the dipole moment are proportional to the overlap integral
〈k|m〉 and are negligibly small. Its diagonal matrix elements
are proportional to the coordinates of the corresponding well
〈 j| �p| j〉 = (p0/R0)〈 j|�r| j〉 = (p0/R0)�r j , with �r j from Eq. (3).
Therefore, in this basis manifold, the dipole moment takes
the following matrix form: 4�p = p0(r0/R0)4 �D, where we in-
troduce 4 × 4 matrices 4 �D = (4Dx,

4Dy,
4Dz ) representing

the vector �r in this basis manifold. In each well, neglecting
overlaps of Born-Oppenheimer states with other wells, these
matrices are reduced to a diagonal form. For example, well
b has coordinates r0(1,−1,−1) [cf. Eq. (3)], and therefore,
xb = r0〈b|4Dx|b〉 = r0. In each trigonal well, the off-center
shift of the dopant is R0 =

√
x2 + y2 + z2 = r0

√
3. Hence,

4�p = 1√
3

p0
4 �D with the following diagonal matrices:

4Dx = |a〉〈а| + |b〉〈b| − |c〉〈c| − |d〉〈d|,
4Dy = |a〉〈а| − |b〉〈b| + |c〉〈c| − |d〉〈d|,
4Dz = |a〉〈а| − |b〉〈b| − |c〉〈c| + |d〉〈d|. (9)

FIG. 6. Electric-field-induced dipole moments (blue arrows). (a)
At zero field, �E = 0, the dopant is evenly distributed over the four
trigonal wells, and the average value of the dipole moment is zero,
�p = 0. (b) When �E ||[111], well a lowers in energy, and the dopant
is locked in this well with a nonzero dipole moment pointing in the
same direction [111]. (c) When �E ||[001], wells a and d are lower in
energy, and the dopant is equally locked in these wells. The resultant
average dipole moment 1

2 ( �pa + �pd ) is shown as red arrow.
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FIG. 7. One-dimensional cross-section along the path of steepest
descent of the adiabatic potential energy surface (APES) of Fig. 3
distorted by a strong electric field. The four trigonal wells are la-
beled a, b, c, and d , [as in Fig. 4(a)], and the potential barriers
between them are labeled ab, bc, cd , ac, ad , and bd , respectively.
(a) Trigonal electric field, �E ||[1, 1, 1], points toward well а [as in
Fig. 6(b)], lowering well a and lifting the other three wells b, c,
and d . (b) Tetragonal field points along the z axis [as in Fig. 6(c)]
lowering the adiabatic energy of wells a and d and lifting wells b
and c.

A. Orientational polarization at zero temperature

The applied electric field lowers the overall site symme-
try, breaks the symmetry equivalence of the wells, and may
destroy the resonance by locking the system in one trigonal
well. For this to occur, the electric field should be greater than
the critical value Ecr ≈ 
/p0. Figure 7 gives a schematic illus-
tration of its expected impact on the general landscape of the
ground-state branch of the APES. Notably, this effect depends
significantly on the strength of the JT coupling [7–10]. Ac-
cording to Eq. (3), the tunneling parameter Г is exponentially
small, Г � exp(−1.25EJT/h̄ω0), and the dipole moment in the
well is of the order of p0 ∝ √

(EJT/h̄ω0). Hence, in the case of
a moderate-to-strong JTE, when EJT � 2h̄ω, the critical value
of the electric field Ecr ∝ √

(h̄ω0/EJT)exp(−1.25EJT/h̄ω) is
relatively small. For example, in ZnO: Ni2+, assuming a
moderate-to-strong JT coupling, EJT ≈ 480 cm−1 and h̄ω0 ≈
120 cm−1, Eq. (13) yields Г ≈ 4 cm−1. In this case, the
off-center displacement of the Ni ion in the trigonal wells
is about R0

√
3/m∗ ≈ 0.27Å. Accordingly, the field-induced

dipole moment is eZBR0
√

3/m∗ ≈ 15 D. Therefore, to lock
the system in a trigonal well, the critical value of the applied
field should be at least ∼15 kV/cm, twice less than the dielec-
tric strength of dry air.

Therefore, even a relatively weak electric field quenches
the tunneling and locks the dopant in the field-oriented deep-
est well(s). The field-induced symmetry-breaking manifests
itself as a nonzero polar distortion of the dopant site 〈�r〉 �=
0, and correspondingly, a field-induced nonzero dipole mo-
ment 〈 �p〉 = p0〈�r〉/R0. This rapid change from 〈 �p〉 = 0 to its
nonzero limiting value in trigonal well(s) implies an anoma-
lously high value of its electric field derivative, meaning a
giant susceptibility.

A relatively strong trigonal field �E = 1√
3 E (1, 1, 1),

with E > Ecr, pointing toward well a, lowers its
energy and lifts the other three wells b, c, and d . At

kBT = 0, only well a is temperature populated, while
wells b, c, and d are empty. Therefore, the mean value
〈�r〉 ≈ �ra = 1√

3 R0(1, 1, 1), and the APES energy at its

bottom drops: W[111] = Wa = − �E · �pa = − �E · �ra(p0/R0) =
− 1√

3 E (1, 1, 1) · 1√
3 p0(1, 1, 1) = −E p0, reaching the

value |Wa| = E p0 (Fig. 7). In wells b, c, and d , where the
vectors �E and �p are at the tetrahedral angle of 109.5 ° to one
another, the adiabatic energy increases: Wb = Wc = Wd =
− 1√

3 E (1, 1, 1) · 1√
3 p0(1, − 1, − 1) = 1

3 E p0. Hence, at T
= 0 K, when the only populated state is |a〉, the vector of
induced dipole moment 〈 �p〉 ≈ �pa = 1√

3 p0(1, 1, 1) is parallel

to the electric field �E , and its magnitude is 〈p〉 = | �pa| = p0

[see Fig. 6(b)]. When �E = − 1√
3 E (1, 1, 1), pointing opposite

to well a, wells b, c, and d drop in energy by 1
3 E p0,

whereas the bottom of well a lifts up by the E p0 value.
Then at T = 0 K, wells b, c, and d are equally populated,
whereas well a is empty. In this case, the average dipole
moment is 〈 �p〉 ≈ 1

3 ( �pb + �pc + �pd ) = 1
3
√

3
p0[(1,−1,−1) +

(−1, 1,−1) + (−1,−1, 1)] = − 1
3
√

3
p0(1, 1, 1), with the

magnitude of 〈p〉 = 1
3 p0.

When the vector of the applied electric field is in the
tetragonal direction [001], pointing to the midpoint of the edge
of the tetrahedron between vertices 2 and 3, �E = E (0, 0, 1)
[Fig. 6(c)], the trigonal wells a and d drop in energy,
Wa = Wd = −E (0, 0, 1) · 1√

3 p0(1, 1, 1) = − 1√
3 E p0,

whereas wells b and c move up in energy, Wb = Wc = 1√
3 E p0

(Fig. 7). Therefore, at T = 0 K, equally populated are
the two wells a and d, with the nonzero mean value
〈�r〉 ≈ 1

2 (�ra + �rd ) = 1
2
√

3
R0[(1, 1, 1) + (−1, − 1, 1)] =

1√
3 R0(0, 0, 1), whereas wells b and c are empty. Accordingly,

the field-induced average dipole moment is in the same
direction as the applied field �E = E (0, 0, 1), and it takes the
value of 〈 �p〉 = 1√

3 p0 [Fig. 6(c)].
At E > Ecr, no more significant changes in the induced

value of the dipole moments occur. A stronger electric field
can no longer increase the dipole moment when the system is
locked in the lowest well. The direct influence of the electric
field on the APES by shifting its wells is a weak second-order
effect inversely proportional to the energy gap 3EJT between
the branches of the APES. Аccordingly, the field dependence
of the induced polarization reaches a plateau. Comparing its
varying maximum values 〈p〉max at different orientations of
the electric field vector �E , we revealed a cubic anisotropy in
the orientational polarization due to the local JTE.

Conversely, when E < Ecr, neglecting the electric field
admixture of the tunneling singlet A2 to the ground-state
tunneling triplet T1, we can consider the Stark effect just
in the T1 term [Fig. 4(b)]. When the applied electric field
is trigonal �E = 1√

3 E (1, 1, 1), the perturbation is W[111] =
− �E · �p = − 1√

3 E (px + py + pz ). Within the basis set of the
three ground-state tunneling wave functions |Т1α〉, |Т1β〉, and
|Т1γ 〉, the perturbation W[111] takes the form of a 3 × 3
matrix. It splits the tunneling term T1 into a trigonal vibronic
doublet {|Eu〉, |Ev〉} and a trigonal vibronic singlet |A1〉, the
latter being lower in energy [Fig. 4(c)]. The corresponding
trigonal-field eigenvalues are W(A1) = − 2

3 E p0 and W(E)
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FIG. 8. Electric-field-induced dipole moment |〈 �p〉| = 〈p〉 per one Jahn-Teller effect (JTE) site [MB4] (in units of the dipole moment p0

in trigonal wells) vs the applied electric field (in units of 4Г/p0) at low temperatures, kBT = 0, 0.04Г, 0.08Г, and 0.16Г, when the vibronic
singlet is not populated. (a) The trigonal-field case, �E ||[111]. (b) The tetragonal-field case, �E ||[001]. In both cases, at kBT = 0, there is a jump
discontunuity in 〈p〉, from 〈p〉 = 0 at E = 0 to 〈p〉 = const. · p0 at E � 0 (shown in blue).

= 1
3 E p0. At T = 0 K, populated is only the ground state

|A1〉 = 1√
3 (|T1α〉 + |T1β〉 + |T1γ 〉) = 1

2
√

3 (3|a〉 − |b〉 − |c〉 −
|d〉). Therefore, the mean-value components of the dipole mo-
ment of Eq. (9) are the ground-state matrix elements 〈px〉 =
〈A1|px|A1〉 = 2

3
√

3
p0, 〈py〉 = 〈A1|py|A1〉 = 2

3
√

3
p0, and 〈pz〉 =

〈A1|pz|A1〉 = 2
3
√

3
p0. Hence, the magnitude of the vector is

〈p〉 = 2
3 p0 [Fig. 8(a)]. Similarly, under a tetragonal electric

field, when �E = E〈0, 0, 1〉, the tunneling term T1 splits
into three tetragonal singlet states, the ground state being
|u〉 = 1√

2 (|T1α〉 + |T1β〉) = 1√
2 (|a〉 − |d〉). Accordingly, the

mean-value components of the vector 〈 �p〉 are the ground-
state matrix elements 〈px〉 = 〈u|px|u〉 = 0, 〈py〉 = 〈u|py|u〉 =
0, and 〈pz〉 = 〈u|pz|u〉 = 1√

3
p0 ≈ 0.577p0, so its magnitude

is 〈p〉 ≈ 0.577p0 [Fig. 8(b)].
In Fig. 8, the horizontal line corresponds to the field depen-

dence of 〈p〉 at T = 0 K, including the asymptote. Its numeric
value is somewhat lower than the limiting value in Fig. 7. The
reason is the lower flexibility of the linear combination of the
three basis functions |Т1α〉, |Т1β〉, and |Т1γ 〉. They cannot
provide a complete localization of the ground state in just one
well.

At E = 0, the symmetry of the dopant site is Td , and as
mentioned above, averaged over the degenerate components
of the ground-state vibronic term, the mean value 〈p〉 = 0
[Fig. 6(a)]. When Е � 0, the applied electric field reduces the
symmetry of the dopant site to C3v and lifts the degeneracy
of the ground state. For example, any infinitesimally weak
nonzero electric field along [111] lowers the minimum a with
�r = �ra. Hence, at T = 0, it induces a nonzero dipole moment
〈p〉 ≈ p0 [Fig. 6(b)], pointing in the same direction as the
vector �E . Accordingly, there is a jump discontinuity in the
value of the field-induced dipole moment from 〈p〉 = 0 at E =
0 to 〈p〉 ≈ 0.67p0 in infinitesimally weak electric fields E � 0
[Fig. 8(a)]. Accordingly, at E = 0, the field derivative of 〈 �p〉
is infinitely big; hence, when T = 0, the electric susceptibility
has a singularity. Therefore, due to the nonzero Berry phase
of the ground T1 term, this feature is characteristic of the

JTE. A similar zero-temperature jump discontinuity in 〈p〉
at E = 0 takes place under a tetragonal electric field with
�E = E (0, 0, 1) [Fig. 8(b)].

Like the abovementioned case, a stronger electric field E
� Ecr splits the ground-state tunneling energy level T1 into a
trigonal vibronic doublet {|Eu〉, |Ev〉} and a trigonal vibronic
singlet |A1〉. The latter is an invariant of the trigonal symmetry
C3v , the same as the excited tunneling singlet |A2〉. Therefore,
the nonzero matrix element 〈A1|W[111]|A2〉 �= 0 entangles the
two singlet states. The corresponding eigenvalue problem for
the 2 × 2 matrix is easy to solve, and the respective mean
values 〈px〉, 〈py〉, and 〈pz〉 are easy to find, but the final
expression for 〈p〉 looks cumbersome. Instead, in Fig. 9(a),
we provide the corresponding graph of its electric field
dependence. As mentioned above, under a moderately strong
electric field, no significant field-induced distortion of the
APES is expected, and therefore, the graphs approach a
plateau. For the tetragonal electric field �E = E (0, 0, 1),
a similar calculation can be performed, but the respective
algebraic expression for 〈p〉 is also awkward. Figure 9(b)
gives an idea of the most essential features of its field
dependence at relatively low temperatures.

The zero-temperature graph has a jump discontinuity at
E = 0 for both orientations of the applied electric field under
consideration. Its physical meaning is the same as discussed
above. When E = 0, the ground vibronic state is a three-
fold degenerate tunneling term T1, and for the perturbation
W = − �E · �p, averaged over its wave functions |Т1α〉, |Т1β〉,
and |Т1γ 〉, the resulting 〈W〉 = 0. Any infinitesimally weak
electric field E � 0 breaks the cubic symmetry and, at zero
temperature, averaged over the corresponding ground state,
results in a nonzero finite value. In dopants with the PJTE
for a nondegenerate electron state, the tunneling multiplet
has a nondegenerate vibronic ground state. At kBT = 0, it is
the only temperature populated, and the corresponding mean
value 〈W〉 approaches zero with E → 0. Therefore, in all the
abovementioned cases of the PJTE, there is no jump discon-
tinuity in 〈p〉 and, correspondingly, no singularity in electric
susceptibility at E = 0.
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FIG. 9. Average value of the local dipole moment per one Jahn-Teller effect (JTE) site [MB4] (in units of the dipole moment p0) vs
the applied electric field (in units of 4Г/p0) at four different temperatures varying from very low kBT = 0 to relatively high kBT = 4
. (a)
Electric field is along trigonal direction �E = 1√

3
E (1, 1, 1). The broken line is the horizontal asymptote at Е → �. (b) Tetragonal electric field

�E = E (0, 0, 1).

B. Temperature dependence

The mean value of the dipole moment of a JTE site de-
pends on the relative values of temperature kBT and the JTE
tunneling gap 4Г. The former determines the Boltzmann pop-
ulation of the Stark-effect split components of the tunneling
multiplet, while the latter establishes the tunneling resistance
of the JT site to the electric torque E p0, tending to align
the induced dipole with the applied electric field and lock
it in the corresponding potential well. Increasing the applied
electric field over the interval �Ecr = Ecr ≈ 4
/p0 increases
the dipole moment 〈p〉 from 0 to its maximum value p0.
Therefore, three energy parameters define the orientational
polarizability: temperature kBT , tunneling gap 4Г, and electric
field strength E p0, or equivalently, two dimensionless param-
eters γ = 4
/(kBT ) and ε = E p0/(kBT ).

Consider low temperatures kBT � 4
. The temperature
population of the tunneling singlet state |A2〉 is negligible, and
the dominant contribution to the electric-field-induced dipole
moment is from the Stark effect in the ground-state tunneling
triplet T1 [Fig. 4(b)]. All temperature effects are due to the
Stark-effect-split components of the ground-state tunneling T1

term [Fig. 4(c)]. In the basis of the three symmetry-adapted
states |Т1α〉, |Т1β〉, and |Т1γ 〉, all components of the dipole
moment are 3 × 3 matrices 3�p = 1√

3
p0(3Dx,

3Dy,
3Dz ), where

3Dx, 3Dy, and 3Dz have the same form as Cx, Cy, and Cz

in Eq. (2) but with opposite signs. Hence, the electric field
perturbation W = − �E · �p is also a 3 × 3 matrix.

A trigonal field �E = 1√
3 E (1, 1, 1) pointing to well a splits

the ground term T1 → A1 + E into the ground-state trigonal
singlet |A1〉, dropping its energy to − 2

3 E p0, and the trigo-
nal vibronic doublet {|Eu〉, |Ev〉} at 1

3 E p0 [Fig. 4(c)]. The
trigonal singlet |A1〉 = 1

2
√

3 (3|a〉 − |b〉 − |c〉 − |d〉) includes a
dominant contribution of the local state |a〉 in well a. Hence,
at low temperatures, it contributes most to the field-induced
dipole moment. Orthogonal vibronic states of the trigonal
vibronic doublet {|Eu〉, |Ev〉} dominantly include wells b, c,
and d . The corresponding dipole moment is

〈p〉[111] = 2p0

3

1 − exp (−ε)

1 + 2 exp (−ε)
. (10)

Here, as above, ε = E p0/(kBT ). With the increasing tem-
perature population of the excited trigonal E term [Fig. 4(c)],
the probability of finding the dopant spreads over these wells.
Consequently, the field-induced polarization drops with tem-
perature, as shown in Fig. 8(a).

Similarly, the tetragonal field �E = E (0, 0, 1) splits the
ground-state tunneling vibronic term T1 into three tetrago-
nal singlets |u〉, |v〉, and |w〉 with the energies −E p0/�3,
E p0/�3, and 0, respectively. In terms of ε = E p0/(kBT ), the
tetragonal dipole moment is

〈p〉[001] = p0√
3

1 − exp(−2ε/
√

3)

1 + exp(−ε/
√

3) + exp(−2ε/
√

3)
. (11)

At higher temperatures, with the growing population of
the vibronic singlet A2 [Fig. 4(b)], all four tunneling states
contribute to the electric-field-induced mean-value dopant
displacement 〈�r〉. In the extended basis of the four symmetry-
adapted states |A2〉, |Т1α〉, |Т1β〉, and |Т1γ 〉 with the operators
px, py, and pz represented by 4 × 4 matrices [cf. Eq. (9)], the
electric field perturbation is also a 4 × 4 matrix, and the angu-
lar brackets 〈 …〉 in 〈�r〉 indicate the summation over all four
vibronic states of the tunneling multiplet. Figure 10 displays
the JTE-induced electric field dependence of the polarization
〈 �p〉 (in units of p0) per one dopant site. Both graphs fol-
low from our numeric diagonalization of the Hamiltonian in
Eq. (6) and the respective evaluation of 〈pj〉 with the electric
field vector pointing in two characteristic directions �E ||[111]
and �E ||[001], at different temperatures, varying from very
low at kBT ≈ 0 to moderately high at kBT � 4
. In all these
cases, the orientational polarizability is maximal when the ap-
plied electric field points in one of the four trigonal directions
along one of the wells, e.g., �E ||[111]. As mentioned above,
at low temperatures under a strong electric field E > 4Г/p0,
no further field-induced APES distortion is possible, and all
the graphs approach a plateau. The broken line in Fig. 9(a)
is the corresponding horizontal asymptote. Its numeric value
and qualitative explanation are discussed above in Sec. IV A.
For the tetragonal electric field �E = E (0, 0, 1), comparing
Figs. 8(b) and 9(b), we can see the tendency of a smoother
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FIG. 10. Dipole moment of a tetrahedral cluster [MB4] with the four-well pseudo-Jahn-Teller effect (PJTE) case (A2 + T1) � t2 (in units of
p0) vs the applied electric field (in units of 4Г/p0) at four different temperatures from kBT = 0.2
 to 4Г. Broken lines are horizontal asymptotes
at Е → �. (a) The trigonal-field case �E ||[111]. (b) The tetragonal-field case �E ||[001].

electric field dependence of 〈p〉 at higher temperatures kBT ≈
4
.

The numeric difference of the two graphs in Figs. 9(a) and
9(b) reveals a significant anisotropy in the angular dependence
of 〈p〉. Distinguished from the regular case of tetrahedral sites
with no JTE, where the electric polarizability is isotropic,
the JTE creates a tetrahedral anisotropy. In this case, orien-
tational polarizability is related to the crystal lattice symmetry
axes. As expected, the polarization is at its maximum along
trigonal directions when the electric field points toward one
of the trigonal wells. Figure 11 shows the corresponding
temperature-dependent angular diagram of polarization per
dopant 〈p〉/p0. It also indicates that the anisotropy smoothes
out with temperature. This effect is due to the increasing
temperature population of the vibronic singlet A2, which is
isotropic in its electric field response.

In this case, anisotropy of the polarization is related to the
symmetry axes of the crystal and matches (approximately) a

FIG. 11. Angular dependence of the dipole moment per one
dopant site 〈p〉/p0 induced by the Jahn-Teller effect (JTE) problem
T1

⊗
t2 in a tetrahedral site [MB4] under a strong electric field E =

2Г/p0 at four different temperatures kBT = 0, 0.8Г, 2.0Г, and 4.0Г,
respectively. The concentric circles correspond to different values of
〈p〉/p0. (a) Variation of 〈p〉/p0 in the equatorial cross-section plane
z = 0, the latitude angle (measured from the equatorial plane) θ = 0,
and the azimuthal angle is 0 < ϕ � 2π . (b) Variation of 〈p〉/p0 in the
vertical cross-section plane at ϕ = 1

4 π vs the latitude angle θ .

linear combination of tetrahedral invariants composed of the
first cubic harmonics in terms of vector components of �E :

p( �E ) ≈ p0

4
E3
[E3 + (3 −

√
3)ExEyEz]. (12)

In the PJTE case (A2 + T1) � t2 with strong vibronic
coupling, the tunneling ground state is a vibronic singlet A2

[Fig. 5(a)]. Therefore, as distinguished from the JTE case, due
to the singlet nature of the ground state in the PJTE case, the
field dependence of the polarization is smooth with no jump
discontinuity at E = 0, varying from kBT = 0 to moderately
high kBT = 4
 (Fig. 10). Like the JTE case, the numeric
difference of the polarization 〈 �p〉 between the two directions
of �E ||[111] and �E ||[001] indicates a significant anisotropy
of polarizability depending on the orientation of the applied
electric field. The corresponding angular dependence is like
the one in Fig. 11.

Under strong electric fields, the difference in the electric
properties of the JTE and PJTE sites as functions of their local
induced dipole moments p0 is minor (but their p0 values may
be significantly different). This similarity is due to the similar
multivalley landscape of their APES and the corresponding
polarization response discussed in Sec. IV A. For example, the
strong-field asymptotes for the polarization in the four-well
JTE case [Fig. 4(a)], four-well PJTE case [Fig. 5(a)], and
eight-well PJTE case [Fig. 5(c)] are formally the same [42].
The polarization is maximal when the electric field points to
one of the trigonal wells, lowering its energy and providing
for its dominant thermal population. Like the tetragonal case
of [MB4], in all the cases of the PJTE listed in Fig. 5, the
high-temperature/low-field value of electric-field-induced po-
larization is isotropic and proportional to E p2

0/(kBT ). Details
are discussed below in Sec. V B.

V. ORIENTATIONAL SUSCEPTIBILITY
IN TETRAHEDRAL SITES WITH THE JTE

For a JT site in a relatively weak electric field, the mag-
nitude of its field-induced dipole moment is proportional to
the applied field 〈pi〉 = ε0

∑
j χi jE j , where ε0 is the vacuum
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FIG. 12. Orientational susceptibility [in units of χ0 of Eq. (20)] vs the applied electric field E (in units of 4Г/p0) in the four-well case of the
pseudo-Jahn-Teller effect (PJTE) with the tunneling-level diagram shown in Fig. 5(a). The four graphs correspond to different temperatures
kBT = 0.2
, 0.4Г, 0.6Г, and 0.8Г. (a) Trigonal direction of the applied electric field �E ||[111]. (b) Tetragonal electric field �E ||[001].

permittivity, and the linear factor; the tensor

χi j = 1

ε0

∂〈pi〉
∂Ej

(13)

is the electric susceptibility per one site. Induced by the JTE,
the rate of change of 〈p〉 is of a rather significant magnitude
on the order of �〈p〉/�E ≈ p0/Ecr = p2

0/(4
). As it follows
from the graphs in Fig. 9, decreasing the temperature to a
value close to T = 0 K reduces Ecr and increases the derivative
p0/�Ecr up to infinity at T → 0 K.

A. Low-temperature case

Consider the limit case of low temperatures kBT � 4
.
The temperature population of the tunneling singlet state |A2〉
is negligible, and the dominant contribution to the electric
susceptibility is from the Stark effect in the ground-state tun-
neling triplet T1.

As mentioned in Sec. IV A, the trigonal field �E =
1√
3 E (1, 1, 1) splits the term T1 into the ground-state trigonal

singlet |A1〉 and the trigonal vibronic doublet {|Eu〉, |Ev〉}.
Plugging the electric-field-induced dipole moment 〈p〉[111]
from Eq. (10) into Eq. (13), we find the corresponding sus-
ceptibility per one JT site:

χ[111] = 1

ε0

∂〈p〉[111]

∂E
= 2p2

0

ε0kBT

exp (−ε)

[1 + 2 exp (−ε)]2

= χ0
6 exp (−ε)

[1 + 2 exp (−ε)]2 , (14)

where as above in Sec. IV B, ε = E p0/(kBT ) and χ0 =
p2

0/(3ε0kBT ). If in addition to low temperature the electric
field is weak, E p0 � kBT , so ε approaches zero, then the
fraction in Eq. (14) approaches 2

3 , and therefore, the trigonal
susceptibility is

χ[111] = 2

3
χ0 ≈ 2p2

0

9ε0kBT
. (15)

We thus come to the classical Langevin-Debye equation for
the orientational polarizability of a polar liquid, vapor, or gas
(e.g., see Ref. [43]):

χ ≈ p2
eff

3ε0kBT
, (16)

with the effective dipole moment peff = p0

√
2
3 ≈ 0.82p0.

Similarly, under a tetragonal field �E = E (0, 0, 1), plug-
ging the dipole moment 〈p〉[001] from Eq. (11) into Eq. (13),
we find the tetragonal susceptibility:

χ[001] = 1

ε0

∂〈p〉[001]

∂E

= χ0
exp(−ε/

√
3) + 4 exp(−2ε/

√
3) + exp(−3ε/

√
3)

[1 + exp(−ε/
√

3) + exp(−2ε/
√

3)]
2 ,

(17)

where as above, ε = E p0/(kBT ) and χ0 = p2
0/(3ε0kBT ). Un-

der a relatively weak electric field, when E p0 � kBT and ε

approaches zero, the fraction in Eq. (17) approaches 2
3 , and

therefore, again,

χ[001] = 2

3
χ0 ≈ 2p2

0

9ε0kBT
, (18)

with peff = p0

√
2
3 ≈ 0.82p0. Also, the coincidence of χ[111]

in Eq. (15) with χ[001] of Eq. (18) indicates isotropy of the
weak-field susceptibility. Under the strong electric field, when
〈pi〉 → pmax and the graph of the induced polarization reaches
a plateau, its derivative, the electric susceptibility, drops to
zero χi j = ε−1

0 (∂〈pi〉/∂Ej ) → 0 (Fig. 12). This effect is due
to the significant (almost complete) localization of the dopant
in the corresponding well (Fig. 12).

B. Orientational susceptibility at relatively high temperatures

Assume the parameter γ = 4
/(kBT ) is small, meaning
the temperature is relatively high kBT > E p0, but kBT < ћω,
so the Boltzmann population of excited vibrational states in
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FIG. 13. Orientational susceptibility χ per one Jahn-Teller (JT) site [MB4] [in units of the Langevin-Debye susceptibility of Eq. (20)] vs
the electric field E (in units of 4Г/p0) at relatively low temperatures kBT = 0.04
, 0.08Г, 0.16Г, and 0.4Г. (a). The trigonal-field case �E ||[111].
(b). The tetragonal-field case �E ||[001].

trigonal wells is neglectable. In this limit, all four vibronic
states |Т1α〉, |Т1β〉, |Т1γ 〉, and |A2〉 of the ground tunneling
multiplet contribute to 〈 �p〉. The basis set includes just these
four states, and the dipole moment is a 4 × 4 vector matrix

1√
3

p0(4Dx,
4Dy,

4Dz ) including the 4 × 4 matrices of Eq. (9).
In a weak electric field, the ground states in the trigonal wells
are close in energy. The system tunnels from one well to
another or performs over-the-barrier hindered rotations in the
warped two-dimensional trough. From the perturbation theory
with the small parameter ε = E p0/(kBT ), we find

∂〈pi〉0

∂Ej
= β

∫ 1

0
〈4p j (τ )4pi〉0dτ = χ0

∫ 1

0
〈4D j (τ )4Di〉0dτ ,

(19)

with the 4 × 4 matrices 4D j of Eq. (9), and as above,
χ0 = p2

0/(3ε0kBT ). The index 0 in 〈. . .〉0 means zero field
E = 0, 4D j (τ ) = exp(τβHJT)(4D j)exp(−τβHJT) is the
Heisenberg representation of the operator 4D j , and β =
1/kBT . By symmetry, for i �= j, 〈4D j (t )4Di〉0 = 0, and the di-
agonal components with i = j are all equal. Correspondingly,
the electric susceptibility is isotropic (cf. the high-temperature
angular diagram in Fig. 13), and the principal axes of the ten-
sor χi j have arbitrary orientation. Simplifying and integrating
〈4D j (t )4Di〉0 over τ , we find∫ 1

0

〈
4D j (τ )4Di

〉
0dτ = 2

γ

γ + 1 − exp (−γ )

3 + exp (−γ )
δi j, (20)

with γ = 4
/(kBT ). Plugging Eq. (20) into Eqs. (19) and
(13), we come to the isotropic weak-field limit for orienta-
tional susceptibility:

χ = 2χ0
γ + 1 − exp (−γ )

γ [3 + exp (−γ )]
. (21)

At relatively slow tunneling, when 4Г < kBT and γ ap-
proaches 0, the integral in Eq. (20) approaches the value of 1,
and Eq. (21) simplifies to the Langevin-Debye equation with
peff = p0:

χ ≈ χ0 = p2
0

3ε0kBT
. (22)

At T → 0 K, the value of ε = E p0/(kBT ) is not small, and
the approximated expressions in Eqs. (19)–(22) do not apply.

C. Strong electric fields and/or high potential barriers E p0 � 4�

When the potential barriers are relatively high, the tun-
neling frequency is low, and the tunneling parameter Г is
small. Most of the time, the dopants are in one of the four
trigonal wells. A relatively strong electric field E � 4Г/p0

destroys the resonance of the localized states in the wells and
locks the dopants in the deepest well(s) (Fig. 7). Correspond-
ing to the graphs in Fig. 9, induced by strong electric fields,
the magnitude of the dipole moment reaches a plateau 〈pi〉 →
pmax, with the value of pmax determined by the site dipole
moment at the bottom of the deepest well, per the qualitative
reasoning illustrated in Fig. 7. When the dopant is locked in
one of the wells, its orientational motion is entirely exhausted,
and the orientational polarization no longer depends on the
applied field. The deeper the potential wells, the more rigid the
JT site becomes. Correspondingly, under strong electric fields
E � 4Г/p0, the derivative χi j = ε−1

0 (∂〈pi〉/∂Ej ) approaches
zero (Figs. 12 and 14).

D. Arbitrary values of temperature and electric fields

According to Eq. (13), accurate values of the electric
susceptibility result from the numeric differentiation of the
dopant polarization with respect to E (Fig. 15). Its low-
temperature peak value is due to the singularity of 〈p〉 at E
= 0 discussed in Secs. IV A and IV B. Under a strong electric
field, according to Figs. 9 and 11, the polarization approaches
its asymptotic value, and the electric field dependence levels
to a plateau. Accordingly, in this case, as shown in Figs. 13
and 15, the derivative of 〈p〉 approaches zero. The lower the
temperature, the faster the electric susceptibility drops to zero.

The difference in numeric values of the electric susceptibil-
ity in Figs. 13(a) and 13(b) in the two characteristic directions
of the applied electric field, the trigonal vs tetragonal, in-
dicates significant angular dependence of the orientational
susceptibility, which is not expected in a cubic crystal with no
JTE. Induced by the latter, the susceptibility is maximal along
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FIG. 14. The six-well case of the pseudo-Jahn-Teller effect (PJTE) with the tunneling-level diagram shown in Fig. 5(b). Orientational
susceptibility vs the applied electric field E (in units of 6Г/p0). The four graphs correspond to different temperatures kBT = 0.3
, 0.6Г, 0.9Г,
and 0.8Г. (a). Trigonal direction of the applied electric field �E ||[111]. (b). Tetragonal electric field �E ||[001].

the trigonal axes, where the absolute minima reside, while
the smallest value of χ emerges along the highest tetragonal
saddle points of the APES (cf. Fig. 3). Linked to the symmetry
axes of the crystal, this anisotropy (approximately) matches a
linear combination of tetrahedral invariants composed of the
first cubic harmonics in terms of vector components of �E .
When the electric field vector �E points along one of the sym-
metry directions of the cubic crystal, the vector of polarization
is parallel to the vector �E .

VI. ORIENTATIONAL SUSCEPTIBILITY
IN SOLIDS WITH PJTE

In the case of a strong-coupling PJTE problem (A2 + T1)
� t2 [or (A1 + T2) � t2] for an electron singlet ground state A2

(or A1) in tetrahedral dopant sites [MB4], the lowest branch
of the APES can also have a trough with off-center shifted
trigonal wells (see above Sec. III). Shown in Fig. 5(a), the
respective energy-level diagram of the ground-state tunneling
multiplet looks like the one in the JTE case (T1 + A2) � t2

of Fig. 4(b), but with inverted energy levels. Changing the
sign of Г in Eq. (21), we find the low-field/high-temperature
expression for isotropic susceptibility in this case:

χ = 2χ0
1 + (γ − 1) exp (−γ )

γ [1 + 3 exp (−γ )]
, (23)

with γ = 4
/(kBT ) and χ0 of Eq. (20).
In the high-temperature limit, when kBT � 4
, meaning

γ approaches zero, the fraction in the expression in Eq. (21)
approaches 1

2 , and therefore, χ in Eq. (21) simplifies to χ0,
the Langevin-Debye Eq. (16) with the effective dipole mo-
ment peff = p0. In the opposite case of low temperatures
kBT � 4
, the thermal population of the tunneling triplet
is neglectable, while in the ground-state tunneling singlet,
there is no first-order Stark effect. Therefore, the field-induced
electric dipole moment is zero 〈 �p〉 = 0. Accordingly, at T →
0 K, its derivative, the orientational susceptibility approaches
zero χ → 0.

Accurate values of the orientational susceptibility fol-
low from the numeric differentiation of the electric field

FIG. 15. Orientational susceptibility χ per one Jahn-Teller (JT) site [MB4] [in units of the Langevin-Debye susceptibility of Eq. (20)] vs
the electric field E (in units of 4Г/p0) at relatively high temperatures kBT = 0.4
, 0.8Г, 1.6Г, and 3.2Г. (a) The trigonal-field case �E ||[111].
(b) The tetragonal-field case �E ||[001].
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FIG. 16. Orientational susceptibility vs the applied electric fuield E (in units of 6Г/p0) for the eight-well case of the pseudo-Jahn-Teller
effect (PJTE) with the tunneling-level diagram shown in Fig. 5(c). The four graphs correspond to different temperatures kBT = 0.3
, 0.6Г,
0.9Г, and 0.8Г. (a) Under the trigonal field �E ||[111]. (b) In the tetragonal field �E ||[001].

dependence of polarization in Fig. 10 with respect to the
applied field. In Fig. 12, we show the electric field depen-
dence of the electric susceptibility of the tetrahedral PJTE
dopant site [MB4] with strong coupling (A2 + T1) � t2 [or
(A1 + T2) � t2] case and the four-well APES of Fig. 5(a).
The orientational polarizability of the site with the PJTE in-
creases with temperature. This property is due to the inverted
energy-level diagram in Fig. 5(a) compared with the one in
Fig. 4(b). With only the ground-state tunneling singlet popu-
lated at T = 0 K, there is no linear Stark effect at the PJTE
site, yielding zero susceptibility. With the increase in tem-
perature, the Boltzmann population of the excited-state tun-
neling triplet adds up, increasing its nonzero contribution to
susceptibility.

In what follows, we briefly describe orientational suscepti-
bility in other cases of the PJTE listed in Fig. 5. In the six-well
case shown in Fig. 5(b), within the basis of the manifold of six
states |a〉, |b〉, |c〉, |d〉, |e〉, and | f 〉 localized in the wells, the
dipole moment �p = p0�r/R0 takes the following matrix form:

6�p = p0(6Dx, 6Dy, 6Dz) with diagonal 6 × 6 matrices:
6Dx = |a〉〈a| − |d〉〈d|,
6Dy = |b〉〈b| − |e〉〈e|, (24)

6Dz = |c〉〈c| − | f 〉〈 f |,
representing the coordinates of the dopant x, y, and z in this
basis manifold. Combining the Hamiltonian 6HpJTE of Eq. (7)
with the perturbation 6W = − �E · 6�p, we find the electric field
dependence of the orientational susceptibility for a PJTE site
with the six-well APES (Fig. 14). As above, the reference
value p0 of the dipole moment corresponds to the dopant
off-center displacement in any of the six wells.

A detailed consideration of the PJTE (A1g + T2u) � t2u

resulting in the eight-well APES [Fig. 5(c)] is available in
Ref. [42]. In the basis manifold of eight localized wave func-
tions |a〉, |b〉, |c〉, |d〉, |e〉, | f 〉, |g〉, and |h〉, the dipole moment
is the vector 8�p = 1√

3
p0(8Dx, 8Dy, 8Dz) with the following

diagonal matrices 8 × 8:

8Dx = |a〉〈а| − |b〉〈b| − |c〉〈c| + |d〉〈d| + |e〉〈e| − | f 〉〈 f | − |g〉〈g| + |h〉〈h|,
8Dy = |a〉〈а| + |b〉〈b| − |c〉〈c| − |d〉〈d| + |e〉〈e| + | f 〉〈 f | − |g〉〈g| − |h〉〈h|,
8Dz = |a〉〈а| + |b〉〈b| + |c〉〈c| + |d〉〈d| − |e〉〈e| − | f 〉〈 f | − |g〉〈g| − |h〉〈h|. (25)

Combining the Hamiltonian 8HpJT of Eq. (8) with the electric field perturbation 8W = − �E · 8�p, we find the average values of
the field-dependent components 〈pi〉 of the induced dipole moment and their related field derivatives (Fig. 16).

Similarly, in the case of a 12-well APES shown in Fig. 5(d), the basis manifold includes 12 ground-state localized wave
functions |a〉, |b〉, |c〉, |d〉, |e〉, | f 〉, |g〉, |h〉, |k〉, |l〉, |m〉, and |n〉, and the dipole moment is 12�p = 1√

2
p0(12Dx, 12Dy, 12Dz) with

the diagonal matrices:
12Dx = |a〉〈а| − |b〉〈b| − |c〉〈c| + |d〉〈d| + |k〉〈k| + |l〉〈l| − |m〉〈m| − |n〉〈n|,
12Dy = |a〉〈а| + |b〉〈b| − |c〉〈c| − |d〉〈d| + |e〉〈e| − | f 〉〈 f | − |g〉〈g| + |h〉〈h|,
12Dz = |e〉〈e| + | f 〉〈 f | − |g〉〈g| − |h〉〈h| + |k〉〈k| − |l〉〈l| − |m〉〈m| + |n〉〈n|. (26)

Combining the Hamiltonian 12HpJT of Eq. (8) with the perturbation 12W = − �E · 12�p, we find the electric field dependence of
the orientational susceptibility for this case shown in Fig. 17.
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FIG. 17. Same as in Fig. 16 for pseudo-Jahn-Teller effect (PJTE) with the 12-well adiabatic potential energy surface (APES) as in Fig. 5(d).
Although the graphs in both (a) and (b) look like the respective ones in Figs. 16(a) and 16(b), they drop to zero with E somewhat faster than in
Fig. 16.

The qualitative reasoning illustrated in Fig. 7 also applies
to all PJTE cases with a multiwell APES. If the electric field is
sufficiently strong, it destroys the symmetry of the wells and
quenches tunneling, like the JTE case. Under a strong electric
field, the graph of the induced polarization reaches a plateau.
Consequently, the orientational susceptibility approaches zero
χi j → 0. In all PJTE cases, the ground vibronic state is a tun-
neling singlet (cf. Fig. 5), meaning there is no first-order Stark
effect at T = 0 K when the temperature population of all the
excited states is zero. Therefore, orientational susceptibility in
all these cases is close to zero. With increasing temperature,
the population of the excited components of the tunneling
multiplet increases. They are subject to the first-order Stark
effect, increasing the orientational susceptibility of the PJTE
site, as shown in Figs. 12, 14, 16, and 17. Since the ground
tunneling state of all the PJTE cases is a vibronic singlet,
there is no singularity at T = 0 K in the field dependence
of the polarization, as in the JTE case (Sec. IV). Therefore,
for a system with the PJTE, the orientational susceptibility is
significantly weaker at low temperatures [42].

VII. DISCUSSION OF THE RESULTS

Orientational susceptibility in solids is among solid-state
properties resulting from the dipolar instabilities and distor-
tions induced by the JTE and PJTE. Revealed [2] due to the
PJTE in BaTiO3, rotating local dipoles at the titanium centers
were shown to be the origin of the formation of the four phases
of this crystal, one paraelectric and three ferroelectric, and the
order-disorder transitions between them [16,17,42,44]. This
discovery was an indication of the feasibility of Debye’s [1]
hypothesis of the possible existence of free-orienting dipoles
in solids, which he mentioned long before the finding of
ferroelectricity. Obviously, after revealing the mobile dipoles
in solids, which explain the origin of the ferroelectric phases
in centrosymmetric crystals, the following steps were made
by analyzing the properties of such systems in interaction
with external perturbations, showing that (among other prop-
erties) it leads to multiferroicity [17,29], giant flexoelectricity
[17,44], permittivity [17,42,44], and electrostriction [44].

This property of orientational susceptibility is among char-
acteristic features in all the solids where dipolar distortions
may take place as a consequence of the JTE in noncentrosym-
metric systems (symmetry group Тd , Тh, D2d , or C3v) or as
a PJTE in systems with an inversion center (e.g., BaTiO3

[2,7,8,16,44]). The results of this paper for the susceptibility
of cubic sites may be regarded as a general virtual property
of any solid-state system with JTE- or PJTE-induced dipolar
instabilities.

A. The model

The calculations consider a small-radius dopant in a tetra-
hedral site with the JTE in the ground-state orbital triplet and
a central-symmetric cubic or octahedral site with the PJTE in
the orbital singlet state deep in the band gap of an insulator
or a wide-gap semiconductor. The so-called cluster model as-
sumes its coupling to vibrations of only the first coordination
sphere of the anion ligands. The tight-binding approach to a
relatively compact 3d shell justifies the small-radius impu-
rity approximation, and it is approximately valid for many
transition-metal dopants (see Tables II–IV). The spin multi-
plicity of the impurity term is less important here, provided the
spin-orbital coupling is not strong enough to quench the JTE
or PJTE. Examples of wide-gap crystals with cubic sphalerite
or hexagonal wurtzite structures are plenty, e.g., some of the
AIIIBV semiconductors, ZnO, ZnS, ZnSe, and ZnTe, or of the
AIIBVI type, e.g., GaP or AlP. In all such systems, the relatively
strong JT coupling of their electronic 2S+1T terms with the en-
vironment may contribute significantly to their polarizability,
in addition to the metal sites with a singlet ground state 2S+1A1

and a relatively strong PJTE like in the abovementioned cubic
perovskites such as BaTiO3 and off-center impurities, with
strong orientational effects [2,7,8,16,44,45].

As emphasized above, dipolar distortions in a tetrahedral
center in an electronic degenerate T1 or T2 state only occur if
the vibronic coupling with the T2 modes prevails. However,
there may be cases when both the Е and T2 modes are almost
equally active, leading to close values of JTE stabilization en-
ergy EJT(E ) ≈ EJT(T2) or even EJT(E ) > EJT(T2). In the latter
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case, the JTE distortions are not dipolar. In contrast, in the
former case, the APES acquires a two-dimensional trough in
mixed E and T2 displacements [27], with almost free rotations
of the dipolar distortions. Also, in this case, the quadratic
terms of vibronic coupling may become significant, leading
to the formation of orthorhombic minima of the APES [46].

In a tetrahedral cluster, the JTE-active T2 type displace-
ments of the dopant and the nearest coordination sphere
include three sets of nuclear coordinates. However, as out-
lined in Sec. II, introducing the so-called Born charge
reduces the vibronic coupling to just the displacements of
the central atom. In the tunneling model, we describe its
dynamics by a single parameter Г, the reciprocal probabil-
ity of quantum tunneling through potential barriers between
symmetry-equivalent wells on the lower branch of the APES.
Including the second and other coordination spheres of
the crystals, meaning solving a multimode problem, will
not change its one-parameter description: The multimode
approach does not change the one-dimensional nature of tun-
neling [38], and hence, the same model with one tunneling
parameter Г applies.

Note, however, that the tunneling model (and the rele-
vant calculations) assumes low temperatures kBT � 
. On
the other hand, JTE active trigonal distortions are observed
at much higher temperatures kBT � 200cm−1 [47]. Also, a
random strain may lock the system in distorted wells [6,48]. In
most of these and other more complicated cases, the model of
multiwell APES for the JTE centers remains valid. However,
the parameter Г of the transitions between the minima can
be treated as over-the-barrier hoping (instead of tunneling),
with the factor exp(−δ/kBT ), where δ is the barrier height
between the distorted dipolar configurations. Simultaneously,
this activation formula serves as a rather rough model of
transitions from one minimum to another. For a more accu-
rate result, it is necessary to temperature-populate the excited
tunneling states in the APES minima as well as the excited
states of hindered rotations and over-the-barrier reflections in
the wrapped potential energy trough, as in the case of spinels
with the cooperative JTE [49].

The fundamental cause for the JT-induced symmetry
breaking is the gain in adiabatic potential energy due to
the improved covalency of the chemical bonds by distor-
tions [2,7,8,30]. Being essentially local, the physical nature
of the JTE determines the dopant-site analysis developed in
this paper. This approach does not require periodic bound-
ary conditions on the crystal lattice. Successfully applied to
ceramics and highly doped semiconductors, an alternative
method would consider a supercell with a quasirandom po-
sition of several dopants followed by a respective soft-mode
analysis [50,51]. For example, in a sphalerite crystal with a
2% dopant concentration, a supercell with four dopant sites
per cell would include ∼6400 atoms, meaning a microcanon-
ical ensemble with four ordered and 4! = 24 completely
disordered states with shallow disorder wells allowing huge
fluctuations.

B. Parameter values

The tunneling parameter value Г, as it follows from Eq. (6),
is determined by the vibronic coupling constants in the JTE.

An estimate of JTE stabilization energy EJT can be obtained
from the impurity contribution to the crystal elasticity ten-
sor extracted from ultrasound experiments [52]. From the
anomalies in the temperature dependence of the ultrasound
propagation in ZnSe: Ni2+ and ZnSe:V2+ [52,53], the acti-
vation barrier between the minima turns out to be 60 cm−1.
With ћω ≈ 120 cm−1, including the zero-vibration value
1
2 �ω ≈ 60 cm−1, from Eq. (6) we get for the barrier height
1
4 EJT ≈ 120 cm−1, where from EJT ≈ 480 cm−1. The rough
estimate gives 
 ≈ 4 cm−1.

For ZnO: Ni2+ with the dopant concentration 2%, at room
temperature kBT ≈ 200 cm−1 and the electric field frequency
50 Hz, the measured value of electric permittivity reaches
∼7130 [15]. For the pure host crystal ZnO, it is 30. At the
above frequency, hν << Г, we can assume that the dopant
contribution 7130−30 = 7100 is close to its static value,
meaning ε′(0) ≈ 7100. In our theoretical evaluation, taking
as above that EJT ≈ 480 cm−1, the orthorhombic saddle points
are at 1

4 EJT ≈ 120 cm−1 above the APES minima points. With
�ω ≈ 120 cm−1, the ground state is 1

2 �ω ≈ 60 cm−1 above
the bottom of the wells, and the saddle points of the potential
barriers are ∼60 cm−1 above the ground state. Therefore,
populated at kBT ≈ 200 cm−1, over-the-barrier excited states
contribute significantly to the measured value of ε′. Measure-
ments at a lower temperature kBT < 60 cm−1 would yield a
lower value of ε′, closer to theoretical estimates. In a later
publication elsewhere, we will consider the contribution of
hindered rotations of the JTE-induced dipolar distortions at
higher temperatures.

As it follows from the experimental measurements [15],
the further increase of impurity concentration from 2 to 4%
lowers the electric permittivity of the system significantly
down to ε′ ≈ 940 and even less at 5% doping [54]. This
dramatic drop in electric permittivity may be due to the
dimerization of the impurities at higher concentrations. In the
pseudospin-pseudospin “exchange” coupling, negative values
of the exchange parameter result in a ground-state vibronic
singlet [55] with zero polarizability χ = 0. Lowering the local
symmetry removes the electronic degeneracy and quenches
the JTE-induced dipolar distortions.

VIII. CONCLUSIONS

Solid-state orientational polarizability, meaning the pres-
ence of free (or hindered)-rotating ready-made dipolar groups
in solids like in polar liquids and gases, assumed to be possible
by Debye [1] more than a century ago, was shown in our
works to follow directly from the JTE (in noncentrosymmetric
polyatomic systems) and PJTE (in both centrosymmetric and
noncentrosymmetric systems) that induce local dipolar distor-
tions, rigorously described in this paper. A characteristic of the
JTE is that the APES at the high-symmetry point is shaped like
a sharp-vertex cone. In the case of a PJTE, it is a round-head
maximum. In both cases, around the high-symmetry point, the
sombrerolike lower branch of the APES has a wrapped trough
with an off-center broken symmetry at its bottom. The off-
center instability benefits covalency; the off-center distortion
improves the covalent chemical bonding in the JTE site. In
both cases, the tetrahedral sites with the JTE for a T term or
the cubic site with the PJTE, the landscape of the trough is
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as shown in Fig. 3. Approximately, its angular dependence
has the extended cubic-field Devonshire-O’Brien form of
Eq. (4).

In most solids with the JTE or PJTE, the high-symmetry
central maximum is relatively high, with the JTE stabilization
energy EJT > kBT . Therefore, the vibronic states penetrating
directly through or over the central maximum are not ther-
mally populated at room temperature. The off-center atomic
motion follows the trough around the high-symmetry point of
the APES. With no electric field applied, it remains evenly
spread over the equivalent minima of the trough, yet the
instantaneous value of the dipole moment of a given dopant
may be about its maximum magnitude p0 in the wells at the
bottom of the trough. Due to the symmetry equivalence of the
minima, the zero-field average polarization per site is zero.

Under a nonzero electric field, the off-center trough is
slant. The nuclear motion localizes at its lowest minimum

by moving along the trough around the conic vertex of the
APES or its round-head maximum. In other words, the elec-
tric field applies a torque on the local dipole, turning it into
alignment along the trough around the high-symmetry point.
This effect is like the orientational polarization of polar liq-
uids, as predicted by Debye [1]. The JTE-induced nonzero
value of the dipole moment is proportional to the trough
radius p0 ∝ R0. With temperature approaching zero, the po-
larization has a jump discontinuity from zero at E = 0 to a
nonzero value at any small E � 0. Therefore, the transition
to the nonzero dipole moment is sudden in a dopant site
with the JTE for the ground-state T term. In such a case,
the corresponding value of the orientational susceptibility ap-
proaches infinity at low temperatures. In a cubic site with
the PJTE with a nondegenerate ground state, this transition
is smooth throughout the applied electric field of the order of
Ecr ∝ √

(
kBT )/p0.
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