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How a closed system thermalizes, especially in the absence of global conservation laws but in the presence of
disorder and interactions, is one of the central questions in nonequilibrium statistical mechanics. We explore this
for a disordered, periodically driven Ising chain. Our numerical results reveal inhomogeneous thermalization
leading to a distribution of thermalization timescales within a single disordered sample, which we encode
via a distribution of effective local temperatures. Using this, we find an excellent collapse without any fitting
parameters of the local relaxation dynamics for the entire range of disorder values in the ergodic regime when
adapting the disorder-averaged diagonal entanglement entropy as internal “time” of the system. This approach
evidences a remarkably uniform parametrization of the dynamical many-body evolution of local temperature
within the otherwise highly heterogeneous ergodic regime, independent of the strength of the disorder.
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I. INTRODUCTION

Spatially heterogeneous relaxation dynamics toward equi-
librium is a hallmark of nonergodicity, being found in
paradigmatic settings of glasses and jammed systems [1].
Such dynamical heterogeneity, e.g., evidenced in the coexis-
tence of different relaxation timescales, can arise from spatial
variations associated with the presence of metastable states.
This can lead to global nonexponential decay of correlation
functions in time despite local exponential decay rates. Alter-
natively, relaxation processes can be inherently complex also,
contributing to local nonexponential decay [2]. In ergodic
systems, such as supercooled liquids, even regions of slower
relaxation eventually thermalize [3].

In quantum systems undergoing unitary dynamics, the
nature of thermalization, or its absence, has been a focal
point of research in recent years [4–6]. Thermalization in
ergodic systems occurs, loosely speaking, as subsystem den-
sity matrices evolve to a thermal state, with the remainder
of the system effectively acting as its bath. The presence
of disorder may impede thermalization, for instance, by the
emergence of a set of quasilocal integrals of motion, resulting
in emergent effective integrability and nonergodicity, a phe-
nomenon dubbed many-body localization (MBL) [4,7–12]. In
this parameter regime, spatial and dynamical heterogeneity
has been observed in local entanglement measures [13,14] as
demonstrated in models such as the XXZ spin chain. Indeed,
entanglement can exhibit substantial spatial heterogeneity in
this regime, as indicated by the subvolume scaling of the stan-
dard deviation of the cut-to-cut entanglement entropy [15].
Because of the difficulty of studying the real-time dynamics
of disordered interacting quantum systems, a definite consen-
sus on the nature of this regime has been slow to emerge,
e.g., Refs. [16–29].

Here, we show that even the weakly disordered ergodic
regime can exhibit considerable spatial structure, which we
investigate in detail. We focus on a nonintegrable driven
disordered Ising chain without global conservation laws.

While even weak disorder tends to slow down relaxation,
eventual thermalization can be remarkably robust [16]. We
analyze thermalization after a sudden quench via the time
evolution of the local subsystem (inverse) temperature, β j (n),
where j denotes a bond involving two sites after n the time
steps. The β j (n) evolution reveals apparent glassiness in the
sense of a distribution of local relaxation timescales within
a single disorder configuration. Indeed, the time evolution of
the spatial and disorder averaged β j (n) shows well-developed
nonexponential behavior in finite-size numerical simulation.
With increasing disorder, we further observe mixed dynamics,
i.e., locally nonexponential decay of the β j (n) accompanied
by regions in space with exponential relaxation in time toward
“infinite temperature.”

The broad distribution of thermalization times, even at a
single disorder value, suggests that relying on a single time
scale may not be sufficient. Relatedly, it is challenging to com-
pare the time evolution between different disorder realizations
and, further, strengths. Here, we propose a unified description
employing the ensemble-averaged diagonal entanglement en-
tropy Sd(t ) to monitor the dynamical evolution of β j (n) across
the entire ergodic regime. This extends the framework intro-
duced by Evers et al. [28] for nondriven systems, which used
the average entanglement entropy to track particle density im-
balance decay. We find a straightforward data collapse of the
evolution of average inverse temperature for several disorder
values, offering a homogeneous perspective on thermalization
dynamics despite its inherent heterogeneity. While previous
work [28] required extra fitting parameters to obtain a scaling
collapse, our intrinsic parametrization of time obviates this
need.

II. DRIVEN ISING MODEL

The time-dependent Hamiltonian of this periodically
driven system is defined as,

H (t ) =
{

2Hx if 0 < t < T
2

2Hz if T
2 < t < T,

2469-9950/2024/109(22)/224206(8) 224206-1 ©2024 American Physical Society

https://ror.org/02qyf5152
https://ror.org/01bf9rw71
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.224206&domain=pdf&date_stamp=2024-06-24
https://doi.org/10.1103/PhysRevB.109.224206


BERA, MODAK, AND MOESSNER PHYSICAL REVIEW B 109, 224206 (2024)

FIG. 1. Stretched exponential decay of the average local temperature β(n) with Floquet time step n. The line indicates a stretched exponent
fit: A exp[−(t/τ )α )]. The corresponding values of the thermalization time τ (L) and the stretched exponent α(L) are provided in the legend for
L = 20. Lower panel: Spatiotemporal inhomogeneity of the evolution of local bond temperature β j (n) as defined in Eq. (2) for different values
of � = 0.7, 0.6, 0.5 as a function of log(n) for a typical disorder configuration. The white coloring represents infinite temperature (β j=0).

Hx =
L∑

i=1

g�σ x
i ,

Hz = J
L−1∑
i=1

σ z
i σ z

i+1 +
L∑

i=1

(h + g
√

1 − �2Gi )σ
z
i , (1)

where σ x
i and σ z

i are the Pauli matrices on site i. We follow the
standard parametrization of the model, see Refs. [30–32]. The
interaction strength J = 1 and g, h, and T are 0.9045, 0.8090,
and 0.8, respectively. Such a parametrization is motivated by
the clean static model, where strong thermalization is obtained
with these parameter values for system sizes readily acces-
sible in exact diagonalization studies [33]. The longitudinal
field is disordered and chosen from a Gaussian distributed
random variable Gi with zero mean and unit variance. The
� controls the disorder strength, and the model is believed
to have an MBL transition at � � 0.3 [30,31]. The stro-
boscopic time evolution is performed with Floquet operator
UF(T ) = e−iHxT/2e−iHzT/2 using a Hadamard transformation,
see Ref. [31] for further details. The initial state for these
calculations is the Néel state |1010 . . .〉.

III. OBSERVABLES

Local temperature

The local temperature β j (n) is defined for each bond by
minimizing the Frobenius norm distance between the canon-
ical density matrix e−β jHb , and the subsystem density matrix
ρb

j ,

minβ j

∣∣e−β jHb − ρb
j (n)

∣∣ , (2)

with Hb( j) = σ z
j σ

z
j+1 + h j/2 σ z

j ⊗ 12×2 + h j+1/212×2 ⊗
σ z

j + {z ↔ x, h j ↔ g j} as the local bond
Hamiltonian with h j, g j being the local fields, and
ρb

j (n) = TrL−{ j, j+1} |ψ (n)〉〈ψ (n)| the reduced density matrix

for that bond. The norm is defined as |A| ≡ tr(
√

A†A). We
expand the definition of β from Ref. [34] to the time domain.
This approach includes the time-evolved wavefunction’s
structure through the subsystem density matrix. It is important
to note that the precise value of β j (n) is contingent upon the
chosen definition of norm, as examined in detail in Ref. [34].

IV. RESULTS

A. (Non-)Exponential heating

An interacting driven system heats to an infinite temper-
ature featureless state [35,36]. The heating rate τ generally
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FIG. 2. Time evolution of local inverse temperature |β j (n)| at different locations, j, for several disorder values � = 0.6, 0.5, 0.4, 0.45 for
L = 20. Log-linear scale highlights exponential decay at large � for a typical disorder configuration. With decreasing �, the thermalization
time increases. For the small value of � = 0.45, the curves for this sample appear to fall into two groups characterized by rapid and slow decay
rates.

depends exponentially on the drive frequency, τ ∝ exp(ω/J )
for ω/J 
 1, where J is a microscopic energy scale [37–40].
In the presence of disorder, it has been seen that the (aver-
age) heating slows down considerably [31,41–44]. As shown
in Fig. 1, the time evolution of the disorder and spatially
averaged (indicated by the overline) β(n) indeed exhibits
a stretched exponential decay, with the decay exponent in-
versely correlated to the strength of the disorder, similar to
the decay of the correlation function as reported earlier in
Refs. [27,31,45]. A pronounced finite size effect is also ob-
served and shown in Appendix A.

The lower panel of Fig. 1 highlights the spatially inhomo-
geneous evolution of β j (n) for a given disorder configuration
for several � values. In a given sample, one would expect
thermalization time to fluctuate due to disorder fluctuations
between different sites. In particular, small fluctuations in
disorder would imply exponential sensitivity to decay time,
provided the thermalization is exponentially fast at all bonds
in the Floquet drive cycle n. The upper panel of Fig. 2 shows
β j (n) at different locations for a single disorder configuration.
For weak disorder, � = 0.7, thermalization is exponential
everywhere, e−n/τ j , however, with spatially varying τ j . The
|β j (n)| decays to ∼10−3 for L = 20, and is expected to vanish
in the thermodynamic limit. With increasing disorder, the vari-
ation in τ j increases, and for even stronger disorder � = 0.45,
the heating becomes slow, possibly as a stretched exponential
[see Fig. 2(c)]. Even there, a few subsystems still exhibit fast
thermalization, i.e., an exponential decay of |β j (n)| in time,
n. This distribution of thermalization time scale is reflected in
a stretched exponential decay, e−(t/τ )α = ∫

duP(u)e(−t/u), of
the average β(n) as highlighted in Fig. 1 with a timescale that
increases, and an exponent α which decreases, with increasing
disorder.

B. Thermalization time

Fitting each β j (n) trace is impractical because of fluctua-
tions in the data and uncertainties associated with the fit. We

instead extract a local decay time τ j via

τ j :=
∫ T

0 n|β j (n)|dn∫ T
0 |β j (n)|dn

. (3)

Concretely, the pure exponential |β j (n)| ∝ e−n/τ ′
j yields τ j =

τ ′
j + T/(1 + eT/τ ′

j ) → τ ′
j for sufficiently large number of

Floquet time steps T . Indeed, for the larger � = 0.7, the
individual samples show exponential decay within the sim-
ulation time window. With decreasing � < 0.5, not all the
traces of β j (n) show pure exponential decay; instead, there
is mixing of both exponential and stretched exponential de-
cays (Fig. 2, right panel). This affects the calculation of the
decay time as defined in Eq. (3), and we refrain from doing
this analysis for smaller values of the �, i.e., larger disorder
values close to the putative MBL transition. In this regime, the
simple way of describing the exponential heating dynamics
using the Fermi-Golden rule [40,46,47] is probably inappli-
cable, and one might need to go beyond this perturbative
treatment.

Figure 3 shows the τ j distribution in the ergodic phase for
� = 0.7, 0.6, 0.5. A pronounced exponential tail is observed
for all the disorder values, with a plateau forming at smaller
�—we associate this plateau feature in the distribution func-
tion with the broad distribution of timescales. At � = 0.5,
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FIG. 3. Probability distribution of the local thermalization time
τ j for system sizes L = 18, 20, 22, and disorder values � =
0.7, 0.6, 0.5. The distribution is broad with an exponential tail.
For smaller � = 0.5, the distribution shows strong finite-size ef-
fects. Typically, ∼2.5×103 disorder configurations are used for these
distributions.
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FIG. 4. Time evolution of the half-system density matrix ρA
kk′

(normalized such that its maximum value is unity) for � = 0.7,
L = 12, and for a typical disorder configuration. As expected for a
featureless random state, the diagonal elements dominate over time
as the system heats up. Additionally, the diagonal entropy reaches
maximum S̃d = Sd/(L/2) � log(2), as indicated in the figure.

significant finite size and time effects are evident (see Ap-
pendix A), suggesting the need for larger system sizes L � 22
to observe thermalization in all parts of the sample.

For the largest system L = 22, the P (τ j ) shifts toward the
origin compared to smaller system sizes, indicating a slow
flow of the full distribution toward shorter thermalization
time.

C. Density matrix evolution

Having established a relatively broad distribution of
τ j , resulting in a stretched exponential decay of the
spatially averaged β j (n) (Fig. 1), we now provide an
entanglement perspective to the thermalization process.
Figure 4 shows a typical evolution of the half-system density
matrix |ρnn′ |/max(ρnn′ ) for different evolution times, n, for
� = 0.7, which becomes thermal at these times. This behavior
is representative of all samples reaching thermal equilibrium.

D. Diagonal entanglement entropy

The entanglement entropy is defined as SE =
−Tr(ρA log ρA), where ρA is the reduced half-system
density matrix. At long time, for the ergodic system, SE

reaches the Page value, i.e., SE = L/2 log(2) − 1/2 [48]. For
such state, the diagonal elements ρA

kk dominate; they scale as
ρA

kk ∝ 1/
√
D, while the off-diagonal terms are suppressed as√

D1/2 [49], where D = 2L is the Fock space dimension. The
diagonal entropy in this basis is defined as

Sd = −
∑

k

ρA
kk log ρA

kk . (4)

For a Haar random state ρA
kk ∝ 2−L/2, therefore, Sd ∝

(L/2) log(2), the volume law scaling for ergodic systems.
Further, the diagonal entropy can be expressed in terms
of the participation entropy SP = 2Sd (see Appendix C
for details for the driven Ising model), where SP(n) =
−∑D

j=1 p j (n) log p j (n), with p j (n) = |〈 j|ψ (n)〉|2 is the prob-
ability of occupation of each spin basis state | j〉, and |ψ (n)〉
is the time evolved wavefunction.

Therefore, Sd is an alternative measure of delocalization
in configuration space. Indeed, Ref. [50] showed that for a
pure state with few random nonzero elements relative to the
dimension of the space, the scaling of Sd with subsystem
volume L/2 is exactly given by that of its participation entropy
SP.

FIG. 5. Time evolution of the disorder averaged typical inverse
local temperature x(n) = 〈β(n)〉typ. for several disorder values until
the putative transition point �c � 0.3 and for L = 20. The initial slow
growth gives way to faster thermalization at later n. This feature has
yet to manifest for smaller �. Below: The collapse of the evolution
when diagonal entropy Sd is adapted as an implicit measure of time,
n, for the above figure. Inset: The same data, plotted against the SP,
normalized with the Fock space dimension D.

E. Synchronized dynamics

The upper panel of Fig. 5 shows the time evolution of
the disorder averaged x(n) = 〈β(n)〉typ. with Floquet cycle n
for several values of disorder � = 0.7, . . . , 0.3. The overline
denotes the average over the bonds j, and 〈.〉typ. denotes
the median value of β j (n) across different disorder config-
urations. For intermediate disorder values, x(n) shows slow
propagation (see, e.g., � = 0.45); however, with increasing
time, it accelerates as seen by the rightward bending of the
curve to eventual thermalization. Such bending happens at
progressively higher n with increasing disorder, and to ob-
serve this at an even larger disorder, larger L and n are
necessary.

Most strikingly, when Sd is adapted as an ensemble average
internal time of the system, we observe an excellent collapse
of the mean x(n) for several disorder values as seen in Fig. 5.
This collapse, requiring no fitting parameters, implies that the
diagonal entropy Sd faithfully describes central aspects of the
thermalization of the closed system, such as the time to heat
up to infinite temperature at finite disorder values. Concretely,
disorder slows down entropy production, thus delaying ther-
malization. Once the simulation time is parametrized by the
entropy itself, the universal nature of the dynamics is revealed.
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V. CONCLUSIONS

For the thermalization of a disordered interacting Floquet
system, we analyze the dynamics of subsystem temperature
β j (n) in the ergodic regime. Generically, some blocks heat
up faster than others, but all blocks eventually thermalize,
leading to a broad distribution of thermalization times as
identified by the plateau formation in the distribution of de-
cay times with increasing disorder strength. Blocks with long
thermalization times are not particularly rare and may exhibit
either long exponential decay time constants or even non-
exponential decay. This distribution of time scales leads to
a slower decay of the spatial and disorder averaged inverse
temperature β j (n), resulting in nonexponential heating over
time in the ergodic phase, resembling the relaxation dynamics
of classical glassy liquids. Exploring the connection between
inhomogeneous thermalization dynamics and the avalanche
mechanism or many-body resonances [25–27,51–56], which
predict stretched exponential decay of correlation functions,
is an obvious avenue for further study.

Identifying diagonal entropy Sd as an effective internal
system time allows a collapse of the thermalization dynamics
across all the disorder values in the ergodic phase, revealing a
remarkable, albeit hidden, homogeneity. The thermalization
process involves shrinking off-diagonal matrix elements of
the density matrix. In this sense, the approximation of time
with diagonal entropy Sd measures the heating rate along with
the Fock space delocalization. In contrast, for a nondriven
model that conserves both particle number and energy, achiev-
ing such data collapse requires a fitting parameter, which is
demonstrated in Appendix D.

The prediction of any dynamical exponent is challenging
due to limits imposed by finite time and system sizes, as
copiously noted in Hamiltonian models [16,17,28,57–60], dis-
ordered Floquet models [27,31], and even in clean models,
where L � 22 is often necessary to observe heating toward
infinite temperature [47]. Indeed, there is substantial variation
in stretched exponents with increasing system sizes, particu-
larly evident in two-point correlators, and their fate even in the
ergodic phase in the asymptotic limit [31,45] is at this point
unclear. We note that the data collapse we observe is largely
independent of system size and thus appears less afflicted by
finite-size effects.
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FIG. 6. Upper panel: L dependence of the decay of β(n) with n
for different values of � = 0.7, 0.6, 0.5. Lower panel: Decay of β j (n)
for two typical disorder configurations. The dashed lines show the
curve corresponding to the estimated decay times defined in Eq. (3).

APPENDIX A: FINITE L DEPENDENCE

The upper panel of Fig. 6 shows the system size depen-
dence of the decay of the disorder averaged inverse local
temperature β(n). With decreasing �, i.e., increasing the
strength of the disorder, the L dependence is more severe for
finite time simulations. The system thermalizes quickly for
larger � = 0.7, and the data shows less finite-size corrections.

APPENDIX B: ESTIMATION OF DECAY TIME τ j

Figure 6 lower panel shows the decay of β j (n) for two
typical disorder configurations for different values of disorder
strength, and L = 20. The dashed line represents the estimated
curve using the decay time τ j defined in Eq. (3). The estimate
of τ j reasonably reproduces the decay for pure exponential
traces. When β j (n) shows nonexponential decay for a stronger
disorder, the τ j gives only a rough estimate as visible at
smaller � � 0.5.

APPENDIX C: PROOF OF SP = 2Sd

Here, we establish the relation between the Fock space (FS)
participation entropy SP and the diagonal entropy in the FS
basis defined in Eq. (4),

SP = −
2L∑

i=1

|ci(t )|2 log(|ci(t )|2),

from the definition of the participation entropy. Now, the
probabilities |ci(t )|2 can be written in terms of the diago-
nal elements of the density matrix of the system ρ in the
following way. We note |ci(t )|2 = ci(t )c∗

i (t ) = 〈i|ψ〉〈ψ |i〉 =
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FIG. 7. Figure 7 shows the evolution of the disorder averaged
typical inverse local temperature x(t ) = 〈β(t )〉typ. for several disorder
values W for L = 16 for the nondriven XXZ model. Upper panel
shows the x(t ) when time is replaced by bipartite entanglement
entropy SE normalized with the Page value. An approximate collapse
is achieved with one fitting parameter that depends on the disorder
strength, f(W ). The inset shows the f(W ) as a function of W . Lower
panel: The evolution of the typical inverse temperature when partic-
ipation entropy SP normalized with the Fock space dimension D is
adapted as an implicit measure of time, t , for the above figure. Inset
shows an approximate collapse of the data with one fitting parameter
g(W ).

〈i|ρ|i〉, where ρ = |ψ〉〈ψ | is the system’s density matrix:

SP = −
2L∑

i=1

ρii log ρii.

Here, we can decompose the ith diagonal element of the full
density matrix, i.e., ρii, as a product of diagonal elements of
the subsystem density matrices

ρii = 〈i|ρA ⊗ ρB|i〉 = 〈 j|〈k|ρA ⊗ ρB| j〉|k〉 = ρA
j jρ

B
kk (C1)

where |i〉 = | j〉|k〉. Therefore,

SP = −
2L∑

i=1

ρii log ρii

=
2L/2∑
j=1

2L/2∑
k=1

ρA
j jρ

B
kk log

(
ρA

j jρ
B
kk

)
[using Eq. C1]

=
2L/2∑
j=1

2L/2∑
k=1

ρA
j jρ

B
kk

(
log

(
ρA

j j

) + log
(
ρB

kk

))

=
2L/2∑
k=1

ρB
kk

2L/2∑
j=1

ρA
j j log

(
ρA

j j

) +
2L/2∑
j=1

ρA
j j

2L/2∑
k=1

ρB
kk log

(
ρB

kk

)

= 2
2L/2∑
j=1

ρA
j j log

(
ρA

j j

) = 2Sd. (C2)

APPENDIX D: NONDRIVEN MODEL

This section considers a model with particle number and
energy conservation, namely, the XXZ model with the random
magnetic field and with open boundary condition,

H =
L−1∑

j

S j · S j+1 +
L∑
j

h jS
z
j . (D1)

The h j is the random field from a uniform box distribu-
tion [−W,W ]. We consider a quench from the Neel state
and observe the entanglement growth and the local temper-
ature β j (n). The upper panel of Fig. 7 shows the evolution
of the typical inverse local temperature, x(t ) = 〈β(t )〉typ., as
a function of the entanglement entropy SE. Using a sin-
gle fitting parameter that depends on the disorder strength
W , we observe an approximate data collapse, indicating the
homogeneity of the ergodic phase. The inset illustrates the
dependence of the fitting parameter f(W ) on the disorder,
showing a decay with increasing disorder. The lower panel
presents the same data, x(t ), plotted against the Fock space
participation entropy SP. In contrast to the driven Ising model,
we do not observe a data collapse in this case, which may be
attributed to the conservation of particle number and energy.
However, as shown in the inset, allowing for a single fitting
parameter results in an approximate collapse of the time evo-
lution, indicating the homogeneous dynamics in the evolution
of the typical inverse temperature, which might otherwise
remain obscured.
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