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Exciton diffusion in a quantum dot ensemble
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In this theoretical study, we explore Förster resonant energy transfer of a single exciton within a two-
dimensional array of self-assembled quantum dots arranged randomly on a circular mesa. Employing the
stochastic simulation method, we solve the equation of motion for the density matrix, considering a specified
decay rate. Our analysis quantifies diffusion through the mean-square displacement from the initially excited
quantum dot, revealing distinct temporal stages: ballistic, normal diffusion, and saturation. Furthermore, we
observe power-law localization of the exciton. Complementing our numerical investigations, we develop ap-
proximate analytical expressions that closely align with the numerical findings.
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I. INTRODUCTION

Förster resonance energy transfer (FRET) appears widely
in the quantum world, both in biological and technical struc-
tures. The former includes light harvesting systems that
employ cascadelike transport to move solar energy from pig-
ment molecules to the reaction centers of photosynthesis [1,2].
The latter are dominated by exciton diffusion in different types
of quantum dots (QDs), e.g., QD solids [3], nanocrystals [4,5],
self-assembled QDs [6–8], and silicon QDs [9]. In particular,
in Ref. [6], excitation transport has been observed in self-
assembled QD ensembles with varying planar density. In that
work, transport even beyond the excitation region was con-
firmed by the observed spatial width of photoluminescence
(PL) that exceeded the excitation laser spot. Furthermore, an
enhanced effect was observed in the case of diluted samples,
eliminating the hypothetical possibility of carrier tunneling
(Dexter transfer).

Energy transport in a QD ensemble involves the diffusion
of an exciton, i.e., an electron-hole pair initially formed (e.g.,
optically) in individual QDs. The resonant energy transfer
mechanism proposed by Förster [10–12] offers an explanation
of transport in such systems. The excited donor-QD trans-
fers its excitation to the remaining acceptor-QDs coupled
via dipole interactions. Assuredly, the transport mecha-
nism (Förster vs Dexter) can be experimentally determined
by analyzing optical spectra in coherent two-dimensional
spectroscopy [13].

The exact formula for Forster’s couplings in a planar set of
dipole emitters (e.g., self-assembled QDs) is known. It was
derived by transforming the minimal coupling Hamiltonian
in a dipole approximation using the Power-Zienau-Wooley
(PZW) transformation [14–16]. The resulting dipole-dipole
power-law coupling has the form of a sum of three long-range
terms decreasing with the distance, each multiplied by an
oscillating factor [7,8,12,17].
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Self-assembled QDs are not perfectly homogeneous (due
to randomness of the growth process). Therefore, QDs differ
in the fundamental transition energy of forming an electron-
hole pair. Such an energy dispersion makes the set of QDs
a disordered system similar to that described by the Anderson
tight-binding model [18,19] with long-range hopping integral.
Although most of the research on Anderson’s localization
in disordered systems focused on nearest-neighbor-coupled
models, Anderson’s original work dealt with long-range cou-
plings, decreasing with some power of the intersite distance,
V (r) ∝ r−μ.

In this paper, we theoretically investigate the diffusion of a
single exciton in a planar QD ensemble restricted to a circular
mesa. Exciton diffusion is a manifestation of FRET that stems
from long-range dipole-dipole couplings. The fundamental
transition energy disorder has a negative impact on the range
and speed of diffusion. A general framework for describing
(quasi) particle diffusion in such systems was proposed in
Ref. [20], where we investigated the diffusion of a single
excitation in a regular one- or two-dimensional lattice with
strong on-site disorder and inter-site coupling that decreases
inversely proportional with distance V (r) ∝ r−1. Here, we ex-
tend the considerations to a realistic system: a planar ensemble
of randomly placed self-assembled quantum dots with funda-
mental transition energy disorder, coupled by the long-range
oscillating Förster couplings. We also assume a finite exciton
lifetime and compare it to the idealized nondissipative case.
To simulate the dissipation process, we employ the numerical
method of stochastic simulations, also known as the quantum
jump method [21,22].

The diffusion of an exciton is characterized by the mean-
square displacement (MSD) of the exciton as a function of
time. We show that this quantity evolves in three steps: first
ballistic motion, then standard diffusion, and finally saturation
(cf. Ref. [20]). Similarly, the growth of the exciton density at
a given QD follows three steps: quadratic in time, followed
by linear in time ending in saturation. At the same time, the
dependence of exciton density on the distance reveals power-
law localization of the exciton in the system. We explain the
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FIG. 1. Schematic representation of the investigated system: Pla-
nar ensemble of self-assembled QDs on a circular mesa. The growth
axis is perpendicular to the plane of the ensemble. QD lying closest
to the center is initially excited.

three-step diffusion and power-law localization using a model
in which the disorder expressed by the standard deviation
of the transition energies is much greater than the coupling
strength between sites [18,20,23]. In such a model system,
only first-order (direct) jumps from the excited site even to
the remote ones are relevant. This regime is opposite to the
nearest-neighbor coupled systems. By neglecting all the cou-
plings except for those involving the initially occupied QD,
we are able to propose an approximate analytical solution to
the exciton dynamics which, at least qualitatively, reproduces
the simulation results. This allows us to gain a deeper under-
standing of the transport mechanism.

The organization of this paper is as follows. Section II
contains a detailed description of the investigated system, the
model that describes it, and the quantum jump method used
for numerical simulations of the system dynamics. In Sec. III,
we present the exciton dynamics obtained from the numerical
evaluation of the introduced model. In Sec. IV, we propose
an approximate analytical solution that reproduces the exciton
dynamics. Finally, in Sec. V we conclude and discuss the
results.

II. SYSTEM, MODEL, AND SIMULATION METHOD

The system under study is a planar ensemble of self-
assembled QDs randomly placed in the plane perpendicular
to the growth axis (see Fig. 1) with constant surface density
ρA = 1011 QDs/cm2. In our model, QDs occupy a circular
area of radius R. Due to the constant planar density, the
number of QDs is adjusted to the linear size of the mesa
and is approximately equal to N = ρAπR2. That is, in the
simulations, the number of QDs and the planar density ρA

are given, and the size of the mesa is adjusted. The average
distance between the nearest sites is rav ≈ (ρA)−1/2 ≈ 32 nm.
However, the minimum distance between QDs is limited to
dmin = 10 nm, which roughly corresponds to the minimum
diameter of a single QD. The positions of the dots are de-
noted by rα . The investigated system is not homogeneous.
Quantum dots differ in their fundamental transition energy.
We denote this energy by Eα = E + εα for the αth QD, where
E corresponds to its average, which for exemplary CdTe QDs
is approximately 2.59 eV, and εα is a small deviation from
the average, modeled here by a symmetric normal distribution

N (0, σ 2) of variation σ 2. The value of σ for CdTe grown
with the Stranski-Krastanov process is typically ∼50 meV,
however, here we consider much more homogeneous systems.
Highly uniform QDs can be fabricated by local droplet etching
[24], which nowadays achieves narrow emission linewidths of
the order of µeV [25,26] for a single QD and less than 10 meV
for ensembles. Our considerations apply to both the Stranski-
Krastanov and droplet-etched self-assembled systems.

Although the size of a single QD is much smaller than the
relevant radiation wavelength, the size of the ensemble can
exceed it several times. Thus, the dipole approximation cannot
be applied to the system as a whole. Instead, we employ
the PZW transformation [14–16]. It converts the minimal-
coupling Hamiltonian in the Coulomb gauge representing an
ensemble of small physical systems into the Hamiltonian of
quantum emitters treated as a point dipole each, coupled to
the electric displacement field D̂(r).

Then, the QD ensemble, together with the surrounding
radiation and the mutual interaction is described by the
Hamiltonian,

Ĥ = Ĥat + Ĥrad + V̂at-rad,

where

Ĥat =
∑

α

εασ̂ †
α σ̂α

is the Hamiltonian of the dipole emitters (QDs, i.e., artifi-
cial atoms) with σ̂α representing the transition operator that
annihilates the excitation at the site α. The second term corre-
sponds to the photon bath,

Ĥrad =
∑
kλ

h̄ωkb̂†
kλ

b̂kλ,

where b̂kλ (b̂†
kλ

) is the annihilation (creation) operator for
photon of wave vector k and polarization λ, whereas ωk is
the corresponding photon frequency. The last term,

V̂at-rad = − 1

ε0εr

∑
α

d̂α · D̂(rα ), (1)

stems from the PZW transformation and corresponds to the
coupling between the QDs and the electromagnetic field.
Here, d̂α = d0σ̂α + d∗

0σ̂
†
α is the dipole moment operator for

the emitter α, while ε0 and εr are the electric permittivity of
the vacuum and material, respectively. The dipole operator
in question corresponds to the creation of an exciton with a
given angular momentum of +1 or −1 via circularly polarized
laser beam (Fig. 1). Here, we limit ourselves to assuming
constant exciton polarization throughout the entire evolution.
The justification for such a simplification is presented in Ap-
pendix B, where we discuss exciton diffusion in an enhanced
model, addressing both bright exciton states and exciton fine
structure splitting (FSS). Neither spin-flipping Förster transfer
nor exciton FSS significantly impact the exciton transport.

The displacement field D̂(r) is expressed by the photon
operators as

D̂(r) = i
∑
kλ

√
h̄ε0εrωk

2V êkλb̂kλeik·r + H.c.,
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TABLE I. Material parameters of the system.

Description Symbol Value Unit

Spontaneous emission rate 
0 1.0/0.39 ns−1

Resonance wave length (vacuum) λ0 479 nm
Refractive index nrefr 2.6
Surface density of QDs (2D) ρA 1011 cm−2

Minimal QD diameter dmin 10 nm

where the unit vector êkλ determines the polarization of light
in the mode with wave vector k and polarization λ, and V is
the normalization volume.

The equation of motion for the reduced density matrix ρ̂

can be derived following the steps of Ref. [12]. First, one
looks at the evolution of the quantum mechanical average of
any operator Q̂ in the Heisenberg picture. The evolution is
governed by a Hamiltonian, which includes both electronic
and photonic degrees of freedom. The equations of motion for
the atomic and photonic operators are found and the latter are
then eliminated, leading to an integrodifferential equation for
the atomic operators which is reduced by using the Markov
approximation. In the end, one neglects off-resonant terms and
radiation-induced energy shifts and rewrites the equation in
the Schrödinger picture obtaining the equation of motion (see
also Refs. [7,8]),

d

dt
ρ̂ = − i

h̄
[Ĥ0, ρ̂] +

∑
αβ


αβ

(
σ̂αρ̂σ̂

†
β − 1

2
{σ̂ †

β σ̂α, ρ̂}
)

, (2)

where

Ĥ0 = Ĥat +
∑
αβ

Vαβσ̂ †
α σ̂β . (3)

The first term on the right-hand side of Eq. (2) corresponds
to the unitary dissipationless evolution of the system, whereas
the second term is the Linblad part responsible for the dissi-
pation process. The long-range coupling between the QDs is
expressed by

Vαβ = h̄
0G(k0rαβ ), (4)

with Vαα = 0, where rαβ = rα − rβ , 
0 = |d0|2k3
0/(3πε0εr )

is the spontaneous emission rate for a single dot, k0 =
2πnrefr/λ0 = nrefrE/(h̄c), where nrefr is the refractive index
of the medium and c denotes the speed of light. The values
of these and other material parameters are gathered in Ta-
ble I. The coupling has a mixed power-law and oscillating
character [12],

G(x) = −3

8

(
cos x

x
+ sin x

x2
+ cos x

x3

)
. (5)

The short-range couplings provided by the overlap of the QDs
wave functions and/or Coulomb correlations were neglected
due to relatively large interdot distance (wave functions do not
overlap).

The second term in Eq. (2) is responsible for the dissipation
process. The dissipator coefficients are 
αα = 
0 and


αβ = 
0F (k0rαβ ) for α �= β,

where

F (x) = 3

4

(
sin x

x
− cos x

x2
+ sin x

x3

)
, (6)

cf. Refs. [7,8]. To efficiently simulate systems of thousands
of dots, we employ the quantum jump method [21,22]. In this
approach, we consider a state vector of N elements instead
of a density matrix of N2 elements, which unburdens the
computational load. The time-dependent state of the system
|�(t )〉 is expressed in the basis of the exciton located at a
single dot {|α〉}N−1

α=0 ,

|�(t )〉 =
∑

α

cα (t )|α〉, (7)

where cα (t ) is the time-dependent probability amplitude for
finding the exciton at the site α. For dissipationless systems,
one can reduce the equation of motion [Eq. (2)] to the first
term, which yields a Schrödinger equation that can be solved
by exact diagonalization of the Hamiltonian (3), see Ref. [20].

A. Stochastic simulation method

Now we briefly summarize the stochastic simulation
method. A detailed description of this method can be found
in Refs. [21,22]. The method is based on the conversion of
the master equation [Eq. (2)] into a piecewise continuous
stochastic process. Let us start by transforming Eq. (2) into
the equivalent form

d

dt
ρ̂ = − i

h̄
(Ĥeff ρ̂ − ρ̂Ĥ†

eff ) +
N∑

i=1


̃iσ̃iρ̂σ̃
†
i ,

where

Ĥeff = Ĥ0 + h̄

2i

∑
αβ


αβσ̂ †
α σ̂β

is the effective non-Hermitian Hamiltonian which governs
the stochastic evolution between jumps and where 
̃i are the
eigenvalues of the matrix 
αβ . The corresponding eigenvec-
tors are denoted by ui = (ui,α )N−1

α=0 and

σ̃i =
∑

α

u∗
i,ασ̂α.

Here we also introduce the effective complex Förster coupling
V eff

αβ = Vαβ + h̄
2i 
αβ , for which Ĥeff = Ĥat + ∑

αβ V eff
αβ σ̂ †

α σ̂β .
For α �= β, it is expressed as

V eff
αβ = h̄J (k0rαβ ), (8)

where

J (x) = −3

8
eix

(
1

x
− i

x2
+ 1

x3

)
. (9)

Real and imaginary parts of function J (x) are depicted in
Fig. 2. It will be useful in the following.

The unnormalized state |�(t )〉 [Eq. (7)] evolves according
to the Schrödinger equation

ih̄
d

dt
|�(t )〉 = Ĥeff |�(t )〉 (10)
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FIG. 2. Plot of real and imaginary parts of function J (x)
[Eq. (9)]. Its real part corresponds to function G(x) [Eq. (5)] and
its imaginary part corresponds to negative F (x) [Eq. (6)].

until the jump occurs. The time interval between jumps is
a random variable with a cumulative distribution function
F (t ) = 1 − 〈�(t )|�(t )〉. Although continuous evolution pre-
serves the number of excitons, each jump corresponds to the
emission of a single photon. In the case of multiple excitations
present in the system, many jumps divided by continuous
processes can occur. Here, we restrict ourselves only to the
single exciton initial state, which prohibits further evolution
after the first jump. The evolution of state |�(t )〉 is calculated
numerically according to Eq. (10). At each time step, one
checks if the jump is to occur by comparing the current time
with the jump time drawn from the distribution F (t ). At a
jump, the state vector is transformed according to

|�〉 −→
√


̃iσ̃i|�〉
|
√


̃iσ̃i|�〉|1/2
,

which in our case (single exciton) is just |�〉 → 0. The
simulation is performed multiple times for different disorder
realizations of the energy and positions of the QDs, as well
as of the random jump process. The desired quantity is then
averaged over the repetitions.

B. Quantities describing the dynamics

For a quantitative characterization of the diffusion, we are
first interested in the spatial and temporal dependence of the
occupation density, �r (t, r), which is a normalized histogram
of the occupation 〈|cα (t )|2〉, where in each interval �r we
count the occupations of QDs lying between r and r + �r,
with fixed �r = 5 nm. 〈. . . 〉 corresponds to the average of
Nrep realizations in which each time we set different random
positions rα and random energies εα .

We also look for the MSD of the exciton from the center of
the mesa structure, where it was initially created,

〈r2(t )〉 =
〈∑

α

r2
α|cα (t )|2

〉
, (11)

where rα ≡ |rα0| = |rα − r0| is the distance from the QD ini-
tially occupied (α = 0).

In addition, we model the temporal dependence of the PL
intensity. In each of the Nrep realizations, we record the time

FIG. 3. Mean-square displacement of the exciton as a function of
time for dissipative (a), (b) and idealized nondissipative system (c),
(d) for different values of the system size and disorder strength. The
number of realizations Nrep is given in the legend of (a) in parentheses
for each system size.

stamp of the emission jump and, on the basis of that, we form
a histogram of a number of jumps in each time period �t . The
PL intensity is proportional to

I ∝ 〈Nex〉
Nrep�t

, (12)

where 〈Nex〉 is the number of light quanta emitted in the time
[t, t + �t ) averaged over the realizations. The time interval
varies appropriately to achieve equal spacing on a logarithmic
scale.

All the results obtained for the dissipative system employ
the quantum jump method. In contrast, for dissipationless
systems, we use exact diagonalization to solve the unitary
equation of motion given by the first term on the right-hand
side of Eq. (2).

III. RESULTS OF THE NUMERICAL SIMULATIONS

In this section, we present the results obtained by a nu-
merical implementation of the model presented in Sec. II.
Specifically, we present the temporal evolution of MSD
[Eq. (11)] comparing the system of a realistic limited exci-
ton lifetime with an idealistic nondissipative system. We also
present the spatial distribution of exciton occupations Xnum =
〈|〈�|�〉|2〉 in the ensemble and reveal the PL intensity.

A. Three-step dynamics

Figure 3 shows MSD [Eq. (11)] as a function of time for
dissipating systems [Figs. 3(a) and 3(b)] and dissipation-free
systems [Figs. 3(c) and 3(d)] for several values of system size
N and standard deviation σ of fundamental transition energy
mismatch εα . Straight lines on a doubly logarithmic scale
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indicate the power-law dependencies of the MSD on time.
MSD evolves in three subsequent steps. First, for very short
times, we observe ballistic transport with constant velocity v:

〈r2(t )〉r,ε = v2t2, t < t0. (13)

Then, at a certain point in time t0, standard diffusion with an
appropriate diffusion constant D starts:

〈r2(t )〉r,ε = Dt, t0 < t < t1. (14)

Finally, at some time t1, MSD saturates,

〈r2(t )〉r,ε = r2
sat, t1 < t, (15)

which is only visible in an idealized system with an infinite
exciton lifetime [Figs. 3(c) and 3(d)]. Otherwise, the exciton
decays before saturation is reached. From the requirement for
the MSD to be a continuous function, one gets the crossover
time between the ballistic and diffusive stages,

t0 = D/v2,

as well as the crossover time between the standard diffusion
and saturation stages:

t1 = r2
sat/D.

B. Dynamical parameters

We found the dynamical parameters of diffusion, that is,
the ballistic velocity v and the diffusion coefficient D (for
dissipative and idealized systems) together with the diffu-
sion range r2

sat (only for idealized systems) and crossing
times t0 and t1 by fitting the appropriate power functions
to the corresponding stages of motion [Eqs. (13)–(15)]. In
addition, the saturation level can be found directly from
the exact diagonalization of (3), which we explain in
Appendix A.

In Fig. 4, we present the dependence of the velocity and
diffusion coefficient on the size of the system and the strength
of the energy disorder. The dependencies seem to follow
power laws with an integer or a simple rational exponent. The
velocity grows as the square root of the size of the system
[v ∝ N0.481±0.011 from the fitting; see Fig. 4(a)] and is inde-
pendent of the disorder [Fig. 4(b)]. The diffusion coefficient
increases linearly with the size of the system [D ∝ N0.969±0.037

from fitting, see Fig. 4(a)] but decreases with the disorder
strength as ∝ 1/σ [D ∝ σ−0.955±0.012 from fitting, Fig. 4(b)],
at least for a strong disorder. As the disorder decreases, the
diffusive stage becomes less and less visible. It is reflected in
the dependence of diffusion coefficient D in Fig. 4(b), which
deviates from the trend 1/σ for decreasing disorder (right part
of the panel).

Dissipation changes the values of the ballistic velocity and
the diffusion coefficient. In Figs. 4(a) and 4(b), one notices
that the ballistic velocity in the dissipative system is larger
by a constant multiplicative factor compared to the velocity
in the idealized system. It follows that dissipation leads to
an acceleration of diffusion in its first stage. This means a
faster emptying of the central QDs in favor of the other dots
in the system. More specifically, the enhancement of ballistic
motion stems from the contribution of the dissipator matrix
element 
αβ to the coupling magnitude, which we show in

FIG. 4. (a), (b) Velocity of the ballistic motion (in red) and
diffusion coefficient of normal diffusion (in blue) as a function of
the system size and inverse disorder, respectively; (c), (d) crossover
time between ballistic and diffusive stages (in green) as a function
of the system size and inverse disorder strength, respectively. Open
symbols correspond to the dissipative system whereas solid symbols
to the idealized nondissipative system. Dashed lines respond for the
approximate analytical results, see Sec. IV.

Sec. IV. On the contrary, in the second stage of motion,
the diffusion coefficient in the idealized system exceeds the
diffusion coefficient in the dissipative system by a constant
multiplicative factor [Figs. 4(a) and 4(b)]. The physical reason
for this can be explained as follows. The form of the effective
potential [Eq. (8) and Fig. 2] causes the localized states to
dissipate more slowly than the extended ones because of a
negative imaginary part of V eff

αβ in the region close to the
initially excited QD. Consequently, as evolution progresses,
the proportion of the localized states compared to the extended
ones increases, suppressing diffusion.

C. Exciton spacial distribution

In Fig. 5(a), we present a color map of the temporal and
spatial dependence of the occupation density �r (t, r). Sep-
arately, we illustrate how the occupation density at certain
distances grows in time [Fig. 5(b)] and how occupations are
distributed in space for several values of time [Fig. 5(c)]. The
data are presented for a dissipative system. The occupation at
each length follows three steps similar to MSD: first, quadratic
in time, then linear in time, and finally saturates. The spatial
decay of �r (t, r) can be considered as a power law with
different power exponents: higher for close QDs than for
remote ones. In Table II, we gather these exponents in the
long-distance regime, corresponding to the subsequent curves
in Fig. 5(c). The value of the exponent is close to −2, which
is consistent with the analytical solution presented in Sec. IV.

D. Diffusion range

It is clear from Fig. 3 that the exciton life is too short
to reach saturation. Therefore, we determine the extent of
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FIG. 5. (a) Color map of an occupation density �r (t, r) as a
function of time and distance from the central QD. For the sake of
clarity, the data was truncated not to cover noise points after exciton
recombination (t � 4τ ). (b) Temporal evolution of �t (t, r) for a few
values of the distance from the center [the lines correspond to the
vertical sections of (a)]. (c) Distance dependence of �t (t, r) for a
few values of time [the lines correspond to the horizontal sections of
(a)]. (d) Photoluminescence intensity [see Eq. (12)] and exciton
decay in time. The dashed line represents the ideal exponential decay
with decay time τ = 390 ps as assumed in the simulations.

diffusion for the idealized nondissipative system. The satu-
ration level shown in Fig. 6(a) increases with the number of
dots in the system as ∝ N3/2, which implies an increase as
∝ R3. This trend cannot continue for large systems because
the MSD increases faster than ∝ R2. This may mean that the
exciton will reach the mesa border for some value of N and
the subsequent growth will continue with the trend ∝ R2. This
change should be visible for homogeneous systems; however,
even for σ = 0.1 meV the trend is still N3/2 [Fig. 6(a), see last
paragraph of Sec. IV for a discussion].

The diffusion range of a single exciton is about 100 nm
[Figs. 3(a) and 3(b)], which corresponds to a time of several
nanoseconds. Excitation spreads throughout the system, as
shown in Fig. 5(a), the population of distant dots is small,
less than 10−8. However, in the 100 nm region around the
excitation center a few nanoseconds after excitation, the

TABLE II. The exponent of the power-law distribution of the
exciton occupation density [see Fig. 5(c)] in the limit of long distance
from the central QD, ∝ rμ.

Time (ps) Exponent μ

0.13 −2.1147 ± 0.0098
1.06 −2.1213 ± 0.0097
10.54 −2.1715 ± 0.0089
104.82 −2.194 ± 0.022

FIG. 6. (a), (b) The level of saturation of mean-square displace-
ment as a function of the size of the system (a) and inverse disorder
strength (b), respectively. (c), (d) Crossover time when the satura-
tion stage begins, similarly as a function of the size of the system
(c), and inverse disorder strength (d), respectively. The data was
obtained mostly by numerical fit to MSD. Only the violet squares
in (b) were obtained via the exact diagonalization method explained
in Appendix B.

occupancies remain at the level of ∼10−4. The PL intensity
shown in Fig. 5(d) as a function of time is still not negligible
for this time-space regime.

E. Photoluminescence and occupation decay

The time dependence of the PL intensity and the total
exciton occupation are presented in Fig. 5(d). Both exhibit
nearly exponential decay. The numerical fit of the function
exp(−t/τ ) in an interval [0, 2τ ] gives an exciton decay time of
τX = (435.2 ± 2.5) ps and PL decay time τPL = (279 ± 12)
ps. Therefore, from the beginning of evolution, while exciton
decays slower, PL decays faster than the independent emitter
(τ = 390 ps). However, at later times, the PL intensity slows
down, even below the independent QD rate seen in Fig. 5(d)
(red crosses on the right-hand side of the panel). In Ref. [7], it
was suggested that the enhanced emission is caused by short-
range couplings due to tunneling and Coulomb correlations.
Long-range couplings are too weak to impact emission in a
strongly disordered ensemble. However, in the case of a ho-
mogeneous system (0.1 meV in Fig. 5), the Förster couplings
start to play a role, which is visible in the change of the
ensemble emission against the emission of the independent
emitters.

F. The central atom model

In Fig. 3(c), dashed lines indicate the results of numerical
simulations made in the first-order approximation (which we
refer to as the central atom model), in which only direct
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couplings from central QD are relevant, while the other are
set to zero. The data follow the solution of the full model,
especially in the ballistic and diffusive stages of motion and
deviate slightly in the saturation regime. This approximation
is justified when the strength of the disorder is much greater
than the Förster coupling between QDs and the size of the
system is not too big. The central atom model allows one to
analytically approximate the full model solution, which is the
subject of the next section.

The central atom model works well for high disorder. In
fact, it is the first-order approximation of the Anderson series
(locator expansion) as introduced in Ref. [18], which works
in a high-disorder regime. From a physical point of view,
the energy disorder of 0.1 meV corresponds to the uniform
ensemble; however, compared to the magnitude of the Förster
coupling, it is strong and, for that reason, operating within the
central atom model is justified.

IV. APPROXIMATE ANALYTICAL APPROACH

In this section, we present an approximate analytical
solution to the model presented in Sec. II that qualitatively re-
produces the results of numerical studies obtained in Sec. III.
This analytical approach was previously introduced in two
different ways in Refs. [20,23] for a general lattice model of
N sites with long-range power-law coupling, V (r) ∝ 1/r in
Ref. [20] and, more generally, for V (r) ∝ 1/rμ in Ref. [23].
Here, we extend that analytic approach to ensembles with
randomly placed QDs and the oscillating three-term dipole
coupling of Eqs. (4) and (5).

A. Excitonic occupation

Due to the symmetry of the central atom model, all QDs
distant by r from the center should have, on average, the
same occupation 〈|cr (t )|2〉. In Ref. [20], we have found it
as an analytical solution of the Anderson locator expansion
[18] in the first order provided by the central atom model.
In Ref. [23], instead, by exact diagonalization, we obtained
an equal formula just considering direct transfer between two
sites coupled via long-range coupling V (r). Here, we extend
the latter strategy to a realistic dissipative system. Let us
consider Eq. (10) for two QDs separated by a distance of
r and with fundamental energy difference εr ∈ N (0, 2σ 2),
which is the difference of two normally distributed random
variables. The set of equations of motion for the amplitudes
c0(t ) and cr (t ) of the two-element basis state vector |�〉 =
c0(t )|0〉 + cr (t )|1〉 [Eq. (10)] satisfying Eq. (7) takes the form

ih̄ċ0 = h̄

2i

0c0 + V eff (r)cr,

ih̄ċr = V eff (r)c0 +
(

εr + h̄

2i

0

)
cr,

with initial conditions c0(0) = 1 and cr (0) = 0. V eff (r) cor-
responds to the effective coupling defined by Eqs. (8) and
(9). The exact integration of this set of equations is available
and has been widely examined, e.g., in the context of dressed
states in quantum optics [27]. The interesting occupation of
the acceptor-QD is

|cr (t )|2 = e−
0t/2|V eff (r)|2h(t ), (16)

FIG. 7. The probability density function (PDF) of eigenvalue
separation in the central atom model (the same red curve in each
panel) versus the function h(t, x) of Eq. (16) (blue curves). Panels
correspond to ballistic (a), diffusive (b), and saturation (c) stages of
evolution.

where

h(t ; �) = sin[�t/(4h̄)]

(�/4)2
,

and � = √
ε2

r + 4|V eff (r)|2. Since the quantum jump method
demands normalization of the state vector until the jump takes
place, the dissipative factor e−
0t/2 must be neglected and set
to one.

The average over the distribution of fundamental transition
energies can be evaluated as an integral with the probability
density function (PDF) fr (x) for the eigenvalue separation �:

〈|cr (t )|2〉 = |V eff (r)|2
∫ ∞

−∞
dx fr (x)h(t ; x)dx. (17)

The function fr (x) is close to the PDF of diagonal energy
separation f∞(x), which is a normal distribution of zero mean
and standard deviation

√
2σ , but includes a narrow gap around

zero of width 4|V eff (r)| reflecting levels repulsion (see Fig. 7)
[20,23]. The index “∞” refers to the infinite distance between
QDs that corresponds to the lack of coupling, which also
implies � = εr . In the presence of coupling, two sites of bare
energy separation εr contribute to two eigenvalues separated
by � = √

ε2
r + 4|V eff |2. Taking advantage of this, we find that

fr (x) = d

dx

∫ √
x2−4|V eff |2

−∞
dx f∞(x)

= f∞(
√

x − 4|V eff (r)|2)
|x|√

x2 − 4|V eff (r)|2

for |x| > 2|V eff (r)| and zero otherwise.

B. Mean-square displacement

For systems with spherical symmetry, MSD [Eq. (11)] can
be expressed as

〈r2(t )〉 =
〈∑

r

r2
nr∑

k=1

∣∣c(k)
r (t )

∣∣2
〉
, (18)

where the first sum runs through distances from the center, and
the second sum passes over the nr QDs lying on a thin ring of
radius r in the ensemble. In the continuous limit of spatial
distribution QDs with constant surface density ρA, Eq. (18)
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takes the form of

〈r2(t )〉 = 2πρA

∫ R

0
r3〈|cr (t )|2〉dr, (19)

where the integration covers the circular area of the mesa of
radius R. The index k can be omitted due to the symmetry
of the central atom model, that is, all QDs distant from the
center by r should have (on average) the same occupation.
Evaluation of (17) and then (19) is based on dividing the
evolution into three time regimes: for very short times, for
moderate times, and finally for long times.

C. Ballistic motion

For very short times, t < h̄/σ , h(t ; x) is broad and slowly
varying [cf. Fig. 7(a)], so it can be expanded into a Taylor se-
ries to the first order around t = 0, which yields h(x) ≈ t2/h̄2.
In this case, the internal gap in the distribution does not play
an important role and can be neglected, thus fr (x) ≈ f∞(x) =
exp[−x2/(4σ 2)]/(2

√
πσ ) and the integration in (17) yields

〈|cr (t )|2〉 = |V eff (r)|2 t2

h̄2 for t < t0.

Furthermore, we evaluate (19), which takes the form

〈r2(t )〉 =
(

2πρA

h̄2

∫
r3〈|V eff (r)|2〉dr

)
t2,

where the expression in parentheses is the squared ballistic
velocity [Eq. (13)],

v2 = 9

64


2
0

k2
0

N + 27

32


2
0πρA

k4
0

ln

(
R

rav

)

+ 9

64


2
0πρA

k4
0

(
1

k2
0r2

av

− 1

k2
0R2

)
.

D. Standard diffusion

As time grows, h(t ; x) narrows. At moderate times, h̄/σ <

t < h̄/
√

|V eff (R)|2, h(x) becomes proportional to the unnor-
malized Dirac delta of the area 2πt/h̄ but is still wide enough
to be insensitive to the gap in 〈 fr (x)〉r . Thus, we again approx-
imate 〈 fr (x)〉r ≈ f∞(x) and obtain the occupation:

〈|cr (t )|2〉 = |V eff (r)|2
∫ ∞

−∞
dx f∞(x)2πδ(x)/h̄

= |V eff (r)|2
√

πt

h̄σ
for t0 < t < t1.

Again, we evaluate Eq. (19) and obtain MSD for the diffusive
stage of motion [Eq. (14)], with the diffusion coefficient

D =
√

π h̄

σ
v2 ∝ N

σ
.

The crossover time between the first and second stage is

t0 =
√

π h̄

σ
.

Thus, it depends only on the magnitude of the fundamental
transition energy disorder and is independent on the size or
spatial density of the QD ensemble.

Analytical formulas for v, D, and t0 are represented by a
dashed line in Fig. 4. They provide trends that are at least
qualitatively aligned with the numerical data.

E. Saturation. The diffusion range

Finally, we find the diffusion range expressed by the sat-
uration level of MSD. For distant times, t > h̄/|V eff (R)|, the
central peak of h(x) falls into the gap inside fr (x). The peak is
canceled and the remaining part of h(x) can be approximated
by h(x) ≈ 1/(2x2), where the oscillating nominator was aver-
aged over its period. We evaluate (19) and obtain

〈|cr (∞)|2〉 =
√

π

2σ
|V eff (r)|erfc

( |V eff (r)|
σ

)
exp

( |V eff (r)|2
σ 2

)

≈
√

π

2σ
|V eff (r)| for t1 < t .

Next, we calculate the diffusion range using Eq. (19), which
takes the form

r2
sat = π3/2ρA

σ

∫
r3|V eff (r)|dr. (20)

The integrand in Eq. (20) is a square root of a polynomial
of r. In general, the integral can be expressed using elliptic
functions of the first and second types. However, such a result
is impractical and it is difficult to extract a trend in R from
it. For simplicity, let us approximate the integral in Eq. (20)
by keeping only the largest term in the integrand, that is, pro-
portional to r2 (in the regime of large ensembles, R � 1/k0).
Then we obtain

r2
sat = π3/2ρA

8

h̄
0

σk0
R3 = h̄
0

8
√

ρAk0

N3/2

σ

≈ 0.195
N3/2

σ [meV]
[nm2]. (21)

This result provides a growth of the diffusion range as N3/2,
which is consistent with the simulation results in Figs. 6(a)
and 6(b). The diffusion range grows faster than R2 ∝ N , which
means that the exciton should reach the mesa border at some
large N . However, according to Eq. (21), this may happen for
systems of more than 5 × 104 QDs, which is far beyond the
simulation possibilities. In the realistic model, the saturation
phase is most often not present in evolution because the ex-
citon has already dissipated from the system [Figs. 3(a) and
3(b)]. Thus, we can only compare the analytical formula (21)
with the results of the simulation of the idealistic model.

V. CONCLUSIONS AND DISCUSSION

We have investigated the diffusion of an exciton in a
planar, energetically inhomogeneous ensemble of randomly
distributed QDs coupled by dipole interactions. We have
shown that diffusion takes place in three stages: ballistic,
diffusive, and saturation. In each of these stages, the occupa-
tions are distributed according to power laws as a function of
the distance from the initially excited QD. Qualitatively, the
dynamics is the same as in the generic lattice model studied in
Ref. [20]. This means that neither the random spatial distribu-
tion of the QDs nor the full structure of the dipole coupling,
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including the spatially oscillating factors, leads to essential
corrections compared to the simple power-law coupling.

The power-law coupling model is formally restored in the
limit of large distances, when the leading term in the dipole
coupling dominates, and for dense ensembles, when the os-
cillations in the coupling average out. If, additionally, the
energetic disorder is strong compared to the couplings, one
can replace the full model by the central atom model, in which
only the initially excited QD is coupled to all other QDs in the
system. In this case, we were able to derive an analytical solu-
tion that correctly reproduces the parametric dependencies of
the ballistic speed and diffusion coefficient on the system size
and QD density. Quantitatively, the predictions of this model
slightly differ from the simulations, which may be due either
to the limitations of the central atom model (contribution from
higher-order transitions) or to the approximations made to the
coupling.

Although our discussion referred to QD ensembles, the
conclusions are valid for any system in which excitation can
be transferred via dipole couplings, as long as they belong to
the same parametric class of large system sizes (compared to
resonant wavelength) and strong disorder (compared to dipole
couplings at typical distances between QDs).

In Ref. [6], the authors considered two different surface
densities of QDs, which provided an important insight into the
diffusion mechanism. In our paper, we considered a system
with only one fixed surface density, for which the average
distance between dots (≈32 nm) is large enough to allow us to
neglect short-range couplings (e.g., tunneling) between QDs.
Any smaller surface density would be valid, and the observed
difference in the effects would be purely quantitative. This
can be seen in the analytical formula for the total diffusion
range [Eq. (21)], where we also present it as a function of
the surface density of the ensemble. The diffusion range is
inversely proportional to the square root of the QD surface
density if the number of QDs in the ensemble is assumed con-
stant. This is consistent with the results presented in Ref. [6].
On the other hand, increasing the surface density would lead
us beyond the utility of the employed model. That is, if the
QDs are close enough, the short-range effects start playing a
role, and we also move towards the limit of validity of the
dipole approximation.

FRET in QD ensembles remains a challenge for experi-
mental analysis. In the usual ensembles, where σ is of the
order of tens of meV, ballistic transport would shift to the
femtosecond scale, making it hardly possible for experimental
observation. Regardless of the experimental recognition of the
diffusion type, Förster transfer in QD ensembles remains a
subtle effect, which may explain its limited documentation in
the literature.

ACKNOWLEDGMENTS

Calculations were partially carried out using resources
provided by Wrocław Centre for Networking and Supercom-
puting [28], Grant No. 203. This research is part of the Project
No. 2021/43/P/ST3/03293 co-funded by the National Science
Centre and the European Union’s Horizon 2020 Research and
Innovation Programme under the Marie Skłodowska-Curie
Grant Agreement No. 945339.

APPENDIX A: SATURATION LEVEL FROM DIRECT
DIAGONALIZATION

The saturation level of the MSD can be calculated by fitting
a constant function numerically to an MSD at late times. Here,
we show that the saturation level of the population, and thus
for MSD, can be extracted directly from exact diagonalization
without any fitting. The initial state of the system corresponds
to a fully occupied central QD. Within this Appendix, let
us index that QD by α0. The state of the system after some
time is given by an action of evolution operator on the ket
state |α0〉,

|�(t )〉 = e−iĤt |α0〉

=
∑

α

(∑
n

e−iEnt 〈α|n〉〈n|α0〉
)

|α〉,

where |n〉 is an eigenket of Ĥ with energy En. The expression
in parentheses corresponds to the amplitude cα (t ) of Eq. (7).
The corresponding occupation is given by

|cα (t )|2 =
∑
n,m

e−i(En−Em )t 〈α|n〉〈n|α0〉〈m|α〉〈α0|m〉.

In the limit of infinite time, only the term with Em = En is
important, and the saturation level of occupation takes the
form of

|cα (∞)|2 =
∑

n

|〈α|n〉|2|〈α0|n〉|2.

APPENDIX B: EXCITON FINE STRUCTURE SPLITTING
AND SPIN-FLIPPING FÖRSTER TRANSFER

The model used for the description of diffusion in this
paper involves some simplifications. In particular, exciton
polarization was assumed to be preserved, and thus spin-
flipping Förster transfer was neglected. However, QDs support
two bright exciton states. First, with total angular momen-
tum jz = 1 represented as |e, hh〉 = | ↓,⇑〉 and the other
with jz = −1, represented as |e, hh〉 = | ↑,⇓〉, where e
stands for an electron and hh stands for a heavy hole state.
Thus, both excitons can be addressed by circularly polarized
light. As shown in Ref. [13], the Förster transfer enables
spin-preserving and spin-flipping transfers with different
magnitudes.

In addition, on-site exciton FSS can disturb the diffusion
process, leading to Rabi oscillations between the bright exci-
ton states within each QD. In this Appendix, we present an
extended model, taking into account the exciton FSS and two
types of Förster transport: spin preserving and spin flipping.
The derivation of such a model is straightforward extension,
where now we consider dipole operators for each bright ex-
citon separately, that is, d̂

+
α = d+

0 (|+〉〈0|)α + H.c. and d̂
−
α =

d−
0 (|−〉〈0|)α + H.c. As substituted for Eq. (1) and following

the steps of the derivation of the equation of motion presented
in Ref. [12], one obtains the spin-preserving Förster couplings
V aa

αβ = −h̄
0G(k0rαβ ) identical to Eq. (4) and spin-flipping

224205-9



KAROL KAWA AND PAWEŁ MACHNIKOWSKI PHYSICAL REVIEW B 109, 224205 (2024)

FIG. 8. Mean-square displacement of the exciton over time in the
presence of spin-flipping Förster transfer, as detailed in Appendix B.
Solid lines denote scenarios without exciton FSS, while points repre-
sent results with nonzero FFS, specifically normally distributed with
a standard deviation of 0.1 meV in each case. (a) Data for varying
system sizes with a fixed disorder of σ = 0.1 meV. In (b), data are
depicted for different strengths of the disorder with a constant num-
ber of quantum dots, N = 1000. The number of disorder realizations
for each data set is consistent at Nrep = 150.

ones V aā
αβ = −h̄
0Gaā(k0rαβ ) for α �= β with

Gaā(x) = 3

8
e2iϕa

[
cos x

x
− 3

(
sin x

x2
+ cos x

x3

)]
,

where the geometrical phase ϕ is attained. In addition, the di-
agonal term (in lattice indices) V aā

αα corresponds to the exciton
FFS, which we model here phenomenologically as a normally
distributed random variable of standard deviation 0.1 meV.
The index a = ± corresponds to the exciton polarization
and ā denotes the polarization opposite to a. Similarly, the
elements of the dissipator matrix for the spin-preserving cou-
pling are 
aa

αβ = 
0F aa(k0rαβ ), where F aa(x) ≡ F (x) defined
in Eq. (6), while for spin-flip transitions 
aā

αβ = 
0F aā(k0rαβ ),
with

F aā(x) = −3

4
e2iϕa

[
sin x

x
+ 3

(
cos x

x2
− sin x

x3

)]
.

Since the transfer depends on the absolute value of the Förster
coupling, it should not depend on the geometrical phase ϕ.
The mean-square displacement of the exciton moving within
the model presented is shown in Fig. 8 for some system sizes
(a) and disorder strengths (b). Initially, the central QD is
excited by circularly polarized light into one of the two bright
exciton states, say | ↓,⇑〉. The diffusion follows a three-step
diffusion as before. Again, the saturation stage is poorly seen
because of the finite exciton lifetime. One can see points
representing the data for nonzero FFS follow lines, which
correspond to the lack of the FSS. This suggests that the FSS
barely affects the diffusion.
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