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Mobility edges in non-Hermitian models with slowly varying quasiperiodic disorder
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We investigate the appearance of mobility edges in a one-dimensional non-Hermitian tight-binding model with
alternating hopping constants and slowly varying quasiperiodic on-site potentials. Due to the presence of a slowly
varying exponent, the parity-time (PT ) symmetry of this model is broken and its spectra are complex. It is found
that the spectrum of this model can be divided into three different types of patterns depending on the magnitude
of the quasiperiodic potential. As the amplitude of the potential increases from small to large, the initially well-
defined mobility edges become blurred gradually and then eventually disappear for large-enough potential. This
behavior of mobility edges is also confirmed by a detailed study of the winding number of complex spectra of
this non-Hermitian model.
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I. INTRODUCTION

The phenomena of disorders have been extensively studied
in condensed matter physics. It is well known that in three-
dimensional systems, strong-enough disorders will make the
wave functions of the system localized, which is the famous
Anderson localization [1–3]. When the disorders are not very
strong, the extended and localized states coexist in the spectra
and they are usually separated by the mobility edges [4].
In the subsequent developments, people tried to search for
the mobility edges in low-dimensional systems but did not
succeed. The reason is that at low dimensions even infinitesi-
mally weak disorders can drive the whole spectra to complete
localizations.

Due to these failures, people turned to one-dimensional
(1D) quasiperiodic systems which possessed correlated dis-
orders. One of the paradigmatic examples is the Aubry-Andre
(AA) model [5,6], which is a 1D hopping model with incom-
mensurate on-site potentials. One important feature of the AA
model is the existence of the self-duality at certain disorder
strength. When the disorder potential increases beyond this
point, all the extended eigenstates suddenly turn into localized
ones. Although the mobility edges are absent in the original
AA model, they do exist in some generalized AA models
with long-range hopping or unbounded potentials [7–10]. In
these models, self-duality can also be employed to determine
the exact shape of mobility edges. Later on, a large class of
models with slowly varying quasiperiodic disorders [11–15]
was introduced to support mobility edges. However, the self-
duality is broken in these types of models.

Recent years have witnessed rapid developments in non-
Hermitian physics, which has been applied to almost all as-
pects of condensed matter physics [16,17]. The non-Hermitian
systems can display dramatically different properties in
both topology and symmetry [18–23]. The early work that
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generalized disorder systems to the non-Hermitian case was
the Hatano-Nelson model [24,25]. After that, there appeared
many works that generalized the original AA model to non-
Hermitian lattices [26–35]. In most of these non-Hermitian
quasiperiodic models, it was found that the extended or local-
ized states usually corresponded to the real or complex spectra
of the systems [36–41]. At the same time, the self-duality was
an important tool to determine the mobility edges [31,42].

Although the non-Hermitian quasiperiodic models are
widely investigated, the study of their slowly varying coun-
terparts is relatively rare. In this paper, we present a detailed
study on the non-Hermitian Su-Schrieffer-Heeger (NH-SSH)
model [43] with slowly varying quasiperiodic on-site poten-
tials. Because of the slowly varying potential, the parity-time
(PT ) symmetry is explicitly broken and the spectrum of this
model is always complex. The property of self-duality is a
signature of localization transition which is also lost in this
model.

Despite the failure of self-duality, we can still semi-
analytically determine the mobility edges by the so-called
“energy matching method,” which we applied to Hermitian
slowly vary models in our previous works [44,45]. Intuitively
speaking, this method approximates the quasiperiodic model
by a set of different periodic models. Then the region of
extended states of the quasiperiodic model can be obtained
by taking the intersection of the energy bands of all these
periodic models. According to the spectra of these periodic
models, we find that the mobility edges display three types of
behaviors: well-defined, blurred, or completely disappeared.
Since the spectrum of the above NH-SSH model is complex,
we can also compute the winding number of this complex
spectrum. The dependence of the winding number on the
disorder potential also displays three different trends, which
exactly match the three types of behaviors of mobility edges
we mentioned previously.

The rest of this paper is organized as follows. In Sec. II, we
introduce the non-Hermitian SSH model with slowly varying
quasiperiodic disorders, which is the main focus of this paper.
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FIG. 1. The schematic figure of the model Hamiltonian of
Eq. (1). The potential VA and VB are given in Eq. (2).

In Sec. III, we will first employ the energy matching method
to qualitatively understand the spectra and mobility edges of
our slowly varying quasiperiodic NH-SSH model. Then the
energy spectra and inverse participate ratio (IPR) indices are
numerically calculated for this model to confirm the results
of the previous semi-analytical analysis. In Sec. IV, we make
use of the winding number as another index to understand the
behaviors of mobility edges from another angle. In the end,
we briefly conclude in Sec. V.

II. SLOWLY VARYING QUASIPERIODIC
NON-HERMITIAN SSH MODEL

In this section, we define the non-Hermitian SSH model
with slowly varying quasiperiodic complex on-site potentials.
We will focus on the energy spectrum and the behaviors of
mobility edges of this model by varying its parameters. Later,
we will also briefly discuss some possible generalization of
this type of model. The Hamiltonian of this model can be
written as

Ĥ =
L/2∑
n=1

[(t1ĉ†
n,Aĉn,B + t2ĉ†

n,Bĉn+1,A + H.c.)

+Vn,Aĉ†
n,Aĉn,A + Vn,Bĉ†

n,Bĉn,B]. (1)

The schematic figure of the above model is shown in Fig. 1.
Here ĉ†

n,A/B(ĉn,A/B) is the fermion creation (annihilation) oper-
ator at site n and orbital A or B. L is the total number of lattices
sites in the model. We impose periodic boundary condition in
Eq. (1). t1 = t − λ and t2 = t + λ are the intracell and intercell
hopping constants, respectively. Here Vn,A and Vn,B are the
on-site complex quasiperiodic potential which is given by

Vn,A = Vei(2παnv ), Vn,B = Ve−i(2παnv ). (2)

Note that Vn,B is the complex conjugate of Vn,A. Here α is an
irrational number, which introduces quasiperiodic disorders.
Throughout the whole paper, we assume that α = (

√
5 −

1)/2. At the same time, we also introduced an slowly varying
exponent v satisfying 0 < v < 1. The introducing of slowly
varying exponent breaks the PT symmetry. If Vn,A = Vn,B =
0, then the model returns to the standard Hermitian SSH
model. If we set λ = 0, Eq. (1) becomes a non-Hermitian
AA model with slowly varying quasiperiodic disorders. This
special case will also be studied in later sections.

To achieve slow varying, we always assume that 0 < v <

1. With this condition, it is easy to see that the derivatives of
the potential Vn,A approach zero as the site index becomes very
large as

lim
n→∞

dVn,A

dn
= lim

n→∞ i2παvnv−1Ve(i2παnv ) = 0. (3)

A similar result is also valid for Vn,B. This indicates that the
quasiperiodic potential approaches a constant when the num-
ber of lattice sites of the model become very large. However,
for a given finite-sized model, this constant is not unique and
varies within a certain range depending on the system size.
Because of this behavior, we claim that this model contains
slowly varying quasiperiodic disorders. The existence of this
slowly varying quasiperiodic disorders makes the appearance
of the mobility edge possible in our model even without PT
symmetry.

In this paper, we mainly focus on the NH-SSH model of
Eq. (1). We find that the property of supporting mobility edges
can also be generalize to more complicated models. For a
slowly varying disordered non-Hermtian model, if its unit cell
contains even number of orbital, its qualitative behaviors are
similar to the NH-SSH model. There will be clear mobility
edges for suitable choices of parameters. However, if the unit
cell contains odd number of orbital, there is no well defined
mobility edges. The reason will be explained in the end of
Sec. III A.

III. MOBILITY EDGES OF THE NON-HERMITIAN
SSH MODEL

A. Determine the mobility edges by energy matching method

In this subsection, we will present a heuristic method
called “energy matching method” [44], which can efficiently
determine the mobility edges in Hermitian slowly varying
quasiperiodic models. With some refinement, we find that this
method is also applicable for the NH-SSH model. In addition,
it can provide some clue for what type of slowly varying
quasiperiodic models can support mobility edges when gener-
alized to non-Hermitian systems. The core idea of this method
is to make use the characteristics of slowly varying quasiperi-
odic potential that approaches to a constant at very large
site index. Because of this, we can approximate the slowly
varying quasiperiodic disordered model by a set of periodic
models. The approximated periodic model Hamiltonian can
be expressed as follows:

Ĥ =
L/2∑
n=1

[(t1ĉ†
n,Aĉn,B + t2ĉ†

n,Bĉn+1,A + H.c.)

+VMĉ†
n,Aĉn,A + V ∗

Mĉ†
n,Bĉn,B]. (4)

Here VM = Vei(2παMv ) and V ∗
M is the complex conjugate of VM .

For a fixed M, the potential is constant, therefore ĤM describes
a periodic model. To reflect the quasiperiodic disorders of
original model, we allow M to take all integer values between
1 and L. For convenience, we set 2παMv = φ. It is obvious
that the above periodic Hamiltonian has no non-Hermitian
skin effect. Therefore all the eigenstates of the above periodic
models are extended.

For these periodic model of Eq. (4), we can diagonalize the
Hamiltonian by transferring to the momentum space, and find
out that energy bands are given by

E = V cos φ ±
√

t2
1 + t2

2 + 2t1t2 cos k − V 2 sin2 φ. (5)
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For a given periodic model, the eigenstates with the energy
inside the band are all extended. Here, we will focus on the
intersection of the energy bands of all the periodic models. As
we discussed before, the quasiperiodic model can be thought
as a combination of all these periodic modes in some sense.
Therefore, if the eigenenergy of the quasiperiodic model fall
within the range of the above intersection, we can expect that
the corresponding eigenstates to be extended. The region of
extended states is obtained by matching their eigenenergy
to the bands of periodic models. Therefore, it is dubbed as
the “energy-matching method.” Since | cos k| < 1, the energy
region of the extended state is given by the following intersec-
tion:

E ∈
⋂

a

(V cos φ +
√

(2λ)2 − V 2 sin2 φ,

V cos φ +
√

(2t )2 − V 2 sin2 φ). (6)

Here we only discuss the extended states region from the plus
sign of Eq. (5). For the minus sign, the discussion is very
similar. For Hermitian systems, the energy band of periodic
models are real, thus the intersection of energy bands can be
easily obtained. In contrast, for non-Hermitian systems, the
energy bands of these periodic models can be complex, so the
energy-matching method needs to be further refined before it
can be applied to non-Hermitian quasiperiodic models.

We find that the energy bands of Eq. (5) can be divided into
three different classes depending on the relative magnitude
of V comparing to 2t and 2λ. Accordingly, the behavior of
mobility edges of the NH-SSH model of Eq. (1) also falls into
three classes. The details are explained as follows.

(1) When V � 2λ, no matter what value φ takes, the PT
symmetry of the periodic model is not broken and the energy
bands of the periodic models are all real numbers. At this
point, we can directly find the intersection of the energy bands
of different ĤM , and the mobility edge is given by

E ∈ (2λ + V, 2t − V ). (7)

(2) When 2λ < V < 2t , if φ satisfies φ > | arcsin(2λ/V )|,
the PT symmetry of the periodic model is broken, and the
energy spectra of the periodic models have both real and
complex values. Since V < 2t , we can see that the upper
bounds of each energy band in Eq. (6) are still real numbers.
However, since V > 2λ, the lower bounds of each energy
band in Eq. (6) can become complex numbers. Since there is
no natural order for complex numbers, one cannot determine
the precise intersection of the lower bounds in Eq. (6). Instead,
we can use the real parts of these complex eigenenergies to
determine the lower bound as follows:

E ∈
⋂

a

(Re[V cos φ +
√

(2λ)2 − V 2 sin2 φ],

V cos φ +
√

(2t )2 − V 2 sin2 φ). (8)

Then it is easy to find the region of extended states as

E ∈ (2λ + V, 2t − V ). (9)

The mobility edge obtained in this way seems to be the same
as Eq. (7) of the type (1). However, the mobility edge in this

case is actually not completely correct because we only find
the intersection of the real part of the complex eigenenergies
and ignore the effects of the imaginary parts. We will demon-
strate this inaccuracy by the numerical calculations in the next
subsection.

(3) When V � 2t , if φ satisfies φ > | arcsin(2t/V )|, the
PT symmetry of the model is completely broken and all
eigenenergies of the periodic models are complex. In addition,
if we look for the intersection of the real parts of these com-
plex energy bands, the result is an empty set. In other words,
there are no longer extend states. Therefore, the mobility
edges no longer exist in this case.

In the next subsection, the numerical calculations will be
carried out to verify the mobility edges that are obtained by
the above energy-matching method. These results also demon-
strate that it is reasonable to divide the behaviors of mobility
edges into three different classes.

Before we turn to the numerical verifications, we would
like to discuss the application range of this energy matching
method. Since this method is based on physical picture-like
arguments rather than rigorous derivation, it is hard to give
a precise application range of this method. According to our
experience, the energy matching method can only apply to
the non-Hermitian model with slowly varying quasiperiodic
disorders. If the disorders of the non-Hermitian model are not
slowly varying, the energy matching method usually cannot
capture the mobility edges correctly.

The reason for this is that the energy matching method
approximates the disordered model by a set of periodic mod-
els. For this approximation to be valid, the disorder potentials
should be roughly like constants for a portion of lattice sites.
This property is realized in the slowly varying disorders as
the lattice site number j becomes large. For quasidisordered
models without slowly varying, there is no such property,
therefore, the energy matching does not work for this type of
model.

Even for the slowly varying 1D models, the energy match-
ing method can only be applied to a subclass of these models.
If we consider a slowly varying disordered non-Hermitian
model with an odd number of orbital in each unit cell, its ap-
proximated periodic models almost have no real spectra. This
corresponds to the class (2) and (3) behaviors as we discussed
before. Thus, we can deduce that there are no well-defined
mobility edges for models with an odd number of orbital.
Direct numerical calculations also support this conclusion.

B. Numerical results of the mobility edges

To demonstrate to what degree the eigenstates of the model
localized, we make use of the inverse participate ratio (IPR)
as the indicator of the localization [46,47]. For the mth nor-
malized wave function ψm, the IPR is defined as follows:

IPRm =
L∑

j=1

∣∣am
j

∣∣4
, ψm = (

am
1 , . . . , am

L

)
. (10)

Here L is the system size. It is well known that, for a generic
extended state, the amplitude at each site should be roughly
uniform. Therefore, if the eigenstate is extended, its IPR
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FIG. 2. Top row: The real parts of the energy band of Eq. (1) as a function of V . We assume that t = 2 (top left) and t = 1 (top right),
respectively. The color of the point represents its IPR value. The red and green lines represents the mobility edges. Bottom row: The IPR as a
function of the real part of eigenenergy. We assume V = 0.4 (bottom left) and V = 1.3 (bottom right), respectively. The dotted lines indicate
the mobility edges. Other parameters used in calculations are α = (

√
5 − 1)/2, v = 0.5, λ = 0.5, and L = 2000.

should be close to

L∑
j=1

(∣∣am
j

∣∣2)2 ∼
L∑

j=1

1

L2
= 1

L
,

which is close to 0 as L → ∞. For a generic localized state,
on the other hand, the amplitude will concentrate around a
few particular sites. Therefore, one expected that the IPR of a
localized state should be a number of order one.

We plot the real part of the energy band of of Eq. (1) as a
function of V in the top row of Fig. 2. The color of each point
represent the IPR value of the corresponding eigenstate. The
parameters used in the calculations are listed in the figure cap-
tion. The red and green lines are the mobility edges of Eq. (7)
obtained by the energy matching method. It can be seen that
these lines agree well with the separation boundary between
dark colored and light colored areas in the figure. The dark
and light colors correspond to the extended and the localized
state regions, respectively.

It is useful to make a closer examination of the transition
between the extended state and the localized state near the
mobility edge. This can clearly demonstrate the differences
among the three behaviors of the mobility edges discussed in
the previous subsection. We plot the IPR as a function of the
eigenenergy for two selected V in the bottom row of Fig. 2.
In the bottom left panel, we choose V = 0.4 such that V < 2λ.
In the bottom right panel, V = 1.3 satisfies 2λ < V < 2t .
From the bottom row of Fig. 2, we can clearly see that there
is a significant jump of roughly 10−2 in the IPR values near
the mobility edge, which shows the transition between the
extended state and the localized state. It confirms the mobility
edges in the pseudocolor plots in the top row of Fig. 2. In
addition, one can see that there are some points in the extended
state energy region that are significantly different from the
IPR value of the extended state by the orders of magnitude
in the bottom right panel of Fig. 2. These points are actually
localized states. The existence of localized states inside the
extended state region indicates that the mobility edge becomes
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FIG. 3. Top row: The real parts of the energy band of Eq. (1) as a function of V with λ = 0. We assume that t = 2 (top left) and t = 1 (top
right), respectively. The color of the point represents its IPR value. The red and green lines represents the mobility edges. Bottom row: The
IPR as a function of the real part of eigenenergy. We assume V = 0.5 (bottom left) and V = 1.5 (bottom right), respectively. The dotted lines
indicate the mobility edges. Other parameters are the same as in Fig. 2.

blurred, which is the signature of the second class that we
discuss previously.

We would like to emphasize that the second class where
2λ < V < 2t is special for the slowly varying quasiperiodic
non-Hermitian models. To take a closer look at this region,
we set λ = 0, then the three classes of behaviors separated
by 2λ and 2t collapses into two classes. First, when V < 2t ,
the eigenenergies of some periodic models in the energy-
matching method are both real and complex. Second, for
V > 2t , the eigenenergies of some periodic models are all
complex numbers. We plot the real part of the energy band of
Eq. (1) as a function of V for t = 2 (left) and t = 1 (right) in
the top row of Fig. 3. Again, The color of the point represents
its IPR value. One can see that the mobility edge obtained by
the energy-matching method is not completely correct. More
specifically, the mobility edge represented by the red lines cor-
rectly separate the localized states from the extended states.
However, the green lines fail to do so. This is consistent with
our previous analysis that the lower bound of the extended

states region does not exist due to the appearance of complex
numbers eigenvalues. These complex eigenvalues invalidates
the mobility edge obtained from the intersection of the lower
bounds of Eq. (6).

Similarly, we plot the IPR as a function of the eigenenergy
for two selected V in bottom row of Fig. 3. One can see
that there is an clear transition between the extended states
and the localized states near the red line (represented by the
two outer dashed lines). However, the IPR values near the
green line (represented by the two inner dashed lines) are
quite chaotic. Therefore, the mobility edges corresponding to
the green line are no longer valid, which is consistent with
our previous analysis. Moreover, as V increases, the number
of periodic models with complex eigenvalues also increases.
This suggests that the mobility edges will become even more
blurred as V increases. This behavior is also reflected in the
bottom row of Fig. 3.

In the calculations of Figs. 2 and 3, we take the systems
size to be L = 2000 which is large enough to show the feature
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FIG. 4. The IPR as a function of the real part of eigenenergy of Eq. (1) for the slowly varying exponent v = 0.3 (top row) and v = 0.7
(bottom row). For the left two panels, the system size L = 2000. For the right two panels, L = 8000. The dashed line indicates the mobility
edges. Other parameters are V = 0.4, α = (

√
5 − 1)/2, and λ = 0.5.

of slowly varying. These results should be roughly the same
as the results of large L limit. For smaller L, the mobility
edges will become blurred and there is no sharp boundary
between localized and extended states. The finite-size effect
of quasiperiodic models is discussed in [48]. To the best of
our knowledge, there are no analytical results about the L
dependence in slowly varying models.

At last, we want to demonstrate the effects of different
slowly varying exponents v. In Fig. 4, we show the IPR
values as a function of Re(E ) for the slowly varying exponent
v = 0.3 (top row) and v = 0.7 (bottom row). For v = 0.3, one
can see a sharp boundary between the zero and nonzero IPR
values. Here the smaller v means that the disordered potentials
approach to a constant at a faster rate than the case of v = 0.5.
In this case, the extended states are more favorable than before
and the mobility edges are well defined. On the other hand, for
v = 0.7, the disordered potentials will approach a constant
at a slower rate. The system favors the localized states and
the mobility edges are slightly blurred. In the bottom right
panel of Fig. 4, we increase the system size from L = 2000

to L = 8000. One can see the sharpness of mobility edges is
slightly improved.

IV. WINDING NUMBERS OF THE
NON-HERMITIAN SSH MODEL

For quasiperiodic non-Hermitian systems with PT sym-
metry, the winding number is considered as an efficient tool
to characterize the localization of the system. If the system is
extended, the winding numbers is trivial w = 0. One the other
hand, if the system is localized, it possess nontrivial winding
numbers such as w = ±1. Therefore, we could also calculate
the winding numbers for the model of Eq. (1) to investi-
gate whether the model is localized or extended [49–54]. To
define the winding number, we have to introduce an addi-
tional phase parameter θ into the potential of the model.
More specifically, we can make the following replacement in
Eq. (1):

Vn,A → Ve(i2παnv+i θ
L ), Vn,B → Ve(−i2παnv+i θ

L ).
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FIG. 5. The winding number for the model of Eq. (1) as a func-
tion of V with t = 2 (top) and t = 1 (bottom), respectively. Other
parameters are λ = 0.5, α = (

√
5 − 1)/2, v = 0.5, and L = 600.

The dotted lines are V = 2λ and V = 2t .

Then we arrive at a Hamiltonian that depends on θ , which is
denoted as H (θ/L). For a selected reference energy Eb, the
winding numbers is defined as [16,23]

w(H ) = lim
L→∞

∫ 2π

0
dθ

∂

∂θ
log det[H (θ/L) − Eb]. (11)

In our calculation, we set Eb = 0 since the spectra of Eq. (1)
is almost symmetrically distributed around this point.

The intuitive picture of the winding number is to count how
many times the complex energy spectrum of the model circles
around the reference energy Eb, as θ increases from 0 to 2π .
Usually, the winding number can serve as an indicator to
the extended-localized transitions in non-Hermitian systems
with PT symmetry. This is because the localization transition
in non-Hermitian model is often accompanied by the PT
symmetry breaking. Then the spectrum of the non-Hermitian
model becomes complex and tends to exhibit a circular struc-
ture in the complex plane. Therefore, by observing whether
the spectrum of the model exhibits a circular structure through
the winding number, one can efficiently determine whether the
system becomes localized. However, in our NH-SSH model,
the PT symmetry is explicitly broken by the slowly varying
potentials. We will see that the winding number exhibits some
new phenomena in our model.

In Fig. 5, we plot the winding number as a function of V for
t = 2 (top) and t = 1 (bottom), respectively. It is evident that
there are two singular points located at V = 2λ and V = 2t
corresponding to the two dashed lines in the figure. One can
see that the two singular points divide V axes into three parts,
which agrees with the three types of behaviors of mobility

edges we discussed before. Here we can again use the energy-
matching method to qualitatively understand the behavior of
the winding number. The advantage of the approximation of
Eq. (1) by a set of periodic models is that we have a simple
expression Eq. (5) for the spectra of the periodic models.

For V < 2λ, the spectra of the approximated periodic mod-
els are all real. Therefore, in this case, the winding numbers
is almost 0. Meanwhile, the intersection of all these bands
give rise to the region of extended states. When V is close
to the first singular point at 2λ, the winding number deviates
from 0, which suggest some qualitative changes happen to
the system around this point. When 2λ < V < 2t , the spec-
tra of the periodic models contains both real and complex
eigenvalues. Accordingly, the winding numbers is not stable
and rapidly increases from a very small value to a very large
value. Meanwhile, the mobility edges become blurred in this
case. When V > 2t , the spectra of the periodic models are
all complex. Now the winding number decreases from the
extreme large value and finally stabilizes to the quantized
value 1. At the same time, the mobility edges disappear in
this case, which means that all eigenstates are now localized.
Therefore, the above three cases are consistent with the three
types of behaviors of mobility edges.

We can also directly investigate how the spectra of Eq. (1)
evolve with V . In Fig. 6, we plot the spectrum of Eq. (1)
on the complex plane for V = 0.6, 1.2, and 4.8, respectively.
Due to the PT symmetry breaking of this model, the spectra
are all complex. On the top panel, the dashed lines indicate
the mobility edges. Although the eigenenergy of the extended
states are also complex, they are very close to the real axes. On
the other hand, the spectra of the localized states are far more
scattered. However, they are far from making a whole circle
on the complex plane yet. Thus, the winding number is almost
completely 0 for V < 2λ. As V increases to the range of
2λ < V < 2t , the number of extended states decreases and the
localized states start to dominate the spectra. However, their
spectra still cannot make a full circle. As V further increases
to V > 2t , the spectra of the localized states finally complete
a whole circle, and the winding numbers eventually reach the
quantized value 1.

We can also consider a special case by setting λ = 0. Then
there is only one singularity point for the windings number
curve, as shown in Fig. 7. This is consistent with previous
analysis with λ = 0, where the behavior of mobility edges
also falls into two cases: V < 2t and V > 2t . In Fig. 8 we plot
the spectrum of Eq. (1) with λ = 0 on the complex plane for
V = 1.2 (top) and 4.8 (bottom). The spectra of the V = 4.8
case are almost the same as in the bottom panel of Fig. 6.
However, the spectra of the V = 1.2 case of is far more scat-
tered compared to the middle panel of Fig. 6. Due to λ = 0,
the spectra already contain both real and complex eigenvalues
in the range of V < 2t . Therefore, there are more localized
states in this case, and this gives rise to more scattered spectra.

In summary, we found an intuitive relation between the
mobility edges and the shape of spectra on the complex plane.
If the spectra are roughly confined around the real axes, the
extended states dominate the spectra and there exist sharp
mobility edges. If the spectra are scattered, then the system is
comprised of a mixture of both extended and localized states,
and the mobility edges are blurred. If the spectra almost form a
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FIG. 6. The eigenenergy E of Eq. (1) plotted on the complex
plane. From the top panel to the bottom panel, V = 0.6, 1.2, and
4.8, respectively. The dashed lines represents the mobility edges. The
parameters are the same as the top panel of Fig. 5.

circle around a fixed point, then the localized states dominate
the system and there are no mobility edges.

At the end of this section, we briefly discuss a possi-
ble experimental realization of the model of Eq. (1). The
one-dimensional quasiperiodic model can be realized by a
discrete-time quantum walk of optical pulses [55–58]. The
basic idea is to simulate the one-dimensional lattice by a
sequence of pulses in the time domain. The initial optical
pulse is sent into an interferometer with several unbalanced
arms. Then a single pulse will split into several pulses with
different time delays. The complex amplitudes of each pulse
can be tuned by the electro-optic phase modulator (EOM) and
an acousticooptic amplitude modulator (AOM) located at each
arm. In this way, the amplitudes of these pulses will satisfy a
linear equation, which can be chosen to be the eigenequation
of the Hamiltonian of Eq. (1). If one iterates the above process
many times, then a large sequence of pulses will be created.
Their amplitude will also satisfy the eigenequation of the
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FIG. 7. The winding number for the model of Eq. (1) as a func-
tion of V with t = 2 (top) and t = 1 (bottom), respectively. Other
parameters are λ = 0, α = (

√
5 − 1)/2, v = 0.5, and L = 300. The

dotted lines are V = 2λ and V = 2t .
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FIG. 8. The eigenenergy E of Eq. (1) plotted on the complex
plane. From the top panel to the bottom panel, V = 1.2 and 4.8,
respectively. The dashed lines represents the mobility edges. The
parameters are the same as the top panel of Fig. 7.
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given Hamiltonian. In principle, the slowly varying complex
potential of Eq. (2) can also be realized by some suitable
choices of amplitudes of EOM and AOM. A more detailed
description of this type of experimental setup can also be
found in [31].

V. CONCLUSION

As far as we know, most studies of non-Hermitian
quasiperiodic disordered models focused on the disorders
without slowly varying. In these models, the mobility edges
were usually determined by duality transformations or real-
complex transition of spectra. In contrast, for the slowly
varying disordered non-Hermitian models, there are no du-
ality transformations and their spectra are always complex.
This means the two methods we just mentioned all fail for
slowly varying models. For many slowly varying disordered
non-Hermitian models, there are no clear mobility edges.

In this paper, we present an example of non-Hermitian
model with slowly varying quasiperiodic disorders which can
support well-defined mobility edges. We found that the be-
haviors of mobility edges fall into three classes depending on
the amplitude of disorder potentials. These three classes also
match with the winding number of the complex spectrum of
the system. To understand these behaviors, we found that it
is very useful to approximate the slowly varying model by a
set of periodic models. This method is not only effective in
determining the mobility edges in our example, it can also
suggest a way to construct other slowly varying models to
support mobility edges.
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