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Unearthing the foundational role of anharmonicity in heat transport in glasses
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The time-honored Allen-Feldman theory of heat transport in glasses is generally assumed to predict a finite
value for the thermal conductivity, even if it neglects the anharmonic broadening of vibrational normal modes.
We demonstrate that the harmonic approximation predicts that the bulk lattice thermal conductivity of harmonic
solids inevitably diverges at any temperature, irrespective of configurational disorder, and that its ability to
represent the heat-transport properties observed experimentally in most glasses is implicitly due to finite-size
effects. Our theoretical analysis is thoroughly benchmarked against careful numerical simulations. Our findings
thus reveal that a proper account of anharmonic effects is indispensable to predict a finite value for the bulk
thermal conductivity in any solid material, be it crystalline or glassy.
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I. INTRODUCTION

In a series of highly influential papers spanning the 1990s
[1-5], Allen and Feldman (AF) laid the groundwork for a
harmonic theory of heat transport in glasses, which is still
considered a landmark in the field. In a nutshell, the AF theory
stipulates that disorder alone is able to reduce the heat con-
ductivity from the infinite value it would have in a harmonic
crystal to the finite value observed in a glass, without resorting
to any anharmonic effects [1,3,6].

This claim notwithstanding, it was immediately realized
that harmonic perturbations fulfilling Rayleigh’s law intro-
duce an infrared singularity, which inevitably affects any
harmonic theory of heat transport in glasses [3], resulting
in a divergent bulk thermal conductivity at all temperatures
[3,5,7,8]. Although this observation alone would suffice to
discredit the entire model, the impact of such singularity on
the overall consistency of the AF theory and on the validity
of the computations based on it has long been overlooked. On
the theoretical side, it was proposed that the same quantum-
tunneling effects alleged to determine the low-temperature
plateau in the conductivity-temperature curve [3,9-14] could
also regularize the infrared singularity at high temperatures
[2]. Even admitting that quantum effects could survive at
hundreds of kelvins, this approach has hardly been pursued
in the literature on numerical applications of the AF theory,
where the singularity is customarily regularized without re-
lying on any such tunneling effects. Instead, it is not always
realized that regularization takes advantage of the finite size of
any glass model used in practice, which naturally introduces
a low-frequency cutoff, wmyin ~ %, with ¢ being the sound
velocity and L the linear size of the system. In addition, the
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discretization of the spectrum resulting from this finite size
requires an ad hoc broadening of the vibrational lines to be
dealt with, thus inadvertently enhancing the regularization and
further concealing the low-lying singularity.

In this paper, we delve into the impact of the infrared singu-
larity in the harmonic theory of heat conduction, demonstrat-
ing that a proper account of perturbative anharmonic effects
regularizes the bulk limit of the thermal conductivity of amor-
phous solids at any finite temperature, without the need to rely
on tailored quantum-tunneling effects or any arbitrary cutoff.

Surprisingly, we realize that the divergent contribution
of frequencies below the infrared cutoff becomes relatively
small for most common glasses when anharmonic effects
are properly accounted for. Furthermore, we observe that the
smearing procedure necessary for conducting AF calculations
on finite models acts as an effective boundary-scattering
contribution, capable of additional artificial regularization
of the thermal conductivity. Our results thus shed light onto
the “unreasonable” effectiveness that the AF theory has
demonstrated over three decades, recasting it into a size effect
resulting from the improper use of finite simulation cells,
leading to the neglect of an infinite contribution that, when
correctly calculated, is actually relatively small—with notable
exceptions, as detailed below.

These findings highlight the intricate interplay between
boundary and finite-size effects, on one side, and theoretical
predictions, on the other, thus emphasizing the nuanced nature
of the AF theory’s success. Unearthing the reasons for this
success provides solid ground for advancing the theory and
numerical simulation of heat transport in glassy materials.

The structure of the article is the following. First, we briefly
review the AF theory and its natural extension to account for
perturbative anharmonic effects, namely, the quasiharmonic
Green-Kubo (QHGK) method [15]. In both approaches, the
contribution of low-frequency modes to the heat conductivity
can be described by a Debye model whose parameters can
be estimated from the vibrational dynamical structure factor
(VDSF). Then, using the Debye model, we show that the
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AF prediction for the bulk thermal conductivity diverges at
any temperature. This is both theoretically motivated and
numerically demonstrated by an accurate finite-size scaling
analysis of the thermal conductivity and VDSF of three
paradigmatic glasses, amorphous silicon, silica, and silicon
carbide. We then examine how this divergence is cured by
either boundary scattering or anharmonic effects and discuss
the relevance of our findings to experiments performed on thin
films. Finally, we present our conclusions.

II. THEORY
A. AF and QHGK models

The AF expression for the heat conductivity of a glass in
the harmonic approximation reads [1]

T
K=y ;Cﬂwwﬁa(a)# —wy), 1)

where 1 and v enumerate normal modes, w, is the cor-

responding (angular) frequency, C,, = fiw, a";‘;”) |y the con-

tribution of the wuth normal mode to the isochoric heat

capacity—n(w) = [ek% — 117" being the Bose-Einstein oc-
cupation number, and kg the Boltzmann constant—V is the
volume, and v,,, is a generalized velocity matrix. The velocity
matrix, whose precise definition can be found in Refs. [1,15],
is essentially the first real-space moment of the matrix of
interatomic force constants. It is anti-Hermitean, and, in a
crystal, it can be chosen to be diagonal in the (Bloch) normal-
mode representation, so that its diagonal elements are the
normal-mode group velocities. In a disordered system, where
normal modes are necessarily real, the corresponding diagonal
elements of the velocity matrix vanish, and the heat conduc-
tivity results from the coupling between (quasi) degenerate
states (see below). It must be stressed that Eq. (1) holds only
in the thermodynamic limit, where the vibrational spectrum
is continuous and the double sum actually means a double
integral. Practical calculations on finite models instead re-
quire smearing the Dirac delta to a peaked function such as
a Lorentzian, thus turning Eq. (1) to [1,2]
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where 7 is the broadening width of the smeared Dirac delta.
The value of 5 is customarily chosen large enough to en-
compass several normal modes within the Lorentzian, while
still remaining small enough to preserve the characteristics
of a peaked function. The broadening of the delta function
determines the extent to which pairs of quasi-degenerate states
contribute to the heat conductivity, as strict degeneracy holds
a zero probability in any finite model of a disordered system.
As it will turn out, and at variance with what is commonly
assumed, 7 plays a crucial role in determining the value of the
thermal conductivity in the AF model. In particular, its rele-
vance becomes apparent for low-frequency vibrations within
the long-wavelength regime, where normal modes gradually
approach the behavior of (plane) sound waves.

In recent years, the AF approach has been generalized to
incorporate a perturbative treatment of anharmonic effects,
resulting in the QHGK theory [15,16] or equivalently the

Wigner transport equation [17-19]. The QHGK expression for
the thermal conductivity of an isotropic material reads
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where y,, is the anharmonic linewidth of the pth normal mode
and
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is a generalized two-mode heat capacity. When o, = w,,
Eq. (4) reduces to the modal specific heat C,, appearing in
Egs. (1) and (2). The QHGK thermal conductivity, Eq. (3),
applies to crystalline and amorphous solids alike. For crystals,
it reduces to the results of the Boltzmann transport equation in
the relaxation-time approximation, supplemented with inter-
band effects; for glasses in the harmonic limit, the QHGK
approximation reduces to the AF model [15]. Again, in prac-
tical calculations on finite systems, the AF model is restored
bringing y,, from its temperature- and mode-dependent value
to a temperature- and mode-independent value.

B. Bulk limit of thermal conductivity

The use of a constant linewidth has minimal impact
on intermediate-frequency vibrations, dubbed diffusons since
they propagate diffusively, and high-frequency ones, called
locons for their localization in real space [4]. The reason
for this is that the anharmonic lifetimes of these modes are
usually small and that the density of states is large and slowly
varying. As a consequence, in the AF model, the diffuson
contribution to the thermal conductivity is weakly dependent
on 7, reaching convergence once the smearing is of the order
of the average frequency spacing of the normal mode. On
the contrary, low-frequency vibrations, known as propagons
since they propagate like sound waves [4], display a dis-
tinct behavior. For these excitations, the vibrational density
of states (VDOS) decreases quadratically as the frequency
approaches zero and the anharmonic lifetimes diverge due
to the lack of vibrational decay channels. Consequently, the
finite, constant linewidth introduced by smearing the Dirac
delta function could overshadow the anharmonic scattering
and possibly result in a nonphysical contribution to the heat
conductivity.

To address the propagon contribution to the heat conductiv-
ity, it is expedient to define the vibrational dynamical structure
factor. As mentioned above, propagons, diffusons, and locons
differ by the degree of localization they feature. This can be
observed in the VDSF that, for a harmonic system, is defined
as [5]

Sp(@. Q)= 8w —»,)|(v|Q, b)], )

where (v|Q, b) denotes the projection of the v normal mode
over a sound (plane) wave vibration of wave vector Q
and polarization b (b = L, T for longitudinal and transverse
branches, respectively) [20]. Anharmonic effects in the VDSF
can be accounted for by smearing the delta function in Eq. (5)
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to a Lorentzian function
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The low-frequency, small wave vector, portion of each
branch of the VDSF features an almost linear dispersion
typical of acoustic waves wg;, = ¢,Q, where ¢ 7 are the
longitudinal/transverse speeds of sound [20]. In other words,
S»(Q, w) is a peaked function centered at ¢, Q which can be
faithfully represented by a single Lorentzian profile

a,(Q) I',(Q)
T (0 — Q)+ TH(Q)?’

allowing one to evaluate the speed of sound as well as the
wave vector dependence of the sound damping coefficients
I'y(Q), accounting for both disorder and anharmonic effects
on the same footing. The Q-dependent function «,(Q) is a
global prefactor that scales the Lorentzian. For any given
polarization, in an isotropic medium, the damping coefficient
can only depend on the magnitude of the wave vector, yielding
I'y(Q). Propagons are identified as those low-frequency/long-
wavelength normal modes that contribute to the VDSF in
the linear-dispersion regime. The increasing broadening of
the dispersion identifies a cutoff frequency for propagons wp,
often referred to as the Ioffe-Regel limit [4,21]. According to
Eq. (7), below this limit vibrational modes can be approxi-
mately described by damped plane waves, characterized by
the group velocities ¢, and decay times 7,(Q) = [2I,(Q)] ™.
Consequently, the propagon contribution to the heat conduc-
tivity can be cast into the form [20]

Sp(w, Q) ~

(N

cpQ<wp

1
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where g, is the degeneracy of the propagon branch g, =1
and gr = 2. In the bulk limit, when the size of the system
is brought to infinity, the discrete sum over states becomes
an integral through the definition of a density of states; the
contribution of the propagon to the thermal conductivity thus
takes a form reminiscent of the kinetic theory of gases [20]
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unit volume. qu’iation (9), which applies to both crystals and
glasses, is the infinite size limit of the propagon contribution
to both Eqgs. (3) and (1), the difference lying in whether or
not I'y(w/cp) includes anharmonic effects. Formulas such as
Eq. (9), where hydrodynamic arguments are used to extrap-
olate QHGK results to the infinite-size limit [20], will be
referred to as hydrodynamic QHGK formulas.

where pp = are the L/T Debye’s density of states per

C. Singularity of the AF model and the role of anharmonicity

Under general assumptions [22,23], for low-enough fre-
quencies, one can write the linewidth as [20,24,25]

Ip(w/cp) =~ Apw® + By, (10)

In the harmonic approximation, A, = 0 and the leading order
in the frequency dependence of the sound damping coefficient
is quartic due to incoherent Rayleigh scattering from elastic
fluctuations of the medium [22,26]. This behavior, which is
confirmed by experiments [27], can be understood through
random media theory on a continuous model [28,29], or from
a microscopic perspective via harmonic perturbation theory,
such as in the case of crystals with mass disorder [30,31]
or random spring constants [26]. When A, = 0 in Eq. (9),
one easily sees that the contribution of the propagons to the
heat conductivity diverges at all temperatures. On the other
hand, the inclusion of anharmonic contributions ensures a
quadratic dependence of I', on frequency, resulting in a finite
thermal conductivity whenever A, # 0 [20,24]. We conclude
that disorder alone is insufficient to guarantee a finite bulk
thermal conductivity in glasses.

How come practical calculations employing the AF model
yield finite values of « which compare fairly well with ex-
perimental results? The answer ultimately hinges on the fact
that the calculations are necessarily performed on finite glass
models. This has two main consequences. The first is that
the finite size, L, naturally introduces an infrared cutoff to
Kp, Wmin ~ 27wc/L, which makes it always finite. In partic-
ular, the infrared contribution to kp, which is divergent in
the harmonic approximation, turns out to be typically small
in most cases, when anharmonic effects are adequately con-
sidered, as detailed below. The second consequence is that
the finite number of normal modes requires the smearing of
their individual contributions to Eq. (1). This leads to Eq. (2),
where anharmonic linewidths are substituted with a (rather
unphysical) mode-independent broadening. Therefore, the net
effect of a finite calculation is that a contribution to x—the
one associated with frequencies below wp,—is completely
neglected, while all that remains is affected by the choice of
the constant damping due to the broadening width n. Cru-
cially, this broadening plays a significant role even in the bulk
limit. In fact, the VDSF linewidth is the sum of the harmonic
contribution, proportional to w*, and the constant broadening
due to the smearing [20]. Thus, the smearing width enters the
Debye expression of the harmonic thermal conductivity as

&b or w?
xpzzﬁf C(a))mdw. (11)
b

Wmin

The integral in Eq. (11) converges for any finite value of n
and/or wniy, and both are artificial byproducts of finite-size
calculations. The true bulk limit is restored in the wyi, — 0,
n — 0 limit. Figure 1 shows the harmonic (solid lines) and
anharmonic (dashed lines) thermal conductivity of a typical
amorphous solid as a function of wpi, and 1. The propagon
contribution is obtained from Eqgs. (11) (harmonic case) and
(9) with T" given by Eq. (10) (anharmonic). The diffuson
contribution kp (Which does not depend on wy,,) is essentially
independent of 5, and thus adds the same constant shift to
each line. The left panel of Fig. 1 shows « as a function of
the infrared cutoff for different values of the smearing width.
When 1 = 0, k diverges in the wpi, — 0 limit. In the opposite
way, the right panel shows « as a function of the smearing
width for different values of the infrared cutoff. Again, when
®min = 0, k diverges in the limit n — 0.
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FIG. 1. Heat conductivity of glasses in the harmonic approxi-
mation [see Eq. (11), numerical values appropriate for aSi]. Solid
lines in color are computed in the harmonic approximation, while
the black, dashed lines refer to calculations also accounting for an-
harmonic effects. Left panel: « as a function of the infrared cutoff for
different values of the smearing width. Right panel: « as a function
of the smearing width for different values of the infrared cutoff (note
the logarithmic scale in the x-axis). Frequencies are reported in units
of the propagon cutoff frequency, wp [20]. The thermal conductivity
is reported in units of the bulk thermal conductivity in presence of
anharmonic effects, K.

We must now stress that most of the experimental litera-
ture on heat transport in glasses from the nineties concerns
micrometer-thick films [32] rather than samples of macro-
scopic size. Formally, boundary effects such as those involved
in thin-film experiments would enter the expression of the
thermal conductivity the same way as the AF smearing width
in Eq. (11). For a thin-film sample, the thermal conductivity
can in fact be described by an equation similar to Eq. (11),
where 7 is replaced a constant boundary-scattering contribu-
tion to the linewidth, of the form ngs ~ c¢/d, d being the film
thickness [8,32-34]. As a consequence, the bulk limit of the
AF model with fixed n yields the same thermal conductivity
of a thin film rather than that of an infinite system. In the
harmonic approximation, the first remains finite, while the
second diverges. This might have unintentionally contributed
to the misconception that the heat conductivity of bulk glasses
can be fully explained in terms of disorder effects alone, ne-
glecting anharmonic interactions. These interactions dampen
low-frequency vibrations and regularize the heat conductivity
at all finite temperatures. In many cases, this regularization
renders the infrared contribution to « almost negligible in the
bulk limit compared to that of diffusons. Essentially, anhar-
monic interactions substitute a divergent quantity (the bulk
thermal conductivity of propagons in the harmonic approx-
imation) with a finite quantity that can be mimicked by a
finite-size effect in calculations on finite systems. In con-
clusion, the presence of anharmonic interactions is vital for
regularizing the behavior of « in a macroscopic system, even
in the case of disordered materials [20].

III. NUMERICAL EXPERIMENTS

To substantiate our arguments, we performed several
numerical experiments on three glasses featuring different
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FIG. 2. Sound damping coefficients in the harmonic approxima-
tion for aSi, aSiC, and aSiO,. The estimate is obtained by fitting
the harmonic vibrational dynamical structure factor, Eq. (5), with its
soundwave form, Eq. (7), and expressing the linewidth as a function
of w, as in Eq. (10). The sizes of the samples are, respectively, 13 824,
97336, and 139 968 atoms. The estimated errors are smaller than the
size of the symbols. The dashed and continuous gray lines indicate,
respectively, the w® and w* scaling. Note the logarithmic scale on
both axes.

convergence properties to the bulk limit [20]: amorphous sili-
con (aSi), silica (aSiO;), and silicon carbide (aSiC). Samples
were generated through a melt-quench procedure using the
LAMMPS code [35]. For postprocessing, we primarily utilized
the k ALDo code [36] and implemented Haydock’s iterative
algorithm to compute the VDSF. Technical details are re-
ported on Appendixes A and B.

A. Low-frequency behavior of the sound damping coefficients

The quartic frequency dependence of the sound damping
coefficients in harmonic glasses can be understood
perturbatively in terms of the scattering of acoustic waves
in a homogeneous medium with small, random, independent
local fluctuations of the elastic constants [26]. In Fig. 2 we
report the dependence of the attenuation coefficients in the
harmonic approximation on frequency for the three materials
considered in this work. Both aSiC and aSiO, exhibit

an w* — w? crossover, wyop, respectively, around 2 and
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1 THz (wxo ~ 12 and wyxo ~ 6radps~!), in agreement with
theoretical models which explain it in terms of the mixing
between longitudinal and transverse modes due to the
broadening of the linear dispersion induced by disorder [28].
This behavior is also in agreement with experiments, which
find a first—temperature-dependent—crossover at very low
frequency between an w? regime, determined by anharmonic
effects, and the w* regime where disorder dominates [37],
followed a by second—temperature-independent—crossover
from o* to @? due to the longitudinal-transverse mixing
mentioned above [27]. No such crossover is observed in
aSi. As the minimum frequency compatible with a given
finite glass models scales as the inverse size, rather large
simulation cells are required to discriminate the crossover
and evaluate the corresponding coefficients. For materials
such as aSiO,, where the crossover occurs at relatively low
frequencies, it is essential to have systems with several tens
of thousands of atoms. In practice, standard lattice-dynamical
techniques based on matrix diagonalization are unsuitable
to deal with such large systems, and the VDSF can be best
computed directly in these cases using Haydock’s recursion
method [38,39] based on the Lanczos algorithm [40] (see
Appendix B). We are thus able to compute the VDSF for
systems comprising up to a hundred-thousand atoms, an order
of magnitude larger than those computed in our earlier work
employing direct diagonalization [20].

It must be noted that the existence of the w* — w
crossover may yield misleading results in the computation of
the thermal conductivity. This issue is particularly relevant for
aSi0,, a material often depicted as highly disordered, whose
heat conductivity would have very small finite-size effects,
and reaching a well-converged value with models of a few
thousand atoms [8]. Actually, since its crossover frequency
is wxp ~ 7.5rad ps’1 for both polarizations [27], to evaluate
the bulk limit of the thermal conductivity of this system, one
would need to employ samples whose linear size exceeds the
wavelength of the corresponding sound wave. The wavelength
for the longitudinal sound wave 1%, is given by Z‘%’L ~ 60 A,

2

while the wavelength for the transverse sound wave A%, is
given by 222 ~ 35 A. Thus, the sample size should be greater

2wer

than )»}L(O, which means it should contain 214000 atoms.
Therefore, if one were to study the AF thermal conductivity
of a glass with a finite model of linear size smaller than A%,
one would only sample the propagon contribution above the
crossover, thus squarely missing the quartic low-frequency
dependence of the sound damping coefficient that determines
the divergence of the heat conductivity in the harmonic
approximation.

B. AF thermal conductivity

To demonstrate how the w* dependence of the harmonic
sound damping coefficients affects the bulk limit of the AF
heat conductivity, we computed the propagon contribution to
the AF conductivity in aSi, aSiO,, and aSiC over a range of
values of the smearing parameter n and for finite models of
progressively larger sizes. We compared these results with the
analytical model provided by Eq. (11) kp(T, n) whose param-
eters are estimated from the harmonic VDSFs. The results for

Too0.
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0.00 0000000888 ') 1 (4 ] 9

0.0 0.5 1.0
AF linewidth n (radps™1)

FIG. 3. Propagon AF thermal conductivity of aSi, aSiC, and
aSi0, samples with different number of atoms (N), as a function
of the AF linewidth, n. Calculations are made at a temperature of
500 K. The black, solid, line is the infinite-size analytical result given
by Eq. (11). The cutoff angular frequency for propagons is set to
wp/2n = 3THz, wp/2wr =3 THz, and wp/27w = 1.2 THz, for the
three materials, respectively.

aSi at 500 K are shown in the upper panel of Fig. 3. As the size
of the model increases, the AF data approach the analytical
benchmark. The convergence is achieved at larger sizes as the
value of n decreases. In fact, calculations on a finite system
with small n are meaningless: when the average frequency
spacing of propagons is larger than the AF smearing, the
Lorentzian functions in Eq. (2) become so sharp that the
corresponding effective VDOS features unphysical gaps that
result in a spurious reduction of the thermal conductivity.

From the central and lower panels of Fig. 3 similar con-
clusions can be drawn for aSiC and aSiO,, respectively.
Unlike aSi, both materials present the aforementioned w* —
w? crossover around wyp = 12radps™' and 6radps~!, re-
spectively. This requires a different functional form for the
harmonic linewidth, able to capture the crossover, such as the
one proposed in Ref. [27]

I'(0) = Go*[1 + (wé’(o/a))zg]_l/s, (12)

where Cj, is a constant, a))b(o is the polarization-dependent
crossover angular frequency, and § = 1.5 determines the
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FIG. 4. Size-dependent thermal conductivity of aSi, aSiC, and
aSiO, at 100K (blue) and 500K (orange). Calculations employ
Eq. (11) with wy;,, = 0, and boundary scattering according to the
systems’ size, for propagons, while the diffuson contribution is size
independent. Solid lines shows the harmonic results, while dashed
line include also anharmonic linewidths. In the insets, we display
only the propagon thermal conductivity in the anharmonic case. Note
the logarithmic scale on both axes.

sharpness of the transition. We then compared the AF data
with the analytical model provided by Eq. (9) with the
linewidth computed with Eq. (12). Like for aSi, when 7 is
large, for both aSiC and aSiO, the AF results converge in
size to the analytical ones, and the convergence is reached at
larger sizes as n diminishes. In the n — 0 limit, the analytical
model diverges due to the Rayleigh (oc w*) scattering term in
the harmonic linewidth.

C. Discussion

As discussed above, the AF method is commonly acknowl-
edged to effectively account for experimental measurements
of the heat conductivity of amorphous solids. To gain a deeper
insight into this effectiveness, in Fig. 4 we analyze the de-
pendence of the extrapolated [Eq. (11), wpi, = 0] thermal
conductivity of aSi, aSiC, and aSiO, at 100K and 500 K on
the thickness of the sample d. The boundary scattering adds
to the linewidth of each polarization a term equal to ngs =
cp/d [33]. The insets show the propagon contribution to the
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CLSIOQ @ 0.015,[41] MW 0.18, [42]
21 V 0.045, [42] Y% bulk, [42]
]

<« 0.092, [42

kar (N = 3000)

. d (pm), [Ref.]
asi @ 0.13, [32] 8 80, [45]
< 0.52, [43] kaF (N = 4096)
H 2.2 [44]

0 100 200 300
Temperature T (K)

FIG. 5. Thermal conductivity of aSiO, and aSi as functions of
temperature. Markers are experimental data taken from Refs. [41,42]
(aSi0,) and Refs. [32,43-45] (aSi). The solid lines, color-matched
to the markers, represent hydrodynamic QHGK results for films
of the same thickness. Light-green, dotted lines are standard AF
results on a finite system of the size indicated in the legend, and
obtained with a smearing parameter 1 set to the average angular
frequency spacing. Gray lines correspond to bulk AF results with «p
computed according to Eq. (11), where @i, = 0 and 7 ranges from
0.1rad ps~' (bottommost curve) to 10~ rad ps~! (topmost curve) on
a logarithmic scale.

thermal conductivity «p, where third-order anharmonic effects
are computed with the Fermi’s Golden Rule and included
through the Matthiessen rule [33]. In the harmonic approxi-
mation, the thermal conductivity diverges as the film thickness
increases, as indicated by the solid lines. However, when
anharmonicity is accounted for, the thermal conductivity
converges to its bulk value at a finite thickness. The fig-
ure demonstrates that in materials such as aSiO, and aSiC,
where propagons contribute marginally to heat transport com-
pared to diffusons, the bulk limit is reached at nanometer
scales. In our aSi model, where propagons play a more sig-
nificant role, the bulk limit is achieved at much larger sizes,
around a 100 micrometers. It is worth noting that, at the typ-
ical thin-film sizes used experimentally, the harmonic value
of « is not significantly different from the anharmonic one.
This suggests that a harmonic model on a finite system can
provide a reasonable estimate of the thermal conductivity of
a thin film even when extrapolated to wpi, — 0, as long as
boundary scattering is appropriately accounted for.

Figure 5 illustrates the temperature dependence of « for
aSiO, and aSi. We compare experimental measurements
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from the literature with our hydrodynamic QHGK results
and AF calculations conducted on finite samples. The anhar-
monic linewidths are computed on a range of temperatures
and extrapolated to get a continuous line, as described in
Refs. [46,47]. These linewidths are then combined with the
total linewidth using the Matthiessen rule [33]. For aSiO,,
the QHGK results match the bulk experimental measurement
[42]. AF calculations, performed on a sample comprising
3000 atoms, also shows good agreement with both bulk-
QHGK results and experimental data. This indicates that,
in the case of aSiO,, diffusons completely dominate the
thermal conductivity. Therefore, similar results are obtained
neglecting contributions below wp;, (as done in finite AF
calculations) as well as considering the anharmonic damping
of propagons (as in bulk QHGK calculations). However, a
direct extrapolation of the AF results regularized with a finite
n yields values of « ranging from «p to infinity, depending on
the value of the smearing parameter.

In the case of aSi, where propagons are more important,
the intriguing effectiveness of AF calculations in matching
experimental data is further questioned. For instance, a cal-
culation using 4096 atoms closely agrees with measurements
on a 0.52-um-thick film [43], seemingly validating the en-
tire procedure. Again, what is actually happening is that the
(diverging) contribution to « from 0 to wp;, is being set to
zero rather than to the (finite and small) value it would have
when accounting for anharmonicity. For aSi, the missing con-
tribution is not as negligible as it is for aSiO,, resulting in a
pronounced difference between the QHGK results and the AF
calculation.

The temperature dependence of the QHGK heat con-
ductivity results from two competing contributions. One
is that of diffusons, which is exponentially suppressed
at low temperatures—due to the Bose-Einstein occupation
function—and saturates to a constant at higher temperatures.
The other is the one of propagons, which diverges as T — 0
for essentially the same reasons why it does so in crystals
[20]: first, the propagation of sound waves with wavelengths
much larger than the atomic correlation length is relatively
unaffected by disorder at leading order in w, and, second,
the temperature dependence of A, in Eq. (10) causes the
integral in Eq. (9) to diverge for vanishing temperatures
[46,47]. The concavity of «(T) is thus determined by the
relative magnitudes of the two contributions [20]. In materials
where propagons contribute marginally to the heat conductiv-
ity (such as aSiO;, upper panel of Fig. 5), the divergence of the
bulk value of xp(T) becomes noticeable primarily at very low
temperatures. The change in concavity is thus determined by
the onset of diffusons. Conversely, when propagons dominate
the thermal conductivity, the concavity might be entirely de-
termined by «p, such as in the case of our model of aSi (purple
curve in the lower panel of Fig. 5). At low temperatures, in
thin films the divergence is suppressed by boundary scattering
effects, as illustrated in Fig. 5. In bulk systems, where no
boundary scattering exists, the low-temperature divergence is
suppressed by quantum tunneling between quasidegenerate
minima in the glass energy landscape, which leads to the
plateau commonly observed at a few tens of kelvins in most
glasses [9-14].

IV. CONCLUSION

The main result of this paper is the theoretical and numeri-
cal proof that disorder effects alone are not sufficient to bring
the heat conductivity of a material from the infinite value it
has in a harmonic crystal to the finite value observed in real
glasses. In the harmonic approximation, the low-frequency
portion of the vibrational spectrum yields an infinite contri-
bution to the thermal conductivity reminiscent of its behavior
in crystals: in the long-wavelength/low-frequency regime,
sound waves propagate in glasses essentially the same way
they do in crystals, to the relevant order in frequency. In
fact, the lack of sound damping in harmonic crystals and its
rapid decay in harmonic glasses (~w™) both fail to effectively
regularize the divergent conductivity. By contrast, a proper
account of anharmonic effects makes the bulk thermal con-
ductivity of glasses finite at any finite temperature. Still, with
anharmonicity alone, the thermal conductivity would diverge
at zero temperature. In practice, at extremely low temperatures
the residual divergence is suppressed by quantum-tunneling
effects [9], leading to the well-known thermal conductivity
plateau at a few tens of kelvins. This plateau is believed to
be due to the tunneling between quasidegenerate low-energy
minima in the glass energy landscape, responsible for the
residual entropy in glasses [48—50]. As our treatment is lim-
ited to the vibrational properties within a single such energy
minimum, it obviously fails to address the low-temperature
plateau. The description of these tunneling effects from first
principles thus remains a major challenge in the physics of
glasses to be addressed in the future. It is noteworthy that, in
materials where the dominant influence of propagons on heat
transport persists at temperatures higher than those at which
quantum tunneling suppresses them, our analysis indicates
that the bulk thermal conductivity should display a maxi-
mum at low temperature, which could potentially be detected
experimentally.

The data and scripts that support the plots and relevant
results within this paper are available on the Materials Cloud
platform [51,52].

The codes that support the relevant results within this paper
are available to the respective developers. Analysis scripts are
available on GitHub [53] and on the Materials Cloud platform
[52].
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APPENDIX A: COMPUTATIONAL DETAILS

The glass samples are generated by a melt-and-quench pro-
cedure. Initially, a crystalline conventional cell is replicated
£ times along each Cartesian direction. The trajectories are
then generated in different thermodynamic ensembles (see
below), using the velocity-Verlet algorithm implemented in
the LAMMPS code [35]. A time step of 1/1/0.5 fs is used
for aSiO,/aSiC/aSi. To ensure statistical robustness, all of
our results are averaged over 4/4/10 independent samples.
These samples are obtained by repeating the melt-and-quench
procedure multiple times, each with a different random ini-
tialization. After the equilibration, the atomic configurations
are optimized so as to make atomic forces smaller than a
preassigned threshold of 10710 eV /A.

Normal modes and thermal conductivities are computed
with the k ALDo code [36] using second- and third-order
interatomic force constants obtained from LAMMPS.

1. aSiO,

aSi0O, is modeled with a Vashishta force field [54]. The
glass was modeled starting from the cubic B-cristobalite
conventional 24-atom unit cell with a mass density of
2.20 gem 3 replicated ¢ = 18 times along each Cartesian di-
rection, comprising 2140000 atoms in the simulation box.
The crystal is melted at 7000 K and then quenched at 500 K
in 10ns [55,56]. The system is then thermalized at 500 K
for 400 ps and then 100ps in the NVE ensemble. The fi-
nal average density of the aSiO, samples thus obtained is
2.408 gcm™3 with a standard deviation across different sam-
ples of 0.002 gcm 3.

2. aSiC

aSiC is also modeled with a Vashishta force field [57,58].
The starting configuration is a cubic crystalline zinc-blend
structure, with eight atoms in the unit cell, and a mass density
of 3.22 gcm ™ repeated 23 times along each Cartesian direc-
tion, thus comprising ~97 000 atoms in the simulation cell.
Following the procedure described in Ref. [57], the crystal is
initially brought from 300K to 4000 K in the NpT ensemble
at constant null pressure, then quenched at 500 K in 400 ps,
and finally equilibrated in the NV E ensemble for 80 ps. The
average density of aSiC is 2.976 g cm ™~ with a standard devi-

ation across different samples of 0.002 gcm ™.

T

oo [Sp(@. Q)+ S)(~, Q)] = lim Im

3. aSi

aSi is modeled with the Tersoff force field [59]. The start-
ing configuration is a diamond structure, with eight atoms in
the unit cell, with a mass density of 2.31 gcm™ repeated
12 times along each Cartesian direction, corresponding to
~14 000 atoms in the simulation cell. At variance with aSiO,
and aSiC, in the case of aSi, this moderate size already allows
one to observe the w* scaling of the harmonic linewidth.
The crystal is initially melted at 6000 K, then quenched at
300K in 22ns, and equilibrated in the NVE ensemble for
10ns [60]. This prescription ensures the resulting structures
to be compatible with a continuous random network with
coordination number 4 [15]. The average mass density of the
aSi is 2.275 gcm ™2 with a standard deviation across samples
of 0.003 gcm™3.

APPENDIX B: HAYDOCKS RECURSION METHOD

The direct computation of the harmonic VDSF is unfea-
sible for systems of tens of thousands of atoms because it
requires the diagonalization of the entire dynamical matrix,
a procedure that scales as the cube of the number of atoms.
Haydock’s recursion method is an iterative procedure, based
on the Lanczos orthogonalization algorithm, that allows one to
estimate the VDSF as the imaginary part of a diagonal element
of the vibrational Green’s function of the system [38,39].
Using this procedure, we were able to address several systems
of tens of thousands of atoms, where the quartic scaling of the
harmonic linewidth is appreciable, as reported in Fig. 2.

We want to compute the diagonal matrix elements of the
vibrational Green’s function of the form

lim Tm(Q, bl ((w + ie)> —K)7'Q, b)

= ﬁ[sg(w, Q) + S)(—w, Q)], (BI)
where
K =M12KM~1/2, (B2)

K is the matrix of interatomic force constants (i.e., the Hessian
of the energy with respect to atomic displacements), and M is
the diagonal, positive-definite, matrix of the atomic mass dis-
tribution. In a system of N atoms, |Q, b) is a 3N-dimensional
vector whose projection onto the displacement of /th atomic
site in the orth Cartesian direction is

1 .

(I, allQ, b) = —=€2(Q)e' ™, (B3)
N

where €?(Q) is the polarization vector, and Q = ZT”(n, m, 1),

with (n,m, 1) € Z3, is a wave vector compatible with the

enforced periodic boundary conditions. The harmonic VDSF

is then computed by a continued fraction expansion

1

(w+i€)? —ag —

(B4)

b ’

2 N2 b%
2—q— 2
(o+ie)—a;—-
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FIG. 6. Sound damping coefficients as estimated in the harmonic
approximation for aSiC obtained by fitting the harmonic vibrational
dynamical structure factor, Eq. (5), computed via Haydock’s method
(orange dots) and via direct diagonalization (cyan crosses). Both
results are averaged over 4 samples of 13 824 atoms, and the error
bars represent standard deviations. Upper panel, transverse modes;
lower panel, longitudinal modes.

where the coefficients {ag, a, ...} and {by, by, ...} are eval-
uated by the recursion Lanczos chain
1§-1) =0,
150) = 1Q. b),
byl&n) = (K = ap-1)|Ex-1) = bai11€0-2),
an = (K€,
by = (&KI[&,-1). (B5)

This procedure drastically reduces the computational cost
of the evaluation of the harmonic VDSF, going from a
O((BN)?) scaling of the exact diagonalization algorithm to
the O[k(3N)?] scaling, where N is the number of atoms in
the simulation cell and k is the number of steps of the Lanczos
chain. Moreover, since the matrix of the interatomic force con-
stants is sparse, the numerical burden of Haydock’s algorithm
can be further reduced to a complexity O(kN). The procedure
proves to be numerically robust, in spite of the well-known in-
stabilities of the Lanczos tridiagonalization scheme [61], and
approximately 200 recursion steps are typically sufficient to
estimate the sound damping coefficients, which we increased
up 600 steps to carefully test the convergence. To validate
the iterative algorithm we compared the harmonic attenua-
tion coefficients fitted from the VDSF computed via direct
diagonalization of the dynamical matrix and via Haydock’s
method as in Eq. (B4). In Fig. 6 we display the sound damping
coefficients computed on a model of aSiC of 13 824 atoms,
showing good agreement between the two methods.
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