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We report an investigation of the effect of substitution of Y for Tm in Tm1−xYxVO4 via low-temperature heat
capacity measurements, with the yttrium content x varying from 0 to 0.997. Because the Tm ions support a local
quadrupolar (nematic) moment, they act as reporters of the local strain state in the material, with the splitting
of the ion’s non-Kramers crystal field ground state proportional to the quadrature sum of the in-plane tetragonal
symmetry-breaking transverse and longitudinal strains experienced by each ion individually. Analysis of the heat
capacity, therefore, provides detailed insights into the distribution of local strains that arise as a consequence of
the chemical substitution. These local strains suppress long-range quadrupole order for x > 0.22, and result
in a broad Schottky-like feature for higher concentrations. Heat capacity data are compared to expectations
for a distribution of uncorrelated (random) strains. For dilute Tm concentrations, the heat capacity cannot be
accounted for by randomly distributed strains, demonstrating the presence of significant strain correlations
between sites. For intermediate Tm concentrations, these correlations must still exist, but the data cannot be
distinguished from that which would be obtained from a two-dimensional Gaussian distribution. The crossover
between these limits is discussed in terms of the interplay of key lengthscales in the substituted material. The
central result of this work, namely that local strains arising from chemical substitution are not uncorrelated, has
implications for the range of validity of theoretical models based on random effective fields that are used to
describe such chemically substituted materials, particularly when electronic nematic correlations are present.
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I. INTRODUCTION

Phase diagrams of a wide variety of strongly correlated
electron systems can be traversed via chemical substitution.
The tuning effect of different dopants in different materials
can be attributed to a variety of physical effects. However, a
pervasive and inescapable effect of such substitution must al-
ways be the associated inhomogeneous internal strains that are
induced by incorporating inequivalent atoms to a crystal lat-
tice. These local strains can have a profound effect on various
types of emergent electronic order and phase transitions. Here
we focus specifically on the case of electronic nematic order,
whose bilinear coupling with strains of the same symmetry
leads to a particularly strong interplay. The bilinear coupling
means that strain plays the role of an effective conjugate
field for the nematic order parameter, and hence the inho-
mogeneous strains which arise from chemical substitution
have been conventionally understood as a random field [1]
both experimentally [2–4] and theoretically [5–10]. Despite
this appealing perspective, strains in solids relax over long
distances, implying a significant correlation between adjacent
sites [11,12]. Similarly, the elastic response of solids (de-
scribed by the elastic stiffness tensor) means that local strains
of different symmetry even on a specific site are not neces-
sarily uncorrelated. These simple perspectives imply that the
degree to which a description of the effects of inhomogeneous
strains arising from chemical substitution as a truly random

effect should be examined in some detail. Indeed, a characteri-
zation of “randomness” associated with the long-range effects
of local strains in a real material system, and the applicability
of the random field assumption, respectively, remain an open
challenge and an open question.

In this work, we attempt to experimentally address the
above issues in a model system exhibiting ferroquadrupolar
order, which may be viewed as a simple local-moment realiza-
tion of Ising nematic order [13,14]. The subject of this study,
TmVO4, is an insulator with a tetragonal zircon-type RVO4

crystal structure. The crystal electric field (CEF) ground state
of the Tm3+ ions is a non-Kramers doublet, with the first
excited CEF state well above the doublet in energy (77 K,
54 cm−1) [15], rendering TmVO4 a good approximation to an
ideal pseudospin- 1

2 system at low temperature [16].
TmVO4 is known to host considerable quadrupole-lattice

interactions, resulting in complete softening of the c66 elas-
tic modulus and a continuous cooperative Jahn-Teller phase
transition at TQ = 2.2 K [17]. The phase transition is found
to be mean-field-like due to the long-range strain interac-
tions [14,18]. The Tm ions in the low-temperature phase
develop a spontaneous local quadrupole moment (splitting the
non-Kramers Jahn-Teller-active CEF ground state) while the
lattice develops a uniform strain εxy of the same symmetry.
We introduce disorder to TmVO4 by substituting Tm with Y.
Aside from the overall dilution effect of the magnetic species
and quadrupole moments, the substitution of Y introduces
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FIG. 1. Crystal structure of the hypothetical material
Y1Tm3V4O16 obtained via density functional theory (DFT)
calculations, with Tm (Y) atoms represented by purple (yellow)
spheres. VO4 units are shown as gray coordination polyhedra, with
O atoms as green spheres. The inset shows a magnified view of a
distorted TmO8 polyhedron overlaid with that of pristine TmVO4

(O atoms in the pristine structure are shown as gray spheres) to
illustrate the distortions induced by the Y substitution The atomic
displacements of the O sites in the inset are magnified 40 times for
clarity. Ionic radii of the Tm3+ and Y3+ ions are indicated.

local strains that can couple to the ferroquadrupolar (Ising-
nematic) order parameter. To illustrate the anticipated effect
of substitution, Fig. 1 shows a schematic of the local distorted
crystal field environments of the Tm3+ ion obtained from
density functional theory (DFT) calculations of a hypothetical
Y1Tm3V4O16 ordered supercell (investigated for computa-
tional simplicity). Inspection of the figure reveals how Y sites
distort nearby TmO8 clusters, resulting in a change of the
local crystal field environment for the Tm3+ ions relative
to the case of TmVO4. While substitution in Tm1−xYxVO4

does not result in an ordered superlattice, the effect of
chemical substitution in terms of inducing local strains on
nearby Tm ions will be comparable. It is the effect of these
substitution-induced strains that we investigate in the present
study.

Noting that the non-Kramers doublet can be split by both
εx2−y2 and εxy strains (which transform as the B1g and B2g

irreducible representations of the tetragonal point group D4h,
respectively) [13], these two independent symmetry channels
naturally span a two-dimensional (2D) space. According to
the central limit theorem, uncorrelated random strains in the
pseudospin space follow a Gaussian distribution, with their
means centered at zero [Fig. 2(a)]. The total splitting of
the non-Kramers doublet � is determined by the quadra-
ture sum of the strain field in the two-symmetry channels√

(η1εx2−y2 )2 + (η2εxy)2, where η1 and η2 are nematoelastic
coupling strengths [Fig. 2(b)]. As a result, the probability
distribution of � can be obtained from joint probability den-
sity functions (PDFs) in both dimensions [Fig. 2(c)]. We will
return to the exact functional form of the distribution in the
case of uncorrelated local strains (2D-Gaussian) below.

FIG. 2. (a) Schematic of the two-dimensional strain distribution
ρ as a function of strain with B1g [εB1g = εx2−y2 = 1

2 (εxx − εyy )] and
B2g (εB2g = εxy) symmetry, expected from the central limit theorem
for uncorrelated strains wherein each of them has a functional form
of a Gaussian distribution centered at zero. (b) The magnitude of the
local strain-induced energy gap, �, measured in arbitrary units, as the
quadrature sum of the induced gap in both εB1g and εB2g channels. The
color scale follows Eq. (5). (c) The resulting probability distribution
ρ(�) from the double-Gaussian distribution (see Sec. IV).

Experimentally, � is accessible through thermodynamic
measurements. In the following, we map out the entropy land-
scape of 4 f quadrupoles in Tm1−xYxVO4 (x = 0–1) with heat
capacity experiments, from which we extract the evolution of
local strain distributions with Tm concentration, to shed light
on the correlation between local strains.

A well-known minimal theoretical model that captures
the effect of quenched random fields on phase transitions
is the random field Ising model (RFIM) [19–21], in which
even weak random fields will suppress second-order phase
transitions to a lower temperature for systems with either
short-ranged or long-ranged interactions [1,22–24]. Indeed,
in three-dimensional systems, there exists a threshold ran-
dom field strength at which the phase transition will be fully
suppressed, whereas in two dimensions long-range order is
completely eliminated even at zero temperature [25]. Due
to its conceptual simplicity, the RFIM continues to be an
important model in understanding the phase behavior of elec-
tronic nematics of real materials in the presence of structural
disorder [5–10].

An important definition one must include when applying
the RFIM, however, is “randomness.” In other words, the
characterization of a distribution of random fields that are
coupled to the order parameter. This is somewhat arbitrary
since the only distribution moment that can be clearly seen
by experimental probes is the first, i.e., the mean value of
the random field. Higher-order moments, encoding the spatial
correlation in the random fields, can be postulated ab initio
[1,22]. A frequent choice, however, is to ignore spatial corre-
lation entirely and assume furthermore that the random fields
are all identically drawn from a Gaussian distribution with
zero mean and some standard deviation which characterizes

224201-2



DISORDER-INDUCED LOCAL STRAIN DISTRIBUTION IN … PHYSICAL REVIEW B 109, 224201 (2024)

the “disorder strength.” This choice is common for theoretical
treatments of electronic nematic systems as well, but due to
the long-range nature of elasticity, it is unclear whether one
can treat the random fields as uncorrelated without losing
essential physics in actual materials. Our study explores ev-
idence for the presence of these correlations as a first step
towards assessing their significance.

II. EXPERIMENTAL METHODS

Single crystals of Tm1−xYxVO4 used in the heat capac-
ity measurements were grown via slow cooling in a flux of
Pb2V2O7 using a mixture of Tm2O3 and Y2O3 precursors.
More details related to material synthesis can be found in
Refs. [26–28]. The Y content x of each sample is further
determined by two different methods: for x � 0.315, the com-
position is determined by microprobe analysis carried out at
the Stanford Mineral and Microchemical Analysis Facility;
for x > 0.315, the Tm composition is determined by the
magnetic moment extracted from ac magnetic susceptibility
measurements in a Quantum Design Magnetic Property Mea-
surement System (MPMS) in a zero dc magnetic field. More
details of the determination of the doping with the MPMS
measurement can be found in Appendix A.

The high-temperature heat capacity of Tm1−xYxVO4 (4–
35 K) was measured in a Quantum Design Physical Property
Measurement System (PPMS) under high vacuum conditions
with the thermal relaxation technique. The low-temperature
heat capacity measurement was carried out with the same
method in a dilution refrigerator insert from 4 K down to the
base temperature. All data were taken at zero external mag-
netic field. The data analysis is performed with the nonlinear
least-squares-fitting method.

The supercell in Fig. 1 was created using VESTA from
the crystal structure of TmVO4 obtained from the Crystal-
lographic Information File (CIF) in the Cambridge Crystal-
lographic Data Center (CCDC) (accession code 2117139)
[14]. DFT calculations for the ionic relaxation were per-
formed using the generalized gradient approximation (GGA)
exchange-correlation functional of Perdew, Burke, and Ernz-
erhof (PBE) [29] as implemented in the Vienna Ab initio
Simulation Package (VASP) [30]. The projected augmented
wave (PAW) method [31,32] was used for ion-electron inter-
action, and the conjugate-gradient algorithm (IBRION = 2)
was used to relax the ions into their instantaneous ground
state.

III. HEAT CAPACITY OF Tm1−xYxVO4

In Fig. 3 we show the heat capacity of Tm1−xYxVO4 from
x = 0 to 0.997. Panel (a) shows the measured total heat ca-
pacity, Cp, normalized by the molar gas constant R, while
panels (b) and (c) show the derived 4 f contribution to the
heat capacity, C4 f

p . The ferroquadrupolar transition tempera-
ture TQ, defined here by taking the average of the maxima
and minima of the second derivative of Cp, is highlighted
with a red triangle for each composition in Fig. 3(a). The
phase transition is fully suppressed near x = 0.220. We note
that TQ is suppressed considerably more rapidly than what
would be expected based solely on the dilution effects of the

FIG. 3. (a) Temperature and chemical composition dependence
of molar heat capacity Cp (normalized by R) of Tm1−xYxVO4 for
x � 0.181. The peak in Cp that corresponds to the ferroquadrupolar
phase transition is labeled by red arrows. (b) C4 f

P normalized by the
maximum Cmax

p with respect to T normalized by T0 (see text) for
x � 0.220. (c) T -evolution of C4 f

p /T for x � 0.220.

magnetic ions. This result, even before an entropy analysis,
already suggests that local strains induced by Y-substitution
play a key role in the suppression of TQ. The isolation of
C4 f

p from the phonon contribution to Cp is described in detail
in Appendix B, and the determination of TQ is shown in
Appendix D.

Inspection of Fig. 3(a) reveals the presence of a broad
shoulderlike feature in the heat capacity for temperatures
above TQ for compositions above x = 0.15 [cyan curve
in Fig. 3(a)]. This shoulder becomes progressively more
prominent with increasing x as the phase transition is fully
suppressed [Fig. 3(b)]. This pervasive feature can be attributed
to the Schottky anomaly associated with the strain-induced
splitting of the ground-state crystal field doublet of Tm3+.
However, the anomaly is never described by a single gap—
rather, there is a distribution of gaps. To illustrate this
point, in Fig. 3(b) we plot C4 f

p normalized with its max-
imum C4 f ,max

p against T normalized by T0 (T0 refers to
the temperature at which C4 f

p is maximized). For compar-
ison, we include in this figure a trace (black dashed line)
showing the Schottky anomaly function that would arise
from a single gap �. The strong deviation of the ob-
served C4 f

p /C4 f ,max
p clearly indicates that there exists a finite

distribution of �, which originates from the anticipated inho-
mogeneous distribution of substitution-induced local strains.
Furthermore, it is clear from inspection of Fig. 3(b) that
the distribution of strain-induced gaps must change as a
function of composition (since the overall shape of the
normalized curves changes as a function of composition).
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FIG. 4. (a) Entropy change �S4 f normalized by R as a function
of T at selected x (see the text). The dashed line shows the value of
− ln(2). (b) Color map of �S4 f in the T -x plane. The solid black line
indicates the extracted ferroquadrupolar transition temperature TQ.

Analysis of this variation informs the key insights of the
present work.

The T -evolution of C4 f
p /T is shown in Fig. 3(c) for all

compositions, providing the raw data from which the inte-
grated entropy can be extracted. In Fig. 4(a), we extract the
total entropy associated with the 4 f degree of freedom via
numerical integration S4 f = ∑

(Cp/T )�T . The �S4 f plotted
here represents the release of entropy with respect to that at
high temperature: �S4 f (T ) = S4 f (T ) − S4 f |T =Tmax . We then
plot the release of the entropy with respect to the saturated
value at high T , from the lowest accessible T . For most
compositions (all but the very dilute Tm concentrations), a
large fraction of the total entropy kB ln(2) per Tm is recovered
upon cooling from 4 K down to below 100 mK, indicating that
nearly all Tm3+ experience a significant local strain-induced
splitting. The entropy landscape in the x-T plane shown in
Fig. 4(b) also highlights that beyond x = 0.220 where TQ is
fully suppressed, the temperature scale associated with the en-
tropy release first increases and becomes comparable with TQ

of the pristine TmVO4 near x = 0.450, before progressively
decreasing towards 0 in the dilute Tm limit. Such energy
scales are consistent with the large magnetoelastic coupling
strength experienced by the non-Kramers doublet ground state
of Tm3+, as well as the rapid suppression of TQ with x.

IV. STRAIN DISTRIBUTION IN Tm1−xYxVO4

In this section, we focus on a quantitative analysis of the
evolution of the gap distribution ρ(�) with x. The distribution
of gaps in a locally disordered two-level system was originally
proposed in explaining the specific heat of spin glasses [33]. A
continuous distribution of splittings of the ground-state dou-
blet has also been reported in different pyrochlore compounds
[34–36]. Our analysis builds on these and similar perspectives,
and aims to uncover significant trends affecting the variation
of ρ(�) with composition in Tm1−xYxVO4.

Given a known PDF that represents the distributions of
the gaps ρ(�), the total heat capacity can be obtained from

the sum of individual Schottky anomalies associated with
each �:

C̄4 f
p (T ) = N

∫ ∞

0
d�ρ(�)

2�2

T 2 cosh2
(

2�
T

) . (1)

The inverse problem of determining ρ(�) from a measured
heat capacity is much harder, as it is an inhomogeneous Fred-
holm integral equation of the first kind. The solution ρ(�)
is then also subject to the constraints that it is non-negative
and normalized. Such a problem is ill-posed generally, with
approximate numerical solutions that are sensitive to noise
in the data [37,38]. In light of these difficulties, we take an
alternative approach by circumventing the inverse problem
altogether. Instead, we present a comparison of the measured
heat capacity data to that which would be obtained from
specific distributions, such as the 2D Gaussian distribution
discussed below, which can provide a meaningful perspective
on the actual PDF. Note that � here refers to half of the energy
splitting between the two levels; we use this definition in the
fitting and plotting procedure.

We consider the ground-state doublet of Tm3+ in a
Tm1−xYxVO4 crystal environment. The disordered local
strain environment results in a finite energy splitting via B1g

and B2g symmetry distortions, where εB1g = εx2−y2 = εxx − εyy

and εB2g = 2εxy, with values that vary throughout the material.
The magnitude of the total splitting � on any given site is pro-
portional to the quadrature sum of the two strain components:

� =
√(

η1εB1g

)2 + (
η2εB2g

)2
, (2)

where η1 and η2 are the magnetoelastic coupling strength
in the B1g and B2g channels. For simplicity of annotating
the effect of the symmetry-breaking strain as two mutually
transverse field components, we write

x ≡ η1εB1g,

y ≡ η2εB2g,

� ≡ 1
2�Schottky =

√
x2 + y2. (3)

We start with the empirical assumption that x and y are
independent random variables that follow two Gaussian distri-
butions ρx(x) and ρy(y), as one would expect from the central
limit theorem. The widths of the εB1g and εB2g distributions are
σa and σb. The expression for ρ(�) is given by the integral

ρ(�) =
∫ ∞

−∞

∫ ∞

−∞
dx dy ρx(x)ρy(y)δ(� −

√
x2 − y2). (4)

The solution for ρ(�) is then

ρ(�) =
∫ �

−�

dx
1

σx

√
2π

e− 1
2 ( x

σx
)2 �√

�2 − x2

×
[

1

σy

√
2π

e− 1
2 (

√
�2−x2

σy
)2 + 1

σy

√
2π

e− 1
2 ( −

√
�2−x2

σy
)2

]
.

(5)

A detailed derivation of Eq. (5) can be found in Ap-
pendix C. We applied Eq. (5) to Eq. (1) to fit the experimental
data. Since the total number of magnetic species N is solely
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FIG. 5. (a)–(f) Upper panels plot the low-T 4 f heat capacity
C4 f

p of Tm1−xYxVO4 with x = 0.248, 0.450, 0.887, 0.968, 0.991,
and 0.997. The blue dashed line shows a forced single-gap Schottky
fitting with the data. The green dashed line in (a) represents the fitting
result with Eq. (1), with ρ(�) given by a Gaussian PDF. The red
dashed lines indicate fit to the 2D-Gaussian distribution in Eq. (5).
Lower panels of (a)–(f) plot the residual δ4 f /R (fitting deviations) of
each 2D Gaussian fit.

determined by the size and chemical composition of each
sample, the two remaining free-fitting parameters are just σa

and σb.
Figure 5 contrasts the fitting based on Eq. (5) (red dashed

lines) and forced fitting of a single Schottky anomaly (blue
dashed lines) with C4 f

p /R (black empty circles) for a few rep-
resentative compositions x. The residual of the 2D Gaussian
fits and the data δ4 f are also shown for each x underneath each
of the main panels. We note that the single Schottky anomaly
scenario poorly fits the data for all x. In contrast, the 2D
Gaussian distribution is found to describe the data very well
for intermediate concentrations (x = 0.248–0.968). However,
with a further increase in x, the distribution progressively de-
viates from the 2D Gaussian description, and becomes worst
for the most dilute Tm concentrations, as can be seen in the

FIG. 6. Evolution of the 2D-Gaussian distribution parameters
plotted in the T -x plane. The blue and red symbols represent σa and
σb extracted from the fitting to Eq. (5) (against the left axis). TQ is
represented by the green diamond symbols. The gaps of a forced
single Schottky anomaly fit are shown as gray symbols. The bottom
axis is shown both as (1 − x)−1/3 and as dTm-Tm (Wigner-Seitz radius
of the Tm3+). The top axis indicates the x value of each composition.
The root-mean-square error (RMSE) of each 2D Gaussian fitting is
shown as yellow empty circles against the right axis.

large and systematic deviation from zero of δ4 f in the lower
panels of Figs. 5(e) and 5(f).

Figure 6 summarizes the evolution with composition of
the fitting parameters, and the associated goodness of fitting
(expressed as the root-mean-square error, denoted by RMSE),
as a function of the average distance between Tm ions dTm-Tm.
The abscissa is shown using a log scale, and is also expressed
equivalently in terms of the composition as (1 − x)−1/3. The
corresponding Y concentration x is also labeled on the top
axis. The two fitting parameters in the 2D Gaussian model, σa,
and σb, which describe the width of the Gaussian distribution
along the two-dimensional space, are shown as blue and red
solid circles respectively. To provide a crude estimate of the
characteristic energy scale associated with the strain-induced
splitting, the result of the forced single-gap Schottky fit is also
included (gray squares), though readers are reminded that this
single-gap model provides a very poor fit, strongly suggesting
the presence of a spatially inhomogeneous distribution of
gaps. TQ is also shown on this plot as green diamonds. The
yellow circles on the right axis indicate the RMSE of the
respective 2D Gaussian fits.

For compositions x beyond approximately 50%, the values
of the gap obtained from the single Schottky fit and of the
widths of the two independent Gaussian distributions, σa and
σb, rapidly decline in magnitude. This is in keeping with
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the general expectation that as the average distance between
Tm3+ ions increases (separated by increasingly undistorted
YVO4), the energy scale associated with lattice distortions
gets progressively smaller, and the associated distribution gets
narrower. However, σb nearly vanishes for large enough x,
resulting in physically unsound gap distributions ρ(�). More-
over, the systematic increase of RMSE with x in the dilute
limit reveals a significant deviation of the gap distribution
from a 2D Gaussian description. This observation is robust
against experimental uncertainties, including details of the
subtraction of the phonon contribution to the heat capacity.
This evidence for a progressive deviation of the local ran-
dom strain distribution from a 2D Gaussian is our primary
observation.

V. DISCUSSION

According to the central limit theorem, for large enough
sample sizes, the normalized sum of independent random vari-
ables tends towards a Gaussian PDF. In the present case, with
potentially two independent variables (i.e., the two relevant
components of the strain tensor, εB1g and εB2g experienced
at each Tm3+ site), a truly random distribution with no
correlations would yield a ρ(�) following a 2D Gaussian
distribution (see Fig. 1). Our observations reveal that for a
wide range of intermediate concentrations, the heat capacity
in Tm1−xYxVO4 cannot be distinguished from such a double-
Gaussian distribution. Consequently, it is tempting to assume
that a random field approach is justified for describing such
a system. However, the observation of substantial deviations
from the 2D Gaussian distribution for dilute concentrations
indicates that a more subtle perspective is appropriate, and
indeed that strains arising from substitution should not be
treated as uncorrelated. In the following, we propose a sce-
nario for the observed crossover of ρ(�) from a double
Gaussian distribution in the concentrated Tm regime to a
significant deviation from that in the dilute Tm regime, which
emphasizes the presence of strain correlations in both limits.

The splitting of the CEF ground-state doublet of each Tm
ion depends on the quadrature sum of the local values of εB1g

and εB2g . Thus, each Tm ion in Tm1−xYxVO4 acts as a local
“reporter” (i.e., an indicator or probe [39]) of the strain that
it experiences, with the “read out” being the CEF splitting.
The heat capacity measures the sum of all of these splittings,
and thus indicates the statistics affecting the distribution of
strains throughout the full volume of the material. These local
strains originate from a variety of deviations from perfect
crystallinity throughout the solid, including from extended de-
fects such as dislocations, from residual strains that the crystal
experiences from external stresses, and of course from the
chemical substitution itself. To illustrate an important point,
we briefly consider a thought experiment in which defects
are introduced to TmVO4 without diluting the Tm ions. We
also imagine that the strains are small such that the response
is strictly linear, and consequently that strains from various
sources are simply superimposed.

The outcome of this thought experiment is illustrated in
Fig. 7. In the figure, we modeled the effect of adding edge
dislocations randomly throughout a two-dimensional periodic
square lattice. Using well-known expressions for the strain

FIG. 7. Comparison of randomly scattered strain sources and
their impact on the level-splitting distribution in Tm1−xYxVO4. Each
row shows a single realization of random level-splittings, �, in a two-
dimensional periodic square lattice of size 256 × 256 on the left, and
the corresponding measured distribution of �, ρ(�), on the right.
These splittings are normalized by each realization’s maximum,
�max. In every case, the B1g and B2g strains are randomly drawn,
and then Eq. (2) is used to compute �. The measured histograms
are created with 2562 = 65 536 values of �. The first and second
rows, plots (a),(b) and (c),(d), show the result of randomly placing
defects throughout the simulation and computing the strains from
elasticity theory, as explained in Appendix E. In this case, the defects
are edge dislocations. Plots (a),(b) represent a low concentration of
defects (high x), whereas (c),(d) represent a high concentration of
defects (low x). The bottom row, (e),(f), shows the case in which
both strains are Gaussian random and spatially uncorrelated, with a
resulting histogram in the form in Eq. (5). As one introduces more
crystalline defects into the system, one traverses the columns, and
the distribution of level-splittings experienced by the Tm3+ ions
approaches the 2D Gaussian.

fields generated by a single dislocation, we compute εB1g and
εB2g at each lattice site, from which we calculate the level-
splitting experienced by each Tm3+ ion. To avoid the formally
diverging strain at the dislocation cores that emerge in lin-
ear elasticity, we place the dislocations at the centers of the
square plaquettes, whereas the two-level ions are positioned
on each lattice site. For additional details of the model, please
see Appendix E. We choose edge dislocations as a tractable
proof-of-concept to simulate the effects of long-range strain
relaxation arising from a variety of actual defects. The real
situation is of course more complex, with large local strains
that presumably exceed the regime of linear response, but this
simplification allows us to develop an important idea.

The strains associated with each defect relax as a power
law rather than exponential function of the distance from the
defect, and hence there is no characteristic lengthscale for
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the relaxation. Nevertheless, there is an effective lengthscale
beyond which the strains associated with any given defect
become sufficiently small to be indistinguishable from any
slowly varying background strain that arises not from intrinsic
defects but, for instance, from small external stresses experi-
enced by the material. This defines an effective radius over
which the Tm ions are able to record the strains arising from
defects.

In the dilute limit, most Tm3+ ions report few strain
sources, as there are only a few defects generating the internal
strains [Figs. 7(a) and 7(b)]. Thus, the majority of the system
is essentially undistorted, as indicated by the dark region in
panel (a). It is clear that the aggregate strains on adjacent sites
are highly correlated, as they are dominated by the strains
generated by the defects. Although the locations of the defects
are random, the number of defects within the “sensing radius”
of any given ion is small enough that the central limit theorem
does not apply.

We now imagine increasing the concentration of defects
within this hypothetical system [Figs. 7(c) and 7(d)]. The
defects are positioned randomly, so there is no correlation
between their locations. Since strains are correlated over long
distances in the dilute limit, there must still be significant
correlations between strains on adjacent sites even in the more
concentrated regime. Nevertheless, as the concentration of
defects is progressively increased, any given Tm site expe-
riences strains arising from an increasingly large number of
defects within its sensing volume, which, in the elastic limit,
are simply added to give the total (local) strain that the site
experiences. Since the dominant effect of the defect locations
is random (uncorrelated), the distribution ρ(�) then starts to
cross over into the 2D Gaussian regime as the central limit
theorem locally begins to dominate the strain statistics in the
B1g and B2g strain channels. It is important to emphasize,
meanwhile, that one can obtain a ρ(�) distribution that ap-
proximates a 2D Gaussian even if the strains are correlated
between sites. The extreme limit of short-ranged behavior
would be realized only in samples with a high density of
defects, as shown in Figs. 7(e) and 7(f).

Thus, within this thought experiment, a crossover is an-
ticipated from a regime in which clear signatures of strain
correlations are apparent (in the dilute limit) to a regime
in which the randomness of the defect locations dominates
the strain distribution, and for which a Gaussian distribution
of gaps is a reasonable approximation. The concentration of
defects at which this crossover occurs is determined by the
interplay of several key lengthscales: the effective lengthscale
on which strains relax, the distance between defects, and the
distance between Tm “reporters.” Signatures of “randomness”
only become apparent when the number of defects and the
number of reporters within a typical relaxation volume be-
come sufficiently large for the central limit theorem to apply.

The situation in Tm1−xYxVO4 is slightly more complex
than the above thought experiment, but not in any qualita-
tive way. The substitution of Y for Tm yields a progressive
increase in the distance between Tm “reporters,” while also
affecting the strain landscape. Similarly, the lengthscale over
which strains relax might itself depend on the concentra-
tion of impurities. The interplay between lengthscales is still

apparent, though, and dilute versus concentrated regimes with
different qualitative behaviors can still be anticipated.

In addition to the above, we note that the constitutive elas-
ticity relations (i.e., the relations between stress and strain,
which at the level of linear response are governed by the
elastic stiffness tensor) necessarily imply that some arbitrary
stress state at a given site is a linear superposition of the
various strain components at that site. Therefore, if the stress
state is fixed by sources of structural disorder in the material,
the six strain components cannot all be taken as independent
of one another. Hence, εB1g and εB2g on any given site are
correlated in some specific way determined by the elastic
distortion of the crystal. We emphasize that this is in addition
to the correlations that exist for the same strain component
between adjacent sites.

VI. CONCLUSIONS

Substitution of Y for Tm in Tm1−xYxVO4 rapidly sup-
presses the long-range quadrupole order that is found for the
pristine “parent” compound TmVO4. Splitting of the CEF
non-Kramers ground-state doublet of each Tm ion acts as a
local reporter of the quadrature sum of εB1g and εB2g strains
on each site. Our heat capacity data reveal that the splitting is
not uniform, but is described by some probability distribution.
While the heat capacity data are not amenable to an inverse
analysis (in which the distribution is determined from the
observed heat capacity), the data can nevertheless be com-
pared to the simple expectations of a 2D Gaussian distribution
that would otherwise be expected if the strains were truly
random (uncorrelated). Significantly, for dilute concentrations
the heat capacity cannot be accounted for by such a distribu-
tion, revealing clear evidence of strain correlations between
sites and between different strain components at the same site.
For larger concentrations, however, the heat capacity cannot
be distinguished from that which would be obtained from
a random distribution. The crossover between these regimes
can be understood in terms of the progressive change in the
number of defects within the sensing volume of a given Tm
“reporter” as the concentration of impurities x is changed. In
the concentrated regime, even though strains are correlated
between sites, the defects that generate the strains themselves
are randomly distributed. Hence, the total strain on each site
is reasonably described by a Gaussian distribution when the
number of defects within the sensing volume of a reporter ion
is large enough for the central limit theorem to apply.

Our results demonstrate that the strains, which arise from
chemical substitution in Tm1−xYxVO4, cannot be regarded as
uncorrelated random fields. Consequently, theoretical treat-
ment of this problem (i.e., treatment of the problem of
quadrupole moments that interact in the presence of nonuni-
form longitudinal and transverse effective fields that arise
from local chemical substitution) cannot rely solely on the
results of the random field Ising model. Instead, one must
consider the subtle effects of strain correlations that can occur
between different sites for the same symmetry channel, as well
as between different symmetry channels, either between dif-
ferent sites or the same one. This problem is not restricted to
just Tm1−xYxVO4. Any electronic nematic system for which
chemical substitution is used to traverse the associated phase
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diagram falls into the same paradigm. Our results, therefore,
motivate in-depth theoretical efforts to model the rich problem
of correlated “random” fields on Ising electronic nematic or-
der. Finally, we note that while our analysis and discussion has
been restricted to the case for which strains couple bilinearly
to the relevant order parameter, our observations regarding the
distributions of strains in different concentration regimes may
be relevant for other cases in which strain couples in more
complex ways to other types of order.
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APPENDIX A: DETERMINATION OF CHEMICAL
COMPOSITION VIA MAGNETIC SUSCEPTIBILITY

The magnetic susceptibility (χ ) of TmVO4 along its c-
axis exhibits a Curie-Weiss behavior down to 2 K [18],
which is not frequency-dependent in the absence of an ex-
ternal magnetic field [40]. We observed the same χ behavior
in (Y, Tm)VO4 above TQ (if it exists) due to the identical
crystal field environments throughout the doping series. Con-
sequently, to accurately identify the chemical composition of
samples that contain the lowest Tm percentages, we compare
their magnetic susceptibility with the calculated specific mag-
netic susceptibility. In zero-field conditions, the calculated
magnetic susceptibility can be expressed as

χ =
1
4μ0Ng2

Cμ2
B

kB(T − Tθ )
. (A1)

μ0 is the vacuum magnetic permeability, N is the number
of Tm3+ ions, gC = 10.22 is the g-factor of Tm3+ along the
c-axis, μB is the Bohr magneton, and Tθ is the Curie tempera-
ture. We fit the equation above with the measured ac magnetic
susceptibility as

χ = A

kB(T − Tθ )
+ χ0. (A2)

Three fitting parameters are A = μ0g2
cμ

2
BN

4kB
as the Curie con-

stant, Tθ as the Curie temperature, and χ0 as the measured

constant magnetic background from nonmagnetic species
(mostly from YVO4 lattices).

The ac magnetic susceptibility measurement was per-
formed with a Magnetic Properties Measurement System
(MPMS), with a drive frequency of 75.7 Hz. The value of A
takes the average of all the fitting results from 2 K to different
Tmax values. Finally, we obtain x in the main text calculated
from N , molar mass M, and the sample mass m.

APPENDIX B: SPECIFIC HEAT MODEL
AND DETERMINATION OF C4 f

p

In this Appendix, we discuss the method of finding and
subtracting the phonon background and obtaining the heat ca-
pacity per Tm site (C4 f

p ) from the heat capacity measurement.
We assume the measured heat capacity is only the sum of
the phonon contribution and the Schottky anomaly of the 4 f
degree of freedom:

Cm
p = CDebye

p + CSchottky
p

= CDebye
p + (1 − x)C4 f

p , (B1)

where x represents the content of Y 3+. The three-dimensional
Debye model describes the phonon contribution of heat ca-
pacity. The fit equation is

CDebye
p = 9NkB

(
T

Teff

)3 ∫ T
Teff

0
dx

x4ex

(ex − 1)2
. (B2)

The CDebye
p refers to the contribution of phonons to the

total heat capacity. Teff is a fitting parameter that represents
the effective Debye temperature. It is important to note that
the fitting method used in the Debye model with a limited
temperature range is empirical and does not take into account
the anisotropic phonon dispersion in the YxTm1−xVO4 series.
Therefore, we use Teff to differentiate it from the experimen-
tally determined TDebye that was reported elsewhere [41].

We applied Eq. (3) to heat capacity data from 10 to 25 K,
where the Schottky contribution is negligible.

To obtain �CSchottky
p , we calculated the phonon background

at lower temperatures (shown as green and red dashed lines in
Fig. 8), using Teff obtained from Debye fitting. The phonon
background below T = 0.65 K was extrapolated using the
low-temperature T 3 limit of the Debye model:

CDebye
p = 36NkB

(
T

Teff

)3

. (B3)

The fit result based on the specific heat model is plotted in
Fig. 8(j).

APPENDIX C: DERIVATION OF THE 2D-GAUSSIAN
DISTRIBUTION IN (Y, Tm)VO4

The ground-state doublet of Tm3+ affected by local strain
is described by Eqs. (4) and (5) in the main text. We assume
that ρx(x) and ρy(y) are two probability distribution functions
corresponding to the strength of the εB1g and εB2g, respectively.
Qualified by the uncorrelated random-field assumption, both
of the functions are the Gaussian distribution with a mean
value centered at 0. The probability distribution function of
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FIG. 8. (a)–(i) Fitting result of the heat capacity data in the
fitting range from 10 to 25 K. The dashed curve plots the fitting
equation based on the Debye model. The green (red) dashed line
region is based on the calculation of the Debye model (expansion
of the low-temperature limit) extrapolated from the fit result. (j) The
effective Debye temperature Teff vs x obtained from the fitting.

the quadrature sum � can be written as

ρ(�) =
∫ ∞

−∞

∫ ∞

−∞
dx dy ρx(x)ρy(y)δ( f (�)), (C1)

where f (�) is

f (�) = � −
√

x2 − y2. (C2)

Therefore, we can now solve for ρ(�) as

ρ(�) =
∫ ∞

−∞

∫ ∞

−∞
dx dy ρx(x)ρy(y)δ(� −

√
x2 − y2)

=
∫ ∞

−∞
dxρx(x)

[ ∫ ∞

−∞
dyρy(y)δ(� −

√
x2 − y2)

]
.

(C3)

The identity of a δ function implies

δ[g(y)] =
∑

i

δ(y − yi )

|g′(yi )| , (C4)

FIG. 9. (a)–(d) Temperature dependence of the second derivative
of the heat capacity Cp (normalized by R) with respect to T . The
red circle labels the local maxima and local minima of the data. The
phase transition temperature TQ is labeled as the red triangle.

where mi are roots of the function g(y),

g(y) = � −
√

x2 − y2,

yi = ±
√

�2
i − x2,

g′(yi ) = ∂ (� −
√

x2 − y2)

∂
( ±

√
�2

i − x2
) = ±

√
�2

i − x2

�
. (C5)

Therefore, we now apply Eq. (C4) to Eq. (C3) and obtain

ρ(�) =
∫ �

−�

dx ρx(x)
�√

�2 − x2

× [ρy(
√

�2 − x2) + ρy(−
√

�2 − x2)]. (C6)

Then, we apply two Gaussian distributions with widths σx

and σy, respectively, and we calculate the analytical solution
of ρ(�):

ρx(x) = 1

σx

√
2π

e− 1
2 ( x

σx
)2
,

ρy(y) = 1

σy

√
2π

e− 1
2 ( y

σy
)2

. (C7)

The analytical solution for ρ(�) is Eq. (5) of the main text.

APPENDIX D: DETERMINATION OF TQ

VIA SPECIFIC HEAT MEASUREMENTS

Figure 9 plots the second derivative d2Cp/R
dT 2 with respect to

temperatures. For each Cp data taken at x � 0.181, TQ(T ) was
identified as the value at which the second derivative has a
local maxima (Tmax) and a local minima (Tmin) value. The TQ

is the average value of the two values. The error bar is defined
as the value of Tmax and Tmin.
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APPENDIX E: MODELING CORRELATED STRAINS
FROM DISLOCATIONS

In this Appendix, we describe the numerical process used
to generate the level-splitting realizations shown in Fig. 7. We
use the same procedure shown in. To best compare conven-
tional short-ranged quenched disorder fields with long-ranged
elastic strains generated by defects, we use the longest-ranged
fundamental crystalline defect typically observed in equilib-
rium, i.e., the dislocation [11,12]. Dislocations are topological
defects with a charge known as the Burgers vector, which we
denote as b [42]. The strains are well known to decay as 1/r
from the core of a straight dislocation, where r is the radial
distance to the dislocation line [11,12]. In brief, we employ an
ensemble of random, uncorrelated, edge dislocations to gen-
erate the B1g and B2g components of the strain tensor. We use
linear elasticity theory then to superimpose the strains from
each dislocation within the ensemble at a given site. From
there it follows that the level-splitting, �, is the quadrature
sum of the net strains at each site.

In isotropic media, the displacement vector u induced by a
single straight edge dislocation centered at the origin, oriented
along the z-axis, and endowed with Burgers vector b is known
to be [11,12]

ux(r; b) = bxφ

2π
+ 1 − 2ν

4π (1 − ν)
by ln r

+ 1

8π (1 − ν)
(bx sin 2φ − by cos 2φ), (E1)

uy(r; b) = byφ

2π
− 1 − 2ν

4π (1 − ν)
bx ln r

− 1

8π (1 − ν)
(bx cos 2φ + by sin 2φ), (E2)

where r = (x, y) = r(cos φ, sin φ) and ν is the Poisson ratio.
From these expressions, εB1g and εB2g are obtained by differen-
tiating the displacement vector as

εB1g (r; b) = ∂xux − ∂yuy = − (b · r̂) sin 2φ

2π (1 − ν)r
, (E3)

εB2g (r; b) = ∂xuy + ∂yux = (b · r̂) cos 2φ

2π (1 − ν)r
. (E4)

These functions are used to compute the strain generated by
a dislocation at every lattice site in a two-dimensional peri-
odic square grid with properly enforced periodic boundary
conditions. To avoid the singular behavior of the strain at the
dislocation cores, we place them at the centers of the square
plaquettes.

The total strain in the a ∈ {B1g, B2g} irreducible represen-
tation is then computed from a set of Nd dislocations as

εa(r) =
Nd∑

γ=1

εa(r − rγ ; bγ ), (E5)

from which it follows that the level-splittings are

�(r) =
√

η2
1ε

2
B1g

(r) + η2
2ε

2
B2g

(r). (E6)

For simplicity, we have maintained the isotropic approxima-
tion, and we have set the magnetoelastic couplings to be equal:
η1 = η2 = λ. In Fig. 7, we only consider ratios of �(r) to its
maximum value in the lattice, �max, which removes the nu-
merical dependence on λ and ν without losing the qualitative
features of a long-ranged correlated random strain field.

Each realization of random strain is created via an en-
semble of Nd random dislocations. Equilibrium distributions
of dislocations must be “dislocation-neutral” [43]. Thus, we
impose that the dislocations within each realization appear in
pairs of equal and opposite topological charges. This is the
only nonlinear effect we model, however. Thus, dislocations
were assumed to be nearly uncorrelated, up to the condition
that the total Burgers vector vanishes and no two dislocations
occupy the same plaquette. Up to these restrictions, the edge
dislocations were created by sampling the Burgers vectors
uniformly from the lattice vectors {±x̂,±ŷ} and uniformly
sampling the core locations to be at the center of one of the
L2 square plaquettes.

The calculation was performed with the JULIA program-
ming language [44], and Fig. 7 was created using the MAKIE

plotting package [45].
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