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The exploration of topology in natural materials and metamaterials has garnered significant attention. Notably,
the one-dimensional (1D) and two-dimensional (2D) Su-Schrieffer-Heeger (SSH) models, assessed through
tight-binding approximations, have been extensively investigated in both quantum and classical systems, en-
compassing general and higher-order topology. Despite these advancements, a comprehensive examination of
these models from the perspective of wave physics, particularly the scattering view, remains underexplored. In
this study, we systematically unveil the origin of the 1D and 2D Zak phases stemming from the zero-reflection
point, termed the scattering singularity in momentum space. Employing an expanded plane wave expansion,
we accurately compute the reflective spectrum of an infinite 2D photonic crystal (2D-PhC). Analyzing the
reflective spectrum reveals the presence of a zero-reflection line in the 2D-PhC, considered the topological origin
of the nontrivial Zak phase. Two distinct models, representing omnidirectional nontrivial cases and directional
nontrivial cases, are employed to substantiate these findings. Our work introduces a perspective for characterizing
the nature of nontrivial topological phases. The identification of the zero-reflection line not only enhances our
understanding of the underlying physics but also provides valuable insights for the design of innovative devices.
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I. INTRODUCTION

The exploration of topological phenomena in quantum
and classical systems [1–11] has garnered widespread inter-
est due to their ability to host robust states, exemplified by
edge states [12–17] and corner states [18–20]. In the realm
of topology, a classic analogy depicts a donut or a coffee
mug, both possessing one hole, as homeomorphic, catego-
rizing this as nontriviality. In contrast, a holeless cow and
a sphere, both lacking holes, are deemed trivial [21]. The
band topology of an isolated band in quantum and classical
systems can be likened to finding a “hole” in a band. For a
nontrivial band, discernible topological invariants such as the
Zak phase [22,23] or Chern number [24–26] can be identified.
Most topological systems explored thus far have originated
from tight-binding models, notably the one-dimensional (1D)
and two-dimensional (2D) Su-Schrieffer-Heeger (SSH) model
[15,23,27]. Whether in the context of 1D or 2D SSH models,
the manipulation of topological phases is readily achievable
by adjusting intracell and intercell coupling strengths. This
simplicity, facilitated by a straightforward Hamiltonian, en-
ables the comprehensive calculation of topological properties.

However, classical wave systems, such as photonic sys-
tems, present a unique challenge due to non-negligible
long-range coupling dictated by Maxwell’s equations. This
intricate coupling cannot be succinctly described by a simple
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tight-binding Hamiltonian [28,29]. While analogous phenom-
ena may be observed in both wave and tight-binding systems,
elucidating a distinctive topological origin in wave systems
poses a significant hurdle. Specifically, the question arises:
can we accurately pinpoint the “hole” in a band using the clas-
sical wave method, specifically through the lens of scattering?

In this study, we first employ the transfer matrix method
[30] to precisely correlate the topological scattering singu-
larity in 1D photonic crystals (PhCs), a zero-reflection point
within the reflective spectrum with the Zak phase. Subse-
quently, our focus shifts to 2D-PhCs. To address the challenge
of calculating the scattering of a half-infinite 2D-PhC, we
meticulously introduce the expanded plane wave expansion
method (EPWE) [31,32]. Our analysis delves into two sce-
narios in 2D-PhCs. First, the two-rods square models without
C4 and Mx(y) symmetries serve to illustrate the singularity-
induced gap-closed-reopened process and topological phase
transition [17]. Second, the four-rods square models with
Mx(y) symmetry showcase the singularity behavior in direc-
tional Zak phase [15]. This comprehensive approach enhances
our understanding of the topological scattering singularity
in 2D-PhCs. Our work introduces a perspective for con-
sidering the topological origin in classic systems, holding
promise for advancing the development of new topological
photonic devices.

II. SCATTERING SINGULARITY IN 1D-PHC

In this section, we will systematically define the concept
of scattering singularity and elucidate its impact on band
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FIG. 1. Singularity-induced topological phase transition in 1D-PhC. (a), (d), and (g): Band structure, reflective spectrum, and An distribu-
tion, respectively, illustrating the singularity at band 2 with parameters da = 0.6a, db = 0.4a, εa = 1, εb = 4. The blue range represents the
perfect magnetic conductor (PMC) gap, and the green range indicates the perfect electrical conductor (PEC) gap; (b) and (e): Band structure
and reflective spectrum in the case of band degeneracy with parameters da = 0.75a, db = 0.25a, εa = 1, εb = 9; (c), (f), and (i): same as
(a), (d), and (g), respectively, but showcasing the singularity at band 3 with parameters da = 0.8a, db = 0.2a, εa = 1, εb = 9; (h): Reflective
spectrum of the structure formed by three layers of the model in (a) and five layers of the model in (c), with the edge state marked in the
yellow range.

topology in 1D-PhC. While the most mathematical deriva-
tions are provided in the Appendix of this work [30], this
section aims to focus on physical insights.

Under the transfer matrix method (TMM) gauge in a
mirror-symmetric 1D-PhC with two types of materials, it
can be proven that if an isolated band (excluding the first
band) encompasses one resonance frequency point of the unit
cell, then the Zak phase of this band must be π [30], des-
ignating such a zero-reflective resonance frequency point as
a singularity from the scattering view. We should note that
zero reflection only means the coherent sum of all orders
of scattering is zero, not all orders of scattering are zero.
For more complex cases, i.e., 1D-PhC with more than two
types of materials, there may be more than one singularity in
an isolated band, then the topological phase of this band is
determined by the sum phases of all singularities [28,33,34],
meaning the topological phase determined by singularities is
a global property. Consider, for example, the simplest model
of a 1D-PhC with lattice constant a, as illustrated in Fig. 1.
In this model, the unit cell comprises two types of layers:
layer A with relative permittivity εa, permeability μa, and
thickness da, and layer B with relative permittivity εb, per-
meability μb, and thickness db. Such a unit cell is also known
as a FabryPérot (FP) cavity, with a resonance condition de-
fined as sin(kbdb) = 0. Consequently, the resonance frequency
is given by f = m · c/(2nbdb), where m = 1, 2, 3..., kb =
nbω/c is the wave vector, ω = 2π f is the angular frequency,
and nb = √

εbμb represents the refractive index of layer B.

Consequently, the position of the singularity can be specif-
ically determined by altering the material or geometry of
the cavity.

For a finite 1D-PhC comprising N cells, a band that in-
cludes the resonance frequency of the unit-cell yields N peaks.
Conversely, it results in N − 1 peaks if the resonance fre-
quency is not encompassed [35] (refer to the Appendix for
further details). When this is extrapolated to an infinite 1D-
PhC, it will be demonstrated that a band containing the
resonance frequency of a single unit cell will produce one
resonance peak; if it does not, no resonance peaks will
be observed.

To visually observe how the singularity alters the band
topology, we consider three parameter sets where the sin-
gularity moves from the lower band to the degenerate point
and eventually to the upper band. In case I [Figs. 1(a) and
1(d)], the singularity resides in the lower second band with
parameters da = 0.6a, db = 0.4a, εa = 1, εb = 4. In case II
[Figs. 1(b) and 1(e)], the singularity is at the degenerate Dirac
point between the second and third bands with parameters
da = 0.75a, db = 0.25a, εa = 1, εb = 9. Finally, in case III
[Figs. 1(c) and 1(f)], the singularity is at the third band with
parameters da = 0.8a, db = 0.2a, εa = 1, εb = 9. Clearly, as
the singularity moves, the second gap undergoes closure and
reopening, a hallmark of topological phase transition. No-
tably, when the singularity is at the second band, the Zak
phase of the second band is π , while that of the third band
is zero. Conversely, when the singularity is at the third band,
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the results are reversed. The nature of the second gap also
changes, transitioning from a nontrivial perfect magnetic con-
ductor (PMC)-like gap to a trivial perfect electrical conductor
(PEC)-like gap. In other words, the effective medium at the
gap transitions from mu negative (MNG) to epsilon negative
(ENG) materials [36,37]. Consequently, combining the two
photonic crystals reveals the presence of an edge state in
the second gap, as illustrated in Fig. 1(h). This prompts the
question: how are the scattering singularity and band topology
connected? To answer this, we must revert to the definition of
Zak phase for an isolated band:

φZak
n =

∫
FBZ

dk i〈un,k | ∂kun,k〉, (1)

where | un,k j 〉 is the normalized periodic part for nth band at
k j (Bloch wave vector) of the field in a cell, and FBZ means
the first Brillouin zone. The Zak phase can be numerically
calculated using the Wilson loop [38]:

φZak
n =

∑
j∈FBZ

An

=
∑

j∈FBZ

−Im
{

ln
[〈

un,k j

∣∣un,k j+1

〉]}
. (2)

It’s noteworthy that the product An does not depend on the
phase of | un,k j 〉s. In Figs. 1(g) and 1(i)], we display each
An for the second band and third band in FBZ for case I
and case III, respectively. Notably, at the point ( f I

0 , kI
0) of

case I, there is a sudden change of An, and similarly, at the
point ( f II

0 , kII
0 ) of case III, a sudden change is observed in

the An. This phenomenon can be elucidated by the fact that
| un,k−

0
〉 = − | un,k+

0
〉, as shown in Fig. 2, providing an expla-

nation for the observed phase change at the singularity [30].
Furthermore, within the context of TMM gauge, it is essential
to emphasize that the group velocity at the singularity must
be positive, ensuring the existence of only one singularity at a
fixed frequency.

III. SCATTERING SINGULARITY IN 2D-PHC

Unlike the perfect gauge of TMM in 1D-PhC, when transi-
tioning to 2D systems, certain challenges arise in researching
the singularity. First, the challenge of finding points that fulfill
| un,k+

0
〉 = − | un,k−

0
〉 since a random phase will be introduced

when calculating the eigen-function of 2D-PhC. Fortunately,
this can be addressed in the calculation of the Zak phase,
thanks to the gauge independence of the Wilson loop, lead-
ing to the cancellation of the random phase. What’s more,

FIG. 2. Distribution of the field prior to (kII,−
0 ) and subsequent to

(kII,+
0 ) the singularity, where uR and uI denote the real and imaginary

components, respectively, of the normalized periodic part of the
magnetic field within a single unit cell.

locating the singularity from a scattering perspective proves
challenging, as computing the scattering of a half-infinite
2D-PhC is a complex task. In the following section, we will
introduce the EPWE to overcome computational challenges
associated with the scattering of a half-infinite 2D-PhC and
elucidate the connection between scattering singularities and
the directional Zak phase in 2D-PhC.

A. Method: Expanded plane wave expansion method

Considering a nonmagnetic medium and taking transverse-
magnetic (TM) polarization (Ez) as an example, the governing
equation for the master function of Maxwell’s equations is
expressed as

1

ε(r)
∇ × ∇ × Ez(r, ω) = k2

0Ez(r, ω), (3)

where k0 = ω/c. We expand Ez and ε(r) in Fourier space as
Ez(r) = ∑

G ei(k+G)·rEz
k,G and ε(r) = ∑

G eiG·rεG, where G
is the reciprocal lattice vector. Equation (3) is then rewritten
in Fourier space as∑

G′
ε−1

G−G′ (k + G) · (k + G′)Ez
k,G′ = k2

0

∑
G′

Ez
k,G′ . (4)

Equation (4) represents an eigenfunction, allowing the deter-
mination of the band structure and eigenfield of a 2D-PhC.
However, it remains insufficient for solving the scattering
problem due to challenges in defining an “interface” and an
input source. To address this, we rewrite Eq. (4) as

[
0 Î

εG−G′′
[
k2

0 − ε−1
G′′−G′ (G′′ + kyŷ) · (G′ + kyŷ)

] −εG−G′′
[
ε−1

G′′−G′ (G′′
x + G′

x )
]
][

EG′

kxEG′

]
= kx

[
EG′

kxEG′

]
, (5)

where k = kxx̂ + kyŷ. In this equation, ky and k0 are fixed, and
the determined parameter is kx. This equation is suitable when
the interface lies along the y direction [see Fig. 3(a)]. A similar
equation can be derived for scenarios where the interface is
along the x direction, in which case kx and k0 are fixed, and

the determined parameter is ky. This equation is suitable for
addressing inclined incidences from a homogeneous medium
(region I) to a half-infinite 2D-PhC (region II), as illustrated
in Fig. 3(a). By applying boundary condition, the relation-
ship between the Ez fields in region I and region II can be

224111-3



XIONG, JIANG, AND HU PHYSICAL REVIEW B 109, 224111 (2024)

。。。

。
。
。

。。。

。。。

。。。

。。。

。。。

。
。
。

。
。
。

(
,
, ) ,0(−

,
, )

,−1(
,
, + −1)

(
,+1(

,
, + 1)

,(+1,+1)(
,
+ 1, + 1)

,(0,0)(
,
, )

。。。

,(−1,−1)(
,
+ −1, + −1)

ky

kx

Y M

X

Y’ N’M’

N

X’ Γ

0.6

0.4

0.2

0
N   Γ N’ X M Y N

0

0

(a) (b)

N   Γ N’ X M Y N

0.4

0.2

0

0

0/(
)

(c)

Gap 1

Gap 1

Gap 2

y
x

y

x

Band 1

Band 2
Band 3

Band 1

Band 2
Band 3Region I

Region II

/
(

)
FIG. 3. (a) Schematic representation of the structure and EPWE method; (b) Band structure of the two-rods model, along with the first

Brillouin zone, where the two unit cells on the right exhibit the same band structure in the left; (c) Band structure of the four-rods model, where
the four unit cells in the right share the same band structure in the left.

established as follows:[ −〈
x0y

∣∣Ez,I
m

〉 〈
x0y

∣∣Ez,II
m

〉
−〈x0y|∂x

∣∣Ez,I
m

〉 〈x0y|∂x

∣∣Ez,II
m

〉
][〈

Ez,I
m

∣∣r̂∣∣Ez,I
0

〉
〈
Ez,II

m

∣∣t̂∣∣Ez,I
0

〉
]

=
[ 〈

x0y
∣∣E I

0

〉
〈x0y|∂x

∣∣E I
0

〉
]
, (6)

where r̂ and t̂ are the reflection and transmission operators.
EI (II )

m represents the mth reflected (transmitted) mode in region
I (II), and EI

0 is the incident field.
In this equation, EII

m can be solved by Eq. (5). Regard-
ing the eigenvectors in region I with homogeneous media,
they are represented by plane waves and solely depend on
Gy. Specifically, assuming the input wave vector is ki =
[kI,i

x , ky], according to Bloch theory, the reflection wave vector

is kr = [−
√

k2
0 − (ky + Gy)2, ky + Gy], and the transmission

wave vector is kt = (kII,t
x + Gx, ky + Gy), where kII,t

x also can
be solved by using Eq. (5). Therefore, if we have knowledge
of the structure function ε(r), the incident wave vector ki,
and the frequency of incident plane wave ω, we can solve
the interface problem between a half-infinite homogeneous
media and a half-infinite 2D-PhC by utilizing Eqs. (5) and (6).
We should note that, the reflective spectrum, calculated using
EPWE, is projected in a specific direction. For instance, when
the interface is perpendicular to the x direction, as shown in
Fig. 3(a), we exclusively consider specific modes in which the
parallel wave vector component ky matches that of the incident
light wave. This requirement stems from the conservation of
ky on both sides of the interface. As a result, the reflective
spectrum can be denoted as Rx(ky) or Ry(kx ), signifying the
reflectivity from the interface is perpendicular to the x direc-
tion or y direction, respectively.

B. Results

In this subsection, we will investigate two cases to illus-
trate topological singularities in 2D-PhC using EPWE. In the
first case, depicted in Fig. 3(b), the two-rods model lacking
C4 and Mx(y) symmetries exhibits two clearly defined lowest
bands without degeneracy. This characteristic makes it an
ideal model for investigating the topological phase transition
between these two lowest bands. In the second case, our focus
is on examining the topological phase of the first band in
different directions within a four-rods model, as shown in
Fig. 3(c). In both cases, the rods with a radius of r = 0.12a
are composed of ε = 12 material and are situated in the air.
Additionally, TM polarization is considered. It is worth noting
that the right two unit cells in Fig. 3(b) and the right four unit
cells in Fig. 3(c) have the same band structures, respectively,
because only the centering point of the unit cells is changing.
For an infinite bulk crystal where the interface is neglected,
their eigenfrequencies are the same.

Before presenting the results, we should highlight the cal-
culation of directional Zak phase in 2D-PhC [15,23]. While
akin to the computation of 1D Zak phase in Sec. II, it involves
the integration of the Berry connection in two directions

φZak
l,n =

∫
FBZ

dkxdky i
〈
un,k

∣∣∂kl un,k
〉
, l = x, y. (7)

We can alternatively utilize the Wilson loop to obtain the 2D
Zak phase. For instance, selecting a fixed ky and the Zak phase
in the x direction at this fixed ky is given by

φZak
x,n (ky) =

∑
j∈FBZ

−Im ln
[〈

un,kx, j

∣∣un,kx, j+1

〉]
. (8)

Additionally, directional polarization can be employed to
ascertain topology, denoted as Pn = [Px,n, Py,n] = [φZak

x,n ,
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FIG. 4. Singularity-induced topological phase transition in 2D-PhC. (a)–(c) Band structure in three dimensional and the projected band
structure in the x(y) direction, reflective spectrum Rx (ky ) or Ry(kx ), and the directional polarization of the two lowest bands, respectively, where
the parameters are r = 0.12a, ε = 12, dx = dy = 0.12a; (d), (e) The same as (a), (b) but dx = dy = 0.25a; (g)–(i): The same as (a)–(c) but
dx = dy = 0.38a; (f): The band structure that combines ten layers of the model in (a) with ten layers of the model in (g), along with the |E |2
distribution, where the band of edge states is marked with blue line.

φZak
y,n ]/(2π ). Consequently, we can correlate the directional

polarization Px(ky) or Py(kx ) to the reflective spectrum Rx(ky)
or Ry(kx ), respectively.

1. Singularity-Induced topological phase
transition between two bands

Similar to the topological phase transition discussed in
Sec. II, we construct a square lattice to break C4 and Mx(y)

symmetries, then by varying the distance between the rods
and the cell center, we investigate the entire topological phase
transition in the lowest two bands. We maintain equal dis-
tances between the two rods and the cell center dx = dy, so the
band structure and band topology remain identical in both x
and y directions. Therefore, the x label in Figs. 4(b), 4(e), 4(h),
4(c), and 4(i) can represent either kx or ky. Accordingly, the
reflective spectrum in Figs. 4(b), 4(e), and 4(h) can indicate
the corresponding Ry(kx ) or Rx(ky), respectively. Similarly, the
polarization in Figs. 4(c) and 4(i) can represent either Py(kx )
or Px(ky), respectively.

In the case presented in Figs. 4(a)–4(c), where the rods are
positioned far away from the cell center (dx = dy = 0.38a),
the band topology in Fig. 4(c) reveals that P1 = [0.5, 0.5]
and P2 = [0, 0]. The topological scattering singularity in this
scenario is particularly intriguing, with the zero-reflection

phenomenon no longer manifesting as a point but as a line
in the first band, as shown in Fig. 4(b) with deep blue lines.
This observation aligns with the directional polarization in
Fig. 4(c): for any fixed kx or ky, if P1,x (ky) = 0.5 or P1,y(kx ) =
0.5, the projected reflective spectrum Rx(ky, ω) or Ry(kx, ω)
exhibits a zero-reflection line.

By varying dx and dy, we can induce a topological phase
transition through a gap-close-reopen process. In Figs. 4(d)
and 4(e), the first gap closes when dx = dy = 0.25a. Fur-
ther decreasing dx and dy to 0.12a reopens the first gap, as
shown in Fig. 4(g), and the topology of the lowest bands
becomes opposite to the first case. In this scenario, there is
no zero-reflection singularity in the first band of the projected
reflective spectrum, and the zero-reflection singularity is ob-
served in the second band. It’s observed that the second band
may overlap when projected to one direction, especially near
the band edge, but this does not affect our conclusions.

Additionally, combining the two types of 2D-PhC in
Figs. 4(a) and 4(g) to verify the topology, the band structure
and field distribution of edge states are illustrated in Fig. 4(f).
Notably, the band of edge states in the first gap is clearly
discernible, along with the presence of a localized edge state
with kx = 0.

Lastly, the robustness of the singularity is demonstrated
through the use of this model in the Appendix. It is shown
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FIG. 5. Singularity behavior in directional Zak phase. (a) Top: reflective spectrum Rx (ky ) along kya/(2π ) from 0 to 0.5 (left) and Ry(kx )
along kxa/(2π ) from 0 to 0.5 (right). Bottom: directional polarization of the first band in different directions, with parameters dx = dy = 0.12a;
(b) the same as (a) but dx = dy = 0.38a; (c) Band structure combining ten layers of the model in (a) with ten layers of the model in (b), along
with the |E |2 distribution. (d) the same as (a) but dx = 0.12a, dy = 0.38a; (e) the same as (a) but dx = 0.38a, dy = 0.12a; (f) Band structure
combining ten layers of the model in (d) with ten layers of the model in (e), along with the |E |2 distribution.

that the singularity persists for a topologically nontrivial band,
even when a weak random disorder is introduced into PhCs.

2. Singularity behavior in directional Zak phase

In this subsection, we delve into the nuanced intricacies
of the topological singularity’s behavior within the directional
Zak phase, offering a comprehensive exploration of its impact
on the first band in a four-rods model. By systematically
varying the parameters, such as the distances between rods (dx

and dy), we scrutinize the resulting changes in the reflective
spectrum’s symmetry and the emergence of zero-reflection
lines.

In cases where dx equals dy, i.e., dx = dy = 0.12a or dx =
dy = 0.38a, we plot Ry(kx ) and Rx(ky) along different di-
rections, as portrayed in Figs. 5(a) and 5(b). The reflective
spectrum exhibits notable symmetrical characteristics along
kx(ky) = 0, culminating in a reflective symmetry axis. Our
analysis discerns the absence of a zero-reflection line in the
trivial first band, contrasting sharply with the discernible
zero-reflection line in the nontrivial first band. The nuanced
symmetry deviations are further underscored by the pro-
nounced presence of edge states in the combined models of
these two distinct photonic crystals.

The exploration extends to scenarios where dx �= dy, i.e.,
dx = 0.12a, dy = 0.38a or dx = 0.38a, dy = 0.12a, as exem-
plified in Figs. 5(d) and 5(e). In such instances, the once
symmetrical reflective spectrum along kx(ky) = 0 undergoes a
transformative shift, eliminating the reflective symmetry axis.
The nontrivial direction of the first band, where Px(Py) �= 0,
distinctly manifests a discernible zero-reflection line in the
ky(kx ) direction. In contrast, the trivial direction exhibits the
absence of such a line. This observation is further validated
by the unequivocal presence of edge states in the combined
model of the two diverse photonic crystals.

From our two examples, it is important to note that even
if two or more cells have the same band structure, their re-
flective spectra may differ fundamentally. Our work provides
a scattering view to reveal the deep topology beyond the
band structure.

IV. CONCLUSIONS

In summary, this study has unveiled an approach for dis-
cerning the topology of isolated bands in classical wave
systems, both in one and two dimensions, leveraging the
concept of a topological singularity characterized by a
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zero-reflection point or line. Our investigations in the two-
dimensional domain revealed that the dynamic movement
of this topological singularity induces significant topological
phase transitions. The existence of topological singularities
in diverse directions imparts distinct topological properties
along those specific axes. Our contributions extend beyond
traditional tight-binding models, as demonstrated by the de-
signed models showcasing topological phase transitions in
two-dimensional photonic crystals. These findings underscore
the profound impact of the topological singularity on re-
flective phenomena, shedding light on the intricate interplay
between symmetry, zero-reflection lines, and band topology.
The proposed methodology not only enriches our fundamental
understanding of topological phases but also opens avenues
for practical applications in the design and engineering of
topological devices. As an illustration, even if a system pos-
sesses a directional band gap, rendering topological edge
states unobservable directly, the reflection spectrum can still
serve as an indicator of whether the band is topological.
As future work, we anticipate further exploration of topo-
logical aspects in diverse topological insulators, such as the
photonic Chern insulator. Our prior research has revealed
that in one-dimensional systems with synthetic dimensions,
the scattering singularity of the photonic Chern insulator re-
mains a point. It would be both intriguing and essential to
extend our methodologies to analyze the scattering singu-
larities in actual two-dimensional photonic Chern insulators
composed of anisotropic materials. Moreover, delving into
non-Abelian topology, particularly in cases where band over-
lap is complex, and scrutinizing non-Hermitian systems, also
offer compelling directions for future research.

The code used to calculate the band and reflective spectrum
is available at [39].
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APPENDIX: ROBUSTNESS OF SINGULARITY

In discussing the robustness of the singularity, it is cru-
cial to acknowledge that the 2D scattering computations
delineated in our work rely on the plane wave expansion
method. This method is intrinsically appropriate for peri-
odic boundary conditions and, therefore, is not applicable
to disordered systems. To probe the robustness of the sin-
gularity amidst disorder, we adopted a numerical strategy
utilizing a finite photonic crystal structure comprised of five
unit cells.

FIG. 6. Robustness of singularity. (a) Schematic of a finite pe-
riodic 2D photonic crystal with five unit cells, where periodic
boundary conditions are applied to the top and bottom boundaries.
The radius of each rod is given by r = r0γW , where γ ∈ [−1, 1] is a
random variable, W is the disorder strength (in this figure, W = 0.1),
and r0 is the initial radius 0.12a. (b) Reflectivity of a single unit cell
(red dashed line) and five unit cells (black solid line, W = 0). The red
triangle marks the resonance frequency (i.e., singularity) of a single
unit cell. (c) Reflectivity of five disordered unit cells with W = 0.05.
(d) Reflectivity of five disordered unit cells with W = 0.1.

Drawing upon the findings of [35], for a finite PhC com-
prising N unit cells, the transmittance of the finite PhC is
given by

T −1 = 1 + sin2 Nφ

sin2 φ

(
1

|t1|2
− 1

)
. (A1)

From Eq. (A1), it is evident that within each band, there are
N − 1 peaks, which originate from Bragg reflections at fre-
quencies that satisfy Nφ = mπ , where m = 1, 2, ..., N − 1.
Additionally, another resonance peak of the finite periodic
system appears at frequencies where the unit-cell transmit-
tance is |t1|2 = 1. In essence, if a resonant frequency of a
single unit cell (i.e., a singularity) exists within the band, the
system will exhibit N resonance peaks. Conversely, in the
absence of such a singularity, there will be N − 1 resonance
peaks.

For instance, consider the unit cell depicted in Fig. 4(a),
and a finite PhC with five cells (N = 5) as shown in Fig. 6(a).
Initially, for the perfect PhC devoid of disorder, we observe
that the nontrivial first band has five resonance peaks, and
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the trivial second band has four resonance peaks in Fig. 6(b).
Furthermore, upon plotting the reflectivity of a single unit cell,
we find that the additional resonance peak in the first band
coincides with the resonance of a single unit cell.

Additionally, we introduce a weak random disorder to the
radius of the dielectric rods, denoted as r = r0γW , where W
represents the disorder strength and γ is a random number
within the range [−1, 1]. In Figs. 6(c) and 6(d), we assign
values of W = 0.05 and W = 0.1, respectively. It is observed

that there are five distinct peaks in the first nontrivial band
and four peaks in the second trivial band for both cases of
random disorder. It is noteworthy that the disorder strength
W = 0.1 falls within the fabrication tolerances [40]. This ob-
servation underscores that the topologically nontrivial nature
of the band ensures the persistence of the singularity, even
in the presence of weak disorder. Consequently, the robust-
ness of the singularity serves as a significant indicator of the
topological integrity of the system.
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