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This paper is concerned with ab initio crystal structure relaxation under a fixed unit cell volume, which is a
step in calculating the static equations of state and forms the basis of thermodynamic property calculations for
materials. The task can be formulated as an energy minimization with a determinant constraint. Widely used line
minimization-based methods (e.g., conjugate gradient method) lack both efficiency and convergence guarantees
due to the nonconvex nature of the determinant constraint as well as the significant differences in the curvatures
of the potential energy surface with respect to atomic and lattice components. To this end, we propose a projected
gradient descent algorithm named PANBB. It is equipped with (i) search direction projections for lattice vectors,
(ii) distinct curvature-aware initial trial step sizes for atomic and lattice updates, and (iii) a nonrestrictive line
minimization criterion as the stopping rule for the inner loop. It can be proved that PANBB favors theoretical
convergence to equilibrium states. Across a benchmark set containing 223 structures from various categories,
PANBB achieves average speedup factors of approximately 1.41 and 1.45 over the conjugate gradient method
and direct inversion in the iterative subspace implemented in off-the-shelf simulation software, respectively.
Moreover, it normally converges on all the systems, manifesting its robustness. As an application, we calculate
the static equations of state for the high-entropy alloy AlCoCrFeNi, which remains elusive owing to 160 atoms
representing both chemical and magnetic disorder and the strong local lattice distortion. The results are consistent
with the previous calculations and are further validated by experimental thermodynamic data.
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I. INTRODUCTION

Crystal structure relaxation seeks equilibrium states on
the potential energy surface (PES). It underpins various ap-
plications such as crystal structure predictions [1–4] and
high-throughput calculations in material design [5–9]. Re-
laxing crystal structures under a fixed unit cell volume is
a step in calculating the static equations of state (EOS) for
materials [10,11] and also presents the volume-dependent
configurations for thermal models such as the quasihar-
monic approximation [12,13], classical mean-field potential
[14–18], and electronic excitation based on Mermin statistics
[19,20], etc.

Mathematically, relaxing the crystal structure under a fixed
unit cell volume V > 0 can be formulated as minimizing the
potential energy with a determinant constraint det(A) = V ,
where a nonconvex feasible region F := {A ∈ R3×3 :
det(A) = V } arises. Here the matrix A consists of three
lattice vectors. Developing convergent methods for general
nonconvex constrained optimization problems remains

*Contact author: gao_xingyu@iapcm.ac.cn
†Contact author: liuxin@lsec.cc.ac.cn
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challenging, since classical tools (e.g., projection) and
theories (e.g., duality) become inapplicable. As far as we
know, little attention has been paid to the determinant-
constrained optimization.

In practice, line minimization (LM)-based methods are
usual choices for this purpose. A flowchart of the widely
used LM-based methods is depicted in Fig. 1. Each iteration
of these methods primarily consists of updating the search
directions followed by an LM process to determine the step
sizes. Among the popular representatives in this class are the
conjugate gradient method (CG) [21] and direct inversion in
the iterative subspace (DIIS) [22]. Specifically, CG searches
along the conjugate gradient directions made up by previous
directions and current forces, while DIIS employs historical
information to construct the quasi-Newton directions. In most
cases, CG exhibits steady convergence but can be unsatis-
factory in efficiency. DIIS converges rapidly in the small
neighborhoods of local minimizers but can easily diverge
when starting far from equilibrium states.

As shown in Fig. 1, the performance of the LM-based
methods crucially depends on three key factors: search di-
rections, initial trial step sizes, and LM criterion. However,
the fixed-volume relaxation presents substantial difficulties on
their designs. First, due to the nonconvex nature of the feasible
region, employing search directions for lattice vectors without
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FIG. 1. Flowchart of the widely used LM-based methods. The
bold text “KS” refers to solving Kohn-Sham (KS) equations to obtain
new energy, atomic forces, and lattice stress whenever the configura-
tion gets updated. The LM process is marked out by the shaded box.
The subscript “inter” indicates the intermediate lattice matrix.

tailored modifications can result in considerable variations in
the configurations, giving rise to drastic fluctuations in the
potential energies; for an illustration, please refer to Fig. 2
later. Secondly, on account of the significant differences in
the curvatures of PES with respect to the atomic and lattice
components, adopting shared initial trial step sizes, as in the
widely used LM-based methods (see S2 in Fig. 1), can be
detrimental to algorithm efficiency. This point is recognized
through extensive numerical tests, where the relative displace-
ments in the lattice vectors during relaxation are typically
much smaller than those in the atomic positions. We refer
readers to Fig. 3 later for an illustration. Thirdly, the mono-
tone criterion utilized in the widely used LM-based methods
mandates a strict reduction in the potential energy after each
iteration, often making the entire procedure trapped in the
LM process. According to incomplete statistics, the CG im-
plemented in off-the-shelf simulation software (e.g., CESSP

[23–26]) spends approximately 60% of its overhead on the
trials rejected by the LM criterion, as supported by the Sup-
plemental Material [27]. It is worth noting that the authors
of [28] devise a nonmonotone LM criterion but only consider
atomic degrees of freedom.

In this work, we propose a projected gradient descent algo-
rithm, called PANBB, that addresses all the aforementioned
difficulties. Specifically, PANBB (i) employs search direction
projections onto the tangent spaces of the nonconvex feasible
region for lattice vectors, (ii) adopts distinct curvature-aware
step sizes for the atomic and lattice components, and (iii)
incorporates a nonmonotone LM criterion that encompasses
both atomic and lattice degrees of freedom. The conver-
gence of PANBB to equilibrium states has been theoretically
established.

PANBB has been tested across a benchmark set contain-
ing 223 systems from various categories, with approximately
68.6% of them being metallic systems, for which the EOS
calculations are more demanding. PANBB exhibits average
speedup factors of approximately 1.41 and 1.45 over the CG
and DIIS implemented in CESSP, respectively, in terms of
running time. In contrast to the failure rates of approximately
4.9% for CG and 25.1% for DIIS, PANBB consistently con-
verges to the equilibrium states across the broad, manifesting
its robustness. As an application of PANBB, we calculate the
static EOS of the high-entropy alloy (HEA) AlCoCrFeNi,
whose fixed-volume relaxation remains daunting owing to
the strong local lattice distortion (LLD) [29]. The numerical
results are consistent with the previous calculations [30] ob-
tained by relaxing only atomic positions. We further apply the
modified mean-field potential (MMFP) approach [18] to the
thermal EOS, which is validated by the x-ray diffraction and
diamond anvil cell experiments [31].

The notations are gathered as follows. We use N ∈ N
for the number of atoms. We denote by “I3” the iden-
tity matrix in R3×3 and “I3×N ” the identity mapping from
R3×N to R3×N . We use R := [r1, . . . , rN ] ∈ R3×N and A :=
[a1, a2, a3] ∈ R3×3 to denote the Cartesian atomic positions
and lattice matrix, respectively. The reciprocal lattice matrix
A−� is abbreviated as B ∈ R3×3. We denote by E (R, A) ∈ R,
Fatom(R, A) ∈ R3×N , Flatt(R, A) ∈ R3×3, �(R, A) ∈ R3×3, and

�dev(R, A) := �(R, A) − Tr[�(R, A)]/3 · I3 ∈ R3×3, (1)

respectively, the potential energy, atomic forces, lattice force,
full stress tensor, and deviatoric stress tensor [32], Sec. 3.10
evaluated at the configuration (R, A); if no confusion arises,
we omit specifying (R, A). From [33,34], one obtains the
relation

Flatt = V �B − FatomR�B. (2)

When describing algorithms, we use the first and second su-
perscripts in brackets to indicate respectively the outer and
inner iteration numbers (e.g., E (k) and α(k−1,�)). Note that the
inner iterations consist in the LM process for updating step
sizes (see S3 to S6 in Fig. 1). The notation “〈·, ·〉” refers
to the standard inner product between two matrices, defined
as 〈M, N〉 := Tr(M�N ), whereas “‖ · ‖F” yields the matrix
Frobenius norm as ‖M‖F := √〈M, M〉.

II. ALGORITHMIC DEVELOPMENTS

In the sequel, we expound on our algorithmic develop-
ments from three aspects: search directions, initial trial step
sizes, and LM algorithm and criterion.
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FIG. 2. Left: a comparison between iterations with and without the gradient projection (4) in two-dimensional context. The x and y axes
refer to the first and second singular values of lattice matrix A, respectively. The black solid line stands for the feasible region det(A) = 1, the
black square denotes the last iterate A(k), and the black dash-dotted line refers to the tangent space T (k) of the feasible region at A(k). The black
and red arrows represent respectively the lattice force F (k)

latt and its projection onto T (k), namely, F̃ (k)
latt . The black and red circles show the next

iterates without and with the gradient projection (4), respectively, after performing the scaling operation indicated by the black dotted lines.
Right: the relaxation history of PANBB on an 8 × 1 × 1 silicon supercell (64 atoms), where “#KS” denotes the number of solving the KS
equations; “w/grad. proj.” and “w/o grad. proj.” stand for the results using F̃ (k)

latt and F (k)
latt , respectively.

A. Search directions

For the atomic part, we simply take the steepest descent
directions, i.e.,

D(k)
atom := F (k)

atom for all k � 0.

As for the lattice part, we first note that the steepest descent
direction F (k)

latt [see Eq. (2)] cannot be used directly due to
the volume constraint; otherwise, there can be unexpected
large variations in the lattice vectors, resulting in drastic
fluctuations in the potential energies. For an illustration in
two-dimensional context, see the left panel of Fig. 2 where

FIG. 3. Relaxation on silicon supercells (8–64 atoms). Left: the relaxation history of PANBB on an 8 × 1 × 1 silicon supercell. “Distinct”
and “Shared” stand for the results of PANBB using distinct and shared step sizes for atomic and lattice components, respectively. Right: the
average #KS by CG and PANBB for relaxing silicon supercells of different sizes. Each system size is associated with 10 initial configurations,
which are generated by random perturbations from equilibrium states; the deviations in the atomic positions are less than 0.1 Å and the
deviations in the lattice vectors are less than 0.02 Å.
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one can observe a large distance between the last iterate A(k)

(denoted by the black square) and the next iterate using F (k)
latt

(denoted by the black circle).
Instead, we search along the tangent lines of the feasi-

ble region at the current configuration. In mathematics, this
amounts to projecting the lattice force F (k)

latt onto the tangent
space T (k) ⊆ R3×3 [35] of the feasible region F at A(k), where

T (k) := {D ∈ R3×3 : 〈B(k), D〉 = 0}. (3)

The projection favors a closed-form expression:

F̃ (k)
latt := F (k)

latt −
〈
B(k), F (k)

latt

〉
‖B(k)‖2

F

B(k). (4)

We then take D(k)
latt := F̃ (k)

latt for k � 0. A comparison between
the iterations with and without the gradient projection (4)
can be found in the left panel of Fig. 2. After projecting
F (k)

latt (denoted by the black arrow) onto T (k), we obtain F̃ (k)
latt

(denoted by the red arrow) and then an iterate closer to A(k)

(denoted by the red circle).
It can be shown theoretically that the gradient projection

(4) eliminates the potential first-order energy increment in-
duced by the scaling operation (S4 in Fig. 1). We shall point
out that the strategy does not necessarily apply to general
nonconvex constrained optimization problems. The desired
theoretical results are achieved by fully exploiting the alge-
braic characterization of the tangent space (3). For technical
details, please refer to the proof of Lemma 2 in Appendix A.
We also demonstrate the merit of the gradient projection (4)
through numerical comparisons; see the right panel of Fig. 2.

B. Initial trial step sizes

Efficient initial trial step sizes are essential for improving
the overall performance. Moreover, our extensive numerical
tests reveal that the relative displacements in the lattice vectors
are typically much smaller than those in the atomic positions
during relaxation, particularly for large systems. This ob-
servation underscores the substantial differences in the local
curvatures of PES with respect to the atomic positions and
lattice vectors or, in other words, ill conditions underlying the
relaxation tasks. In light of this, we shall treat the atomic and
lattice components separately and leverage their respective
curvature information.

Motivated by the above discussions, we introduce
curvature-aware step sizes for the atomic and lattice com-
ponents, respectively. For the atomic part, we adopt the
alternating Barzilai-Borwein (ABB) step sizes [28,36,37], de-
fined as

α
(k−1,0)
atom = α

(k)
atom,ABB :=

{
α

(k)
atom,BB1, if mod(k, 2) = 0,

α
(k)
atom,BB2, if mod(k, 2) = 1

(5)

for k � 1, where

α
(k)
atom,BB1 :=

∥∥S(k−1)
atom

∥∥2

F〈
S(k−1)

atom ,Y (k−1)
atom

〉 , α
(k)
atom,BB2 :=

〈
S(k−1)

atom ,Y (k−1)
atom

〉
∥∥Y (k−1)

atom

∥∥2

F

,

S(k−1)
atom := R(k) − R(k−1), and Y (k−1)

atom := F (k−1)
atom − F (k)

atom. It can
be verified that

α
(k)
atom,BB1 = arg minα

∥∥α−1S(k−1)
atom − Y (k−1)

atom

∥∥
F,

α
(k)
atom,BB2 = arg minα

∥∥αY (k−1)
atom − S(k−1)

atom

∥∥
F.

In other words, α
(k)
atom,BB1I3×N and α

(k)
atom,BB2I3×N approximate

the inverse atomic Hessian of potential energy around R(k).
The gradient descent with the above BB step sizes thus resem-
bles the Newton iteration for solving the nonlinear equations
Fatom = 0.

Now let us derive the ABB step sizes for the lattice part.
Due to the volume constraint, the shear stress must vanish at
the equilibrium states so that there are no more shape changes
in the lattice. By Eq. (1), this gives �dev = 0, which is further
equivalent to F̃latt = 0 in view of Eqs. (2) and (4), provided
that the atomic forces vanish. Recalling the Newton iteration
for solving the nonlinear equations F̃latt = 0, we obtain the
following ABB step sizes for the lattice vectors:

α
(k−1,0)
latt = α

(k)
latt,ABB :=

{
α

(k)
latt,BB1, if mod(k, 2) = 0,

α
(k)
latt,BB2, if mod(k, 2) = 1

(6)

for k � 1, where

α
(k)
latt,BB1 :=

∥∥S(k−1)
latt

∥∥2

F〈
S(k−1)

latt ,Y (k−1)
latt

〉 , α
(k)
latt,BB2 :=

〈
S(k−1)

latt ,Y (k−1)
latt

〉
∥∥Y (k−1)

latt

∥∥2

F

,

S(k−1)
latt := A(k) − A(k−1), and Y (k−1)

latt := F̃ (k−1)
latt − F̃ (k)

latt . With
these distinct step sizes, we update the trials as

R(k,�)
trial := R(k) + α

(k−1,�)
atom D(k)

atom,

A(k,�)
inter := A(k) + α

(k−1,�)
latt D(k)

latt,

A(k,�)
trial := 3

√
V

det
(
A(k,�)

inter

)A(k,�)
inter ,

� = 0, 1, . . . . (7)

As shown in Fig. 3, we demonstrate the benefits brought by
the distinct ABB step sizes (5) and (6) through the relaxation
of silicon supercells. From the left panel, one can observe
the considerable acceleration of the distinct version over the
shared one. In the latter case, the ABB step sizes are shared
and computed by the quantities from both the atomic and lat-
tice components. In the right panel, we test our new algorithm
equipped with the distinct step sizes on the silicon supercells
of different sizes (1 × 1 × 1–8 × 1 × 1). Compared with that
of the CG built in CESSP, the number of solving the KS
equations of the new algorithm increases slowly as the system
size grows, which indicates a preconditioninglike effect of our
strategy.

C. LM algorithm and criterion

With the search directions in place, the LM algorithm starts
from the initial step sizes and attempts to locate an appropriate
trial configuration that meets certain LM criterion. Capturing
the local PES information, however, the ABB step sizes can
occasionally incur small increments on energies [28]. Exten-
sive numerical simulations suggest that keeping the ABB step
sizes intact is more beneficial [28,38]. The monotone LM

224108-4



PROJECTED GRADIENT DESCENT ALGORITHM FOR … PHYSICAL REVIEW B 109, 224108 (2024)

criterion (S5 in Fig. 1) adopted in the widely used LM-based
methods will lead to unnecessary computational expenditure
and undermine the merits of the ABB step sizes. Notably,
the authors of [28] propose a nonmonotone criterion which
encompasses only atomic degrees of freedom.

In the following, a nonrestrictive nonmonotone LM cri-
terion is presented for both atomic and lattice degrees of
freedom and the simple backtracking is taken as the LM
algorithm. Specifically, the nonmonotone criterion accepts the
trial configuration if

E (k,�)
trial � Ē (k) − η

(
α

(k−1,�)
atom

∥∥F (k)
atom

∥∥2

F + α
(k−1,�)
latt

∥∥F̃ (k)
latt

∥∥2

F

)
, (8)

where E (k,�)
trial := E (R(k,�)

trial , A(k,�)
trial ), η ∈ (0, 1) is a constant, and

{Ē (k)} is a surrogate sequence, defined recursively as

Ē (k+1) := Ē (k) + μ(k)q(k)E (k+1)

1 + μ(k)q(k)
,

q(k+1) := μ(k)q(k) + 1,

(9)

with Ē (0) := E (0), q(0) := 1, and μ(k) ∈ [0, 1]. The existence
of α

(k−1,�)
atom and α

(k−1,�)
latt satisfying Eq. (8) is proved in Lemma

2 of Appendix A. It can be verified that Ē (k) is a weighted
average of the past energies {E ( j)}k

j=0 and is always larger than
E (k). Hence small energy increments are tolerable. That being
said, the criterion (8) is sufficient to ensure the convergence of
the entire procedure; see Theorem 1 in Appendix A.

By virtue of the nonmonotone nature of the criterion (8),
we take the simple backtracking as the LM algorithm. When-
ever the last trial configuration is rejected, we set

α
(k−1,�)
atom := α

(k−1,�−1)
atom δatom, α

(k−1,�)
latt := α

(k−1,�−1)
latt δlatt,

(10)

where δatom, δlatt ∈ (0, 1) are constants. Without carefully se-
lected δatom and δlatt, we observe in most simulations that the
ABB step sizes can directly meet the nonrestrictive criterion
(8) and the rejected trials account for approximately 1.8% of
computational costs, in stark contrast to approximately 58.8%
in the widely used CG.

D. Implementation details

With the aforementioned developments, we have devised a
projected gradient descent algorithm called PANBB for crys-
tal structure relaxation under a fixed unit cell volume. More
specifically, for the initial trial step sizes, we set α

(−1,0)
atom =

4.8 × 10−2 Å2/eV, α
(−1,0)
latt = 10−6 Å2/eV during the first

iteration [39] and compute in the subsequent iterations the
truncated absolute values of the ABB step sizes:

α
(k−1,0)
atom = max

{
min

{∣∣α(k)
atom,ABB

∣∣, τ (k)
atom, 10

}
, 10−5}, (11a)

α
(k−1,0)
latt = max

{
min

{∣∣α(k)
latt,ABB

∣∣, τ (k)
latt , 0.1

}
, 10−7

}
, (11b)

where

τ
(k)
atom := γ

(k)
atom max

{− log10

(∥∥F (k)
atom

∥∥
F/N

)
, 1

}
,

τ
(k)
latt := γ

(k)
latt max

{− log10

(∥∥F̃ (k)
latt

∥∥
F/N

)
, 1

}
.

The factors γ
(k)

atom, γ
(k)

latt take respectively the values of 1, 10−3

for k = 0 and later are modified according to the previous

iterations: if they appear to be stringent from the recent history
for α

(k−1,0)
atom and α

(k−1,0)
latt to pass the criterion (8), we increase

them; otherwise, we decrease them. For instance,

γ
(k)

atom :=

⎧⎪⎪⎨
⎪⎪⎩

2γ
(k−1)

atom , case I,

0.5γ
(k−1)

atom , case II,

γ
(k−1)

atom , otherwise,

where, in case I, the truncation has been active but α
(k−1,0)
atom

has directly passed the criterion (8) twice in the past min{k −
k̂, 20} iterations and, in case II, α

(k−1,0)
atom has failed to pass the

criterion (8) twice in the past min{k − k̂, 20} iterations.
Initially, we set k̂ := 0; whenever the factor γ

(k)
atom gets

changed, we set k̂ := k. The update on γ
(k)

latt follows similar
rules. Note that the box boundaries in Eq. (11), such as 10−5

and 10 for α
(k−1,0)
atom , are present for the ease of theoretical

analyses. In practice, these boundaries are rarely touched.
The criterion (8) is equipped with η = 10−4 and μ(k) ≡ 0.05
following [28]. We take δatom = 0.1 and δlatt = 0.5 for the
backtracking (10) [40]. Under mild conditions, we establish
the convergence of PANBB to equilibrium states; see Theo-
rem 1 in Appendix A.

III. NUMERICAL SIMULATIONS

A. Experimental settings

We have implemented PANBB in the in-house plane-
wave code CESSP [23–26]. The exchange-correlation energy
is described by the generalized gradient approximation
[41]. Electron-ion interactions are treated with the projector
augmented-wave (PAW) potentials based on the open-source
ABINIT Jollet-Torrent-Holzwarth data set library in the PAW-
XML format [42]. The total energies are calculated using
the Monkhorst-Pack mesh [43] with a k-mesh spacing of
0.12–0.20 Å−1. The typical plane-wave energy cutoffs are
around 500–600 eV. The KS equations are solved by the
preconditioned self-consistent field (SCF) iteration [25].

In addition to PANBB, we test the performance of the
CG and DIIS built in CESSP. Notably, compared with the one
documented in textbook, the CG in test uses deviatoric stress
tensors in search direction updates for the fixed-volume relax-
ation. We terminate all three methods whenever the number
of solving the Kohn-Sham equations (abbreviated as #KS)
reaches 1000 or the maximum atomic force and the maximum
stress components divided by N fall below 0.01 eV/Å. The
convergence criterion for the SCF iteration is 10−5 eV. For a
discussion on selecting the energy and force tolerances, please
refer to Appendix B. To evaluate the performance of the three
methods, we record the #KS and running time in seconds
(abbreviated as T) required for fulfilling the force tolerance.

B. Benchmark test

We have performed numerical comparisons among CG,
DIIS, and PANBB on a benchmark set consisting of 223
systems from various categories, such as metallic systems,
organic molecules, semiconductors, ABX3 perovskites, het-
erostructures, and 2D materials. About 68.6% of them are
metallic systems, for which the EOS calculations are more

224108-5



HU, YIN, GAO, LIU, AND SONG PHYSICAL REVIEW B 109, 224108 (2024)

FIG. 4. Performance profiles of CG, DIIS, and PANBB, where #KSmin and Tmin denote the minimum #KS and T required by the three
methods on a given system, respectively. To reach a fair comparison and illustrate the algorithm robustness at the same time, we only retain
(i) the systems where the difference between the converged energies obtained by each pair of methods does not exceed 3 meV per atom and
(ii) the systems on which at least one method diverges or fails to converge before #KS exceeds 1000, and set the associated #KS and T to ∞.
The final number of the systems used for this figure is 204. Left: #KS. Right: T.

demanding. The number of atoms in one system ranges from
2 to 215. Some of them are available from the Materials
Project [44] and the Organic Materials Database [45]. In the
beginning, these systems are at their ideal configurations for
defects, heterostructures, and substitutional alloys, or simply
place a molecule on top of a surface. More information about
the benchmark set can be found in the Supplemental Material
[27].

To provide a comprehensive comparison among CG, DIIS,
and PANBB over the benchmark set, we adopt the perfor-
mance profile [46] as shown in Fig. 4, where #KSmin and
Tmin represent the minimum #KS and T required by the three
methods on a given system, respectively. For example, in the
right panel of Fig. 4, the intercepts of the three curves indicate
that CG, DIIS, and PANBB are the fastest on approximately
11.3%, 28.9%, and 59.8% of all the systems, respectively.
The y coordinate touched by the curve of PANBB when
the x coordinate equals two shows that the running time of
PANBB is not twice as large as those of the other two meth-
ods on approximately 96.5% of all the systems. Basically, a
larger area below the curve implies better overall performance
of the associated method. We can therefore conclude from
Fig. 4 that PANBB favors the best overall performance. In
addition, the Supplemental Material [27] reveals that PANBB
is respectively faster than CG and DIIS on approximately
85.2% and 68.8% of all the systems. The average speedup
factors of PANBB over CG and DIIS, in terms of running
time, are around 1.41 and 1.45, respectively. We also cal-
culate the average speedup factors of PANBB over CG by
the system category; see Fig. 5 for an illustration. Among
others, the acceleration brought by PANBB is the most ev-
ident when relaxing organic molecules, ABX3 perovskites,
and metallic systems, with speedup factors of 1.67, 1.50, and
1.40, respectively, in terms of running time. These statistics

provide strong evidence for the universal efficiency superi-
ority of PANBB. The robustness of PANBB also deserves
note. Thanks to its theoretical convergence guarantees (see
Theorem 1 in Appendix A), PANBB converges consistently
across the benchmark set, whereas CG fails on 11 systems
due to the breakdown of the LM algorithm, and DIIS diverges
on 56 systems.

C. Calculations of EOS on the AlCoCrFeNi HEA

As an application of crystal structure relaxation under a
fixed unit cell volume, we employ PANBB to calculate the
static EOS up to approximately 30 GPa for the body-centered
cubic AlCoCrFeNi HEA. The local lattice distortion (LLD),
induced mainly by the large atomic size mismatch of the
alloy components, is one of the core effects responsible for
the unprecedented mechanical behaviors of HEAs. The LLD
in some equimolar HEAs under ambient pressure is studied
by the ab initio approach [29]. The volume-dependent LLD
is investigated and is helpful for understanding the struc-
tural properties of HEAs under pressure. The thermodynamic
properties have also been investigated in comparison with
experimental data for validation.

To incorporate the temperature-induced magnetic struc-
tural transition, we need to describe both the ferromagnetic
(FM) and paramagnetic (PM) states of AlCoCrFeNi. To char-
acterize the inherent chemical and magnetic disorder, we
combine the SAE method [47] and an integer programming
approach [48] to construct representative 4 × 4 × 5 supercells
with 160 atoms. Specifically, the SAE method is first invoked
for chemical disorder modeling, where we seek to minimize∑

d (C2 )<rc
2

w2 f (C2, σ ) +
∑

d (C3 )<rc
3

w3 f (C3, σ ),
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FIG. 5. Average speedup factors of PANBB over CG by the system category. To achieve a fair comparison, we only include the systems
where both PANBB and CG converge normally and the converged energy differences per atom are not larger than 3 meV. Categories whose
numbers of the included systems are less than 5 are merged together into “other”. Left: #KS. Right: T.

with respect to the atomic occupation σ . Here wn (n = 2, 3)
are appropriate weights and rc

n (n = 2, 3) are cutoff radii. The
notations f (C2, σ ) and f (C3, σ ) represent the similarity func-
tions associated with the diatomic clusters C2 and triatomic
clusters C3, respectively. The corresponding diameter of the
cluster is denoted by d (C2) or d (C3). In simulations, w2 = 2,
w3 = 1, rc

2 = 4.5 Å, and rc
3 = 5 Å. We perform 90 000 Monte

Carlo samplings and minimize f (C2, σ ) to approximately
0.06 and f (C3, σ ) to approximately 0.18.

For magnetic disorder modeling, we refrain from using the
SAE method again because it necessitates distinguishing spin-
up and spin-down elements, leading to a higher-dimensional
search space. Instead, we resort to an integer programming
approach to distribute spin-up and spin-down sites uniformly
in the configuration given by the SAE method as a way to
achieve the disordered local moment approximation [49]. We
refer readers to Appendix C for more technical details. The
generated atomic and magnetic configurations are illustrated
in Fig. 6. The rightmost panel displays the radial distribution
function of the magnetic elements, demonstrating a proper de-
scription of the magnetic disorder by the integer programming
approach.

To calculate the static EOS for both the FM and PM
states, we distribute 18 unit cell volumes in the range between
10.29 Å3/atom and 13.12 Å3/atom, corresponding to the
static pressures from approximately 29.4 GPa to −12.9 GPa.
For the FM state, we employ PANBB for the fixed-volume
relaxation with collinear calculations. Following [30], the PM
state is then described based on the relaxed FM structures,
with the initial magnetic configuration determined by the in-
teger programming approach. The energy-volume relations on
both the FM and PM AlCoCrFeNi are depicted in Fig. 7,
along with the fitted third-order Birch-Murnaghan (BM3)
EOS [50,51]. We record the fitted parameters in Table I,
where V0 represents the equilibrium volume and E0, B0, and

B′
0 denotes the energy, bulk modulus, and its derivative with

respect to pressure associated with V0, respectively.
Compared with the previous calculations [30], our fitted V0

and B0 for both the FM and PM states, E0 for the FM state,
and B′

0 for the PM state are comparable; see Table I. The gaps
in B′

0 for the FM state and E0 for the PM state can result from
two aspects: (i) we enhance magnetic disorder by the integer
programming approach; (ii) Ref. [30] relaxes only the atomic
positions, while PANBB optimizes both the atomic and lattice
degrees of freedom. By the way, our value of B′

0 appears to be
more reasonable since it is closer to those obtained for similar
compositions [29]. Within the mean-field approximation [52],
we can estimate the Curie temperature of AlCoCrFeNi as

2

3(1 − c)kB

(
EPM

0 − EFM
0

) ≈ 210.8 K,

where c is the concentration of nonmagnetic atoms, kB is the
Boltzmann’s constant, and EFM

0 and EPM
0 are the energies of

the FM and PM states associated with the equilibrium vol-
umes from the BM3 EOS fitting based on the PANBB results,
respectively; see Fig. 7. Our estimated Curie temperature lies
in the interval of the critical temperature of AlxCoCrFeNi
[53], which is between 200 K (x = 0.75) and 400 K

TABLE I. Fitted parameters of the static BM3 EOS.

References V0 (Å3/atom) E0 (eV/atom) B0 (GPa) B′
0

FM ([30]) 11.77 −6.85 157.32 8.9
FM (PANBB) 11.74 −6.86 158.49 5.3
FM (CG) 11.73 −6.86 158.04 5.8
PM ([30]) 11.70 −6.82 161.64 5.3
PM (PANBB) 11.65 −6.84 167.59 4.7
PM (CG) 11.65 −6.84 161.64 4.0
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FIG. 6. Generated atomic and magnetic configurations. From left to right: the atomic configuration generated by the SAE method, the 64
spin-up and 64 spin-down sites chosen by the integer programming approach for magnetic configuration, and the radial distribution function
of the magnetic elements.

(x = 1.25), to some extent demonstrating rational descriptions
of the FM and PM states.

To construct the EOS in the temperature (T ) and pres-
sure (P) space, the modified mean field potential (MMFP)
approach [18] is used to describe the ion vibration energy as

F MMFP
vib := −kBT

[
3

2
ln

MkBT

2π h̄
+ ln v f (V, T )

]
,

v f (V, T ) := 4π

∫
exp

[
p(r,V )

kBT

]
r2 dr,

p(r,V ) := 1

2
[Es(D + r) + Es(D − r) − 2Es(D)]

+ λr

2D
[Es(D + r) − Es(D − r)],

FIG. 7. Energy-volume relations on FM and PM AlCoCrFeNi.
“DFT” indicates the ab initio results, while “Fit” is for the curve
fitted to the static BM3 EOS. The red circles and solid line represent
the results for the FM state, while the black squares and dotted line
represent the results for the PM state.

where h̄ denotes the Planck constant, M is the relative atomic
mass, D is the nearest atomic distance, r corresponds to the
distance of the ion vibration away from its equilibrium posi-
tion, Es is the static EOS, and p is the constructed potential.
Here, λ can take three values, −1, 0, 1, which originate from
different forms of the Grüneisen coefficient. As a power-
ful tool to calculate the Helmholtz free energy, the MMFP
effectively describes the ion vibration with the anharmonic
effect and has been widely used in thermodynamic physical
properties simulations of HEAs [30,47].

Since the effectiveness of the MMFP approach highly de-
pends on the potential field constructed from the static EOS,
we can validate the previous calculations by investigating the
thermodynamic properties of AlCoCrFeNi. We first calculate
the equilibrium volume and bulk modulus at ambient condi-
tions with the MMFP approach using the PM PANBB results.
Our values (approximately 11.83 Å3/atom and 148.8 GPa)
turn out to be close to those from the x-ray diffraction and
diamond anvil cell experiments (11.79 Å3/atom and 150 ±
2.5 GPa) [31]. We then calculate the volume-pressure relation
at 300 K with the PM PANBB results; see the solid line with
label “300 K (MMFP)” in Fig. 8. At equivalent pressures, the
maximum relative deviation of the volumes from the diamond
anvil cell data [31] does not exceed 0.7%.

We would also like to compare PANBB with CG on the
relaxation of the FM AlCoCrFeNi. PANBB converges nor-
mally at all volumes, while CG is found to fail at four volumes
due to the breakdown of the LM process. Moreover, a sharp
jump of c/a is found during the relaxation of CG when the
pressure exceeds 21 GPa; see Fig. 9. The results of CG at
the other 16 volumes are fitted by the BM3 EOS. The fitted
parameters of the static EOS of AlCoCrFeNi are summarized
in Table I and consistent with those derived from the PANBB
results. The average speedup factor of PANBB over CG in
terms of running time is 1.36. Note that this speedup factor
is calculated at the volumes where both methods converge
normally and the energy differences per atom are not larger
than 3 meV.

By the way, we illustrate the LLD achieved by fixed-
volume relaxation at pressures of approximately 0 GPa,
21 GPa, and 29 GPa using the smearing radial distribution
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FIG. 8. Volume-pressure relation on AlCoCrFeNi at 0 K and
300 K. “Cheng exp.” represents the x-ray diffraction and diamond
anvil cell experimental results [31], “0 K (FM static EOS)” refers to
the relation by fitting the static EOS based on the FM PANBB results,
“0 K (PM static EOS)” refers to the relation by fitting the static EOS
based on the PM PANBB results, and “300 K (MMFP)” refers to
the relation given by the MMFP approach based on the PM PANBB
results.

function. This stands in sharp contrast to the peaks at co-
ordination shells in the ideal lattice, as depicted in Fig. 10.
Notably, when the pressure does not exceed 21 GPa, the radial
distribution functions of the structures relaxed by PANBB
and CG display a high degree of consistency. However, as
the pressure rises to 29 GPa, the radial distribution function
obtained by PANBB exhibits smeared peaks consistent with

FIG. 9. Axis length ratio-volume relation on the FM AlCoCr-
FeNi. For the volumes where CG fails to converge normally, we use
the axis length ratios of the final structures. The axis length ratios
“c/a” and “b/a” are indicated by solid and dotted lines, respectively.
The results of CG and PANBB are indicated by square and circle
markers, respectively.

those of the ideal lattice, while that obtained by CG shows
significant displacements. This can be attributed to the pre-
viously mentioned issue of strong lattice distortion during
the relaxation process of CG. Whether such lattice distortion
conforms to physics deserves future investigations.

IV. CONCLUSIONS

In this work, we introduce PANBB, a force-based algo-
rithm for relaxing crystal structures under a fixed unit cell
volume. By incorporating the gradient projections, distinct
curvature-aware initial trial step sizes, and a nonmonotone
LM criterion, PANBB exhibits universal superiority over
the widely used methods in both efficiency and robustness,
as demonstrated across a benchmark test. PANBB is an
algorithm that guarantees theoretical convergence for the
determinant-constrained optimization. Moreover, the applica-
tion in the AlCoCrFeNi HEAs also showcases its potential in
facilitating calculations of the wide-range EOS and thermo-
dynamical properties for multicomponent alloys.
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APPENDIX A: CONVERGENCE ANALYSES

In what follows, we rigorously establish the convergence of
PANBB to equilibrium states regardless of the initial configu-
rations. The analyses depend on the following two reasonable
assumptions on the potential energy functional.

Assumption 1. The potential energy functional E is lo-
cally Lipschitz continuously differentiable with respect to R
and A. The stress tensor � is continuous with respect to R
and A.

Assumption 2. The potential energy functional E is co-
ercive over F , namely, E (R, A) → ∞ as ‖R‖2 → ∞ or
‖A‖2 → ∞ with det(A) = V .

For brevity, we make the following notation:

D̃latt := B�F̃latt, (A1)

where F̃latt is defined in Eq. (4), and define the level set

L := {(R, A) : E (R, A) � E (0), det(A) = V }. (A2)
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FIG. 10. Radial distribution functions of the FM AlCoCrFeNi at pressures of approximately 0 GPa (left), 21 GPa (middle), and 29 GPa
(right). The black solid lines refer to the functions before relaxation, while the blue dashed and red dotted lines represent the functions after
relaxation using PANBB and CG, respectively.

In view of Eqs. (7) and (A1), A(k,�)
inter can be rewritten as

A(k,�)
inter = A(k)

(
I + α

(k−1,�)
latt D̃(k)

latt

)
. (A3)

Assumptions 1 and 2 directly imply the following lemma.
Lemma 1. Suppose that Assumptions 1 and 2 hold. Then

there exists an M > 0 such that if (R, A) ∈ L, all of ‖R‖F,
‖A‖F, ‖B‖F, ‖Fatom‖F, and ‖D̃latt‖F are upper bounded by M.

Proof. The existence of a uniform upper bound for ‖R‖F
and ‖A‖F follows directly from Assumption 2 and the def-
inition of the set L in Eq. (A2). That for ‖B‖F is derived
from det(A) = V . The uniform boundedness of ‖Fatom‖F
and ‖D̃latt‖F are then deduced from Eqs. (2), (A1), and
Assumption 1. �

Let ᾱatom, ᾱlatt, αatom, and αatom denote the upper and lower
bounds for the ABB step sizes in Eq. (11). Based on Assump-
tions 1 and 2, some positive constants are defined using M in
Lemma 1, δatom, δlatt in Eq. (10) as well as ᾱatom and ᾱlatt in
Eq. (11):

L∇E := sup

{‖∇E (R1, A1) − ∇E (R2, A2)‖F

‖(R1, A1) − (R2, A2)‖F
: ‖Ri‖F � (1 + ᾱatom)M, ‖Ai‖F � 3

2
M, i = 1, 2

}
,

Llatt := sup

{ |E (R, A1) − E (R, A2)|
‖A1 − A2‖F

: ‖R‖F � (1 + ᾱatom)M, ‖Ai‖F � 3M, i = 1, 2

}
,

M̄ := 48

7
M3Llatt, �̄ :=

⎡
⎢⎢⎢max

⎧⎨
⎩

ln L∇E ᾱatom
2(1−η)

ln 1
δatom

,
ln (L∇E +2M̄ )ᾱlatt

2(1−η)

ln 1
δlatt

,
ln(2Mᾱlatt )

ln 1
δlatt

⎫⎬
⎭

⎤
⎥⎥⎥. (A4)

Lemma 2 below asserts that the LM processes in PANBB are
always finite.

Lemma 2. Suppose that Assumptions 1 and 2 hold. As-
sume that (R(k), A(k) ) ∈ L. Then, in the (k + 1)th iteration, the
LM criterion (8) must be satisfied after invoking the back-
tracking (10) for at most �̄ times and (R(k+1), A(k+1)) ∈ L,
where �̄ is defined in Eq. (A4).

Proof. We prove this lemma by showing that there is a
sufficient reduction from E (k) to E (k,�)

trial provided that � � �̄,
which indicates the fulfillment of the criterion (8). We divide
the proof into two steps.

Step 1. Estimate E (R(k,�)
trial , A(k,�)

inter ) − E (k). It follows from
Eqs. (3) and (7) that

〈
F (k)

atom, R(k,�)
trial − R(k)

〉 = − 1

α
(k−1,�)
atom

∥∥R(k,�)
trial − R(k)

∥∥2

F,

〈
F (k)

latt , A(k,�)
inter − A(k)

〉 = − 1

α
(k−1,�)
latt

∥∥A(k,�)
inter − A(k)

∥∥2

F. (A5)

Since � � �̄, it can be shown α
(k−1,�)
latt � 1/(2M ).

From this, α
(k−1,�)
atom � ᾱatom, and Lemma 1, we can infer

α
(k−1,�)
latt ‖D̃(k)

latt‖2 � 1/2 and

∥∥R(k,�)
trial

∥∥
F

(7)
� (1 + ᾱatom)M, (A6)

∥∥A(k,�)
inter

∥∥
F

(A3)
� ‖A(k)‖F

(
1 + α

(k−1,�)
latt

∥∥D̃(k)
latt

∥∥
2

)
� 3

2 M. (A7)

By the definition of L∇E in Eq. (A4), one can derive from
Eqs. (A5)–(A7) that E (R(k,�)

trial , A(k,�)
inter ) − E (k) is upper bounded

by [
L∇E

2
− 1

α
(k−1,�)
atom

]∥∥R(k,�)
trial − R(k)

∥∥2

F

+
[

L∇E

2
− 1

α
(k−1,�)
latt

]∥∥A(k,�)
inter − A(k)

∥∥2

F. (A8)
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Step 2. Estimate E (k,�)
trial − E (R(k,�)

trial , A(k,�)
inter ). First notice from

Eq. (A3) that det(A(k,�)
inter ) = V det(I + α

(k−1,�)
latt D̃(k)

latt ). Due to
α

(k−1,�)
latt ‖D̃(k)

latt‖2 � 1/2 and the fact that the modulus of any
eigenvalue is not larger than the maximum singular value,
one has

det
(
A(k,�)

inter

) ∈ [
1
8V, 27

8 V
]
. (A9)

By the definition of the scaling operation (see S4 in Fig. 1),
Eqs. (A7) and (A9), ‖A(k,�)

trial ‖F � 3M. From this,

E (k,�)
trial − E

(
R(k,�)

trial , A(k,�)
inter

)
(A4), (A6)

� Llatt

∥∥A(k,�)
trial − A(k,�)

inter

∥∥
F

= Llatt

∣∣ 3

√
det

(
A(k,�)

inter

) − 3
√

V
∣∣ ∥∥A(k,�)

inter

∥∥
F

3

√
det

(
A(k,�)

inter

) . (A10)

For one thing, in view of Eqs. (A7) and (A9),∥∥A(k,�)
inter

∥∥
F

3

√
det

(
A(k,�)

inter

) � 3M
3
√

V
. (A11)

For another, again by Eq. (A9),

∣∣ 3

√
det

(
A(k,�)

inter

) − 3
√

V
∣∣

=
∣∣det

(
A(k,�)

inter

) − V
∣∣

det
(
A(k,�)

inter

)2/3 + det
(
A(k,�)

inter

)1/3
V 1/3 + V 2/3

� 4
∣∣det

(
A(k,�)

inter

) − V
∣∣

7V 2/3
. (A12)

Let λ1, λ2, λ3 be the eigenvalues of α
(k−1,�)
latt D̃(k)

latt. Since F̃ (k)
latt

lies on T (k) [see the definition in Eq. (3)], one has
∑3

i=1 λi = 0
from Eq. (A1). Therefore,∣∣det

(
A(k,�)

inter

) − V
∣∣ (A3)= V

∣∣det
(
I + α

(k−1,�)
latt D̃(k)

latt

) − 1
∣∣

= V |λ1λ2 + λ1λ3 + λ2λ3 + λ1λ2λ3|.
Since maxi{|λi|} � α

(k−1,�)
latt ‖D̃(k)

latt‖2 � 1/2,∣∣det
(
A(k,�)

inter

) − V
∣∣ � 4V max

i
{|λi|}2 � 4V

∥∥α
(k−1,�)
latt D̃(k)

latt

∥∥2

2

(A3)= 4V
∥∥B(k)�(

A(k,�)
inter − A(k))∥∥2

2

� 4M2V
∥∥A(k,�)

inter − A(k)
∥∥2

F, (A13)

where the last inequality uses Lemma 1. Combining Eq. (A4)
and Eqs. (A10)–(A13), one obtains

E (k,�)
trial − E

(
R(k,�)

trial , A(k,�)
inter

)
� M̄

∥∥A(k,�)
inter − A(k)

∥∥2

F. (A14)

Finally, putting Eqs. (A8) and (A14) together, we have

E (k,�)
trial − E (k) �

[
L∇E

2
− 1

α
(k−1,�)
atom

]∥∥R(k,�)
trial − R(k)

∥∥2

F

+
[

L∇E

2
+ M̄ − 1

α
(k−1,�)
latt

]∥∥A(k,�)
inter − A(k)

∥∥2

F.

By virtue of the criterion (8) and E (k) � Ē (k) [28], Lemma
2, the LM process must stop when

L∇E

2
− 1

α
(k−1,�)
atom

� − η

α
(k−1,�)
atom

,

L∇E

2
+ M̄ − 1

α
(k−1,�)
latt

� − η

α
(k−1,�)
latt

,

which is fulfilled once � reaches �̄. Since E (R(k,�)
trial , A(k,�)

trial ) �
Ē (k) � E (0), (R(k+1), A(k+1)) ∈ L. �

Leveraging Lemma 2, we are ready to establish the conver-
gence of PANBB.

Theorem 1. Suppose that Assumptions 1 and 2 hold.
Let {(R(k), A(k) )} be the configuration sequence generated
by PANBB with μk ∈ [μmin, μmax] ⊆ (0, 1]. Then we have
F (k)

atom → 0 and F̃ (k)
latt → 0 as k → ∞. Moreover, there exists

at least one limit point of {(R(k), A(k) )} and any limit point
(R�, A�) satisfies F �

atom = 0, ��
dev = 0.

Proof. By Lemma 2, the backtracking scheme (10), and
α

(k−1,0)
atom � αatom, α

(k−1,0)
latt � αlatt, it holds that

α
(k)
atom � βatom := αatomδ�̄

atom, α
(k)
latt � βlatt := αlattδ

�̄
latt.

Plugging this into the criterion (8), we obtain

E (k+1) � Ē (k) − η
[
βatom

∥∥F (k)
atom

∥∥2

F + βlatt

∥∥F̃ (k)
latt

∥∥2

F

]
. (A15)

Let �(k) := βatom‖F (k)
atom‖2

F + βlatt‖F̃ (k)
latt ‖2

F. From this, a recur-
sion for the monitoring sequence follows:

Ē (k+1) (9)= Ē (k) + μ(k)q(k)E (k+1)

q(k+1)

(A15)
� Ē (k) + μ(k)q(k)(Ē (k) − η�(k) )

q(k+1)

= Ē (k) − η
μ(k)q(k)

q(k+1)
�(k). (A16)

A by-product of Eq. (A16) is the monotonicity of {Ē (k)}.
Since E is bounded from below over L (by Assumption 1
and Lemma 1) and E (k) � Ē (k) for any k � 0 [28], Lemma 2,
{Ē (k)} is also bounded from below. Consequently,

∞∑
k=0

μ(k)q(k)�(k)

q(k+1)

(A16)
� 1

η

∞∑
k=0

(Ē (k) − Ē (k+1)) < +∞. (A17)

Following from Eq. (9) and μmax � μ(k) � μmin > 0, q(k) �
1, we can derive

μ(k)q(k)

q(k+1)
� μminq(k)

μ(k)q(k) + 1
= μmin

μ(k) + 1/q(k)
� μmin

μmax + 1
,

which, together with Eq. (A17), yields �(k) → 0 as k → ∞.
By βatom, βlatt > 0, the definition of �(k), and Lemma 1, one
has F (k)

atom → 0 and F̃ (k)
latt → 0 as k → ∞.

Let (R�, A�) be a limit point of {(R(k), A(k) )}, whose ex-
istence is guaranteed by Lemma 1. Then by the above
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FIG. 11. History of force and stress residuals when relaxing silicon supercells. The black, red, and blue lines stand for the results with the
SCF energy tolerances 10−5, 10−6, and 10−7, respectively. Left: results on a 2 × 1 × 1 supercell (16 atoms). Right: results on an 8 × 1 × 1
supercell (64 atoms).

arguments and Eq. (4), F �
atom = 0 and

0 = F̃ �
latt = F �

latt − 〈B�, F �
latt〉

‖B�‖2
F

B�

= V

[
��B� − 〈B�, ��B�〉

‖B�‖2
F

B�

]
,

which implies that �� is a multiple of I and hence ��
dev = 0.�

APPENDIX B: PERFORMANCE OF PANBB UNDER
DIFFERENT ENERGY AND FORCE TOLERANCES

We have tested PANBB on silicon supercells (2 × 1 × 1
and 8 × 1 × 1) with varied energy tolerances for the SCF
iterations (10−7–10−5 eV) and force tolerances for structure
relaxation (10−4–10−2 eV/Å). The history of force and stress
residuals and the output energies under difference tolerance
combinations are recorded in Fig. 11 and Tables II and III,
respectively.

From Fig. 11, we observe that PANBB is able to improve
the accuracy if the force tolerance is decreased. This may
come at the price of much longer relaxation journeys, which
can be mitigated, to some extent, by decreasing the energy
tolerance for the SCF iterations so that the potential energies
and forces are more accurate.

From Tables II and III, we conclude that the combination
of an energy tolerance of 10−5 eV for the SCF iterations and
a force tolerance of 10−2 eV/Å for structure relaxation works

TABLE II. Results on a 2 × 1 × 1 silicon supercell (16 atoms).

Energy SCF iterations (eV)
(eV/atom) 10−5 10−6 10−7

10−2 −5.42486144 −5.42485731 −5.42486094
Relax 10−3 −5.42486850 −5.42486856 −5.42486856
(eV/Å) 10−4 −5.42486856 −5.42486856 −5.42486856

224108-12



PROJECTED GRADIENT DESCENT ALGORITHM FOR … PHYSICAL REVIEW B 109, 224108 (2024)

TABLE III. Results on an 8 × 1 × 1 silicon supercell (64 atoms).

Energy SCF iterations (eV)
(eV/atom) 10−5 10−6 10−7

10−2 −5.42258192 −5.42259973 −5.42259520
Relax 10−3 −5.42261672 −5.42261644 −5.42261677
(eV/Å) 10−4 −5.42261686 −5.42261686 −5.42261683

well for PANBB to yield structures that are sufficiently close
to equilibrium states.

Based upon these results, we set in all simulations the
SCF tolerance to 10−5 eV and the relaxation tolerance to
10−2 eV/Å.

APPENDIX C: MAGNETIC DISORDER MODELING

We elaborate below on the technical details when modeling
the magnetic disorder for the PM structures, in particular, how
to solve the distribution problem for the spin-up or spin-down
sites. We assume that an atomic configuration is available
(e.g., given by the SAE method) and moreover introduce some
notations as follows.

S ∈ N: number of the atomic species (in the AlCoCrFeNi
case, equals 5).

Smag ∈ N: number of the magnetic atomic species (in the
AlCoCrFeNi case, equals 4). For convenience, we assume that
species 1, . . . , Smag are magnetic.

Ns ∈ N: number of the atoms in the unit cell belonging
to species s (in the AlCoCrFeNi case, N1 = · · · = N5 = 32)
(s ∈ {1, . . . , S}).

Nmag ∈ N: number of magnetic atoms in the unit cell (in
the AlCoCrFeNi case, equals 64).

�ax ∈ N: number of the atomic layers in the unit cell with
axis ax ∈ {a, b, c} as normal.

Is ⊆ {1, . . . , N}: indices of the sites occupied by species s
(s ∈ {1, . . . , Smag}).

Iax,l,s ⊆ {1, . . . , N}: indices of the sites occupied by
species s located on the lth atomic layer with axis ax as normal
(ax ∈ {a, b, c}, l ∈ {1, . . . , �ax}, s ∈ {1, . . . , Smag}).

y ∈ {0, 1}Nmag : binary indicators for the spin-up configu-
ration, where yn = 1 (n ∈ {1, . . . , Nmag}) means that the nth
atom spins up. Conversely, one may interpret the zero entries
as spin-down atoms.

y0 ∈ {0, 1}Nmag : binary indicators for the trial spin-up con-
figuration. The meaning of each entry is analogous to that
of y.

With the above notations, we can formulate the spin-
up distribution problem as the following binary integer
programming:

max
y

〈y0, y〉,

subject to

⌊
Ns

2�ax

⌋
�

∑
n∈Iax,l,s

yn �
⌈

Ns

2�ax

⌉
,

l ∈ {1, . . . , �ax}, ax ∈ {a, b, c}, s ∈ {1, . . . , Smag},∑
n∈Is

yn = Ns

2
, s ∈ {1, . . . , Smag},

y ∈ {0, 1}Nmag . (C1)

The integer programming (C1) maximizes the similarity
between the trial and optimized spin-up structures, repre-
sented by the inner product of their corresponding binary
indicators. In our experiments, we simply take y0 = 0. The
first line of constraints enforces that the spin-up sites of each
species are evenly distributed over each atomic layer. The
second line of constraints imposes that the numbers of spin-
up and spin-down sites for each species are identical. Upon
solving the integer programming (C1) (e.g., by MATLAB [54]),
one can transform the solution y� to a concrete magnetic
configuration.
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