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Phonon-magnon mechanism and quantized disorder in MnAs
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The quantum material MnAs manifests both a magnetic and structural phase transition at 318 K. The origin
of this anomaly has been the focus of both experimental and theoretical work for many years. Earlier theoretical
work usually involved using many empirical parameters in a stat-mech approach. More recent applications of
density functional theory (DFT) have seen some researchers suggesting soft mode phonons coupled to spin may
be a promising theoretical direction. Here I introduce a different phonon-magnon coupling in which soft mode
phonons resonantly excite magnons localized to distances between in-plane Mn-Mn atoms. I show that these
magnons reflect between Mn-Mn atoms setting up antiferromagnetic standing waves. Using a quantum stat-
mech approach, I show that this mechanism predicts the disordered Mn-Mn distances, as well as the anomalous
temperature behaviors of the lattice parameters and magnetic fields. I further predict hysteresis and magnetic
heating/cooling in agreement with experiment, as well as the anomalous thermal and elastic properties.
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I. INTRODUCTION

The anomalous phase transition at Tc ≈ 318 K in MnAs
has been the subject of intense research, both experimental
and theoretical, for decades. In 1962 Bean and Rodbell [1]
published a free energy model in which the magnetic phase
coincided with the geometric phase as seen by expanding
the entropy in a power series of adjustable parameters, with
the critical temperature depending explicitly on volume. This
model fails to explain both the second-order phase transition
at 400 K and the metamagnetic phase transition. In 1983
Kato, Nagai, and Aisaka [2] published a free energy approach
where the exchange was coupled to the geometry through a
series of ad hoc parameters which were determined by exper-
iment. Later, Pytlik and Zieba [3] published a Landau type
free energy model which predicted the correct phase diagram
with two competing order parameters. They introduced an
empirical coupling between a magnetic moment in the hexag-
onal phase and a lattice deformation which was used by the
authors of Ref. [11]. More recently, Stefano and Hill used a
DFT approach to model the ground state. They found that the
ferromagnetism is due to the splitting of degenerate electronic
d bands [4]. In addition, they did a tight-binding calculation
using the equations found in Slater and Koster [5,6] to check
the DFT calculation. They found a strong sp3 bond, as well
as strong p-d coupling. Rungger and Sanvito undertook an
ab initio study which showed that the exchange interaction
between Mn atoms depends not only on the volume, but the
local distortion [7].

Soft mode phonons as postulated by Landau and Lifshitz
are thought to be a key mechanism in material phase transi-
tions [8]. Soft modes originate in crystal systems which have
an anharmonic potential [9]. In 1972 the authors of Ref. [8]
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posited that soft modes could cause spin flips, but did not go
into detail about exact nature of the mechanism. Lazewski and
co-workers [10,11] showed that soft mode phonons somehow
couple to spin flips. They also noted that the relevant physics
occurs between nearest neighbor Mn atoms, and that the soft
modes have frequencies in the THz range. While this model
did predict local disorder, the calculated magnitude for ther-
mal displacements for Mn atoms in the hex phase at 300 K
differs substantially from that measured by Petkov et al. [12].
Recently Yang et al. [13] showed that soft modes with specific
momentum act to mediate unconventional superconductivity
in a monolayer material. Based on this I assume the soft
modes are quantized above and below Tc. It is known that
the soft mode frequencies decrease during the phase transition
[11,12,14], and that different soft modes are linearly inde-
pendent, which makes them orthogonal to each other [10,11].
Also, Ref. [14] posits that multiple soft modes take part in a
phase transition, with one mode being principle. Later, in 2020
Bocarsly et al. [15] proposed a mechanism involving competi-
tion between magnetic and chemical bonding. They suggested
that the local atomic disorder may be invoked to explain the
observed low thermal conductivity [16] and anomalous elastic
properties [17]. They also stated that the microscopic mecha-
nism governing magnetostructural coupling in this and other
materials remains an open question.

The nature of the coupling between soft modes and spin as
suggested in Refs. [10,11] suggests a microscopic mechanism
that is cooperative. However, the coexistence of the local
disorder and the anomalous elastic and thermal conductive
properties as suggested by Ref. [15] also point to a cooperative
mechanism. Here I introduce a set of equations that simulta-
neously couple the absorbed soft modes to the local disorder,
magnetic, and elastic properties.

To understand how best to model the mechanism, consider
the measurements at Tc ≈ 318.0 ± 2.0 K done by Petkov
et al. [12]. It has been observed that the Mn-As distance
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d0 = 2.57 Å stays approximately constant. As such, the
only distances that change number are the in-plane Mn-
Mn separations. The initial dH = 3.72 Å in the hexagonal
phase becomes d01 = 3.38, d02 = 3.68, d03 = 3.98 in the or-
thorhombic phase. I do not consider motion of the As atoms
in this model. The Mn atoms which define these distances
along with the vertical Mn-Mn distance shown in Ref. [12] are
connected to the same As atom. As such, this structure forms
the smallest structure repeated throughout the crystal. In this
work I extend the soft mode hypothesis introduced in Ref. [11]
and posit a coherent soft mode–magnon coupling to predict
the disorder measured in Ref. [12]. Magnons are known to
exist in this material below the transition temperature. In the
hex phase, the magnetization between Mn atoms must be
associated with ground state ferromagnetic magnons [18] as
there is only one Mn-Mn distance. It is well known that the
ortho phase is unstable, indicating that any magnons which
form during the phase transition are antiferromagnetic exci-
tations. As T → Tc particular soft modes with wavelengths
given in Eq. (1) get absorbed to form anti-ferro-magnetic
(JAFM > 0) magnons [19,20]. The excited magnons are quan-
tized in such a manner as to be nondegenerate in accordance
with the disorder. The emergence of the disorder in MnAs and
the abrupt changes in the lattice parameter and magnetization
are manifestations of relationships shown in Eqs. (1) and (2)
below which are required in order to ensure that the disorder
that occurs during the processes dH → d0i is quantized. I
first posit the existence of a quantized relationship between
absorbed soft mode wavelengths and the disordered Mn-Mn
distances,

T � Tc →
(

λ1 = d01

3
, λ2 = d02

2
, λ3 = d03

)
. (1)

Note that kn = 2π/λn holds. From the literature [2] a cal-
culated soft mode frequency is f = 1.133 × 1012 Hz. Since
soft modes satisfy an anharmonic potential I assume their
wave speed can be different from that of the crystal. In ad-
dition I could find no measurement of soft mode velocities in
the literature. Setting this frequency equal to f3, I consider the
lowest de Broglie wavelength of a single absorbed soft mode.
Using Eq. (1), λ3 ≈ d03 ≈ 3.98 Å. We can calculate the wave
speed for soft modes in the O phase as ν0 = 450.9 m/s. Using
ν0 and Eq. (1), I calculate the frequency of the first excited
state, λ1 = 1.12 Å, f1 = 4.0 × 1012 Hz, and for the second
excited state, λ2 = 1.84 Å, f2 = 2.45 × 1012 Hz. A quantum
statistical mechanical approach is used to define a free energy
that is the sum of energies used to calculate the disorder.
These are the energies of absorbed soft modes, magnons,
crystal fields, anharmonic potentials, spin-orbit interactions,
exchange interactions, and phonon-magnon interactions be-
tween Mn atoms. The essence of cooperation is to assume
that a fluctuation of this free energy vanishes as T → Tc.
All the interactions are known to exist, and fluctuations of
this particular combination only vanish under very specific
circumstances. Based on the observed hysteresis it is a com-
monly held assumption that both phases coexist during the
transition. Here Eq. (1) quantizes the fluctuations δFdi in
the local free energies, lifting any degeneracies. Although
the effect measured in MnAs is an abrupt phase transition,
the authors of Ref. [12] told me the measurements have an

uncertainty (Tc ± 2.0 K). I assume that a “locally preferred
structure” [21] in MnAs is a given As atom connected to
a set of six Mn atoms whose in-plane distances are in a
quantum superposition centered around an in-plane distance
d02 = 3.68 Å. During the phase transition a particular set of
these distances “freeze out.” As T ≈ Tc, the fluctuation of the
free energy δFdH of the initial in-plane distance dH = 3.72 Å
becomes unstable (δFdH �= 0) due to thermal fluctuations. To
partially stabilize (δFdH → δFd2 ≈ 0) absorbs two soft mode
phonons with frequency f2 to manifest a new in-plane Mn-Mn
bond length d02 = 3.68 Å. Now δFd2 is unstable with respect
to thermal fluctuations which are orthogonal to d2 that are
also in plane. δFd2 further stabilizes by absorbing soft mode
phonons of frequencies f1, f3 (δFd2 → δFd1 ≈ 0, δFd3 ≈ 0) to
form Mn-Mn bond lengths of d01 = 3.38, d03 = 3.98 which
are approximately orthogonal to d02 [12]. During the phase
transition the Mn-Mn distance is expanding/contracting as a
function of temperature. I assume the change in each Mn-Mn
distance (δdi) brought about by thermal fluctuations satisfies
equipartition [22],

δdi =
√

kBT/κi. (2)

Here κn is a parameter which is calculated (to first order) in
terms of the first derivative of the anharmonic (deformation)
potential between Mn atoms using tight-binding theory [7]
in the next section. Equations (1) and (2) can be used to
calculate the transition temperature Tc ≈ 318.0 K, thus show-
ing that T → Tc is a function of the geometry [12]. As each
distance dn expands/contracts, this quantity determines which
soft modes are absorbed. Equation (1) is required for the
coherent transfer of energy between soft mode phonons and
magnons. This quantization leads directly to the anomalous
temperature dependence of the structural and magnetic phase
transitions by quantizing the fluctuations in the free energies
δFdi. This acts to lift any degeneracy in the three “mixed
state” Mn-Mn distances. In addition, the condition introduced
in Eq. (1) manifests in the quantized fluctuation of certain
variables shared by each free energy in such a way as to reduce
the number of parameters required to fit the data. These fluc-
tuations δFdi will be used to calculate δφi(T ) defined below.
Using the same approach as in the glass [22] I assume each
in-plane Mn-Mn distance as can be written as

di � d0[φ0 + δφi(T )], (3)

with δdi = d0δφi. Here δφi is the order parameter which op-
timizes the fluctuation δFi in the free energy that couples
two Mn atoms. As such, it is the local order parameter as-
sociated with a given soft mode. For T � Tc there are three
order parameters δφi(T ), i = 1, 2, 3 and there are three in-
dependent soft modes ωsm(i), i = 1, 2, 3. From Ref. [23], T ≈
Tc → ωsm(i) ≈ 0. The expectation value 〈δφi〉 is negative for
di < 3.72, and positive for di > 3.72. As measured 〈δφi(T )〉
is the angular fluctuation associated with a given in-plane
Mn-Mn distance as a function of temperature. Each δφi is
unique as well as quantized through assuming δFdi ≈ 0. The
phonon-magnon process is shown below in Fig. 1.

I now consider the formation of the frozen magnon stand-
ing waves. Coherent transfer between phonons and magnons
has been observed in a single nanomagnet [24]. More recently,
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FIG. 1. Here a soft mode λP is absorbed by initial Mn-Mn dis-
tance d0(H ) to simultaneously emit a magnon λm and excited Mn-Mn
distance di(O).

spin standing waves have been observed in a van der Waals
magnetic material [25], as well as in magnonic crystals [26].
More recently Kishine et al. published a theory of standing
spin waves in a finite size lattice [27]. It has been observed
that the magnetic moments on the Mn atoms go from ferro-
magnetic (FM) to antiferromagnetic (AFM) during the phase
transition. These AFM in turn reflect between the second
nearest neighbor in-plane Mn atoms, which are strongly cou-
pled to Mn atoms in the vertical directions through either
FM or AFM interactions, depending on the geometric phase.
Consider the boundary condition imposed by the type of
quantization shown in Eqs. (1) and (2). Since the allowed
wavelengths are not multiples of each other periodic boundary
conditions do not apply and instead of propagating around the
plane the magnons reflect between each Mn-Mn pair, forming
standing waves [25–27]. I further show that the oscillations of
these standing waves become a constant independent of time,
leaving only local magnetization.

II. MODEL

In this section all Mn-Mn distances are in Å. Assume
d0 = 3.57, dH = 3.72 respectively. During the phase tran-
sition the bond distance in Eq. (3) is either expanding or
contracting as a function of temperature. In an earlier paper
[19] on Leuco dyes I assumed that the equal partition is
satisfied during the phase transition and the thermal expan-
sion/contraction of a single Mn-Mn in-plane distance can be
written as κn(±δdn)2 ≈ kBT, n = 1, 2, 3, where δdn is the
temperature dependent fluctuation in the bond length which
depends on the soft mode absorbed/emitted through the pa-
rameter κ ,

δdn =
√

kBT

κn
. (4)

In order to use κ to determine the new Mn-Mn distances
through Eq. (3) it must be evaluated at Tc. Consider the sum∑

i VTBi(n) of Slater-Coster tight-binding (TB) [7] terms de-
fined below for each Mn-Mn distance. This is an anharmonic
potential. The quantity κ is calculated from this potential.
Now we consider the terms δ

∑
i VTB. The coupling between

|4s〉, |3d〉 orbitals on adjacent Mn atoms is an empirical

tight-binding term [8] defined as

Vssσ (i) = ηssσ
h2

mdi
2 , ηssσ = −1.40. (5)

Here i = 1, 2, 3. The coupling between |3d〉, |4s〉 orbitals
on adjacent Mn atoms [8] is defined as

Vsdσ (i) = ηsdσ

h2r3/2
d

mdi
7/2 , ηsdσ = −3.16. (6)

Similarly the couplings between |3d〉 orbitals on adjacent
Mn atoms are [8] defined as

Vddj(i) = ηdd j
h2r3/2

d

mdi
7/2 , j = σ, π, ηddσ

= −16.2, ηddπ = 8.75. (7)

Here h2/m = 7.62 eV Å2 and rd is an empirical parameter
which describes

The term
∑

i δVTB is different for each bond in that it
involves direction cosines and depends on the direction of the
bond. We note that all three bonds in the plane have different
directions. We calculate the fluctuation in Eq. (7) as

δVssσ (i) = ηssσ
∂

∂di

(
h2

mdi
2

)
∂di

∂δφi
δφi = −2ηssσ

h2

mdi
3 d0δφi.

(8)

We calculate the fluctuation in Eq. (6) as

δVsdσ (i) = −ηsdσ

7

2

h2r3/2
d

mdi
9/2 d0δφi. (9)

Last, we calculate the fluctuations on Eq. (7) as

δVddj(i) = −ηdd j
7

2

h2r3/2
d

mdi
9/2 d0δφi, j = σ, π. (10)

The sum can be written [7] in terms of direction cosines
(l, m, n),

δ
∑

i

VTB =
{

fssσ i(l, m, n)δVssσ i + fsdσ i(l, m, n)δVsdσ i

+ fddσ i(l, m, n)δVddi

}
.

(11)

I take a derivative with respect to each order parameter
and again assume equal partition. This is reasonable as this
is considered a “reversable” phase transition,

lim

T → Tc
δ
∑

n

VTB =
∂
∑

i
VTBi(n)

∂dn

∂dn

d0∂φn
δφn

≈ ∂

∂ (d0δφn)

κn
(
d0

2δφ2
n

)
2

. (12)

I obtain

κn � lim

T → Tc

⎡
⎣∂

∑
n

VTBi(n)

∂dn

1

(d0δφn)

⎤
⎦, n = 1, 2, 3. (13)

This calculation is done iteratively using Eq. (14) be-
low by adjusting the direction cosines in Eq. (11). I obtain
the direction cosines for the disorder from Ref. [10] to fix
these. I obtain (κ1 = 0.23, κ2 = 16.52, κ3 = 0.39) in units
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of (eV/Å2) respectively, thus the magnitude of the disorder
depends crucially on the direction cosines, i.e., the geometry.
The temperature dependence is implicit and κn by itself is
not sufficient to determine the complicated behavior of the
order parameter. As in Ref. [19] I assume that an expand-
ing/contracting Mn-Mn distance can be written as

dn = (dH ± δdn) =
⎛
⎝dH ±

√
kBT

κn

⎞
⎠. (14)

The sign depends on the sign of the order parameter δφn.
From Eq. (2) the soft mode wavelengths with the lowest
energies satisfy nλn = d0n, n = 1, 2, 3, so the propagation
constants are

kn = 2π

λn
= 2πn

d0n
, n = 1, 2, 3. (15)

During the hex part of the phase transition (T � Tc), the
fluctuation δFH of the free energy of the in-plane (Å) Mn-Mn
distance dH = 3.72 becomes unstable,

lim

Tbelow → Tc
δFH �= 0. (16)

To ensure

lim

Tbelow → TC
δFH � 0 (17)

requires dH → d1 = 3.68, d2 = 3.38. This in turn implies
that the angular fluctuation δφi(T ) in Eq. (3) in the last section
is negative, and we have

dn =
⎛
⎝dH −

√
kBT

κn

⎞
⎠, n = 1, 2. (18)

Here I take kB = 8.617 × 10−5 eV/K. Equation (8) means
that dn contracts as a function of temperature and cou-
ples only to full wavelength soft modes. Note that half
wavelengths are not allowed, as absorption of these would cor-
respond to ferromagnetic magnons. For the dH → d3 = 3.98

transition,

d3 =
⎛
⎝dH +

√
kBT

κ3

⎞
⎠. (19)

I now construct free energies to calculate each δφi(T ).
I assume that each Mn atom has an atomic configuration
|3d5〉|4s2〉 which couples both to an As atom forming the
d0 ≈ 2.57 Å bond, and to the nearest neighbor Mn atom
forming a weak metallic bond. Each Mn-Mn pair coupling
involves several energies. These are the tight-binding (TB)∑

i VTBi(n) terms coupling d and s electrons between each
atom, the exchange interaction, the spin-orbit interaction, and
the crystal-field splitting on each Mn atom. Each pair also
interacts with soft mode phonons which I will show give rise
to standing wave magnons along dn. As per suggestions made
in the literature [1] I assume that the soft modes propagate
between Mn atoms. The phonon-magnon interaction as pre-
sented in the literature [21,22] involves second quantization.
Before applying second quantization I define the initial free
energy of the ith Mn-Mn bond,

Fi =
{∑

j

ξCF(i j) +
2∑
j

μi(Ji ) +
∑

j

VTB(i j) + ξpm

+ J �Si j · �Sik �= j +
∑

i

h̄ωsmi

}
. (20)

Here I assume that
∑

j ξCF(i j) is the sum of crystal-field
splittings of the electron levels on both Mn atoms which I
assume is the original |3d〉 splitting associated with the hexag-
onal symmetry. μi is the spin-orbit coupling on both atoms; as
mentioned,

∑
i VTBi are the TB matrix elements coupling the

|3d〉|4s〉 between nearest neighbor Mn atoms which include
orbital hopping terms, J is the exchange interaction between
Mn atoms, and ξpm is a soft mode phonon-magnon interaction,
which I define later. As mentioned, I assume that the soft
modes (before they get absorbed to form magnons) are ini-
tially quantized [17] and owing to the fact that I assume only
soft mode frequencies take part in this free energy (course
graining) I include

∑
i j h̄ωsmi j . Taking a variation of Eq. (20)

yields

δFi ≈ lim

T → Tc

⎧⎪⎪⎨
⎪⎪⎩

δξCF(i) +
(

2∑
ik

δμk ( jk ) +
2∑
ik

μk (δ jk )

)
+δ

∑
i

VTBi + δξpm + δJ (�Si · �S j ) + J �Si · δ �S j + h̄δωsmi

⎫⎪⎪⎬
⎪⎪⎭ ≈ 0, (21)

where δ
∑2

k μk ( jk ) = [
∑2

ik δμk ( jk ) + ∑2
ik μk (δ jk )], small

jk = l ± s is the total angular momentum on the kth atom in
the ith bond, and J is the exchange energy. Here I consider the
variations in the energy terms in Eq. (21) which allow us to ob-
tain δφi(T ). First, consider the fluctuation in the crystal-field
coupling δξCF(i). It is well known that the original crystal-field
splitting ξCF(i) lifts the degeneracy in the d electrons in each
Mn atom based on the geometric symmetry of the crystal
[28]. I assume that the fluctuation in this quantity only exists

during the phase transition. The magnitude and sign of this
fluctuation to first order depends on the geometric symmetry.
I define this quantity for the jth bond with respect to Fig. 13
in the discussion section as

δξCF(J ) (eV) =
5∑
i

(Ei j(O) − Ei j(H ) ),

i = xy, xz, yz, x2 − y2, 3z2 − r2. (22)
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Here Ei j(O) is the level shift (+/−) from E = 0 for the ith
d orbital on a Mn atom in the jth bond in the orthorhombic
geometry. Note that for a structural change δξCF(J ) (eV) �= 0. I
calculate that δξCF(J ) (eV) < 0 for all three d j . Next consider
the term δ

∑2
k μk ( jk ). In the ensuing discussion I use Ji to

symbolize the exchange between two electrons in the ith bond,
and j as a good quantum number in the spin-orbit interaction.
I take j to be a good quantum number with j = l ± s, l =
2h̄, s = h̄/s, z = 25 for Mn. This term couples �li · �Si on the
same Mn atom, and so it does not depend on δφi(T ). I assert
that I can use a modified version of Eq. (9.82) found in
Ref. [29],

μn(dn, jn) = 2

{(
e2z

2m2
ec2

1

d3
n

)(
1

9

)

×
[

jn( jn + 1) − ln(ln + 1) − 3/4

ln(ln + 1)(2ln + 1)

]
i

}
,

n = 1, 2, 3. (23)

Since the |3d〉 electrons which mediate the exchange are
itinerate I assume that the range of the interaction is (dn). I
show in Sec. III that the magnitude of the spin-orbit coupling
in Eq. (23) above for each Mn-Mn distance lies within the
range (0.017–0.027) (eV), which is the smallest energy of any
of the terms I consider. These are in agreement with spin-orbit
couplings for other quantum materials discussed in Ref. [30].
Consider the fluctuation in μ(di ) with respect to di. This is
of the order δμ(di ) ≈ 1/d4

i . This is a magnitude smaller, so I
assume to first order,

lim

T → Tc

δμi

δdi
≈ 0. (24)

This approximation should not affect the behavior of the
fluctuation in the free energy as T → Tc. Consider the fluc-
tuation

∑2
ik μk (δ jk ) during the phase transition. I assume

an initial configuration jH = l + s, l = 2h̄, s = h̄/s, z = 25
for Mn in the hex phase. For all three transitions we have


so( j) =
(

2∑
i

μn(δ jn)

)

= 2[μn(dn, jn) − μH (dH , jH )], n = 1, 2, 3, (25)

where I assume that jn = l−s to accommodate the spin flip
which occurs when hex → ortho. Next consider fluctuation in
the spin part of the exchange, term Jδ�Si · �S j �=i []. This term is
(−) for the hexagonal structure and (+) for the ortho structure.
Here I use a↓↓/a↑↓ to represent the annihilation of a FM/AFM
magnon, and a†↓↓/a†↑↓ to represent the creation of the same.
I write

Ji

h̄2 δ �Si · �S j �=i = (JAFM(i)a
†
σ (i)aH (i) − JFM(i)a

†
H (i)aσ (i) ). (26)

Here a†
σ (i) creates an AFM magnon at position (i) and aH (i)

destroys a FM magnon at position (i). Initially I assume the
exchange energies satisfy |JAFM| ≈ |JFM|. Based on an expres-
sion for the exchange energy found in Ref. [31] I use Ref. [29]
to approximate this as Jn ≈ e2

4dn
, with e2 = 14.40 eV Å [8].

Now convert from atomic variables to magnon variables, ck =
1√
2

exp(ikdi )aσ (i). Consider the fluctuation in the soft mode

term, h̄δωp. DFT studies [2] have shown that the frequency
decreases as the system undergoes the phase transition which
I interpret to mean a mode ωsm gets absorbed. As mentioned,
the soft mode phonons have multiple k values. Based on
Eqs. (1) and (2), I write the component wave functions as

�i = �i cos (kidi − ωit ). (27)

In terms of soft modes the author of Ref. [30] states

ω2
i ≈ (T − Tc). (28)

As mentioned, I assume that a soft mode along each di gets
absorbed during the transition. The initial (hex) state is a col-
lection of soft mode phonons of energy h̄ωp and momentum
pn = h̄kn which get absorbed/emitted in the final/initial state,

lim

T → Tc
h̄δωp = h̄ωpk

(
b†

kH
bkH + b†

kn
bkn

)
. (29)

Here kn is a soft mode wave vector in the ortho phase and
kH is the corresponding vector in the hex phase. The magnon
states are

lim

T → Tc
h̄δωm = h̄ωm(c†

kH σ
ckH σ + c†

knσ
cknσ ). (30)

Here kHσ is a magnon wave vector in the hex phase with
JFM (parallel spins) and knσ is the corresponding wave vector
in the ortho phase with JAFM(n) (antiparallel) spins. The next
term to consider is the phonon-magnon interaction as most
simply described in Kittel [31],

δξpm =
√

2[(h̄ωm)bkn c†
kn

e−ikndn − (h̄ωp)b†
kn

ckn e+ikndn ]. (31)

Taking the real part and noting that Eqs. (26) and (31) can
be combined,[
δξpm + J

h̄2 δ �Si · �S j �=i

]
=

√
2[(JFMa↓↓ + h̄ωkbk )c†

↑↓k cos(kidi )

− (JFMa†
↓↓ + h̄ωkb†

k )a↑↓ cos(kidi )]
(32)

Equation (31) implies a new AFM magnon amplitude,
J ′

AFM ≈ (JFM + h̄ωk ), or that the energy of the AFM is equal
to the energy of the FM plus the energy of the absorbed soft
mode phonon. The energy of the magnon-phonon coupling is
coherent,

JAFM(n)(dn) = J ′
AFM cos(kndn), n = 1, 2, 3. (33)

The energy of the soft mode enters the distance dn through
Eq. (33),

lim

T → Tc
J ′

AFM cos(kndn) = (JFM + h̄ωk ). (34)

This expression clearly shows the interplay between ex-
change, soft mode energy, and Mn-Mn spacing. The last term
is the variation of exchange with respect to dn,

δJ �Si · �S j = ∂

∂dn
JAFMδφn = −Jn sin(kndn)knd0. (35)

Including time dependence in the exchange,

JAFM(n)(dn, t ) = J ′
AFM(n) cos(�kn · �dn − ωmnt ), n = 1, 2, 3.

(36)
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FIG. 2. Disorder calculated using Eq. (55) with d1 = (dH + d0〈δφ1(T )〉) for d1 : 3.72 → 3.68 Å. Note here that the onset of disorder
begins to occur around 285 K.

The frequency ωm of the magnon satisfies a dispersion
relation similar to one introduced by Kittel [31],

ωmn ≈ Jn cos(kndn)

h̄
. (37)

Note that �n �= ωn. Owing to the quantization condition
in Eq. (1), the lowest energy excitations in the O mode are
antiferromagnetic magnons. The energy in the above magnon
standing wave [25–27] reflected between Mn atoms can be
written as

ξsw(n) = 2Jn cos(kndn) sin (�nt ). (38)

Before evaluating this, consider the temperature depen-
dence of the phase. Substituting Eqs. (17) and (18) into
Eq. (36) for the nth Mn-Mn distance becomes

ξsw(n) = 2Jn cos

⎡
⎣2π

λn

⎛
⎝d0 ±

√
kBT

κn

⎞
⎠
⎤
⎦ sin(�it ). (39)

In the limit T → Tc we obtain

lim

T → Tc
2Jn cos

⎡
⎣4π

λn

⎛
⎝d0 ±

√
kBT

κn

⎞
⎠
⎤
⎦ sin (�nt )

≈ 2Jn sin (�nt ). (40)

We can use this expression to find a limit on the relaxation
time of the phase transition,

lim

T → Tc
�n ≈ 2Jn

h̄
. (41)

The term sin(�it ) oscillates in time with a frequency ≈
1015 Hz. To obtain a “frozen” standing wave we must con-
sider the interaction of this magnon with a magnon in an
adjacent plane. Given the distance and the fact the that d
electrons are itinerant, I assume that exchange manifests the
coupling between magnons in the planes above and below
H = ∑n

i �= j Ji
′ �Si · �S j . The equation of motion [29] for a spin

FIG. 3. Disorder calculated using Eq. (55) with d2 = (dH + d0〈δφ2(T )〉) for d2 : 3.72 → 3.38 Å. Note here that the onset of disorder
begins to occur around 305 K.
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FIG. 4. Disorder calculated using Eq. (55) with d3 = (dH + d0〈δφ3(T )〉) for d3 : 3.72 → 3.98 Å. Note here that the onset of disorder
begins to occur around 220 K.

S j in the jth magnon standing wave is

ih̄
dSi

dt
=

⎛
⎝ n∑

i �= j

Ji
′|Si|

⎞
⎠|S j | cos θi j . (42)

This has as a solution

S j =
n∑

i �= j

Si exp

(
−i

Ji
′

h̄
cos θi jt

)
. (43)

Substituting this into Eq. (37) yields

ξpm( j)(J, �sm ) = 2J0( j) sin (�it )
n∑

i �= j

exp

(
−i

Ji
′

h̄
cos θi jt

)
.

(44)

Defining �′
i = Ji

′ cos θi j

h̄ and expanding the exponential
yields

ξpm( j)(J, �sm) = 2J0( j) sin(� jt )
n∑

i �= j

[cos(�
′
it ) − i sin(�

′
it )].

(45)

This becomes

ξpm( j)(J, �sm)

= 2J0( j)

n∑
i �= j

[sin(� jt ) cos(�
′
it ) − i sin(� jt ) sin(�

′
it )].

(46)

For the limit of long measurement times note that

lim

t → ∞
n∑

i �= j

[sin(�it ) cos(�
′
jt )] ≈ 0.

FIG. 5. a-hex lattice parameter. The error in the data is � = ±2.0 K. The red line is a superposition [d1(T ) + d2(T )]/2 of the plots in
Figs. 1 and 2 obtained using Eq. (55). Note the convergence at both temperature extremes.
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Thus Eq. (43) reduces to

ξpm(i)(J, �sm ) ≈ −2iJ0(i)

n∑
i �= j

sin (�it ) sin(�
′
jt ). (47)

The exchange interaction acts predominantly between d
electrons in nearest neighbor in-plane Mn-Mn distances.
These terms vanish for long times unless we assume a res-
onance condition, �i cos(�ki · �di ) = �

′
j cos(�k j · �d j ). Owing to

the quantization introduced in Eq. (1), two nearest neighbors
satisfy this condition. Noting that sin2(�it ) = 1/2, we take the
absolute value of Eq. (48) to obtain∣∣ξpm(i)

∣∣ ≈ 2J0(i), (48)

which is a frozen AFM standing wave. The quantization con-
dition in Eq. (1) lies at the heart of the temperature behavior

(T → Tc) of the fluctuation in the exchange. The inclusion of
H (applied magnetic field) results in shifting Tc either up or
down (magnetic cooling). The author of Ref. [10] reminded
me that this effect is nonlinear. Here I treat H as coupling
directly to the magnon standing wave in each bond. Equation
(34) becomes

(J0(n) + H ) cos(kndn)

= (J0(n) + H ) cos

⎡
⎣2π

λn

⎛
⎝d0 ±

√
kBT

κn

⎞
⎠
⎤
⎦. (49)

All these terms can be combined in Eq. (3) to yield an
expression for δφ,

lim

T → Tc
δφ0i =

{−(∑
i

δ
CFi + h̄δωsm
) − μ

∑
j

�l j · δ �S j − J
h̄2 δ �Si · �S j �=i

}
{
δ
∑

i
VTBi + κd2

0 + (
∂

∂di
JAFMd0

)�Si · �S j �=i
} , (50)

so the order parameter δφi is both maximized and quantized at the phase transition temperature. To obtain the expectation value
〈δφi(T )〉 of the order parameter one must first define a partition function in terms of the fluctuations in the energies,

Zi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp

(
− δξCF(i)d

†
δξ dξ

kBT

)
+ exp

(
−μ|2Z|| h̄

2 |(cos θOa†
↓↑a↓↓−cos θH a†

↑↑a↑↓)
kBT

)

+ exp

(
− [(JAFM(dn )±H )a†

↑↓−(JFMa†
↓↓+h̄ωkb†

k )a↑↓]
kBT

)
+ exp

(
− h̄ωsm(bk−b†

k )
kBT

)
+ exp

(
− (JAFM(n)±H ) sin(kndn )kn

kBT

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (51)

We have for the order parameter

〈δφi(T )〉 =
δφ0i

[
exp

(
− (JAFM(n)±H ) sin(kndn )kn

kBT

)
+ exp

(
−

δ
∑

j
VTB( j)

kBT

)]
Zi

, (52)

where I have used Eq. (50). The effect on the volume due to application of an external field H is obvious in this expression. The
sign of the applied field can be seen to affect 〈δφi(T )〉. We now calculate the differential exchange,

〈JAFM(T )〉 = 〈δφi(T )〉{(JAFM(n) ± H ) sin(kndn)kn exp
(− (JAFM(n)±H ) sin(kndn )kn

kBT

)}
Zi

. (53)

Note that this calculation involves the expectation value of the
order parameter 〈δφi(T )〉, which effectively determines the
temperature dependence of the differential exchange.

III. RESULTS

I first consider plots of the calculated changes (disorder)
in the in-plane Mn-Mn distances as functions of temperature
(see Figs. 2–8). All data are from Ref. [12].

A. Magnetic heating

It has been observed that different applied H fields shift the
temperature of the a-hex lattice parameter (see Fig. 9). Here

I calculate the shifts in the a-hex parameter due to applied H
fields of differing magnitude and compare them to the data.

B. Magnetic cooling

The slope of these calculated magnetization curves satisfies


T


H
= (312.0−−308.0) K

2.0T
= 2.0 K/T.

This is in agreement with hysteresis data [12] (see Fig. 10).

IV. DISCUSSION

Since the disordered distances di are “excitations” of dH

one could assume that some patterns between energy variables
in Eqs. (55) and (56) may display quantization. The anhar-
monic potential 
VTBi is not quantized as exactly as the shift
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FIG. 6. B-ortho lattice parameter. The red line is a superposition of [d1(T ) + d2(T )]/2 as T : 3.65 → 3.68 K using Eq. (55) as described
above. Note the concave nature of the temperature dependence of this process.

FIG. 7. Superposition of differential magnetization for d1 and d2 at applied H = 1.0 T calculated using Eq. (56). Note that the slope is
not as steep as the a-hex lattice parameter shown in Fig. 8 and the zero occurs at T ≈ 312.0 K.

FIG. 8. Superposition of differential magnetization for d1 and d2 at applied H = −1.0 T calculated using Eq. (56). Note that the slope
is approximately the same as in Fig. 6, but that the temperature of the zero occurs at T ≈ 308.0 K. The author of Ref. [12] told me this is a
hysteresis effect.
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FIG. 9. Calculated a-hex lattice parameter for applied H = 1.0 T calculated using Eq. (56) compared to data. Note that the zero occurs at
T ≈ 312.0 K.

in magnetization so this model mixes quantum and empirical
energy fluctuations. It can therefore be inferred that the states
which give rise to the disorder are mixed states. The mecha-
nism responsible for the disorder begins with the quantization
of the wavelengths as shown in Eq. (1). The cooperative nature

of the mechanism suggests that some quantity may exist deriv-
able from the fluctuations in the free energy that converges
around the transition temperature. Consider a fluctuation of
the structural entropy for a given path dSi(dH → di ) as de-
fined below:

dSi ≈ lim

T → Tc

{

h fi + 
ξc f (i) + 
so(i) + δξsw(i) + d0

δφi

(

VTBi + 
J

h̄2 �Si · �S j �=i
)}

T
. (54)

dSi is equivalent to the fluctuation in entropy associated with
the path specific to the formation of disorder di with δφi(T )
removed. These are plotted in Fig. 11

The removal of δφi(T ) from the magnetostructural energy
fluctuation in Eq. (54) makes the entropic paths converge
around some value of T . Now consider the ratios[

dS1

dS2

∣∣∣∣
T ≈310 K

≈ dS1

dS3

∣∣∣∣
T ≈318 K

≈ 1

]
, (55a)

[
dS2

dS3

∣∣∣∣
T ≈318 K

≈ 3

4

]
. (55b)

I interpret the intersections to mean that processes shown
in Eq. (55a) are reversable from these approximate temper-
atures. Note that only dS1/
T intersects both slopes. And
since dS1 is the fluctuation in entropy of the highest excited
state, it should cross both dS2 and dS3. As such, I posit that
Eqs. (55a) and (55b) are an emergent property resulting from

FIG. 10. Calculated a-hex lattice parameter for applied H = −1.0 T calculated using Eq. (56). Note that the zero occurs at T ≈ 306.0 K.
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FIG. 11. Fluctuation in structural entropy dS (eV/K) as functions of temperature for each di. Here dS1 : 3.72 → 3.38, dS2 : 3.72 → 3.68,
dS3 : 3.72 → 3.98.

the quantization defined in Eqs. (1)–(3). In light of all of
this the measured value Tc ≈ 318.0 K can be explained by
comparing the probability for each of these processes to occur,

P(T )i ≈

{
exp

(−
VTBi
kBT

) + exp

(
−


J
h̄2

�Si·�S j �=i

kBT

)}
Zi

. (56)

This is plotted in Fig. 12.
Note these probabilities are not normalized with respect to

the same partition function, so they do not sum to 1. Note
that the probability for 
S3, the lowest excited state, becomes
maximal and remains constant around T ≈ 240 K. The fact
they converge at Tc is another indication of reversibility. My
calculations show that 
so (eV) < 
c f (eV), which is consis-
tent with Ref. [30]. Now consider the sign of the fluctuations
in the crystal field. Fig. 13 depicts a hexagonal to orthorhom-
bic transition.

The energy splitting labeled between the |dxy〉 levels is
defined as δξxy = (Exy(O) − Exy(H ) ) < 0. Each disordered Mn-
Mn di has its own level structure. Since this is a “high
spin” material, it is difficult to know how the total fluctu-
ation on each di is distributed among the levels. However,
I obtain δξCF(J ) (eV) < 0, j = 1, 2, 3 indicating structure
changes which are consistent with Ref. [28]. Using J =
l−s, j = 2h̄, s = h̄/2 in Eq. (23) to obtain a spin orbit
energy. Usually the spin-orbit energy is a magnitude smaller
than crystal-field crystal energy, however in this case we are
dealing with the differences in these energies, so the dynamic
pathways may be competitive. Consider the vertical distance
between Mn atoms in the hex phase, dvH = 2.85 Å. Using
κ2 in Eq. (19) I obtain lim

T →Tc
dv = 2.88 Å in agreement with

Ref. [12], showing that the hypothesis applies to Mn atoms out
of plane. The authors of Ref. [16] measured an anomalously
low thermal conductivity for a sample of MnAs. In Fig. 14
I plot the calculated thermal diffusivity, Fig. 14 shows the

FIG. 12. Superposition of magnetostructural probabilities for these processes to occur. Note that they all converge at T = 318.0 ± 2.0 K.

224106-11



C. B. NELSON PHYSICAL REVIEW B 109, 224106 (2024)

FIG. 13. This shows the hexagonal → orthorhombic change in
crystal-field level splittings for MnAs.

anomalous dip at T ≈ 318.0 K as measured in Ref. [16].
This calculation is a direct consequence of the presence of
the disorder as manifested in the free energy. The authors
of Ref. [17] noted anomalous elastic properties with elastic
constants depending on direction and temperature. Consider
the κn calculated using Eq.(13). This shows that the “spring
constants” all vary in terms of Mn-Mn direction as evaluated
at T ≈ 318.0 K. The value for κ shifts in going from the hex-
ortho structures as measured in Ref. [17]. Last, the authors of
Ref. [15] observed (computationally) that the |dx2−y2〉 orbital
manifests an increase in interaction energy for the disordered
states. My calculations bear this out.

V. CONCLUSIONS

Earlier work on this phenomenon used a statistical mechan-
ical approach [1–3] which involved inserting the transition
temperature in as a parameter. These models did not predict
the measured local disorder [12]. Later approaches [10,11,15]

introduced soft mode-spin coupling but did not predict the
correct magnitudes of disorder. Disorder is not simple, so the
quantum mechanics required to predict it may be complicated.
The simplest assumption is that the disorder is quantized
in integer multiples of absorbed soft modes. Thus the di in
the ortho phase can be interpreted as “excitations” of dH

through Eq. (1). I also assumed this approach would have
to include cooperative interactions between several quantized
entities. I used a quantum statistical approach to show that
absorbed soft mode phonons simultaneously excite lattice dis-
tortions (disorder) and antiferromagnetic magnons between
adjacent Mn atoms bonded to the same As atom. These in
turn reflect between adjacent Mn atoms owing to boundary
conditions to become standing waves. These standing waves
“freeze in” due to interaction with similar waves above and
below in the lattice. The disorder changes the lattice parameter
thereby causing a shift in the crystal-field splitting on each
Mn atom. I showed that shifts in spin-orbit effects are neg-
ligible. The phonon-magnon interaction manifests as a term
J cos(Kndn). The quantization of this term as introduced in
Sec. I manifests both in the hex lattice parameter as well as the
C-ortho lattice parameter. The local disorder is used to calcu-
late the transition temperature, anomalous elastic properties
[16], thermal diffusivity [17], as well as several phenomena
associated with the phase transition observed in Ref. [12].
The initial quantization conditions ultimately manifest as a
convergence of entropy fluctuations at Tc ≈ 318.0 K. I regard
this as an emergent property. Future work will include similar
investigations of other quantum materials, in particular ones
exhibiting the metal-insulator transition along with induced
disorder.
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