
PHYSICAL REVIEW B 109, 224103 (2024)

Revisiting the thermoelectric transport of monolayer InP3 with full ab initio calculations
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Thermoelectric materials facilitate the mutual conversion of thermal energy and electric energy, representing
environmentally friendly candidates for power generation. Consequently, there is significant interest in two-
dimensional materials due to their potential for achieving superior thermoelectric performance when compared
to their bulk counterparts. However, theoretical overestimations are prevalent for many of them, which originates
from the fact that most theoretical studies have utilized a constant relaxation time within the framework of
a single-mode deformation potential theory (DPT). In this work, we take monolayer InP3 as an example
to systematically revisit its thermoelectric transport by using parameter-free ab initio calculations combined
with the Boltzmann transport equation. It is found that the scatterings from longitudinal acoustic phonons to
charge carriers are not the most influential ones in monolayer InP3, manifesting that the scattering rates are
significantly underestimated within the crude approximation of single-mode DPT. By considering the state-
dependent electron-phonon scattering rates, the monolayer InP3 is found to have room-temperature maximum
ZT values of 0.37 and 0.18 for n- and p-type doping, respectively, which are one order of magnitude smaller
than those predicted using a constant scattering rate from single-mode DPT. We demonstrate that conventional
methods like single-mode DPT do not adequately describe the thermoelectric properties of monolayer InP3.
To calculate the thermoelectric transport of monolayer InP3 properly, one needs to consider the scatterings
from all phonons. We not only uncover the underlying mechanisms governing thermoelectric transport, but
also offer a paradigm approach to accurately predict the thermoelectric transport with less computation
cost.

DOI: 10.1103/PhysRevB.109.224103

I. INTRODUCTION

Thermoelectric materials possess the capability to directly
convert waste heat to electricity, offering a promising avenue
for green energy conversion [1–3]. The performance of a
thermoelectric material is determined by the dimensionless
figure of merit ZT = S2σT/(κe + κl ), where S is the Seebeck
coefficient, σ is the electrical conductivity, T is the absolute
temperature, κe is the electronic thermal conductivity, and κl is
the lattice thermal conductivity. Theoretical studies show that
the energy conversion efficiency of thermoelectric materials
becomes comparable to that of traditional power generation
technologies, provided the corresponding ZT values can be
increased to 3.0 [4–6]. However, due to intricate interrela-
tions among those transport coefficients, it is challenging to
enhance thermoelectric performance. Over the past decades,
several novel concepts and strategies have been proposed to
improve thermoelectric performance, e.g., band engineering
to optimize the electrical transport [7], introducing anhar-
monicity to suppress the lattice thermal transport [8,9], etc.
Thanks to those endeavors, ZT values exceeding 2.0 have been
achieved in several materials [10–12].
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Of all the strategies, low dimensionalization is consid-
ered one of the most promising methods to achieve high ZT
values. This is attributed to the quantum confinement effect
arising from their two-dimensional (2D) nature, which can
partially decouple the relations between S and σ while sup-
pressing κl [13,14]. On that foundation, considerable research
efforts have been devoted to investigating the thermoelectric
transport of 2D materials. For instance, experimentally, Lee
et al. found that the electrical conductivity increases, while
thermal conductivity decreases, with decreasing thickness in
SnS2. This results in a room-temperature ZT value of 0.13
for 2D SnS2, which is 1000 times greater than the corre-
sponding bulk material [15]. Zhang et al. found that with
the reduced dimensionality, the power factor of superlattice
SrTi1−xNbxO3 is doubled compared with the corresponding
bulk [16]. However, the thermoelectric performance of 2D
materials experimentally realized is still much lower (typi-
cally, the ZT value is < 0.5) than those of conventional bulk
thermoelectric materials [17]. On the theoretical side, many
2D materials have been predicted to have large ZT values
[18,19]. For example, recent research indicates that monolayer
InP3 exhibits a combination of poor lattice thermal transport
and high electrical transport [20–23], yielding a notable max-
imum ZT value of 4.6 at 500 K [24]. Surprisingly, despite that
numerous new 2D materials are predicted to possess high ZT
values, none of them have been realized in experiments. The
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significant difference motivates us to reexamine the methods
employed in the theoretical calculations.

The theoretical methods employed in previous research can
be summarized as follows:

(1) The κl is calculated through parameter-free ab initio
calculations by considering three phonon-phonon scatterings.
The approach, although computationally expensive, has be-
come more affordable in recent years due to the significant
advancements in computational power and the development
of algorithms [25–30].

(2) The electrical transport is calculated by solving the
Boltzmann transport equation with constant relaxation time τ

approximation [31,32], where the constant τ is determined us-
ing single-mode deformation potential theory (DPT) [33,34].
The computational cost for the electrical transport is relatively
small for this method. Based on the above method, many 2D
materials have been predicted to be excellent thermoelectrics
with ZT values well above 2.0 [17,19,35].

In most previous theoretical research, lattice thermal trans-
port has been studied at great computational expense, while
electrical transport is obtained using simple approximations
with low computational cost. More precisely, the single-mode
DPT only considers the scattering from long-range longitu-
dinal acoustic (LA) phonons to electrons and assumes an
isotropic electron-phonon coupling strength. The simplifi-
cations may yield significantly inaccurate predictions. For
instance, there are many different phonons in a material, e.g.,
optical phonons, transverse acoustic phonons, out-of-plane
phonons, etc. All those phonons can scatter with electrons,
and, in many materials, phonons other than long-range LA
phonons scatter more frequently with electrons [36–38]. The
inclusion of all phonons scattering with charge carriers has
shown significant influence in thermal transport in metallic
systems, electrical transport in both bulk and two-dimensional
materials, thermoelectric transport in silicon-germanium al-
loys, and optical absorption in boron phosphide [39–45].
Therefore, to accurately predict thermoelectric transport, one
has to consider the scattering from all phonons with electrons.
Moreover, the conventional density functional theory (DFT)
usually underestimates the band gap; to predict the thermo-
electric transport properties more accurately, one needs to start
with the electronic energies from more precise methods, i.e.,
HSE and GW approximations [43,46].

In this paper, we take monolayer InP3 as an example to
revisit its thermoelectric transport by using parameter-free ab
initio calculations. We provide some tricks to significantly
reduce the computational cost in lattice thermal transport
simulations, which can be extended to other systems. Our
findings reveal that monolayer InP3 has one of the smallest
κl in 2D materials, which arises from the low group velocity
and large phonon-phonon scattering phase space. The conduc-
tion band minimum (CBM) is located at the � point with a
sharp valley, resulting in small “density of scatterings” [37]
and consequently high electron mobility, whereas the highest
valence band has multiple valleys, leading to large density
of scatterings and thus low hole mobility. By decomposing
the contributions from different phonon modes, we find that
electrons (holes) scatter more heavily with optical phonons
than LA phonons. Our results reveal that, to accurately predict
the thermoelectric transport of monolayer InP3, it is required

to consider the scatterings from all phonons. Furthermore,
our calculations show the maximum ZT value is 0.37 at
300 K. This finding suggests that the conventional theoretical
methods in previous research substantially overestimate the
thermoelectric properties.

II. METHODS

A. Thermal transport

The 4 × 4 × 1 supercell and 4 × 4 × 1 q grids are cho-
sen to calculate the second-order force constants by using
the supercell method, as implemented in the VASP [47–49]
and PHONOPY [27,50] packages. The box along the out-of-
plane direction is set as 24 Å to avoid interactions between
images. The relative root mean square (RRMS) of the second-
order force constants is then used to determine the cutoff
radius in the calculation of third-order force constants (see
Appendix A). The 4 × 4 × 1 supercell and � point are chosen
to calculate the third-order force constants. The determined
cutoff radius is 7.8 Å, which corresponds to the seventh-
nearest neighbors. The lattice thermal transport is calculated
by solving the linearized phonon Boltzmann transport equa-
tion iteratively [51] as implemented in the PHOEBE package
[30]. The 75 × 75 × 1 q grids are employed to get converged
lattice thermal conductivity (see the convergence test of κl

with the number of q grids in Appendix B).

B. Charge carrier transport

The QUANTUM ESPRESSO package [52] with the SG15
optimized norm-conserving Vanderbilt (ONCV) pseudopo-
tentials [53,54] and the Perdew-Burke-Ernzerhof (PBE) [55]
exchange-correlation functional are employed in the calcu-
lation of electrical transport. The kinetic energy cutoffs for
wave functions and charge density are set to 60 and 240 Ry,
respectively. The atomic coordinates are optimized using a
24 × 24 k mesh until the magnitude of the force acting on
each atom becomes less than 0.0001 Ry/bohr. To predict the
charge carrier transport and the thermoelectric transport coef-
ficients more accurately, the electronic energies are calculated
by using the Heyd-Scuseria-Ernzerhof (HSE06) screened hy-
brid functional [56] (the results from standard PBE are also
calculated for comparison). It is found that the change in
band gap would not affect the electron-phonon scattering rates
(see Appendix C). We have chosen one s orbital and three p
orbitals for both In and P atoms in constructing the Wannier
projections.

The charge carrier mobility is calculated as [38]

μαβ = e

∑
i

∫
BZ τikvik,αvik,β

∣∣ ∂ fik
∂Eik

∣∣dk∑
i

∫
BZ fikdk

, (1)

where α and β represent Cartesian directions, e is the unit
charge, τik is the relaxation time of the electronic state ik
marked by the band index i and the wave vector k, v is the
electronic band velocity, f is the Fermi-Dirac distribution at
equilibrium, and E is the electronic energy. The summation
is over conduction bands for electrons and valence bands for
holes. The scattering rates 1/τik from all phonons can be
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calculated as [57]

1

τik
=

∑
λ, j

∫
BZ

2π

h̄

dq
�BZ

{|g(ik, jk′, λq)|2

× [( f jk′ + nλq)δ(Eik − Ejk′ + h̄ωλq)δk+q,k′+G

+(1 + nλq − f jk′ )δ(Eik − Ejk′ − h̄ωλq)δk−q,k′+G]},
(2)

where g(ik, jk′, λq) is the electron-phonon coupling
strength. n is the Bose-Einstein distribution, ωλq is the phonon
frequency with phonon band index λ and wave vector q. �BZ

is the volume of the first Brillouin zone (BZ). G is the recip-
rocal lattice vector. The two δ functions represent the energy
conservation law and the quasimomentum conservation law.

To obtain the charge carrier mobility, we first employ
density functional perturbation theory (DFPT) [58,59] to cal-
culate g on 9 × 9 k and 9 × 9 q grids. Then g of 240 × 240 k
(to reduce the computation cost, we have used the symmetry
of the lattice, and thus only the 4921 irreducible k points
need to be considered) and 240 × 240 q grids are obtained
using the interpolation approach [60] as implemented in the
EPW package [61]. To properly account for the 2D Fröhlich
scattering, we have implemented the 2D Fröhlich model by
Sohier et al. [62] into our in-house EPW package, which en-
ables more accurate calculation of the intrinsic charge carrier
transport for 2D polar semiconductors.

C. Thermoelectric transport

The thermoelectric transport coefficients S, σ , and κe are
calculated as [63]

σαβ (T, E f ) = 1

Aarea

∑
i

∫
BZ

−e2vik,αvik,βτik
∂ fik

∂Eik
dk, (3a)

Sαβ (T, E f ) = − 1

eT

∑
i

∫
BZ (Eik − E f )vik,αvik,βτik

∂ fik
∂Eik

dk∑
i

∫
BZ vik,αvik,βτik

∂ fik
∂Eik

dk
,

(3b)

κe,αβ (T, E f ) = −T S2
αβ (T, E f )σαβ (T, E f ) − 1

T Aarea

×
∑

i

∫
BZ

(Eik − E f )2vik,αvik,βτik
∂ fik

∂Eik
dk,

(3c)

where Aarea is the surface area of the primitive cell. E f is the
chemical potential that corresponds to the carrier concentra-
tion. The correspondence between the carrier concentration
and the Fermi level is

nelectrons = 1

Aarea

∑
i

∫
BZ

1

e(Eik−E f ) + 1
dk, (4)

for electrons, and

pholes = 1

Aarea

∑
i

∫
BZ

1

e(E f −Eik ) + 1
dk, (5)

for holes. The summation is over conduction bands for elec-
trons and valence bands for holes.

FIG. 1. (a) Lattice structure of monolayer InP3. Views from
above (top) and from the side (bottom) are shown. The primitive
cell is marked by the dark gray rhombus. The In and P atoms are
denoted by the pink and light gray balls, respectively. (b) Phonon
band structure and atom projected phonon density of states (PDOS)
of monolayer InP3. Contributions from In and P atoms are repre-
sented by green and purple lines, respectively. The 24 phonon modes
can be classified into three classes. The structures are shown using
the VESTA code [64].

The ZT value is then calculated as

ZTαβ (T, E f ) = S2
αβ (T, E f )σαβ (T, E f )

κe,αβ (T, E f ) + κl
T . (6)

III. RESULTS AND DISCUSSION

A. Thermal transport

The optimized lattice structure of monolayer InP3 is illus-
trated in Fig. 1(a). Its crystal structure belongs to the space
group P3̄m1. The primitive cell is marked by the gray rhom-
bus containing six P atoms and two In atoms. Every six P
atoms form a distorted hexagon, and these P hexagons are
connected by the In atoms. The In atoms also form a larger
hexagon. The lattice constant is 7.52 Å and the thickness is
4.82 Å. Note that the thickness is defined as the summation of
the buckling thickness 1.22 Å (the distance between the two
outer P atomic planes) and the van der Waals radius of the P
atom, 1.8 Å. The calculated structural properties are in good
agreement with the previous study [20,21,24].

Based on the optimized lattice structure, we calculated the
harmonic force constants and obtained the phonon band struc-
ture as shown in Fig. 1(b). It is found that there is no imaginary
frequency, confirming its stability. The 24 phonon bands can
be classified into 3 classes: (1) the six highest optical phonon
bands (in the range 11–14 THz), (2) the middle six optical
phonon bands (in the range 7–10 THz), and (3) the nine lowest
optical phonon bands and the three acoustic phonon bands
(in the range 0–5 THz). Classes 1 and 2 are relatively flat,
indicating small phonon velocity, which is beneficial to small
lattice thermal conductivity. On the other hand, the class 3
phonons are much more dispersive. Interestingly, those 12
phonon bands intertwine with each other, which is similar to
the rattling modes in some host-guest systems, i.e., clathrates
and skutterudites [65–68]. This feature gives rise to higher
anharmonicity and phonon-phonon scatterings (shown later),
leading to small lattice thermal conductivity. We have also
plotted the atom projected phonon density of states (PDOS) to
illustrate the contributions of atoms to the phonon modes. It
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FIG. 2. Calculated (a) phonon group velocity vg, (b) Grüneisen
parameter γ , (c) phonon-phonon scattering phase space, and (d)
phonon-phonon scattering rates 1/τph−ph.

is found that the six highest optical phonon modes are purely
due to the vibrations of P atoms, which corresponds to the
variation of the P hexagons.

Figure 2(a) shows the calculated phonon group velocity
vg. Indeed, the vg of the 12 highest optical phonon modes
are small (<1 km/s), and the vg of the acoustic phonons
are larger. However, the vg of the acoustic phonons (6 km/s)
are much smaller than that of graphene (22 km/s) [69], and
also smaller than that of some common 2D materials, i.e.,
black phosphorene (7.7 km/s) [70] and monolayer MoS2

(6.4 km/s) [71]. The relatively small vg is an indication of
low κl . Moreover, the three-phonon scattering phase space
[68] of the class 3 phonons is larger than those of classes 1
and 2 as shown in Fig. 2(c). This is because the scattering
process must obey the energy and momentum conservation
laws and lots of scattering processes would be prohibited.
For instance, the minimum phonon frequency in class 2 is
about 6.5 THz, and the maximum phonon frequency in class
1 is 13.5 THz. Therefore, only few phonons can scatter from
class 2 to class 1 via absorption, and vice versa via emission.
In addition, the absolute Grüneisen parameters are signifi-
cantly larger for acoustic phonons [see Fig. 2(b)], indicating
higher anharmonicity, which would lead to higher scattering
strength of acoustic phonons. Consequently, the scattering
rates 1/τph−ph of the class 3 phonons are one to two orders of
magnitude larger than the class 1 and 2 phonons, as shown in
Fig. 2(d). The small vg and relatively high 1/τph−ph indicates
that monolayer InP3 has low κl .

Indeed, monolayer InP3 has a relatively small κl , which
is 0.54 W m−1 K−1 at 300 K, and our results agree well with
the previous study [23,24,72]. Note that, for monolayers,
the exact value of the conductivity (both electrical and ther-
mal) depends on the thickness. Unless otherwise stated, all
the values are with respect to the thickness of 4.82 Å. The
small discrepancy originates from the utilization of differ-
ent supercells in calculating third-order force constants and
the minor difference in the definition of thickness. However,

FIG. 3. Calculated lattice thermal conductivity κl as a function
of temperature. The room-temperature κl is 0.54 W m−1 K−1, which
is among the lowest in 2D materials.

values from Sun et al. [24], Ouyang et al. [23], and Keshri
et al. [72] and our calculated κl are much smaller than that
from Ref. [20], which may arise from the use of different
exchange correlations in their calculation of κl . Nevertheless,
the κl of monolayer InP3 is much lower than most common
2D materials. For instance, the room-temperature κl of black
phosphorene is over 20 W m−1 K−1 [73], and the κl of mono-
layer MX2 (M = Mo, W; X = S, Se) is over 50 W m−1 K−1

[71,74]. The κl can be further reduced with increasing tem-
perature (see Fig. 3), since more phonons would be excited
and thus phonon-phonon scattering rates would be larger.

B. Electronic structures

Figure 4(a) shows the calculated electronic band structure
of monolayer InP3. The results from HSE and PBE are both
shown. Monolayer InP3 is semiconducting with an indirect
band gap, and the band gap is 0.71 eV with PBE and 1.32 eV
with HSE. Unless otherwise stated, the transport properties
are obtained starting from the electronic energies with HSE.
The CBM is located at the � point and the average electron ef-
fective mass is 0.139me, which is beneficial for small density
of scatterings [75]. However, there is a second-lowest CBM
at the � point, which is assumed to be disadvantageous to
high electron mobility because it may introduce extra inter-
valley scatterings between the two valleys. To make it clearer,
we plot the three-dimensional (3D) energy band structures
around the � point in Fig. 4(b). It is found that the energy
difference �E between the two valleys is 110 meV. The �E
is much larger than the largest phonon energy (56 meV). As a
consequence, the intervalley scattering would be significantly
suppressed due to the energy conservation law. Therefore, we
can conclude that monolayer InP3 has an optimal electronic
structure feature for high electron mobility: a steep and deep
valley located at the � point [75]. This sharp single valley
indicates small density of states and thus small Seebeck coef-
ficients, because S is proportional to the density of states.

By contrast, the valence band maximum (VBM) is lo-
cated at the �M line. There are six equivalent valleys due
to the sixfold rotational symmetry. Apart from the intravalley
scattering, there are intervalley scatterings among different
valleys. Moreover, there are six other valleys that are 40 meV
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FIG. 4. (a) Calculated electronic band structure of monolayer
InP3 along the high-symmetry lines �-M-K-�. The band struc-
tures from PBE and HSE are denoted by dashed gray lines and
solid red lines, respectively. The 3D electronic structure around the
(b) conduction band minimum (CBM) and (c) valence band min-
imum (VBM). The energy difference between the CBM and the
second lowest CBM is 110 meV. The energy difference between
the VBM and the second-highest VBM is 40 meV. Note that the
maximum phonon energy is 56 meV. Therefore, we can conclude
that monolayer InP3 has an optimal electronic structure feature for
high electron mobility.

lower than the VBM [see Fig. 4(c)]. The �E is within the
range of the phonon energy. The K valley is also close to the
VBM in energy. In consequence, there are also extra inter-
valley scatterings from those other eight valleys. Therefore,
the electronic structure for holes has 14 valleys, and the holes
will have both large intravalley and intervalley scatterings,
leading to high density of scatterings and thus a small hole
mobility. The multiple valleys render high density of states
and are beneficial to large Seebeck coefficients.

C. Charge carrier transport

Figure 5(a) shows the calculated mode-resolved electron
mobility μe,λ of monolayer InP3 at room temperature. The
intrinsic electron mobility μe is 275 cm2 V−1 s−1. This high
μe is larger than most 2D semiconductors, i.e., μe of all
monolayer transition metal dichalcogenides (MX2) [37,38]
and black phosphorene (BP) [76,77]. However, it is about one
order of magnitude lower than that predicted by DPT [20,24].
This is because DPT only considers the scatterings from
long-range LA phonons to the electronic band edge states.
Figure. 5(b) shows the mode-resolved electron-phonon scat-
tering rates (1/τe,λ), where the CBM has been shifted to 0 eV.
The total scattering rate (gray dots) is around 30 ps−1 within
150 meV to the band edges. As a comparison, DPT predicts a
constant scattering rate of 2.5 ps−1. Therefore, the scattering
rates are significantly underestimated within the framework
of single-mode DPT. Moreover, it is found that μe,14 (or-
ange line) has the largest contributions to μe, followed by
μe,3 (blue line). Nevertheless, all the phonons contribute to
total electron mobility. Furthermore, we observe that μe (μh)
from single-mode DPT is anisotropic, which contradicts the

FIG. 5. Calculated mode-resolved (a) electron mobility μe,λ as a
function of carrier concentration and (b) electron-phonon scattering
rates 1/τe,λ as a function of electronic energy at 300 K. The CBM has
been shifted to 0 eV. Calculated mode-resolved (c) hole mobility μh,λ

as a function of carrier concentration and (d) hole-phonon scattering
rates 1/τh,λ as a function of electronic energy at 300 K. The VBM
has been shifted to 0 eV. The phonon modes are numbered from 1 to
24 with increasing frequency.

symmetry of the hexagonal lattice, whereas μe (μh) is
isotropic in our calculations when the scatterings from all
phonons are considered. In addition, the scattering rates have
two branches at energies above 0.11 eV, indicating scatterings
from the second-lowest CBM start to get involved.

The intrinsic hole mobility μh is 5 cm2 V−1 s−1 at room
temperature, which is indeed much lower than μe, resulting
from the much higher scattering rates [see Fig. 5(d)]. More-
over, it is found that μh,2 (green line, contributions from the
transverse acoustic phonons) has the largest contributions to
μh, followed by μh,17 (red line) and μh,3 (blue line). Con-
tributions from the LA phonons only account for less than
5% of the total scattering rates. The overall total scattering
rate is ∼100–1000 ps−1, while the constant scattering rate for
holes from single-mode DPT is about 6 ps−1. Such a large
difference indicates the hole scattering rates are much more
underestimated compared with electrons. This is also the rea-
son for the higher p-type ZT value than that of the n type
from single-mode DPT (see discussions later). In addition, the
scattering rates also have three branches at energies lower than
40 meV, indicating the scatterings from the second-highest
VBM and K valleys. The huge drop in carrier mobility at
1010 cm−2 from μe = 539(μh = 5) cm2V −1s−1 at 200 K to
μe = 72 (μh = 1) cm2V −1s−1 at 600 K is a consequence of
the increased electron-phonon scatterings at high temperature.

Figures 6(a) and 6(c) show the calculated μe/h at dif-
ferent temperatures. The huge drop in carrier mobility at
1010 cm−2 from μe = 539(μh = 5) cm2 V−1 s−1 at 200 K to
μe = 72(μh = 1) cm2 V−1 s−1 at 600 K is a consequence of
the increased electron-phonon scatterings at high temperature.
With increasing temperature, more phonons would be excited.
Therefore, the phonon-electron and phonon-hole scattering
rates would be much higher, as evidenced in Figs. 6(b) and
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FIG. 6. Calculated total (a) electron mobility μe as a function of
carrier concentration and (b) electron-phonon scattering rates 1/τe

as a function of energy at various temperatures. The CBM has been
shifted to 0 eV. Calculated total (c) hole mobility μh as a function
of carrier concentration and (d) hole-phonon scattering rates 1/τh as
a function of energy at various temperatures. The VBM has been
shifted to 0 eV. The red, purple, blue, green, and yellow lines and
dots represent 200, 300, 400, 500, and 600 K, respectively.

6(d). Moreover, we see that μe/h is nearly invariable at carrier
concentrations below 1011 cm−2. This weak dependence is
due to the slow changing of the derivative of Fermi-Dirac
distributions with carrier concentrations. In addition, μe/h

decreases rapidly at high carrier concentrations, and as the
temperature drops, it decreases faster. This is because the
scattering rates are much larger at higher energies as shown in
Figs. 6(b) and 6(d). Furthermore, the critical carrier concen-
tration for the rapid drop of μe/h is larger at high temperatures.
Since the Fermi distribution is flatter at higher temperatures,
therefore, both scatterings of high and low energies are mod-
ulated by the derivative of the Fermi distribution, delaying the
rapid dropping of μe/h at high carrier concentrations.

D. Thermoelectric transport

With the fine k grids electronic scattering rates, the ther-
moelectric transport coefficients are calculated using Eq. (3).
Figure 7(a) shows the calculated Seebeck coefficients. The
absolute |S| decreases with increasing carrier concentration.
The |S| is over 200 μV/K at 1011 cm−2 for both n- and
p-type doping, which is comparable to the best thermoelectric,
i.e., SnSe [10]. Moreover, the S of p- and n-type doping are
asymmetric and the absolute |S| of the former is much larger.
In addition, |S| is larger at higher temperatures at certain
carrier concentrations. Those features are originated from the
band structures and can be explained using the Mott relation:

S = πk2
BT/3eε f (7)

where ε f = nπ2/M∗ is the Fermi level, M∗ = Nvm∗ is the
density-of-states effective mass, m∗ is the band effective mass,
Nv is the number of equivalent valleys, and n is the carrier
concentration. Hence, S is proportional to T, Nv , and m∗, and
is inversely proportional to n: S ∝ T Nvm∗/n. The electronic

FIG. 7. Calculated (a) Seebeck coefficient S, (b) electrical con-
ductivity σ , (c) power factor (PF) S2σ , and (d) electronic thermal
conductivity κe as a function of carrier concentration at various
temperatures. The red, purple, blue, green, and yellow lines represent
200, 300, 400, 500, and 600 K, respectively. The solid and dashed
lines represent n-type and p-type dopings, respectively.

structure of the lowest conduction band is single valley, while
that of the highest valence band has multiple equivalent val-
leys. Therefore, |S| of p-type doping is higher than that of
n-type doping.

At low carrier concentrations, the electrical conductivity
has a sharp increase and almost has a linear relation with n.
This is reasonable since the scatterings between band edges
dominate at low n. However, at high carrier concentrations,
there is a small kink around 1013 cm−2 for n-type and 1014

cm−2 for p-type carriers. This feature is absent in previous
calculations, which assume a constant relaxation time for all
the electronic states. The n-type σ is about two orders of mag-
nitude higher than p-type σ at the same carrier concentration.
It is because the scattering rates of p-type carriers are much
higher, which comes from the large intervalley scatterings.
This high scattering rate is inherently arising from the multiple
valence band valleys.

The contrary trends of S and σ with n imply there must
be a trade-off such that the power factor S2σ can be maxi-
mized at an optimal carrier concentration. Indeed, a maximum
S2σ = 1.2 mW m−1 K−2 is achieved at n = 4.0 × 1011 cm−2

at 300 K for n-type carriers. Our predicted S2σ is about one
order of magnitude lower than that assuming a constant relax-
ation time with single-mode DPT, which is due to the lower
σ when all the phonon scatterings are considered. Moreover,
there is a second peak for S2σ at high carrier concentra-
tion. This is due to the complex scatterings between different
electronic states and this feature is also absent in previous cal-
culations, which assume a constant relaxation time for all the
electronic states. In addition, S2σ decreases with increasing T
within the temperature range under consideration.

Having all the transport coefficients calculated, the ZT
value is obtained using Eq. (4). Figure 8 shows the ZT value
as a function of carrier concentration at different temper-
atures. The maximum ZT value is 0.37 for n-type doping
with n = 2.9 × 1011 cm−2 and 0.18 for p-type doping with
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FIG. 8. Calculated ZT value of monolayer InP3 as a function of
carrier concentration at various temperatures. The red, purple, blue,
green, and yellow lines represent 200, 300, 400, 500, and 600 K,
respectively. The solid and dashed lines represent n-type and p-type
dopings, respectively.

n = 6.5 × 1012 cm−2 at room temperature. Those values are
about an order of magnitude lower than previous predic-
tions, owing to the significant differences in the calculation of
electron-phonon scattering rates. More importantly, at certain
temperatures, the maximum p-type ZT value is higher than
that of the n-type value in the previous study. However, our
calculations show a contrary trend. The discrepancy stems
from the much more overestimated relaxation time for holes
with single-mode DPT. In addition, we would like to mention
our calculated ZT values are higher than in Ref. [72] (con-
sidered the scattering of all phonons), which is because of
the much smaller relaxation time predicted in Ref. [72]. We
have shown the detailed comparison in Appendix D. As for
the temperature dependence, the maximum ZT value of n-type
doping decreases with the increasing T from 0.38 at 200 K to
0.29 at 600 K, while the maximum ZT value of p-type doping
shows a weak temperature dependence and is around 0.18 in
the whole temperature range. We have plotted the maximum
ZT values and the corresponding S, σ , S2σ , and κe at various
temperatures in Appendix E.

For a material with N atoms in the primitive cell, there
are 3N phonon modes. All phonons can scatter with charge
carriers, while single-mode DPT only considers the scat-
tering of charge carriers with long-range LA phonons. In
some materials, the contribution of LA phonons to total scat-
tering is not even the largest. For instance, the scattering
of polar optical phonons with charge carriers dominates in
triangular metal dichalcogenides (T−MX2) [78] and metal
monochalcogenides (MX) [38]. Hence, the scattering rates
would be significantly underestimated by using single-mode
DPT, leading to the overestimated thermoelectric transport
properties (ZT value). More importantly, we emphasize that
the constant relaxation time predicted by single-mode DPT
not only overestimates the ZT values, but may also predict
inaccurate or incorrect trends of ZT value with temperatures.

IV. CONCLUSION

To summarize, we have systematically studied the
thermoelectric transport properties of monolayer InP3 by

using parameter-free ab initio calculations combined with a
Boltzmann transport equation. We have offered some tricks
to significantly reduce the computational cost in lattice ther-
mal transport calculations. It is found that monolayer InP3

has a relatively low κl , which arises from the small phonon
group velocity and the large phonon-phonon scattering phase
space. For the charge carrier transport, the scatterings from
all phonons are considered. It is found that the scattering
from LA phonons is not even the most significant, confirming
that the scattering rates are significantly underestimated by
using single-mode deformation potential theory. The room-
temperature electron mobility is over 200 cm2 V−1 s−1 even
when the carrier concentration reaches 1012 cm−2, while the
hole mobility is relatively small. The distinct electron and hole
carrier mobilities stem from the electronic band structures.
The electrons have a single sharp valley located at the � point,
resulting in small scattering rates, while holes have multiple
valleys, leading to large scattering rates. The thermoelectric
transport is then calculated by considering the state-dependent
scattering rates. It is found that the room-temperature max-
imum ZT value of monolayer InP3 is 0.37 for n- and 0.18
for p-type doping, which is much smaller than those pre-
dicted using a constant scattering rate that only considers
the scattering between electrons and long-range longitudinal
acoustic phonons. Moreover, the maximum ZT value of n type
is smaller than that of p type when using single-mode DPT,
primarily due to the much more overestimated relaxation time
for holes in single-mode DPT. Our study not only accurately
predicts the thermoelectric transport of monolayer InP3, but
also uncovers the underlying mechanisms governing the ther-
moelectric transport and, more importantly, offers a paradigm
approach to correctly predicting the thermoelectric transport
of 2D thermoelectrics. We demonstrate that our method will
be valuable in reexamining the thermoelectric performance of
previously predicted excellent thermoelectrics and in predict-
ing the thermoelectric performance of new materials.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX A: RELATIVE ROOT MEAN SQUARE
OF SECOND-ORDER FORCE CONSTANTS

To reduce the computational cost in the third-order force
constants calculation, we have used the root mean square of
the second-order force constants (RMS) [79,80] to determine
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FIG. 9. (a) Calculated relative root mean square of the second-
order force constants (RRMS) as a function of atomic distance. It is
found that a cutoff radius of 7.8 Å is needed to get converged results,
which corresponds to the seventh-nearest neighbors to be considered
in the calculation of third-order force constants. (b) The accelerated
ratio with the interactions considered in the calculation of third-order
force constants.

the cutoff radius:

RMS[�( jl, j′l ′)] = 1

3

√∑
α,β

[�αβ ( jl, j′l ′)]2, (A1)

where �αβ ( jl, j′l ′) is the second-order force constant matrix
element, which represents the force along the α direction felt
by atom j in the lth unit cell due to the displacement of atom
j′ in the l ′th unit cell along the β direction. However, the
magnitude of RMS is somewhat arbitrary and differs a lot for
different materials. To resolve this issue, we have used the
magnitude of relative RMS (RRMS) to determine the cutoff
radius:

rRRMS[�( jl, j′l ′)] = rRMS[�( jl, j′l ′)]
{rRMS[�( jl, j′l ′)]}max

, (A2)

where all the RMS values are normalized by the maximum
RMS. We have chosen a criterion smaller than 0.01 to de-
termine the cutoff radius. Figure 9 shows the RRMS of
monolayer InP3 with atomic distances. The cutoff radius is
7.8 Å, corresponding to seventh-nearest neighbors. Hence, the
total number of cases to be calculated is 548. Considering 12
cases are identical, we only need to do calculations for 537
different cases. We have also implemented the accelerating
method proposed by Qin and Hu [80]. The accelerated ratio

FIG. 10. The effect of the number of q grids on lattice thermal
conductivity κl .

FIG. 11. Calculated room-temperature (a) electron-phonon scat-
tering rates and (b) electron mobility.

is shown in Fig. 9(b). It is found that the computational cost
is reduced by 75% in our case. The scripts for decreasing
the computational cost are available from the corresponding
author.

APPENDIX B: CONVERGENCE TEST OF κl

WITH NUMBER OF q GRIDS

As mentioned in Sec. II A, sufficiently large q grids are
needed to get a converged lattice thermal transport property.
Figure 10 displays the κl with the number of q grids. It is
found that a 75 × 75 × 1 q grid is needed to get converged κl .
This corresponds to 5625 q points in the calculation.

APPENDIX C: EFFECTS OF ELECTRONIC STRUCTURES
AND BAND GAPS ON THE ELECTRON-PHONON

SCATTERING RATES, CHARGE CARRIER MOBILITY,
AND THERMOELECTRIC TRANSPORT COEFFICIENTS

To characterize the influence of electronic structures and
band gap on the thermoelectric transport coefficients, we
have applied three different methods to study the electron-
phonon scattering rates, electron mobility, and thermoelectric
transport coefficients of monolayer InP3: (1) start from the
PBE-calculated band structures and band gap (denoted as
PBEes+PBEbg); (2) start from the PBE-calculated band

FIG. 12. Calculated room-temperature Seebeck coefficient, elec-
trical conductivity, power factor, and electrical thermal conductivity
as a function of carrier concentration.
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FIG. 13. Calculated room-temperature ZT value as a function of
carrier concentration.

structures, while applying a scissor operator to the con-
duction bands, such that the band gap is the same as that
from the HSE (denoted as PBEes+HSEbg); and (3) start
from the HSE-calculated band structures and band gap (de-
noted as HSEes+HSEbg). Figure 11 shows the calculated
room-temperature electron-phonon scattering rates, where the
CBM has been shifted to 0 eV. It is found that the scattering
rates from methods 1 and 2 are the same. This finding implies
that only the change in band gap would not affect the electron-
phonon scattering rates.

This can be understood from Eq. (2). For convenience, we
rewrite Eq. (2) as

1

τik
= 2π

h̄

∑
j,i′

∫
BZ

dq
�BZ

∣∣g(ik, i′k′, jq)
∣∣2

Cik,i′k′, jq
1 − fi′k′

1 − fik
,

(A3)

where

Cik,i′k′, jq = n jqδ(Eik − Ei′k′ + h̄ω jq)δk+q,k′+G

+ (1 + n jq)δ(Eik − Ei′k′ − h̄ω jq)δk−q,k′+G.

(A4)

Cik,i′k′, jq is the number of phonons capable of scatter-
ing the initial electron state ik into the infinitesimal energy
window around the final electron state i′k′, divided by the
range of the energy window. For semiconductors, the electron
scattering rates are the summation of transition rates between

FIG. 14. Calculated maximum ZT values at various tempera-
tures. The result from Ref. [72] (n type) is shown as a comparison.

FIG. 15. Calculated ZT value at certain different temperatures
and carrier concentrations.

conduction band electronic states, while the hole scattering
rates are the summation of transition rates between valence
band electronic states. The transition rates between conduc-
tion band electronic states and valence band electronic states
are negligible. Therefore, Cik,i′k′, jq is independent of the exact
value of the band gap. The other term, 1− fi′k′

1− fik
, can be written

as

1 − fi′k′

1 − fik
=

1 − 1
e(Ei′k′ −E f )/kBT +1

1 − 1
e(Eik−E f )/kBT +1

= e(Eik−E f )/kBT + 1

e(Ei′k′−E f )/kBT + 1
· e(E

i′k′ −Eik )/kBT
. (A5)

Hence, 1− fi′k′
1− fik

is mainly determined by e(E
i′k′ −Eik )/kBT

(which is independent of the exact value of the band gap).
However, not only the band gap but the band shape is also
altered with HSE. This is reflected in the electron-phonon
scattering rates shown in Fig. 11.

Figures 11(b), 12, and 13 show the calculated room-
temperature electron mobility, and thermoelectric transport

FIG. 16. The corresponding Seebeck coefficient, electrical con-
ductivity, power factor, and electrical thermal conductivity at certain
different temperatures and carrier concentrations.

224103-9



CHEN, LI, SHAN, AND CHENG PHYSICAL REVIEW B 109, 224103 (2024)

coefficients at various carrier concentrations within the three
methods. It is found that the transport coefficients are the same
at a certain carrier concentration for methods 1 and 2, which is
consistent with the above discussions of the electron-phonon
scattering rates.

APPENDIX D: CALCULATED MAXIMUM ZT VALUES
AT VARIOUS TEMPERATURES

Figure 14 shows the calculated maximum ZT values at
various temperatures. The results from Ref. [72] (n type)
are shown as a comparison. It is found that the calculated
maximum ZT values in Ref. [72] are much lower than our
results, which is because of the much smaller relaxation time
predicted in Ref. [72]. We observe that the authors stated,
“Our computed value of τ for μ near the bottom of the
CB” in Ref. [72]. Therefore, we suppose that their constant
relaxation time is extracted from the conduction band min-
imum (CBM). In general, the scattering rate of the CBM
is smaller than higher energy states, because there is only

absorption process for the CBM state (which is restricted by
the energy conservation law; the CBM state cannot emit a
phonon and transit to a lower energy state). We are not sure
why the τ in Ref. [72] is so small. Moreover, the maximum
ZT value increases with increasing temperature in Ref. [72].
Nevertheless, we would like to emphasize the importance of
the variation of scattering rates in different electronic states
in predicting the thermoelectric transport coefficients and the
trends with temperature.

APPENDIX E: THE ZT VALUES AND CORRESPONDING
THERMOELECTRIC TRANSPORT COEFFICIENTS AT

DIFFERENT TEMPERATURES AND CARRIER
CONCENTRATIONS

Figures 15 and 16 show the variation of calculated ZT
values and the corresponding Seebeck coefficient, electrical
conductivity, power factor and electrical thermal conductiv-
ity at different temperatures at certain carrier concentrations.
Here, we have considered six carrier concentrations ranging
from 1011 cm−2 to 5 × 1013 cm−2.
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