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Superclimbing modes in transverse quantum fluids: Signature statistical and dynamical features
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Superclimbing modes are hallmark degrees of freedom of transverse quantum fluids describing wide superfluid
one-dimensional interfaces and/or edges with negligible Peierls barrier. We report direct numeric evidence of
quantum shape fluctuations, caused by superclimbing modes, in simple lattice models, as well as at the free
edge of an incomplete solid monolayer of 4He adsorbed on graphite. Our data unambiguously reveals the
defining feature of the superclimbing modes—canonical conjugation of the edge displacement field to the field
of superfluid phase—and its unexpected implication, i.e., that superfluid stiffness can be inferred from density
snapshots.
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I. INTRODUCTION

The term “superclimb” [1] emerged in the context of in-
terpreting the effect of anomalous isochoric compressibility
(a.k.a. syringe effect) accompanying superflow through solid
observed in an imperfect 4He crystal [2]. More specifically,
it refers to the climbing motion of an edge dislocation sup-
ported by superfluidity of its core (distinguishing it from the
conventional climb of edge dislocation supported by the pipe
diffusion of vacancies along the core). From the very outset
it was clear [1] that if the Peierls barrier can be neglected the
superclimb would have a profound impact on what otherwise
would be standard superfluid phonon modes of a Luttinger
liquid (LL). The Hamiltonian H[h, φ] = ∫

dxH of the effec-
tive long-wave field theory for such superclimbing edge can
be written as

H = χ

2
(∂xh)2 + ns

2
(∂xφ)2, (1)

in terms of the canonically conjugate fields: the vertical co-
ordinate (height) of the edge h(x), and the superfluid phase,
φ(x), with x the position along the edge. Here ns is the su-
perfluid stiffness and χ is the edge tension. The dependence
of the Hamiltonian density H on ∂xh rather than h reflects
translation invariance of H with respect to the vertical motion
of the edge as a whole, h(x) → h(x) + h0. To be more precise,
we are dealing with discrete translation symmetry, but if the
edge width, d , is significantly larger than the lattice distance,
a, i.e., the edge is microscopically rough, then the Peierls
barrier can be neglected on exponentially large (larger than
system size) length scales.

By integrating out one of the canonically conjugate fields
we obtain two equivalent actions each suitable for straightfor-
ward computation of the remaining field properties. Starting
from

S[h, φ] =
∫

(ih ∂τφ + H) dxdτ, (2)

we obtain Sh[h] and Sφ[φ] from Gaussian integrals

e−Sh[h] =
∫

e−S[h,φ] Dφ, e−Sφ [φ] =
∫

e−S[h,φ] Dh. (3)

In the Fourier representation, we have

Sh = 1

2

∑
ω,k

[
n−1

s

ω2

k2
+ χk2

]
|hω,k|2, (4)

Sφ = 1

2

∑
ω,k

[
χ−1 ω2

k2
+ nsk

2

]
|φω,k|2. (5)

In what follows, we assume that h(x) is counted from the
equilibrium height value, i.e., h(ω, k = 0) = 0. The super-
climbing modes described by the action (4) have quadratic
dispersion [1]

ωk = Dk2, D = √
nsχ, (6)

involving two quite different types of quasi-one-dimensional
(quasi-1D) motion along and perpendicular to the edge:
oscillations of the mass current and the geometric shape,
respectively.

Recently, counterintuitive properties and a much broader
physics context for considering the model (1) have been
revealed, which lead to the formulation of the transverse
quantum fluid (TQF) paradigm [3–6]. It has been realized
that infinite compressibility is the key ingredient defining the
TQFs along with their unusual properties: (i) the quadratic
dispersion relation for normal modes (or even the absence
thereof), (ii) off-diagonal long-range order (ODLRO) at T =
0, and (iii) exponential dependence of the phase slip proba-
bility on the inverse flow velocity. From conceptual point of
view, the TQF state is a striking demonstration of conditional
character of many dogmas associated with superfluidity, in-
cluding the existence of low-energy elementary excitations,
in general, and the ones obeying the Landau criterion of ho-
mogeneous superflow stability, in particular.
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Depending on the nature of transverse particle reservoirs
that guarantee the infinite compressibility of the quasi-1D su-
perfluid, TQFs are divided into two subgroups: (i) the ordinary
TQFs and (ii) incoherent ones (iTQF) [5]. In the TQF case, the
reservoirs are insulating (gapped) states, qualitatively similar
to the half-plane of atoms associated with an edge dislocation
in an insulating solid. Infinite effective 1D compressibility in
such reservoirs is exclusively due to the translation invari-
ant superclimbing motion of the edge. The gapped reservoir
modes play no role in the long-wave physics, which, therefore,
is universally described by the 1D Hamiltonian (1). In the
iTQF case, the edge is not climbing and at least one of the
reservoirs must be gapless because its soft modes are required
for infinite 1D compressibility and, thus, play crucial part
in the long-wave dynamics of the superfluid phase. In some
cases, the resulting dynamics has a diffusive character and is
described by an effective action Sφ rather than an effective
Hamiltonian (see Ref. [5] and references therein). While being
quite different in terms of the linearized long-wave dynamics,
TQF and iTQF both feature ODLRO and share similar instan-
ton physics [5].

The fingerprints of TQFs are universal off-diagonal space-
(imaginary-)time correlations. Despite radical difference be-
tween the TQF and iTQF cases in terms of the underlying
physics, their phase correlations are described by self-similar
functions derived from the corresponding effective theo-
ries [4,5] and revealed in recent ab initio simulations of simple
iTQF models in Ref. [6]. In Matsubara representation, many
aspects of the long-range and mesoscopic off-diagonal order
in TQF and iTQF look similar. In particular, for both cases
Sφ[φ] is characterized by infinite compressibility, which in
terms of the Fourier components of the field φ is defined as [5]

κ = lim
ω→0

1

ω2
lim

kx→0

δ2Sφ

[
φω,kx , φ

∗
ω,kx

]
δφω,kx δφ

∗
ω,kx

= ∞. (7)

This property is both necessary and sufficient to ensure
ODLRO and power-law binding of instantons irrespective
of other system details such as gapped or gapless bulk ex-
citations, spectrum of elementary excitation, or their very
existence. At κ �= ∞, the low-energy physics of the system
would correspond to that of LL.

While emphasizing deep similarities between TQF and
iTQF, we should also keep in mind important qualitative
differences. The key feature distinguishing TQF from iTQF
is the presence of well-defined and most specific elementary
excitations, the superclimbing modes, which are the main
focus of this work. We present numerical evidence supported
by rigorous quantitative analysis that edge/interface shape
fluctuations in two distinct 2D lattice models are indeed
originating from superclimbing TQF modes. The first model
describes phase separated one-component hard-core bosons
(microscopically equivalent to an easy-axis XY ferromagnet)
while the second one deals with the two-component soft-core
bosons at integer total filling in the regime of phase sep-
aration when each component is in the Mott-insultor (MI)
phase. In both models, the bulk phases are insulating. In
the hard-core system, the interface is a standard superfluid,
while in the two-component case, the phase boundary is a
supercounterfluid [7]. Despite these microscopic differences,

the emerging low-energy physics turns out to be the same as
that of the TQF.

In an attempt to identify an actual physical system in which
this behavior could be observed experimentally, we carried
out microscopic numerical simulations of an incomplete 4He
monolayer adsorbed on graphite. Our results indicate that this
system is a promising candidate for a TQF at the free edge.

II. CORRELATORS

The simplest correlation functions revealing universal TQF
fluctuations are [4]

K̃ (x, τ ) = 1
2 〈 [ h(x, τ ) − h(0, 0) ]2 〉 (8)

and

F̃ (x, τ ) = 1
2 〈 [ φ(x, τ ) − φ(0, 0) ]2 〉. (9)

Phase correlations control the asymptotic behavior of the cor-
relator of the superfluid order-parameter field ψ ∝ eiφ :

〈ψ (x, τ ) ψ∗(0, 0) 〉 ∝ 〈 ei[φ(x,τ )−φ(0,0)] 〉 = e−F̃ (x,τ ).

In the low/zero-temperature regime, and at large |x| and/or
|τ |, correlators (8) and (9) have the same universal functional
form, if one makes a substitution

ns ↔ χ (10)

after subtracting nonuniversal additive constants K∞ and F∞,
see Eqs. (11) and (12) below. This is the hallmark of TQF
implied by the fact that the Hamiltonian (1) is symmetric
with respect to simultaneously swapping h(x) with φ(x) and
χ with ns. Compactness of the field φ(x) is irrelevant for the
asymptotic behavior. However, in a large but finite system
with periodic boundary conditions and at a low but finite tem-
perature, the compactness of the field φ(x) requires taking into
account states with nonzero phase winding numbers (see in
Ref. [6]). Such a generalization is absolutely straightforward
because fluctuations of the phase winding numbers are purely
classical and statistically independent from all other fluctua-
tions. In this work, we focus on the height-height correlations
and their precise connection to the compact phase-phase cor-
relations.

The prominent feature of (8) and (9) is the long-range order
expressed as saturation of both correlators to finite values in
the thermodynamic limit at T = 0:

K∞ ≡ K̃ (∞,∞) = 〈 [ h(0, 0) ]2 〉 < ∞, (11)

F∞ ≡ F̃ (∞,∞) = 〈 [ φ(0, 0) ]2 〉 < ∞. (12)

Physically, Eq. (11) means that the edge is asymptotically
smooth (despite appearing quantum rough on the edge-width
scale), while Eq. (12) is the ODLRO statement imply-
ing Bose-Einstein condensation because the field correlator
at infinity ∝ e−F∞ �= 0. For a number of fundamental and
circumstantial reasons, the values of K∞ and F∞ are nonuni-
versal, and, to a certain extent, arbitrary. Indeed, the harmonic
form of the Hamiltonian (1) implies a certain system-
dependent UV cutoff for the fields h(x) and φ(x) beyond
which the physics is neither harmonic nor universal. Further-
more, the fact that h(x) and φ(x) are collective rather than
microscopic variables implies that these do not have unique

214519-2



SUPERCLIMBING MODES IN TRANSVERSE QUANTUM … PHYSICAL REVIEW B 109, 214519 (2024)

definitions at short distance. These ambiguities are removed
by dealing with relative quantities:

K (x, τ ) = K̃ (x, τ ) − K∞, (13)

F (x, τ ) = F̃ (x, τ ) − F∞. (14)

At large enough |x| and/or |τ |, the behavior of K (x, τ ) and
F (x, τ ) is universal and fully controlled by the effective har-
monic action (4)–(5).

Since two actions are identical up to the substitution (10),
in what follows we proceed with analyzing one of them;
specifically, we consider the phase action Sφ and evalu-
ate (14). Despite our ultimate interest in its counterpart (13),
we prefer to work with phase fluctuations thereby empha-
sizing close qualitative and quantitative similarities between
the two. After mentioning ground-state thermodynamic limit
results reported in Ref. [6] (for the purpose of self-contained
presentation) we derive and test numerically analytic TQF
predictions for finite-size system at nonzero temperature.

III. GROUND-STATE FLUCTUATIONS

We start by reminding that all results apply to both K (x, τ )
and F (x, τ ) because these functions are related to each other
by the transformation (10):

χK (x, τ ) = nsF (x, τ ) ≡ C(x, τ ) = −
∫

k,ω

eikx+iωτ c(ω, k),

(15)

c(ω, k) = k2

(ω/D)2 + k4
. (16)

Here
∫

k,ω
≡ ∫

dωdk
(2π )2 . Parameter D is invariant under the trans-

formation (10) and thus is the only TQF constant controlling
the shape of correlation functions. To be precise, the integral
over k in (15) contains an ultraviolet cutoff, k0, irrelevant
at large enough |x| and/or |τ | but setting limitations on the
applicability of (15)–(16) when both |x| and/or |τ | are small:
|x| � k−1

0 and |τ | � (Dk0)−2. For microscopically wide edges
k0 ∼ 1/d .

Straightforward integration over ω in (15) results in a
Gaussian integral over k and the final answer for the ground
state in the thermodynamic limit:

C(x, τ ) = −
√

D e− x2

4D|τ |

4
√

π |τ | . (17)

The prominent feature of Eq. (17) is self-similarity: Up to
a scale-invariant prefactor ∝ |τ |−1/2, the dependence on x
and τ reduces to a function of the dimensionless argument
x2(D|τ |)−1. Similar type of scaling (with different meaning of
the parameter D) describes correlations in the iTQF state [6].

It is very instructive to compare expression (17) with its
LL counterpart. While the latter is scale invariant and isotropic
(up to rescaling of the imaginary-time variable) in the (1 + 1)-
dimensional Euclidean spacetime, the former is not.

Note a resemblance between the correlator C(x, τ ),
Eq. (17), and the free-particle propagator. However, there is
a significant difference between the two. Indeed, the free-
particle propagator is identically zero at negative τ , while

Eq. (17) is not, which is consistent with the fact that it de-
scribes ground-state fluctuations of TQF.

A striking feature distinguishing TQF from iTQF is the
form of the equal-time correlator C(x, 0). It is supposed to be
a decaying power-law function of x, and consistent with this
observation, in iTQF we have C(x, 0) ∝ 1/|x| [6]. In a sharp
contrast to that, the TQF case proves to be special because

C(x, 0) ≡ 0, x �= 0, (18)

meaning that equal-time universal correlations are simply ab-
sent in the TQF ground state. (It should be noted that this
result does not apply to fast nonuniversal short-range decay
governed by the UV physics.) This is a remarkable exam-
ple of how zero-point fluctuations above the UV limit can
sum up into exact zero; which is important in the context of
distinguishing TQF from both LL and iTQF. The result (18)
points to a certain subtlety when it comes to the problem of
revealing universal quantum mechanics of the superclimbing
modes experimentally because equal-time correlators are the
most natural experimental observables, e.g., for the ultracold-
atomic systems. However, the situation changes significantly
when nonzero temperature satisfies the condition Dβ < L2,
where L is the edge length.

IV. NONZERO TEMPERATURE

Finite temperature is a resource that should be analyzed
with care. On the one hand, superclimbing modes need to be
excited to become visible in the universal signal C(x, 0). On
the other hand, classical harmonic behavior settles in at large
distances because the dominant contribution is coming from
modes with large occupation numbers, rendering correlations
trivially universal. In the classical limit, the fields h and φ

become statistically independent, so that their thermal fluctua-
tions are independently controlled by the parameters χ and ns,
respectively. This, in particular, means that all the individual
features of TQF are lost in this limit.

To reveal the universal behavior at finite T it is suffi-
cient to subtract the zero-temperature constant C∞ from the
finite-temperature correlator C̃(x, τ ), i.e., there is no need
to modify relations (14). At low but finite T all we need
is to replace frequency integrals with Matsubara sums over
ωm = 2πmT, m = 0,±1,±2, . . . ,

C̃(x, τ ) =
∑

m

∫ k0 dk

2πβ
[1 − eiωmτ+ikx]c(ωm, k) + C∗(k0).

(19)
Here we explicitly cut off the momentum integration at
appropriately low momentum k0 with simultaneously in-
troducing cutoff-dependent (and temperature-independent)
constant C∗(k0), which absorbs all nonuniversal UV contri-
butions. With this parametrization,

C∞ =
∫

dω

2π

∫ k0 dk

2π
c(ω, k) + C∗(k0). (20)

This brings us to the following decomposition for C(x, τ ) (in
which we safely take the limit k0 → ∞ assuming that |x|
and/or τ are large enough)

C(x, τ ) = C0 + Cqu(x, τ ) + Ccl(x), (21)
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where

Cqu(x, τ ) = −
∑
m �=0

eiωmτ

∫
dk

2πβ
eikx c(ωm, k) (22)

is the quantum contribution coming from nonzero Matsubara
frequencies and vanishing at |x| → ∞,

Ccl(x) =
∫

dk

2πβ
(1 − eikx )c(0, k) (23)

is the (diverging with |x|) classical contribution coming from
zero Matsubara frequency, and

C0 =
∫

dk

2π

⎡
⎣T

∑
m �=0

c(ωm, k) −
∫

dω

2π
c(ω, k)

⎤
⎦ (24)

is a temperature-dependent universal constant [guaranteeing,
in particular, that C(x, τ ) approaches the expression (17) in
the limit |τ |  β].

Performing straightforward integration over k in Eqs. (22)–
(24), we find

C0 = −c0

√
D

πβ
, (25)

where

c0 = lim
m∗→∞

[√
m∗ + 1/2 −

m∗∑
m=1

1

2
√

m

]
≈ 0.730, (26)

Ccl(x) = |x|
2β

, (27)

and (using a compact notation s = 2τ/β ∈ [0, 2])

Cqu(x, τ ) =
√

D

2πβ

∞∑
m=1

e−
√

mx
x∗ cos(πms) sin

(√
mx

x∗
− π

4

)
√

m
,

(28)

x∗ =
√

Dβ

π
. (29)

We need to take the limit in (26) because after integrating
over momenta the remaining frequency integral and sum in
Eq. (24) are separately UV divergent; the term 1/2 under the
square root dramatically enhances convergence to the limit.

Somewhat counterintuitively, it is still possible to extract
parameter D from fluctuations at distances |x| � x∗, where
the x-dependent quantum contribution (28) is exponentially
suppressed and the classical contribution (27) increases lin-
early with |x|: the subleading constant term C0 is controlled
by D.

V. NONZERO TEMPERATURE AND FINITE SYSTEM SIZE

The only difference between the T �= 0 treatment of corre-
lations in infinite and finite systems (with periodic boundary
conditions) is coming from replacing momentum integrals
with discrete sums over kn = 2πn/L, n = 0,±1,±2, . . . , in
Eqs. (19)–(24). In this case, the universal part of the cor-
relator, C(x, τ ), approaches the ground-state thermodynamic
value (17), in the limit |x|  L, |τ |  β; it also reproduces

the finite-temperature thermodynamic value (21) at |x|  L.
Using compact notation r = 2x/L ∈ [0, 2] we have

C(x, τ ) = C0 −
∞∑

m, n = −∞
(|m| + |n| �= 0)

eiπnr+iπms cmn, (30)

with

cmn = c(ωm, kn)

βL
≡ π2D2β

L3

n2

(πm)2 + (νn2)2
, (31)

ν = 2π2Dβ

L2
, (32)

and

C0 =
∞∑

m, n = −∞
(|m| + |n| �= 0)

cmn −
∫

ω,k
c(ω, k). (33)

In the last expression, both the integral and the sum have
ultraviolet momentum cutoffs, which mutually cancel to the
leading order.

After summation over m using standard relation

∞∑
m=−∞

cos(πms)

(πm)2 + a2
= cosh[(1 − s)a]

a sinh a

we get

C(x, τ ) = L

2β
λ̄(r, s), (34)

λ̄(r, s) = λ0 + λ1(r, s), (35)

λ0 = ν

π2

∞∑
n=1

[coth(νn2) − 1], (36)

λ1(r, s) = − ν

π2

∞∑
n=1

cos(πnr)
cosh(|1 − s|νn2)

sinh(νn2)
. (37)

Special care should be taken of the important equal-time case
s = 0 [or s = 2, which is the same by the symmetry of the
expression (37)]. At s = 0, the series (37) does not converge.
It is easy to see, however, that the problem is all about the
δ-functional contribution developing at r = 0, 2 as s → 0.
While remaining meaningful up to certain small nonzero
values of s, the diverging contribution ultimately becomes
nonphysical and thus needs to be removed from the answer
for λ1(r, s) once its width gets smaller than the characteristic
microscopic cutoff scale. From the theory of Fourier series we
have

1

2
δ(r) + 1

2
δ(2 − r) = 1

2
+

∞∑
n=1

cos(πnr).

This observation provides us with counterterms for taking the
limit τ → 0 of the series (37) at 0 < x < 2. We thus get

λ̄(r, 0) = ν

π2

{
1

2
+

∞∑
n=1

[1 − cos(πnr)][coth(νn2) − 1]

}
.

(38)

214519-4



SUPERCLIMBING MODES IN TRANSVERSE QUANTUM … PHYSICAL REVIEW B 109, 214519 (2024)

FIG. 1. Phase separated state of the hard-core bosonic Hamilto-
nian with nearest-neighbor attraction V < −2t at half-filling. It can
be also viewed as the phase separated state of the easy-axis XY
ferromagnet at zero total magnetization.

VI. HARD-CORE BOSONS: MOTT-INSULATOR-VACUUM
INTERFACE

The Hamiltonian of the hard-core system is arguably the
most simple of all possible TQF realizations. It consists of the
nearest-neighbor hopping and interaction terms on the square
lattice:

Hhc = −t
∑
〈i, j〉

b†
jbi + V

∑
〈i, j〉

n jni, (39)

with the constraint on the occupation numbers, ni � 1 (here bi

is the bosonic annihilation operator on site i). In what follows,
we use the hopping amplitude, t , and the lattice constant
as units of energy and length, respectively. The model can
be rewritten identically as the spin-1/2 ferromagnetic XY Z
model with Jx = Jy = −2t and Jz = −V . At V = −2t parti-
cles gain as much energy, −4t , from attractive interactions in
the MI state with ni = 1 as they get from delocalization in an
empty lattice, or vacuum state, with ni → 0. By decreasing
V below −2t , we ensure a MI-vacuum phase-separated state
with the width of the interface diverging as V → −2t . To
create such an interface oriented along the x direction it is
sufficient to pin the structure by adding small potentials ±δμ

at the lattice edges in the y direction. This setup is illustrated
in Fig. 1 for half-filled lattice. What makes this model very
efficient numerically is absence of quantum fluctuations in the
bulk, i.e., the active simulation volume is limited to the close
vicinity of the domain wall.

The model (39) has been simulated using quantum Monte
Carlo worm algorithm (WA) [8]. The superfluid stiffness in
the x direction was deduced from statistics of winding num-
ber, Wx, fluctuations as ns = T Lx〈W 2

x 〉 [9]. The instantaneous
shape h(x, τ ) of the edge at a given imaginary time τ is
defined by summing up the number of particles nx,y(τ ) along
y for all grid points x, τ as

h(x, τ ) =
Ly−1∑
y=0

nx,y(τ ) − 1/2. (40)

FIG. 2. Instantaneous and time-averaged edge profiles for model
(39) at V/t = −2.2 and βt = 32 for a system with Ly = 32 and Lx =
64. The pinning potential strength was δμ/t = 2. Dashed line is to
guide the eye. Solid line is the fit described in the text.

The equilibrium edge position at half-filling is located at
h0 = (Ly − 1)/2. Since WA works in the Fock basis, the
corresponding Monte Carlo estimator for h(x, τ ) is based on
straightforward processing of the many-body {ni(τ )} path-
integral configuration.

The density profiles across the edge (and its width) were
obtained using density snapshots, nx,y(τ ), and time-averaged
density distributions n̄x,y = T

∫ β

0 nx,y(τ )dτ . The profile coor-
dinate was counted from the instantaneous edge position

p(x, y, τ ) = nx,y−h(x,τ )+h0 (τ ). (41)

The same protocol was applied to the time-averaged density
distribution

p̄(x, y) = n̄x,y−h̄(x)+h0
, (42)

with h̄(x) = T
∫ β

0 h(x, τ )dτ . After statistical averaging both
profiles—instantaneous and time-averaged—depend on y co-
ordinate only due to system’s translation invariance in x and
τ , and both functions are centered at the equilibrium position
h0. In Fig. 2, we present these microscopic characteristics
computed for V/t = −2.2. As expected, the time-averaged
profile is broader by accounting for dynamic fluctuations. By
fitting the 〈p̄〉 profile to p̄(y) = [1 + tanh(2(y − h0)/d )]/2 we
find that for V/t = −2.2 the edge has a width of d = 3.15.
As we will see below, this value is already large enough to
guarantee that the Peierls potential for our system sizes is
negligible and all low-energy/long-wavelength properties are
governed by the TQF action.

Simulation data for 2K̃ (x, τ ) = 〈[h(x, τ ) − h(0, 0)]2〉 are
presented in Fig. 3 along with their fit using the equation

K̃ (x, τ ) = K∞ + L

2βχ
λ̄(r, t ), (43)
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FIG. 3. Edge fluctuations in space and imaginary time for model
(39) at V/t = −2.2 and βt = 32 for a system with Ly = 32 and Lx =
64. The data were fitted to the TQF function K̃ (x, τ ) (solid lines) and
the fit resulted in D = 1.02(2), χ = 0.699(3), and K∞ = 0.72(1).

see Eqs. (34)–(37). Out of three fitting parameters (K∞, χ ,
D), only D is controlling the shapes of all curves in Fig. 3,
while K∞ is responsible for their vertical shift and χ for the
overall scale. The quality of asymptotic analytical predictions
for domain wall shape fluctuations demonstrated by Fig. 3 is
remarkable: despite using only large x and τ points for the fit
[the selection criterion was x2 + (τ t )2 � 16] we observe near
perfect agreement between the theory and simulations all the
way to x = 1 at τ = 0 and τ t = 0.5 at x = 0. This fingerprint
type of agreement leaves no doubt that we are dealing with the
TQF system.

The ultimate confirmation comes from agreement between
the simulated superfluid stiffness, ns = 1.492(2), and its value
deduced from the ns = D2/χ = 1.49(4) relation. We are not
aware of any other case where equilibrium system shape fluc-
tuations would allow one to directly measure ns. Finally, in
Fig. 4 we show a fit-free comparison between the simulation
data and TQF predictions (keeping the same parameter set
for K∞, κ , and D) when going to a much lower temperature
βt = 128.

As the nearest-neighbor attraction is increased, the domain
wall becomes narrower and, ultimately, the Peierls potential
becomes relevant on length scales comparable or smaller than
the system size. This signals the expected crossover between
the TQF and LL long-wave fluctuations [5]. Figure 5 presents
simulation data for K̃ at V/t = −2.5 when the domain wall
width is about one lattice spacing, d ≈ 1.3. These graphs
cannot possibly be described by the TQF action because shape
fluctuations in space are decreasing with distance, contrary to
the TQF predictions (see Figs. 3 and 4), and quickly saturate
to a constant value. The domain wall of length Lx = 64 is still
displaying superfluid properties [with ns = 0.59(1)] but the
LL parameter is already close to the critical value of 2 for the
standard superfluid-insulator BKT transition at integer filling

FIG. 4. Edge fluctuations in space and imaginary time for model
(39) at V/t = −2.2 and βt = 128 for a system with Ly = 32 and
Lx = 64. The data were fitted to the TQF function K̃ (x, τ ) (solid
lines) using parameters deduced from βt = 32 simulations, see
Fig. 3.

factor. Any further increase of the attractive interaction results
in an insulating wall. Similar behavior has been observed in
model simulations of the superclimbing dislocation [10–12].

VII. TWO-COMPONENT BOSONS

TQF physics is also expected to occur in the 2D lattice
occupied by two species of repulsive bosons (labeled by in-
dex α = 1, 2) at the total integer filling and in the regime

FIG. 5. Edge fluctuations in space and imaginary time for model
(39) at V/t = −2.5 and βt = 32 for a system with Ly = 32 and Lx =
64. Dashed lines are guides to the eye.
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FIG. 6. Two-component bosons (red and blue circles) at unity
filling in the regime of phase separation. Counterpropagating motion
by exchanging particles’ places of different types along the boundary
results in the boundary motion in the transverse direction.

of the phase separation between the components [5]. If the
bulk of each spatially separated component is in the MI state,
there is a regime when the boundary between the two species
supports supercurrents with counterpropagating flows of the
components along the boundary, i.e., it is an edge in the
supercounterfluid state [7]. An illustration of the system under
discussion is shown in Fig. 6. The corresponding microscopic
Hamiltonian is given by

H = −t
∑

α=1,2;〈i, j〉
b†

α,ibα, j

+
∑

i

[
U

2

(
n2

1,i + n2
2,i

) + V n1,in2,i

]
, (44)

where bα,i are bosonic annihilation operators, and nα,i =
b†

α,ibα,i. (We consider the symmetric case when all parame-
ters for different types of bosons are the same.) The on-site
interaction constants U > 0,V > 0 are chosen in such a way
that U exceeds the critical value Uc for MI phase in the
single-component system, and V > U ensures phase sepa-
ration when the two components are mixed. (If V < U and
U > Uc, the miscible state is in the countersuperfluid phase
at low temperature [7].) The width of the supercounterfluid
boundary between the two insulators is controlled by the
proximity of V to U (at large enough V the countertransport
ceases to exist). To establish a boundary oriented along the x
direction, it suffices to stabilize the structure by introducing
potentials ±δμ1 = ∓δμ2 at the lattice edges in the y direction
for these two species. The hopping across periodic boundary
conditions (PBC) along the y direction is turned off to ensure
that the second boundary is sharp. If the other phase interface
is thick enough, the Peierls barrier restricting its transverse
motion can be neglected and we obtain an edge in the TQF
regime.

The instantaneous shape, h(x, τ ), of the edge at a given
imaginary time τ , is defined by summing up the number of
particles of the first species, n1,x,y(τ ), along y for all grid

FIG. 7. Time-averaged edge profiles of two species (red and
blue) for model (44) at U/t = 18, V/t = 19, δμ1 = δμ2 = t , and
βt = 16 for a system with Ly = 24 and Lx = 16. Solid lines are the
fit described in the text.

points x, τ , but only if they reside on the side predominantly
occupied by the second species; to be precise, α = 1 bosons
are in majority at Ly/2 + 1 to Ly, while α = 2 bosons are in
majority at 1 to Ly/2, see Fig. 6.

h(x, τ ) =
Ly/2∑
y=1

n1,x,y(τ ) −
Ly∑

Ly/2+1

n2,x,y(τ ). (45)

Since there is no difference between these two species, the
equilibrium edge position at half filling is located at h0 =
(Ly + 1)/2. The density profiles across the edge (and its
width) were obtained using time-averaged density distribu-
tions n̄α,x,y = T

∫ β

0 nα,x,y(τ )dτ . The rest of the numerical
protocol for obtaining profiles is identical to what was de-
scribed above for the hard-core case. In Fig. 7, we present this
microscopic characteristic computed for U/t = 18.0, V/t =
19.0 and δμ1 = δμ2 = t . By fitting both profiles to p̄(y) =
[1 ± tanh(2(y − h0)/d )]/2 we find that for this parameter set
the edge has a width of d = 4.05(7). We expect, and the
simulations confirm, that for this width the Peierls potential
for our system size and temperature is negligible.

In Fig. 8, we compare TQF predictions with simula-
tion data for model (44). Since insulating bulk states are
close to the quantum critical point, Monte Carlo simula-
tions with two worms are far more demanding than for the
single-components hard-core system, explaining why we limit
ourselves here with system size Ly = 24, Lx = 16. The valid-
ity of asymptotic analytical predictions for domain wall shape
fluctuations, as demonstrated by Fig. 8, is evident. Despite
only using large x and τ points for the fit [with the selection
criterion being x2 + (τ t )2 � 16], good agreement between
the theoretical framework and simulation outcomes extends
to smaller values of x and τ t ∼ 3; deviations at |x|, τ t < 2
are expected because the edge width is large. The TQF in-
terpretation gains final support from the agreement between
the simulated supercounterfluid stiffness, ns = 0.51(4), and
its value deduced from the relation ns = D2/χ = 0.48(3).
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FIG. 8. Edge fluctuations in space and imaginary time for
model (44) at U/t = 18, V/t = 19, δμ1 = δμ2 = t , and βt = 16 for
a system with Ly = 24 and Lx = 16.

VIII. INCOMPLETE HELIUM-4 LAYER ON GRAPHITE

In order to identify a real-material system in which some
of the above predictions could be tested experimentally, we
have carried out microscopic numerical simulations at low
temperature of an incomplete monolayer of 4He adsorbed on
a graphite substrate, and studied the behavior of the system
near the free edge, where a TQF may exist.

Thin films of 4He on graphite have been extensively
investigated experimentally, mainly because the strong attrac-
tiveness of this substrate, and its pronounced corrugation, lead
to the stabilization of crystalline phases of 4He not observed
in the bulk. (On weakly attractive substrates 4He does not
crystallize at low temperature; rather, wetting, i.e., continu-
ous growth of a superfluid film as a function of chemical
potential is observed [13,14].) It is known both experimen-
tally and theoretically [15,16] that the equilibrium phase of
a 4He monolayer on graphite is a commensurate crystal, reg-
istered with the underlying carbon substrate. Such a phase,
which corresponds to a coverage (effective 2D density) θ0 =
0.0636 Å−2, is commonly referred to as C1/3, as 4He atoms
occupy one of the three equivalent sublattices of preferred
adsorption sites. As the coverage is increased, a transition
to an incommensurate crystalline layer takes place, while for
coverages below θ0 coexistence of solid regions of coverage
θ0 and low-density vapor is predicted [17]. This is therefore
a well-suited physical system in which the physical picture
described above can be investigated experimentally.

We studied by computer simulation an incomplete com-
mensurate crystalline 4He monolayer on graphite in thermo-
dynamic equilibrium at low temperature, by making use of the
same microscopic model and computational methodology uti-
lized in Ref. [16], with the only difference that we carried out
canonical (i.e., constant density) simulations. Figure 9 shows
a representative snapshot (2D density obtained from particle
world lines) of the region near the free edge of an incomplete
4He monolayer adsorbed on graphite (the system comprises
altogether 144 4He atoms), at a temperature T = 0.25 K. The

FIG. 9. Representative density map (particle world lines) for an
incomplete 4He monolayer adsorbed on graphite, a temperature T =
0.25 K. Only the region in the vicinity of the free edge is shown. The
total number of 4He is 144. The crystalline phase has 2D density θ0

(see text).

position of the edge (bottom row of atoms), classically, is at
y = 0.

The most important observation is that, while the under-
lying crystalline monolayer (of 2D density θ0) remains stable
away from the free edge, atoms near the edge are significantly
delocalized and can climb on top of their nearest neighbor, i.e.,
the interface is roughened by quantum fluctuations. This leads
to a local enhancement of quantum-mechanical exchanges of
4He atoms, which are essentially nonexistent away from the
edge (or, in a complete monolayer).

This is quantitatively illustrated in Fig. 10, which displays
the computed probability for a 4He atom to be part of a
cycle of exchange, as a function of its position along the
direction perpendicular to the free edge. The crystalline layer
occupies the y > 0 region, but 4He atoms in the vicinity of
the edge are allowed to wander away from it (i.e., into the
y < 0 region), creating instantaneous vacancies, which in turn
can be filled by other atoms, ultimately leading to cycles of
exchanges. These exchanges are inhibited in the crystal by
the short-distance hard-core repulsion of the helium pairwise
interaction. We see that, at the temperature of this particular
simulation, exchanges extend up to approximately four layers
into the crystal.

All of this constitutes a strong indication that at sufficiently
low temperature a TQF may exist in this system, near the free

FIG. 10. Computed (unnormalized) probability for a 4He atom
to be part of a cycle of exchange, as a function of its position y in
the direction perpendicular to a free edge. In this case, the crystalline
sample occupies (classically) the y > 0 region.
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edge. In a simulation like the one described here, superfluidity
is connected to the winding around the periodic boundary con-
ditions (in the direction along the edge) of the many-particle
world lines [9]. Obviously, simulations carried out on systems
of sufficiently large size are required in order to establish
this conclusion robustly, unambiguously detecting any signal
coming from the region near the edge (as opposed to spurious
effects arising from the finite width of the sample, in the
direction perpendicular to the edge). Such a comprehensive
study is presently in progress. It is also worth investigating
the same system with reduced particle mass and/or substrate
potential to increase quantum delocalization effects, not to
mention that incomplete layers of 3He particles is yet another
potentially interesting setup.

IX. CONCLUSION

Motivated by recent theoretical progress, we performed
numerically exact simulations of characteristic microscopic
models featuring transverse quantum fluid (TQF) states in the
edges/interfaces. The key feature distinguishing TQF from an
incoherent transverse quantum fluid (iTQF) are the climbing
degrees of freedom canonically conjugate to the field of super-
fluid phase and responsible for the formation of superclimbing
normal modes described by the Hamiltonian (1). Our goal was
to check theoretical prediction that quantum fluctuations of
the superclimbing modes control long-wave correlations of
the edge/interface height. A delicate aspect of this prediction
is that it is supposed to work under the condition of mi-
croscopic quantum roughness, while, in accordance with the
theory itself, Peierls barrier eventually becomes relevant in the
asymptotic long-wave/low-temperature limit and transforms
TQF into a LL with exponentially large LL parameter. Yet
another subtle aspect is related to the predicted properties of
the equal-time correlator of the universal quantum fluctuations
of the edge/interface height—the most natural direct observ-
able in both experiment and simulations. The correlator is a

featureless constant in the zero-temperature limit, meaning
that one has to use a low but finite temperature as a resource
for resolving the universal quantum character of the long-
wave equal-time correlations of the height. The same is also
true for correlations of the superfluid phase field, since the two
fields are described by the same (up to exchanging parameters
χ and ns places) effective action.

In light of these subtleties, the first question our simula-
tions were supposed to clarify was about the existence of
a reasonably large region in the space of model parame-
ters, including the range of finite temperatures and system
sizes, where the desired universal physics would be clearly
observed. Our numeric results, demonstrating impressive
agreement with analytic predictions—even at unexpectedly
short distances on the order of few lattice spacings—clearly
demonstrate that such a region does exist.

Quantitatively, the observed fingerprint universal features
clearly distinguish the TQF state not only from the standard
LL but also from the cousin iTQF state. At the qualitative
level, we numerically demonstrated that quantum fluctuations
of the edge/interface height are controlled by—and thus allow
one to extract—the superfluid stiffness. This is the remarkable
manifestation of the crucial circumstance behind the super-
climbing modes: the fields of the height and superfluid phase
are canonically conjugate to each other.
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