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Geometric superfluid weight of composite bands in multiorbital superconductors
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The superfluid weight of an isolated flat band in multiorbital superconductors contains contributions from
the band’s quantum metric and a lattice geometric term that depends on the orbital positions in the lattice.
Since the superfluid weight is a measure of the superconductor’s energy fluctuation, it is independent of the
lattice geometry, leading to the minimal quantum metric of a band [Phys. Rev. B 106, 014518 (2022)]. Here,
a perturbation approach is developed to study the superfluid weight and its lattice geometric dependence for
composite bands. When all orbitals exhibit uniform pairing, the quantum geometric term contains each band’s
contribution and an interband contribution between every pair of bands in the composite. Based on a band
representation analysis, they provide a topological lower bound for the superfluid weight of an isolated composite
of flat bands. Using this perturbation approach, an analytical expression of the lattice geometric contribution is
obtained. It is expressed in terms of Bloch functions, providing a convenient formula to calculate the superfluid
weight for multiorbital superconductors.
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I. INTRODUCTION

The discovery of superconductivity in twisted two-
dimensional (2D) crystals [1–14] has brought focus to the
nature of superconductivity in flat or weakly dispersive bands
[15–32]. While the pairing mechanism remains unresolved,
the superconducting fluctuations in flat bands are exotic
enough to warrant a complete understanding [33–50]. A par-
ticular focus is on the question of superfluid weight (SW)
in flat-band superconductors, which serves as an essential
criterion to distinguish superconductors from metals [51,52].
The SW in conventional superconductors, irrespective of the
order-parameter symmetry, is inversely proportional to the
effective mass [53,54], ruling out flat-band superconductivity.
However, in multiorbital superconductors, band geometry res-
cues superconductivity by providing a finite SW, which is pro-
portional to the quantum metric of the band [16–25,27–29].
This quantum geometric SW dominates in flat-band super-
conductors like twisted 2D crystals [22,23,55]. Moreover,
geometric effects can result in transitions to exotic super-
conducting states [56–58], which necessitates the need for a
further understanding of the role of band geometry in multior-
bital superconductors.

Up to now, most studies of the geometric SW have been
restricted to a single isolated band [16,18–25,27–29]. This
is valid when the pairing potential is comparable with the
bandwidth of the active band near the Fermi level but much
smaller than the band gap of other remote bands. However,
many examples exist where multiple bands lie within or close
to the pairing interaction window, violating this single-band
projection. In these cases, the interband geometric effects
[17,26,59,60] can be significant. In addition, quantum geo-
metric quantities like the Berry curvature and quantum metric
are usually large near the local k-points where the remote
bands are energetically close to the active band. Therefore,

it is essential to study the geometric SW when a composite of
bands is within or near the interaction range.

In this paper, we employ a band projection formalism to
study the SW of composite bands. This projection to the com-
posite transforms the orbital basis to band basis but projects
to a few bands most relevant to the interaction energy scale
determined by the pairing Hamiltonian. We then develop a
perturbation approach to calculate the SW, which is similar
to the k · p method of calculating the effective-mass tensor of
bands in solids. This approach provides an alternative deriva-
tion of the general results in Refs. [16,19] and identifies each
term of the quantum geometric SW from transitions between
Bogoliubov bands. The quantum geometric SW of composite
bands contains each band’s contribution and an interband
contribution between every pair of bands in the composite.
This separation of SW emphasizes the role of interband quan-
tum metric, which originates from the derivative of interband
pairing functions. Although the interband geometric terms
are negative semidefinite and reduce the SW, the total SW is
always positive semidefinite, implying the local stability of the
zero center-of-mass momentum (CMM) state in the uniform
pairing channel.

Analyzing the reduction of superfluid weight due to the
interband pairing, we derive a topological lower bound for the
SW of an isolated composite of flat bands (ICFB), Eq. (19).
The necessity of such a lower bound arises from a very fun-
damental question, as in realistic materials the scenario of a
single isolated flat band is rare. Instead, many flat or weakly
dispersive bands can coexist in the interaction window. In the
simplest case, one can ask if there is a topological lower bound
for the SW when two flat bands of opposite Chern numbers
±1 are both within the pairing interaction window.

An analysis of this case from the perspective of band rep-
resentation (BR) turns out to be illuminating. If the two bands
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are constructed from the same set of Wannier orbital bases
of an elementary band representation (EBR) [61,62], their
topological lower bounds tend to cancel, | + 1 + (−1)| = 0.
In contrast, when they belong to different EBRs, their topo-
logical lower bounds will add, | + 1| + | − 1| = 2. The latter
is due to a suppression of the reduction effect by interband
pairings. This suggests that a larger SW can be achieved if
a multiorbital superconductor is doped to a set of bands that
contain multiple incomplete EBRs.

In the second half of this paper, we study the relation
between lattice geometry and SW for multiorbital supercon-
ductors. Recently, it was shown that an additional contribution
encoding the modification of order parameters with orbital
positions in a unit cell must be included in the calculation
of SW [30,31]. This lattice geometric term, combined with
the quantum geometric term, makes the total SW invariant
with the choice of orbital positions [31], therefore it is lattice-
geometry-independent [63]. Using the perturbation method,
we derive an analytical expression of the lattice geometric
term in terms of Bloch functions, Eq. (35). This expression
provides a convenient way of computing the lattice geometric
term numerically without solving gap equations.

The rest of this paper is organized as follows. In Sec. II,
we develop the projection procedure for composite bands,
and we present the quantum geometric SW calculated from
the perturbation method. Section III contains an analysis of
the interband effect on the geometric SW, and it establishes a
topological lower bound for an ICFB. Section IV studies the
derivative of the gap equation with respect to CMM using the
perturbation method, thereby obtaining the second derivative
of the grand potential with order parameters and analyzing its
properties. In Sec. V, we show the geometry independence of
the SW, and we provide a convenient formula for computing
the lattice geometric term. Finally, we conclude our findings
in Sec. VI.

II. SUPERFLUID WEIGHT OF COMPOSITE BANDS

We start from the tight-binding lattice Hamiltonian with
intraorbital attractive interactions (Uα > 0):

Ĥ =
∑

i j,αβ,σ

tσ
i j,αβc†

iασ c jβσ −
∑
i,α

Uα n̂iα↑n̂iα↓, (1)

where i, j label the unit cell, α, β = 1, . . . , s label the orbitals
in a unit cell, and σ =↑,↓ labels the spin. The tight-binding
matrix elements tσ

i j,αβ encode the hopping pattern and am-
plitudes from orbital ( j, β ) to (i, α). This hopping graph
determines the band dispersion and topology. The second
term is the on-site density-density interaction, with n̂iασ =
c†

iασ ciασ the number operator. We assume time-reversal sym-
metry (TRS) with zero spin-orbit coupling, thereby restricting
to singlet pairing.

For attractive pairing interactions, we assume a BCS-type
ground state and perform the usual mean-field decoupling of
Eq. (1) to arrive at the mean-field Hamiltonian ĤMF. Through-
out this paper, we focus on an orbital-independent pairing
matrix �̂ = �Îs, referred to as the uniform pairing condi-
tion (UPC) in the literature [16,17,19]. Here Îs is the s-dim
identity matrix in orbital space. This choice of pairing channel
can always be made for any intraorbital interactions obeying

TRS by tuning parameters Uα . It corresponds to a particular
solution channel to the BCS gap equation, which always leads
to a positive-semidefinite SW tensor.

The superconducting fluctuations to finite CMM can be
described within the same framework by a reduced mean-field
Hamiltonian (see Appendix A),

ĤMF(q) =
∑

k

C†
k,qHBdG,k(q)Ck,q + N

s∑
α=1

|�q,α|2
Uα

+
∑

k

Tr{h↓
−k+q − μq}, (2)

where Ck,q = (ck+q,α↑, c†
−k+q,α↓)T denotes the Nambu spinor,

with q half of the CMM, N denotes the number of unit cells,
and

HBdG,k(q) =
(

h↑
k+q − μq �̂q

�̂†
q −(h↓T

−k+q − μq
)) (3)

is the Bogoliubov–de Gennes (BdG) matrix. TRS imposes
that h↓T

−k = h↑
k . The chemical potential μq and pairing matrix

�̂q are attained self-consistently. The pairing matrix �̂q =
diag{�q,1, . . . ,�q,s} in general has its entries complex and
q-dependent.

To compute the SW, we adopt the grand potential method
[16]. SW is the second total derivative of the superconducting
free energy F (q) with respect to q,

Ds,μν = 1

A

d2F

dqμdqν

∣∣∣∣
q=0

. (4)

For simplicity, we set the area A = 1. The free energy F (q) =
�(q, μq, �̂q, �̂

∗
q) + μqNe, where the grand potential

�(q, μq, �̂q, �̂
∗
q) = − 1

β
ln Tr{e−βĤMF(q)} (5)

is a function of q, μq, �̂q, �̂
∗
q explicitly. Ne is the fixed aver-

age number of electrons. In the presence of TRS, Ds,μν can be
related to partial derivatives of the grand potential [16,30,31]:

Ds,μν =
[

∂2�

∂qμ∂qν

− d�I
q,α

dqμ

∂2�

∂�I
q,α∂�I

q,β

d�I
q,β

dqν

]∣∣∣∣
q=0

, (6)

where �I
q,α is the imaginary part of �q,α , and we have em-

ployed the Einstein summation rule for α, β = 1, . . . , s. U (1)
symmetry allows one to fix �q,1 to be real and positive for all
q, so the sum over α, β above can be reduced as from 2 to s
[31]. However, we assume an arbitrary global phase to keep
the discussion general.

The first term of Eq. (6) (D(1)
s ) contains two contributions

to the SW of multiorbital superconductors—the conventional
contribution, which is inversely proportional to the effective
mass, and the quantum geometric contribution. This quantum
geometric SW is proportional to an integral of the quantum
metric [16], which is lattice-geometry-dependent [63]. How-
ever, as expected from general considerations, this geometry
dependence is canceled by the second term of Eq. (6) (the
lattice geometric term, D(2)

s ), which encodes the order param-
eter’s variation with orbital positions [30–32].

We consider the scenario in which n � s bands are energet-
ically within or close to the interaction window [64] around
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FIG. 1. Interpretation of the band projection, composite, and geometric terms of Eq. (9) from Bogoliubov band transitions (see Appendix D
for details). (a) Two electronic bands (1,2) energetically close to the interaction scale are projected from a four-orbital model, defining the
composite. The blue rectangle indicates the interaction window of 2� around the Fermi level. (b), (c) Zoom-in picture of the composite.
(b) Electronic bands mix with hole bands to form four Bogoliubov bands (1, ± and 2, ±). At q = 0, these bands are particle-hole symmetric
(PHS); at q �= 0, the dispersion is deformed and particle-hole symmetry is broken. SW measures the second derivative of energy with respect
to q. (c) For small q, the deformation can be treated with perturbation, which enables transitions between Bogoliubov bands. Here, only the
transitions from band 1, − are indicated by arrows. The O(q2) transition amplitude to band 1, − itself, combined with the O(q) amplitude
to band 1, +, gives the intraband geometric SW ∝ g1

μν ; the O(q) transition amplitudes to band 2, ± give the interband terms ∝ p(±)
12 g12

μν ,
respectively.

the Fermi level [the case of n = 2 is shown in Fig. 1(a)]. We refer to the group of n flat or dispersive bands, whether connected
or disconnected from each other, as a “composite,” and denote it by C. We perform a projection of the full Hamiltonian Eq. (2)
to the composite, a generalization of the single-band projection in an earlier paper [58]. The projected mean-field Hamiltonian
at finite q, involving the kinetic energy of the n bands and pairing interactions between them, reads

ĤC (q) =
∑

k

∑
l∈C

[ξ↑
l,k+qc†

l,k+q↑cl,k+q↑ − ξ
↓
l,−k+qcl,−k+q↓c†

l,−k+q↓] +
∑

k

∑
l∈C

ξ
↓
l,−k+q

+
∑

k

∑
l,l ′∈C

[�ll ′,k(q)c†
l,k+q↑c†

l ′,−k+q↓ + H.c.] + N
s∑

α=1

|�q,α|2
Uα

, (7)

where ξ
↑
l,k+q = ε

↑
l,k+q − μq, ξ

↓
l,−k+q = ε

↓
l,−k+q − μq are the

band energies measured from the fluctuated chemical poten-
tial. By TRS we have defined ξlk ≡ ξ

↑
lk = ξ

↓
l,−k. Projection to

the composite naturally defines the interband gap functions

�ll ′,k(q) ≡ 〈ul,k+q|�̂q|ul ′,k−q〉, (8)

where l, l ′ are band indices restricted in the composite, and
ulk is the periodic part of the Bloch function of the lth spin-↑
band. For the case l = l ′, �ll ′,k(q) is just the intraband gap
function �l,k(q) [58]. Under the UPC, the interband gap
functions (l �= l ′) vanish at q = 0 by the orthogonality of
Bloch functions but are nonvanishing at q �= 0. After pro-
jection to the composite, the projected order parameter has
equal pairing on the orbitals that make up the composite. In
addition, our projection formalism also applies to a general
case of intraorbital pairing when the pairing matrix takes the

form �̂ = diag{�1, . . . ,�1,�2, . . . ,�2, . . . } (i.e., uniform
among subsets of orbitals). By definition of the gap functions,
Eq. (8), the pairing between band l and l ′ in the composite
can be viewed as uniform if they are spanned by orbitals in a
single subset. Therefore, we only require equal pairing on the
orbitals of the composite bands.

We developed a stationary state perturbation method to
diagonalize the quadratic Hamiltonian of composite bands,
Eq. (7). The perturbation method has been commonly used
to simplify Kubo formula results [65] but is mainly restricted
to the single-band case without considering band geometry.
Here, it not only reproduces the first term of Eq. (6), D(1)

s ,
which agrees with the general results in Refs. [16,19], but
gives each contribution the meaning of transitions between
Bogoliubov bands.

The first term of Eq. (6) is (see Appendix D for details)

D(1)
s,μν =

∑
k

∑
l∈C

�2

E3
lk

(
tanh

βElk

2
− βElk

2
sech2 βElk

2

)
∂μξlk∂νξlk

+
∑

k

∑
l∈C

tanh
βElk

2

{
4�2

Elk
gl

μν (k) +
∑

l ′∈C,l ′ �=l

8�2

[
p(+)

ll ′ (k)

Elk + El ′k
+ p(−)

ll ′ (k)

Elk − El ′k

]
gll ′

μν (k)

}
, (9)
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where � is the uniform pairing order parameter at finite
temperature T = 1/β, and Elk =

√
ξ 2

lk + �2 is the q = 0
quasiparticle energy. The first line of Eq. (9) corresponds to
the conventional contribution to SW, and the two separate
pieces in the second line correspond to the intra- and interband
geometric contributions. The different transition processes
represented by these geometric contributions can be inter-
preted from stationary state perturbations and are illustrated
in Fig. 1 (see Appendix D for details). We have introduced
functions

p(±)
ll ′ (k) ≡ 1

2

(
1 ± ξlkξl ′k + �2

ElkEl ′k

)
, l �= l ′, (10)

which can be termed as the q = 0 interband coherence factors
[66], in contrast to the intraband coherence factors (l = l ′)
in conventional BCS theory [53,65]. gl

μν = ReRl
μν , gll ′

μν =
ReRll ′

μν are the real parts of the intra- and interband component
of the quantum geometric tensor Rl

μν, Rll ′
μν , respectively, with

Rl
μν (k) = 〈∂μulk|(1 − |ulk〉〈ulk|)|∂νulk〉,

Rll ′
μν (k) = −〈∂μulk|ul ′k〉〈ul ′k|∂νulk〉, l �= l ′. (11)

Together they constitute the quantum geometric tensor of the
composite bands,

RC
μν (k) =

∑
l∈C

Rl
μν (k) +

∑
l,l ′∈C,l �=l ′

Rll ′
μν (k), (12)

where RC
μν (k) = Tr{P̂C (k)∂μP̂C (k)∂ν P̂C (k)}, and P̂C (k) =∑

l∈C |ulk〉〈ulk| is the projection operator.
Tensor gll ′

μν (k) measures small distances between Bloch
functions of different bands in the momentum space,

|〈ulk|ul ′,k+q〉|2 ≈ −qμqνgll ′
μν (k). (13)

With our convention Eq. (11), gll ′
μν (k) is negative semidefi-

nite, indicating that the interband geometric contributions in
Eq. (9) are negative and reduce the total SW. However, in
Appendix E we show that the total SW, which is the sum
of the conventional, intra-, and interband geometric terms, is
always positive semidefinite. This implies that the q = 0 BCS
state locally minimizes the free energy at any temperature
whenever the UPC is valid for the composite bands.

In addition to the first term D(1)
s , the perturbation method

also gives an analytical expression of the Hessian matrix
∂2�/∂�I

q,α∂�I
q,β |q=0, thereby putting the lattice geometric

term D(2)
s into a computationally convenient form. We address

this in Secs. IV and V.

III. TOPOLOGICAL LOWER BOUND FOR AN ISOLATED
COMPOSITE OF FLAT BANDS

The interband geometric terms in Eq. (9) are negative
semidefinite and reduce the SW. In this section, we use this
reduction effect along with the relative topology of the bands
in the composite to establish a topological lower bound for the
SW of composite bands. For a single isolated flat band, the
absolute value of the Chern number provides a weak lower
bound for the geometric SW [16]. These bounds stem from

the relation

Trgm(k) � |Bm(k)| (14)

for an isolated band m, with Bm the Berry curvature of the
band, and the fact that the gauge-invariant part of the Wan-
nier localization functional (WLF) is related to the trace of
the quantum metric. Additional lower bounds due to Wilson
loop winding numbers or real space invariants in other topo-
logical classifications have also been established [18,23,67].
One might ask for composite bands whether there is a lower
bound for the SW, and what are the possible generalizations
of Eq. (14)?

To answer these questions, we restrict our discussion to
the zero-temperature limit in the following. At T = 0, the
problem is simplified and Eq. (9) reads

D(1)
s,μν =

∑
k

∑
l∈C

[
�2

E3
lk

∂μξlk∂νξlk + 4�2

Elk
gl

μν (k)

]

+
∑

k

∑
l,l ′∈C,l ′>l

16�2

Elk + El ′k
p(+)

ll ′ (k)gll ′
μν (k). (15)

Here, coherence factors p(−)
ll ′ are canceled because they

describe Bogoliubov transitions between two quasiparticle
bands or two quasihole bands [Fig. 1(c)], which are sup-
pressed at T = 0, a “Pauli blocking” effect. Following a
similar procedure described in Appendix E, we break the
intraband quantum metric gl into interband ones, and the
geometric part of Eq. (15) splits into two terms,

D(1)geo
s,μν = −

∑
k

∑
l∈C,l ′ /∈C

4�2

Elk
gll ′

μν (k)

−
∑

k

∑
l,l ′∈C,l ′>l

4�2(ξlk − ξl ′k)2

ElkEl ′k(Elk + El ′k)
gll ′

μν (k). (16)

In this expression, the first term contains the interband quan-
tum metric between bands inside and outside the composite,
while the second term contains these between bands inside the
composite only.

To establish a topological lower bound, we consider a
special class of composite bands, where each band in the
composite is within the interaction window, and these bands
are energetically close to each other—we call this an “isolated
composite of flat bands” (ICFB). Hereafter, our definition
of flat bands encompasses weakly dispersive bands. This re-
quires that the bandwidth of each band, δξl =max{|ξlk−ξlk′ |},
and the band gaps between them, δξll ′ = max{|ξlk − ξl ′k′ |}
(l, l ′ ∈ C), are all much smaller than the uniform order param-
eter �. This notion of ICFB gives the separation in Eq. (16) a
well-defined physical meaning.

In Eq. (16), the first term depends on the overall topology
of the composite since it contains the quantum metric between
bands inside and outside the composite, whereas the second
term depends on the relative topology between bands inside
the composite. For an ICFB, as long as the first term is
nonzero, it is of order � and dominates over the second term,
which is of order δξ 2/�.

Furthermore, we assume that the ICFB contains an incom-
plete set of n disconnected bands (n < s), each with Chern

214518-4



GEOMETRIC SUPERFLUID WEIGHT OF COMPOSITE … PHYSICAL REVIEW B 109, 214518 (2024)

number Cl (1 � l � n). When a few bands are connected,
the Chern numbers will be generalized to the integrals of
non-Abelian Berry curvature over the Brillouin zone [68]. The
total Chern number of an ICFB, C =∑n

l=1 Cl , is always an
integer.

With these clarifications, it is important to note that
the inequality Eq. (14) holds for composite bands also
[16,23,60,69,70], which reads

TrgC (k) � |BC (k)|, (17)

where gC and BC are the quantum metric and Berry curvature
of the composite. Following the definition Eq. (12), we write
the quantum metric of composite bands as

gCμν =
∑
l∈C

gl
μν +

∑
l,l ′∈C,l ′ �=l

gll ′
μν = −

∑
l∈C,l ′ /∈C

gll ′
μν. (18)

This is proportional to the leading term of Eq. (16), since
�2/Elk is approximately a constant for an ICFB. As a re-
sult, the total SW is lowered bounded by |C| (besides a
proportional constant), with C the total Chern number of
the composite. Exceptional cases may exist, e.g., when the
composite is complete (n = s), such that C = 0 and the first
term of Eq. (16) vanishes. In these cases, the SW will rely on
the second term of Eq. (16) and the conventional term, which
depends on the dispersion details; then, a simple topological
lower bound cannot be obtained. We will see examples below
when the composite has C = 0 but still provides a nonzero
topological bound.

The result Ds � |C| can be compared to the single isolated
band case. If we add the lower bound |Cl | of each band, it
would give Ds �

∑n
l=1 |Cl | for a composite. Therefore, we

deduce that by the reduction effect of the interband geometric
SW, the lower bound shrinks from the sum of absolute values
to the absolute value of the sum, |C| = |∑n

l=1 Cl |. This poses
a contrast between composites with {Cl} of uniform signs and
different signs, e.g., +,+, . . . and +,−, . . . , which can be
further explained by analyzing the WLF [16,69].

The absolute value of the Chern number of the composite
bands, |C|, is a lower bound for the WLF of Wannier orbitals
of the composite, providing a measure of Wannier obstruction.
If the composite is Wannier representable, then the bands
inside and outside the composite can be constructed from dis-
joint sets of Wannier orbitals. In the language of “topological
quantum chemistry” [61,62,71,72], such a composite is said to
form a BR. In this case, the interband terms of Eq. (15) cancel
the intraband terms altogether, giving a zero lower bound for
the leading term of Eq. (16). On the contrary, in the presence
of Wannier obstruction, the composite has to form a BR with
some bands outside the composite. Then the interband terms
of Eq. (15) partially cancel the intraband terms, leaving a finite
lower bound for the leading term of Eq. (16).

However, the lower bound by |C| in some cases is too
weak, and a stronger lower bound can be derived. Suppose
the s bands formed by the s atomic orbitals are divided into
a few EBRs [61,62], which are constructed from disjoint sets
of Wannier basis. For each EBR, it might be that only part of
the bands belong to the composite. By making an induction
from BR to EBR, one can immediately deduce that the in-
terband geometric terms of Eq. (15) can only reduce the SW

FIG. 2. An isolated composite of two weakly dispersive bands
near the Fermi level (only spin-up bands are shown), with the blue
rectangle indicating the interaction window of 2�. (a) The two bands
in the composite have Chern number C1 = C2 = 1. The SW is lower
bounded by |C| = 2. (b) The two bands have C1 = 1 and C2 = −1,
and the SW is lower bounded by |C| = 0. (c) Same as (b), but the
two bands belong to different EBRs (shown in red and green), thus
the lower bound can be improved to |C1| + |C2| = 2.

substantially within an EBR, and not between two EBRs [73].
As a result, the topological lower bound can be improved, with
|C| replaced by∣∣∣∣ n1∑

l1=1

C(1)
l1

∣∣∣∣+ · · · +
∣∣∣∣ nJ∑

lJ=1

C(J )
lJ

∣∣∣∣ = J∑
j=1

∣∣∣∣ n j∑
l j=1

C( j)
l j

∣∣∣∣, (19)

where J is the number of EBRs formed by the s atomic
orbitals, nj is the number of bands in the composite that is
from the jth EBR (with the sum

∑J
j=1 n j = n), and C( j)

l j
is the

Chern number of the l j th band of the jth EBR. In the extreme
case when each band of the composite belongs to a different
EBR, there is no substantial reduction of SW by the interband
terms, so the improved lower bound is

∑n
l=1 |Cl |. This simple

idea of reducing the topological lower bound within individual
EBRs is illustrated in Fig. 2 using the example of a two-band
composite. Similar arguments can be generalized to systems
with nonzero Chern numbers to attain stronger bounds based
on real-space invariants [67].

IV. SUPERFLUID WEIGHT AND LATTICE GEOMETRY

We now study the relationship between SW and lattice
geometry using the perturbation method. Here “lattice ge-
ometry” refers to the position of atomic orbitals in a unit
cell of non-Bravais lattices. It was shown in Ref. [31] that
when the atomic orbitals occupy some optimal positions, the
second term of SW D(2)

s vanishes and the geometric part of
D(1)

s becomes the minimal quantum metric (MQM). Typically,
the optimal positions are high-symmetry points in the real
space lattice.

However, if the symmetry of the tight-binding Hamilto-
nian is lower than that of the underlying Bravais lattice, the
optimal positions can shift along high-symmetry lines [31].
Since Bravais lattice symmetries no longer protect them, the
optimal positions can be sensitive to temperature, interaction,
and the tight-binding graph tσ

i j,αβ . This observation suggests
that instead of seeking the optimal positions of MQM, it
would be more straightforward to work with some general po-
sitions and find an explicit expression of the second term D(2)

s .
Notice in Eq. (6) one has to either numerically compute the
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derivative of order parameters dμ�I
α (a short-hand notation

of d�I
q,α/dqμ|q=0) or vary the first term D(1)

s with respect to
orbital positions to achieve MQM, both of which may require
a large number of calculations.

In this section, we derive an explicit expression of
the Hessian matrix ∂2�/∂�I

α∂�I
β (similarly, it denotes

∂2�/∂�I
q,α∂�I

q,β |q=0) in Eq. (6) for general composite bands.
It also contains an analysis of its rank and semidefiniteness,
which allows us to write D(2)

s in a convenient form in Sec. V.
Before we proceed, it is essential to clarify and distinguish

between geometry-independent and -dependent quantities
[63]. Electronic band energies and topological properties,
such as Chern numbers, are determined by the hopping
integrals tσ

i j,αβ , therefore they are geometry-independent.
Geometry-dependent quantities, like the quantum metric and
Berry curvature, instead depend on the orbital positions. Fol-
lowing Ref. [63], we adopt the convention that the atomic
orbitals are pointlike, therefore the periodic part of the Bloch
function, ulk, depends on the orbital positions through a com-
ponentwise phase, ulkα = e−ik·xα u0

lkα . Here u0
lkα are the Bloch

components of gauge choice at some arbitrary reference posi-
tions in the unit cell, and xα are the orbital positions measured
from these reference points. This explains the origin of the
geometric dependence of D(1)

s , Eq. (9).
According to the spirit of Ref. [31], the MQM can be

defined in two ways, which are precisely given below:
Definition 1. MQM corresponds to the orbital positions that

make the second term of Eq. (6), D(2)
s , vanish.

Definition 2. MQM corresponds to the orbital positions that
extremize (in fact, minimize) some geometric functional of
the quantum metric tensor, which in general takes the form

I =
∑

k

⎡⎣∑
l∈C

fl (k)Trgl (k) +
∑

l,l ′∈C,l �=l ′
fll ′ (k)Trgll ′ (k)

⎤⎦.

(20)

I is a function of orbital positions x1, . . . , xs because the
quantum metrics gl

μν (k), gll ′
μν (k) depend on them explic-

itly. fl (k) and fll ′ (k) are a set of intra- and interband
geometry-independent functions. For finite-temperature SW
calculations, they are

fl (k) = 1

Elk
tanh

βElk

2
, (21)

fll ′ (k) =
[

2p(+)
ll ′ (k)

Elk + El ′k
+ 2p(−)

ll ′ (k)

Elk − El ′k

]
tanh

βElk

2
, (22)

such that the functional I is proportional to the trace of the ge-
ometric part of D(1)

s . Notice that the quasiparticle energy and
coherence factors depend on the band energy only, therefore
they are geometry-independent.

The equivalence of the two definitions above relies on an
assumption made in Ref. [31] about the rank and semidefi-
niteness of matrix ∂2�/∂�I

α∂�I
β (see Appendix H). Below,

we prove this assumption by computing the matrix explicitly.
It was argued in Ref. [31] that the order parameter mini-

mizes the superconducting free energy. Therefore, the matrix
∂2�/∂�I

α∂�I
β has to be positive semidefinite. However, this

statement may not be true for a general pairing matrix �̂ as a
solution to the gap equation of multiorbital superconductors.

FIG. 3. Schematic plot of the grand potential in the space of com-
ponents of �̂, at q = 0. Multiorbital superconductors may have mul-
tiple solution channels, A, B,C, etc., to some fixed interaction param-
eters. A solution channel �̂ satisfies the gap equation ∂�/∂�̂=0,
so it extremizes �, but the minimization is not guaranteed. A ground-
state channel (point A) ensures the global minimum, but there may
also exist “unstable” solutions (e.g., point B). This instability is
irrelevant to convergence for numerically solving the gap equation.

As a solution channel, it guarantees that the first derivative of
grand potential � with respect to �̂ is zero (see Appendix B),
but in general it cannot imply information about the second
derivative. The second derivative instead is related to the “sta-
bility” of the channel.

A multiorbital superconductor can have multiple channels
that are solutions to some fixed interaction parameters, an ex-
ample of which can be seen in the supplementary material of
Ref. [58]. If some channel corresponds to the superconducting
ground state, it should be the global minimum of free energy.
Therefore, its Hessian matrix needs to be positive semidefi-
nite (Fig. 3). However, for solutions that are not the ground
state, the Hessian matrix may not be positive semidefinite.
For instance, in Appendix J we show that for two-orbital
models when the order parameter matrix takes the form �̂ =
diag{�1,�2} with �1,�2 both real, ∂2�/∂�I

α∂�I
β is positive

semidefinite if and only if sgn(�1�2) = 1. For this reason,
obtaining an explicit expression of this matrix for the uniform
pairing channel is necessary. To achieve this goal, we study
the gap equation for composite bands at finite q and extract
the Hessian matrix from its derivative with respect to q.

Let us define the finite-q mean-field order parameter as

�q,α = −Uα〈ciα↓ciα↑〉qe−2iq·(Ri+xα ), (23)

where 〈〉q is the average over the fluctuated pairing state �q,
and the phase factor e−2iq·(Ri+xα ) gets rid of the superficial q-
dependence from �q,α . Taking the total derivative of Eq. (23)
with respect to qμ at q = 0, it yields a matrix equation [30,31]

Mαβdμ�β = Vα,μ, (24)

where dμ�α = idμ�I
α by TRS. After choosing a proportional

constant, it is easy to show that (see Appendix C)

Mαβ = 1

2

∂2�

∂�I
q,α∂�I

q,β

∣∣∣∣
q=0

, (25)

Vα,μ = − ∂2�

∂�∗
q,α∂qμ

∣∣∣∣
q=0

, (26)

so the problem of computing matrix ∂2�/∂�I
α∂�I

β is reduced
to determining the gap equation (23).
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For example, the zero-temperature gap equation for a sin-
gle isolated band m can be expressed as [58]

�q,α = Uα

N

∑
k

u∗
m,k−q,αum,k+q,α

× �m,k(q)√
(ξm,k+q + ξm,k−q)2 + 4|�m,k(q)|2 , (27)

from which the derivative can be easily calculated. Here
�m,k(q) = 〈um,k+q|�̂q|um,k−q〉 is the projected intraband gap
function. Unfortunately, for general composite bands, a closed
form like Eq. (27) does not exist since one needs to diago-
nalize the 2n-dim mean-field Hamiltonian Eq. (7) to get the

pairing state �q. However, the perturbation method allows
us to expand �q and the gap equation in powers of q. Thus,
Eq. (24) as its first derivative can be exactly calculated.

To proceed, we transform the gap equation (23) from or-
bital to band basis and project to the composite, reading

�q,α = −Uα

N

∑
k

∑
l,l ′∈C

u∗
l ′,k−q,αul,k+q,α〈cl ′,−k+q↓cl,k+q↑〉q.

(28)

Then we use the standard perturbation method to calculate
the pairing amplitude 〈cl ′,−k+q↓cl,k+q↑〉q (see Appendix F).
Taking the total derivative of Eq. (28) with qμ, we finally
obtain Eq. (24) with

Mαβ =
∑

k

∑
l∈C

|ulkα|2δαβ

tanh(βElk/2)

2Elk
− 1

2

∑
k

∑
l,l ′∈C

u∗
l ′kαulkαu∗

lkβul ′kβ

×
[

p(+)
ll ′ (k)

Elk + El ′k

(
tanh

βElk

2
+ tanh

βEl ′k

2

)
+ p(−)

ll ′ (k)

Elk − El ′k

(
tanh

βElk

2
− tanh

βEl ′k

2

)]
(29)

and

Vα,μ =
∑

k

∑
l∈C

(u∗
lkα∂μulkα − ∂μu∗

lkαulkα )
�

2Elk
tanh

βElk

2
−
∑

k

∑
l,l ′∈C

u∗
l ′kαulkα〈ulk|∂μul ′k〉

×
[

�p(+)
ll ′ (k)

Elk + El ′k

(
tanh

βElk

2
+ tanh

βEl ′k

2

)
+ �p(−)

ll ′ (k)

Elk − El ′k

(
tanh

βElk

2
− tanh

βEl ′k

2

)]
. (30)

Although matrix Mαβ and vector Vα,μ take a complicated
form, they have some simple properties we shall discuss now.
We assume that the composite C contains all the s orbitals of
the lattice model; therefore, Mαβ is an s-dim square matrix.
This assumption may not hold for some exceptional cases,
e.g., the atomic limit of the single-band projection of two-
orbital models (Appendix I) and the isolated flat-band limit
of the Lieb lattice, which will be discussed in Sec. V.

From Eqs. (29) and (30) above, one first notices that Mαβ

is a real symmetric matrix, while Vα,μ is a purely imaginary
vector. Moreover, Mαβ contains factors |ulkα|2, u∗

l ′kαulkα , and
quasiparticle energy Elk, which are all geometry-independent
quantities, therefore it is geometry-independent, whereas Vα,μ

is geometry-dependent. These properties are all governed by
Eq. (24).

One can also notice that Mαβ of Eq. (29) is not invert-
ible, since

∑s
β=1 Mαβ = 0 (similarly,

∑s
α=1 Vα,μ = 0), which

implies that it has an eigenvector v0 = (1, 1, . . . , 1)T with
eigenvalue zero. Physically, this is associated with the U (1)
symmetry of the order parameter. The existence of such a ker-
nel vector implies that the rank of Mαβ cannot exceed s − 1.
In general, one can prove that under the UPC if the composite
bands contain all the s orbitals, then Rank(M ) = s − 1. We
prove this for two special cases in Appendix G.

Nevertheless, one can imagine a process in which some
orbitals are removed from the composite, which may arise
from topological phase transitions or changes in the inter-
action scale. Whenever an rth orbital is removed (1�r�s),
er = (. . . , 0, 1, 0, . . . )T (with the rth component nonzero
only) becomes an additional kernel vector of Mαβ , lowering

Rank(M ) by 1. The reason is that the physics will no longer
depend on its position as the rth orbital becomes irrelevant to
the composite.

In addition, one can show that Mαβ is positive semidefinite,
which means it has one zero eigenvalue and s − 1 positive
eigenvalues (see Appendix G). This vital property, as a con-
sequence of UPC, reveals that the uniform pairing channel
belongs to these “stable” solutions to the gap equation like
points A and C in Fig. 3.

V. GEOMETRY INDEPENDENCE AND THE LATTICE
GEOMETRIC TERM IN TERMS OF BLOCH FUNCTIONS

With the expression of matrix Mαβ and vector Vα,μ, it is
not difficult to show that each component of the SW tensor is
geometry-independent. For this, we write the second term of
Eq. (6) as

D(2)
s,μν = 2Mαβdμ�αdν�β, (31)

where dμ�α = idμ�I
α . Under a geometric transformation that

translates orbital positions from x0
α to xα = x0

α + δxα [74], it
is changed by

δD(2)
s,μν =2Mαβ

(
δdμ�αdν�

0
β +dμ�0

αδdν�β +δdμ�αδdν�β

)
,

(32)

where dμ�0
α is dμ�α evaluated at the initial positions

and δdμ�0
α is the change due to such a transformation.

Equation (32) can be further simplified using Eq. (H8) in
Appendix H. Similarly, the change of the quantum geometric

214518-7



GUODONG JIANG AND YAFIS BARLAS PHYSICAL REVIEW B 109, 214518 (2024)

FIG. 4. SW calculation of the Lieb lattice model. (a) The gray
square indicates the unit cell of the Lieb lattice and the three orbitals
A, B,C. Top: the tight-binding hoppings can be tuned to (1 ± δ)t to
open a gap 2

√
2tδ between the flat and dispersive bands. Middle:

lattice geometry assuming the three orbitals sitting on the same site.
Bottom: assuming the orbitals sitting on the regular sites of the
Lieb lattice. (b),(c) SW computed using Eqs. (9) and (35) at T = 0,
t/� = 10, μ = 0. Part (b) assumes the geometry of (a), middle while
(c) assumes the geometry of (a), bottom.

term of SW, δD(1)
s , can be evaluated by inserting Eq. (H2)

into Eq. (9). Then, one can immediately check the geometry
independence of the total SW,

δDs = δD(1)
s + δD(2)

s = 0, (33)

therefore we have finished establishing the relation between
SW and lattice geometry.

As mentioned at the beginning of Sec. IV, a shortcoming of
Eq. (6) to compute the SW is that one needs to either solve the
gap equation at a few q points to get the derivative dμ�α , or
vary the orbital positions in the whole geometric space to find
the MQM positions. However, since we have treated the gap
equation perturbatively to get Eqs. (29) and (30), the total SW
can be computed using simple integrals of Bloch functions
and their derivatives without following these procedures.

In fact, as pointed out in Refs. [30,31], once we are
convinced that Rank(M ) = s − 1, it would be convenient to
partially project [75] the matrix Mαβ , vector Vα,μ, and dμ�α

into an (s − 1)-dim subspace, in which the matrix M becomes
invertible, so one can write

˜dμ�α = (M̃−1)αβṼβ,μ, (34)

where a tilde denotes the projected quantities. This finally
yields a simple expression for the lattice geometric term:

D(2)
s,μν = 2(M̃−1)αβṼα,μṼβ,ν . (35)

In this expression, the projected M̃ and Ṽ are not unique but
can be taken as eliminating the first row and column from
matrix M and eliminating the first component from vector V
in Eqs. (29) and (30). This corresponds to restricting to the
geometric space spanned by the s − 1 orbitals.

To show the utility of Eq. (35), we take the Lieb lattice
model [17,31] as an example. A unit cell of the Lieb lattice
is shown at the top of Fig. 4(a), where parameters t and δ

completely determine the tight-binding matrix elements. Re-
member that the hopping graph does not specify the positions

of orbital A, B, and C, which leaves the degree of freedom for
writing the Bloch Hamiltonian hσ

k . Since the hopping integrals
are usually defined from a given lattice structure, in this case
one can still imagine the underlying Bravais lattice as a square
lattice with C4v symmetry.

When δ �= 0, the hopping graph breaks C4 symmetry, mak-
ing the tight-binding model acquire a lower symmetry than the
imagined square lattice. Then it was found that the optimal
positions of MQM of atoms A and C no longer sit at the
midpoint of the side but shift towards the B atom [31]. As
a contrast, in our calculations using Eqs. (9) and (35), we can
place the orbitals at any general positions in the unit cell. In
Fig. 4(b), we imagine the three orbitals sitting on the same
site, while Fig. 4(c) assumes they are sitting on the regular
sites of the Lieb lattice. Since we make no approximations
and take into account all the interband and lattice geometric
effects, the total SW data of the two geometries [two solid
curves in (b) and (c)] completely match, showing the geome-
try independence of the SW. One also notices that in Fig. 4(b)
the D(1)

s curve converges to D(1)
s + D(2)

s in the large δ limit,
whereas in Fig. 4(c) they converge in the δ = 0 limit. This
exhibits how the actual MQM geometry approaches the two
geometries in the two limits.

Finally, we address two possible issues of applying
Eq. (35) for numerical calculations. The first regards the defi-
nition of composite for the Lieb lattice. For most parameter
ranges, one can take all three bands of the Lieb lattice as
the composite, which contains three orbitals; then matrix M̃
and vector Ṽ are 2-dim. However, in the isolated flat-band
limit, μ ∼ 0 and � � tδ, the composite effectively contains
just the flat band, which comprises only two orbitals. Then as
Rank(M ) is lowered to 1, we need to project M to a 1-dim
subspace to make M̃ invertible. This gives a 1-dim matrix M̃
and vector Ṽ , which means for Eqs. (29) and (30) we only
need to evaluate the integral for orbital A or C.

The second is about the differentiability of Bloch func-
tions in calculating vector Vα,μ. For systems with nontrivial
topology, the Bloch functions may not be differentiable ev-
erywhere in the momentum space. Although the derivative of
Bloch functions can be locally singular in some cases, one
can argue on general grounds that the lattice geometric term
D(2)

s is finite. Since the total SW D(1)
s + D(2)

s is geometry-
independent and positive finite under the UPC, it implies
that D(2)

s is bounded: −D(1)
s < D(2)

s < 0. Here, we have used
the fact that D(1)

s , which contains integrals of the quantum
metric, is always finite, which can be understood from two
generic cases. For gapped insulating states, the interband
quantum metric can be written in terms of velocity oper-
ators, 〈ulk|∂μul ′k〉 = 〈ulk|∂μhk|ul ′k〉/(El ′k − Elk). Therefore,
the derivatives are shifted to the Bloch Hamiltonian, usually
a continuous and smooth function of k. In the case of a band
degeneracy, the quantum metric can diverge, giving a 1/k2

divergence near the isolated band degeneracy points, leading
to a logarithmic divergence of the intraband contributions to
D(1)

s . However, this divergence is canceled by the inter-band
geometric contributions due to the reduction effect, giving a
finite total D(1)

s [76]. In summary, even though the nondiffer-
entiability of Bloch functions may cause singularities at some
local k-points, it does not affect the numerical convergence
for calculations of both D(1)

s and D(2)
s .
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VI. CONCLUSION AND OUTLOOK

We developed a perturbation approach to treat multiorbital
superconductors’ center-of-mass momentum (phase) fluctua-
tion. This approach naturally separates the superfluid weight
of composite bands into intra- and interband contributions
from Bogoliubov band transitions. Based on the reduction by
the interband geometric terms, a topological lower bound was
derived for the superfluid weight of isolated composite flat
bands. Applying the theory of band representation, we found
that the elementary band representations should be considered
the minimum “block” for deriving a stronger lower bound.

In studying the geometry independence of the superfluid
weight, we emphasized the role of the derivative of gap
equations in getting the Hessian matrix ∂2�/∂�I

α∂�I
β . The

perturbation method facilitated the calculation as we ex-
panded the gap equation in powers of q. We analyzed the
properties of this Hessian matrix in detail and showed how
the positive semidefiniteness and rank information stem from
the uniform pairing condition. We finally rewrote the su-
perfluid weight formula into a convenient form suitable for
numerical calculations of any general tight-binding model.

Since the superfluid weight is the stiffness of the Meissner
effect, it naturally encodes the information about fluctuation
to a finite-momentum pairing state within a given channel.
Still, there is little information about competition between
superconducting channels and other correlated states [77,78].
However, as pointed out, the Hessian matrix of the grand
potential with respect to order parameters can be nonposi-
tive definite for multiorbital superconductors, and it contains
information about the stability of the channel. Whether this
allows one to determine the ground state is left to future
studies.

Note added. During the review process, we became aware
of Ref. [79], which discusses the geometry independence
of the superfluid weight for degenerate flat bands using the
random phase approximation. On topics in which there is an
overlap, our findings are consistent with theirs.
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APPENDIX A: INTERACTING HAMILTONIAN WITH
CENTER-OF-MASS MOMENTUM FLUCTUATION

By the transformation ciασ = (1/
√

N )
∑

k eik·(Ri+xα )ckασ

(we chose this gauge for ckασ if not otherwise specified), the
on-site intraorbital interaction takes the form

Ĥint = −
∑
i,α

Uαc†
iα↑c†

iα↓ciα↓ciα↑

= −
∑

kk′q,α

Uα

N
c†

k+q,α↑c†
−k+q,α↓c−k′+q,α↓ck′+q,α↑. (A1)

The conventional BCS theory makes the ansatz that electron
k ↑ pairs with −k ↓, therefore the reduced interaction Ĥ(red)

int
only keeps the q = 0 term from above.

We now consider a pairing state of fluctuated CMM 2q
(i.e., phase fluctuation), so the reduced interaction keeps a
term of fixed and finite q, reading

Ĥ(red)
int (q) = −

∑
kk′,α

Uα

N
c†

k+q,α↑c†
−k+q,α↓c−k′+q,α↓ck′+q,α↑.

(A2)

This form of interaction implies that in the fluctuated state
electron k + q,↑ pairs with −k + q,↓. With the order pa-
rameter �q,α defined by Eq. (23), Fourier transform gives

�q,α = −Uα

N

∑
k

〈c−k+q,α↓ck+q,α↑〉q. (A3)

To get Eq. (A3), we have used the fact that in the fluctuated
state �q the electron k + q ↑ pairs with −k + q ↓. Using the
transformation between orbital and band basis

ckα↑ =
∑

l

ulkαclk↑, c−k,α↓ =
∑

l

u∗
lkαcl,−k↓, (A4)

one obtains Eq. (28) (the sum over l has been restricted to the
composite due to projection).

With (A3), mean-field decoupling yields

Ĥ(red)
int (q) �

∑
k,α

(�q,αc†
k+q,α↑c†

−k+q,α↓ + H.c.)

+ N
s∑

α=1

|�q,α|2
Uα

. (A5)

For the kinetic part, we shift the dummy momentum k by ±q
for the spin-↑, ↓ sector, respectively,

Ĥkin =
∑
k,αβ

[
c†

kα↑
(
h↑

k

)
αβ

ckβ↑ + c†
−k,α↓

(
h↓

−k

)
αβ

c−k,β↓
]− μq

∑
k,α

(
c†

kα↑ckα↑ + c†
−k,α↓c−k,α↓

)
=
∑
k,αβ

{
c†

k+q,α↑
[(

h↑
k+q

)
αβ

− μqδαβ

]
ck+q,β↑ − c−k+q,α↓

[(
h↓,T

−k+q

)
αβ

− μqδαβ

]
c†
−k+q,β↓

}+
∑

k

Tr
{
h↓

−k+q − μq
}
. (A6)

In the last line above,
∑

k Trh↓
−k+q =∑l,k ε

↓
l,−k+q is q-

independent because k is summed over the entire Brillouin
zone, whereas

∑
k Trμq = μqsN with N the number of unit

cells. Equations (A5) and (A6) together give Eq. (2).

APPENDIX B: SELF-CONSISTENCY EQUATIONS

For completeness, we derive the gap equation and electron
number equation, and we study their properties under TRS,
which is similar to Ref. [16]. With the grand potential Eq. (5),
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we first derive the gap equation

∂�

∂�∗
q,α

= 0, ∀ q, α. (B1)

Using Eq. (2),

∂�

∂�∗
q,α

= Tr{e−βĤMF (q)∑
k c−k+q,α↓ck+q,α↑}

Tr{e−βĤMF (q)} + N

Uα

�q,α

=
∑

k

〈c−k+q,α↓ck+q,α↑〉q + N

Uα

�q,α. (B2)

This cancels by the definition of order parameter (A3); there-
fore, (B1) is proved.

Next, we look at the electron number equation:

∂�

∂μq
= −Ne, ∀ q, (B3)

where the fixed average number of electrons Ne is a constraint
for the system; condition ∀ q means when we compare the
fluctuated state �q of different q, Ne is always fixed at the
same value. Using Eq. (2) again, one obtains

∂�

∂μq
= −Tr{e−βĤMF(q)∑

kασ c†
kασ ckασ }

Tr{e−βĤMF(q)} , (B4)

therefore Eq. (B3) is just

Ne =
∑
kασ

〈c†
kασ ckασ 〉q. (B5)

The two self-consistency equations (A3) and (B5) deter-
mine all the properties of the fluctuated state �q, and one can
solve them for �̂q, μq. In the presence of TRS, one can show
that whenever {�̂q, μq} is a solution to the self-consistency
equations of q state, then {�̂†

q, μq} is a solution to the equa-
tions for −q state (the single isolated band case was proved in
Ref. [58]). Then for the case of diagonal �̂q matrix, �−q,α =
�∗

q,α and μ−q = μq, so there are the following identities:

dμq

dqμ

∣∣∣∣
q=0

= 0, (B6)

d�q,α

dqμ

∣∣∣∣
q=0

= −d�∗
q,α

dqμ

∣∣∣∣
q=0

= i
d�I

q,α

dqμ

∣∣∣∣
q=0

, (B7)

where �I
q,α is the imaginary part of �q,α . The importance of

TRS will be discussed further in Appendix C.

APPENDIX C: SUPERFLUID WEIGHT FORMULA,
DERIVATIVE OF THE GAP EQUATION,

AND TIME-REVERSAL SYMMETRY

In this Appendix, we derive the SW formula Eq. (6). We
treat the free energy F (q) as a function of q only, while
�(q, μq,�q,α,�∗

q,α ) is a function of q, μq,�q,α,�∗
q,α ex-

plicitly.

Using F (q) = �(q, μq,�q,α,�∗
q,α ) + μqNe, we have the

first derivative

dF

dqμ

= ∂�

∂qμ

+
(

∂�

∂μq
+ Ne

)
dμq

dqμ

+
∑

α

(
∂�

∂�q,α

d�q,α

dqμ

+ c.c.

)
. (C1)

The second term cancels by the electron number equation, and
the third term cancels by the gap equation; therefore,

dF

dqμ

= ∂�

∂qμ

, ∀ q. (C2)

An important consequence of TRS is that F (q) is an even
function of q, so

dF

dqμ

∣∣∣∣
q=0

= ∂�

∂qμ

∣∣∣∣
q=0

= 0. (C3)

Caution is needed if one wants to prove this like Eqs. (B2)
and (B4). The derivative should not act on ck+q,↑ and c−k+q,↓
operators since they form the Nambu basis. At the same time,
the grand potential depends only on the eigenvalues of the
BdG Hamiltonian. One can calculate ∂�/∂qμ directly using
an explicit form like Eq. (D5), and then show that Eq. (C3)
holds as long as �̂q=0 is a Hermitian matrix up to a U (1)
phase, which TRS imposes. The case of a single isolated band
has been proved in Ref. [58]. If TRS is broken, SW being the
second derivative of free energy at q = 0 will lose its meaning
as a stiffness tensor, since the first derivative of free energy is
already nonzero.

In the presence of TRS, the second derivative of free
energy is

d2F

dqμdqν

= ∂2�

∂qμ∂qν

+ ∂2�

∂qμ∂μq

dμq

dqν

+
∑

α

(
∂2�

∂qμ∂�q,α

d�q,α

dqν

+ c.c.

)
. (C4)

To simplify this, we take the total derivative of gap equa-
tion (B1) with respect to qμ, yielding

∂2�

∂�∗
q,α∂qμ

+ ∂2�

∂�∗
q,α∂μq

dμq

dqμ

+
∑

β

(
∂2�

∂�∗
q,α∂�q,β

d�q,β

dqμ

+ c.c.

)
= 0. (C5)

Changing variables �q,α,�∗
q,α → �R

q,α,�I
q,α (�q,α ≡

�R
q,α + i�I

q,α), evaluating at q = 0, and using TRS properties
Eqs. (B6) and (B7), one can verify that d2F/dqμdqν |q=0
gives the SW formula Eq. (6).

Moreover, Eq. (C5) at q = 0 gives

1

2

∂2�

∂�I
q,α∂�I

q,β

∣∣∣∣
q=0

dμ�β + ∂2�

∂�∗
q,α∂qμ

∣∣∣∣
q=0

= 0, (C6)

which exactly maps to Mαβdμ�β − Vα,μ = 0 and the total
derivative of Eq. (B2). Therefore, we get Eqs. (25) and (26)
in the main text.
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APPENDIX D: PERTURBATION APPROACH
TO CALCULATE THE SUPERFLUID WEIGHT

In this Appendix, we provide the steps of using the pertur-
bation method to calculate D(1)

s , Eq. (9).

1. Nondegenerate perturbation

Starting from the mean-field Hamiltonian projected to the
composite bands, Eq. (7), the first and third terms can be
organized into the 2n-dim BdG form

Hk(q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1,k+q �1,k(q) �12,k(q) · · · �1n,k(q)

�1,k(q)∗ −ξ1,k−q �21,k(q)∗ · · · �n1,k(q)∗

�21,k(q) ξ2,k+q �2,k(q)

�12,k(q)∗ �2,k(q)∗ −ξ2,k−q

· · · · · · · · ·
�n1,k(q) ξn,k+q �n,k(q)

�1n,k(q)∗ �n,k(q)∗ −ξn,k−q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (D1)

where the empty entries are zeros. To aid in bookkeeping, in
Hk(q) we have assigned the (2l − 1)th label to electrons, and
the 2lth label to holes of the lth band.

Let k(q) be some generalized Bogoliubov transformation
that exactly diagonalizes Hk(q),

k(q)†Hk(q)k(q) = Êk(q). (D2)

Typically k(q) can only be determined numerically, and

Êk(q) = diag{E1k+(q), E1k−(q), . . . } (D3)

is a diagonal matrix consisting of eigenvalues of Hk(q) (a caret
is used to distinguish from a number). The 2n eigenvalues
correspond to the n fluctuated Bogoliubov quasiparticle bands
(+) and n quasihole bands (−). At q = 0 the spectrum is
particle-hole symmetric (PHS), Elk±(0) = ±

√
ξ 2

lk + �2 (we
also use symbol Elk for

√
ξ 2

lk + �2 ).
After the diagonalization, ĤC (q) of Eq. (7) reads

ĤC (q) =
∑

k

[
γ̃†

k,qÊk(q)̃γk,q +
∑
l∈C

ξ
↓
l,−k+q

]

+ N
s∑

α=1

|�q,α|2
Uα

, (D4)

where γ̃k,q is the Bogoliubov band spinor that exactly diago-
nalizes Hk(q). The projected grand potential is

�C = − 1

β
ln Tr

{
e−βĤC (q)

}
= − 1

β

∑
k

Tr ln
(
1 + e−βÊk(q)

)+
∑

k

∑
l∈C

ξ
↓
l,−k+q

+ N
s∑

α=1

|�q,α|2
Uα

. (D5)

In D(1)
s,μν = ∂μ∂ν�C|q=0, the derivative acts on explicit q only

and does not act on μq or �̂q, giving [16]

D(1)
s,μν = − 1

2

∑
k

Tr

{
∂2Êk(q)

∂qμ∂qν

tanh
βÊk(q)

2

+ β

2

∂Êk(q)

∂qμ

∂Êk(q)

∂qν

sech2 βÊk(q)

2

}∣∣∣∣
q=0

. (D6)

Equation (D6) involves the first and second derivative of
Elk±(q). If we treat q as perturbation and find the eigenvalues
of Hk(q) up to q2 order, then D(1)

s can be determined. To
proceed, we approximate k(q) as

k(q) � Uk = U1k ⊕ · · · ⊕ Unk, (D7)

where

Ulk =
(

wlk −vlk

vlk wlk

)
(D8)

is the Bogoliubov transformation for the lth band at q = 0,
with

wlk =
√

1

2

(
1 + ξlk

Elk

)
, vlk =

√
1

2

(
1 − ξlk

Elk

)
. (D9)

Transformation Uk makes the off-diagonal elements of Hk(q)
small, therefore it splits into two parts,

U †
k Hk(q)Uk = Êk(0) + H (1)

k (q), (D10)

where Êk(0) = diag{E1k,−E1k, . . . , Enk,−Enk} is the un-
perturbed PHS Bogoliubov spectrum, and H (1)

k (q) is the
perturbing matrix.

This is equivalent to expressing ĤC (q) in the Bogoliubov
band basis defined by |lk±〉 ≡ γ

†
lk±(q)|0〉, where γlk± denote

the Bogoliubov operators of the lth band. The 2n-component
Bogoliubov band spinor γk,q = (γ1k+(q), γ1k−(q), . . .)T is re-
lated to the electronic band operator through

γk,q = U †
k (c1,k+q↑, c†

1,−k+q↓, . . . )T . (D11)

As we see below, the separation Eq. (D10) results in an exci-
tation Hamiltonian

Ĥ(1)
C (q) =

∑
k

γ†
k,qH (1)

k (q)γk,q, (D12)
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which separately accounts for the SW contributions from
intra- and interband transitions.

We first assume that at any k-point, no two bands of the
composite are degenerate (ξlk = ξl ′k), whether accidentally or
enforced by symmetry; additionally, we assume no two bands

have opposite energies (ξlk = −ξl ′k). These restrictions mean
the 2n Bogoliubov bands at q = 0 are disconnected through-
out the Brillouin zone, so nondegenerate perturbation can be
applied. We find that the energy eigenvalues of Hk(q) up to
O(q2) terms give n quasiparticle bands and n quasihole bands,

Elk+(q) = Elk + H (1)
k (q)2l−1,2l−1 +

∑
l ′∈C,l ′ �=l

∣∣H (1)
k (q)2l−1,2l ′−1

∣∣2
Elk − El ′k

+
∑
l ′∈C

∣∣H (1)
k (q)2l−1,2l ′

∣∣2
Elk + El ′k

+ O(q3),

Elk−(q) = −Elk + H (1)
k (q)2l,2l +

∑
l ′∈C

∣∣H (1)
k (q)2l,2l ′−1

∣∣2
−Elk − El ′k

+
∑

l ′∈C,l ′ �=l

∣∣H (1)
k (q)2l,2l ′

∣∣2
−Elk + El ′k

+ O(q3). (D13)

Here H (1)
k (q)i j denotes the (i, j)th entry of matrix H (1)

k (q). In
terms of the Bogoliubov basis, they are

H (1)
k (q)2l−1,2l ′−1 ≡ 〈lk + |H (1)

k (q)|l ′k+〉,
H (1)

k (q)2l,2l ′ ≡ 〈lk − |H (1)
k (q)|l ′k−〉, (D14)

H (1)
k (q)2l−1,2l ′ ≡ 〈lk + |H (1)

k (q)|l ′k−〉,
which can be explicitly computed from Eqs. (D1) and (D7).

After some algebra, we find that the derivatives of
Eq. (D13) with respect to q (which do not act on μq or �̂q)
give

∂μElk±(q)
∣∣
q=0 = ∂μξlk, (D15)

∂μ∂νElk±(q)
∣∣
q=0 = ±

{
ξlk

Elk
∂μ∂νξlk − 4�2

Elk
gl

μν (k)

−
∑

l ′∈C,l ′ �=l

8�2

[
p(+)

ll ′ (k)

Elk + El ′k
+ p(−)

ll ′ (k)

Elk − El ′k

]
gll ′

μν (k)

}
, (D16)

where the coherence factors

p(+)
ll ′ (k) = 1

2

(
1 + ξlkξl ′k + �2

ElkEl ′k

)
= (wlkwl ′k + vlkvl ′k)2,

p(−)
ll ′ (k) = 1

2

(
1 − ξlkξl ′k + �2

ElkEl ′k

)
= (wlkvl ′k − vlkwl ′k)2

(D17)

come from the second derivative ∂μ∂ν |H (1)
k (q)2l−1,2l ′ |2,

∂μ∂ν |H (1)
k (q)2l,2l ′−1|2 and ∂μ∂ν |H (1)

k (q)2l−1,2l ′−1|2,
∂μ∂ν |H (1)

k (q)2l,2l ′ |2, respectively. Physically, p(+)
ll ′ (k) accounts

for the transitions between a quasiparticle and quasihole
band, while p(−)

ll ′ (k) accounts for transitions between two
quasiparticle bands or between two quasihole bands.

Also, one notices that the intra- and interband quantum
metric comes from the expansion of intra- and interband
gap functions. If the fluctuation of �̂q is ignored, they are
[see definition Eq. (8)]

�l,k(q) = �{1 − 2〈ulk|∂μulk〉qμ

− [〈∂μulk|∂νulk〉 + c.c.]qμqν} + O(q3), (D18)

�ll ′,k(q) = −2�〈ulk|∂μul ′k〉qμ + O(q2), l �= l ′. (D19)

Since all matrix elements H (1)
k (q)i j ∼ O(q), the intraband

quantum metric gl
μν in Eq. (D16) comes from the O(q2)

term of H (1)
k (q)2l−1,2l−1 combined with the O(q) term of

H (1)
k (q)2l−1,2l or the O(q2) term of H (1)

k (q)2l,2l combined
with the O(q) term of H (1)

k (q)2l,2l−1. Whereas the in-
terband quantum metric gll ′

μν only comes from the O(q)

term of H (1)
k (q)2l−1,2l ′−1, H (1)

k (q)2l−1,2l ′ , H (1)
k (q)2l,2l ′−1, and

H (1)
k (q)2l,2l ′ of l �= l ′. The transition processes they represent

are illustrated in Fig. 1.
Inserting Eqs. (D15) and (D16) into Eq. (D6), one gets

Eq. (9) in the main text.

2. Degenerate perturbation

To get Eq. (9), we assumed that there are no two Bo-
goliubov bands at q = 0 being degenerate at any k point,
so nondegenerate perturbation was used. Otherwise, if a few
quasiparticle bands are degenerate at some isolated k points
or completely degenerate throughout the momentum space
(which requires the band energy ξlk = ±ξl ′k), then degenerate
perturbation must be applied.

However, using standard degenerate perturbation, one can
prove that Eq. (9) remains the same even in the presence of
band degeneracy, which agrees with the general Kubo for-
mula result. In calculating current responses using the Kubo
formula, whenever two bands become degenerate, the only
change is to make the substitution

n(E1) − n(E2)

E1 − E2
→ dn(E )

dE

∣∣∣∣
E=E1

. (D20)

Similarly, for Eq. (9), when Elk = El ′k, one only needs to
replace

tanh(βElk/2) − tanh(βEl ′k/2)

Elk − El ′k
→ β

2
sech2 βElk

2
. (D21)

Therefore, we conclude that band degeneracy poses no addi-
tional mathematical difficulty for expressing the SW D(1)

s as
Eq. (9).
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APPENDIX E: POSITIVE SEMIDEFINITENESS
OF THE SUPERFLUID WEIGHT

The purpose of this Appendix is to show that the first
term D(1)

s , Eq. (9), is positive semidefinite. This proof will
be independent of lattice geometry. Since the total SW Ds =
D(1)

s + D(2)
s is geometry-independent and D(2)

s can be made
zero by choosing the MQM, it also shows that the total Ds

is positive semidefinite for the uniform pairing channel, re-
gardless of temperature and any composite bands.

One first notices that the function

tanh
βElk

2
− βElk

2
sech2 βElk

2
> 0, (E1)

so the conventional part of Eq. (9) is positive semidefinite. To
analyze the geometric term, we break the intraband quantum
metric gl

μν into interband ones gll ′
μν , and collect all the terms

with the same gll ′
μν (including the symmetric term l ↔ l ′), to

arrive at the following split expression:

D(1)geo
s,μν = −

∑
k

∑
l∈C,l ′ /∈C

4�2

Elk
tanh

βElk

2
gll ′

μν (k)

−
∑

k

∑
l,l ′∈C,l ′>l

4�2

{
tanh

βElk

2

[
1

Elk
− 2p(+)

ll ′ (k)

Elk + El ′k
− 2p(−)

ll ′ (k)

Elk − El ′k

]
+ l ↔ l ′

}
gll ′

μν (k). (E2)

Since each gll ′
μν (l �= l ′) is negative semidefinite, all we need to show is that each quantity

f (ξlk, ξl ′k) = tanh
βElk

2

[
1

Elk
− 2p(+)

ll ′ (k)

Elk + El ′k
− 2p(−)

ll ′ (k)

Elk − El ′k

]
+ l ↔ l ′ (E3)

is positive. Using definition (D17), we find

f (ξlk,ξl ′k) = −
(

1

Elk
tanh

βElk

2
− 1

El ′k
tanh

βEl ′k

2

)
ξlk − ξl ′k

ξlk + ξl ′k
. (E4)

Note the factor ξlk−ξl′k
ξlk+ξl′k

= (ξlk−ξl′k )2

(Elk+El′k )(Elk−El′k ) , and the function (1/x) tanh x has a negative slope at x > 0 [same as Eq. (E1)],
therefore f (ξlk, ξl ′k) > 0 and the positive semidefiniteness is proved.

APPENDIX F: CALCULATION OF THE PAIRING AMPLITUDE

In this Appendix, we give details of using the perturbation method to calculate the pairing amplitude 〈cl ′,−k+q↓cl,k+q↑〉q.
Recall that under transformation Uk, the mean-field Hamiltonian can be expressed as

ĤC (q) =
∑

k

γ†
k,q

[
Êk(0) + H (1)

k (q)
]
γk,q, (F1)

where the perturbation matrix H (1)
k mixes Bogoliubov bands of different indices. Using the standard perturbation method,

the annihilation operator of the band-resolved quasiparticles that exactly diagonalize ĤC (q), γ̃ , can be expressed as a linear
combination of γ operators:

γ̃lk+(q) = γlk+(q) +
∑

l ′∈C,l ′ �=l

H (1)
k (q)2l−1,2l ′−1

Elk − El ′k
γl ′k+(q) +

∑
l ′∈C

H (1)
k (q)2l−1,2l ′

Elk + El ′k
γl ′k−(q) + O(q2),

γ̃lk−(q) = γlk−(q) +
∑
l ′∈C

H (1)
k (q)2l,2l ′−1

−Elk − El ′k
γl ′k+(q) +

∑
l ′∈C,l ′ �=l

H (1)
k (q)2l,2l ′

−Elk + El ′k
γl ′k−(q) + O(q2). (F2)

Here, to expend H (1)
k (q)i j in powers of q, we must take into

account the q-dependence of �̂q, therefore we use

�ll ′,k(q) = �δll ′ + (−2�〈ulk|∂μul ′k〉

+
s∑

α=1

u∗
lkαul ′kαdμ�α )qμ + O(q2) (F3)

instead of Eqs. (D18) and (D19). The normalization of γ̃ oper-
ators is ignored as it leads to O(q2) corrections. Equation (F2)
can be viewed as a linear transformation γ̃ = Aγ between the

spinors γ̃ and γ , where Ai j = δi j + ai j is a matrix close to
identity, with ai j ∼ O(q). The inverse of A has an approximate
form (A−1)i j = δi j − ai j + O(q2), which enables us to write
operators γ in terms of γ̃ . Since the electron operators c are
related to γ through the transformation Uk, we can finally
write c in terms of γ̃ .

Since the γ̃ operators exactly diagonalize the BdG Hamil-
tonian of composite bands, we have

〈γ̃lk±(q)†γ̃lk±(q)〉q ≈ nF (±Elk) (F4)
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to the lowest order of q, where nF is the Fermi-Dirac function. Finally, one obtains the pairing amplitude

〈cl ′,−k+q↓cl,k+q↑〉q =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− tanh(βElk/2)
2Elk

[
� + (−2�〈ulk|∂μulk〉 +∑s

β=1 |ulkβ |2dμ�β

)
qμ

]+ O(q2), l = l ′,

1
2

[
p(+)

ll′ (k)
Elk+El′k

(
tanh βElk

2 + tanh βEl′k
2

)+ p(−)
ll′ (k)

Elk−El′k

(
tanh βElk

2 − tanh βEl′k
2

)]
×(2�〈ulk|∂μul ′k〉 −∑s

β=1 u∗
lkβul ′kβdμ�β

)
qμ + O(q2). l �= l ′.

(F5)

From this to get Eqs. (29) and (30), we have also used the
q = 0 gap equation

1 = Uα

N

∑
k

∑
l∈C

|ulkα|2 tanh(βElk/2)

2Elk
, ∀α. (F6)

APPENDIX G: POSITIVE SEMIDEFINITENESS AND RANK
OF THE HESSIAN MATRIX FOR UNIFORM PAIRING

This Appendix serves to prove the rank and positive
semidefiniteness of the Hessian matrix Mαβ in Eq. (29).

We consider a general class of s-dim real symmetric matri-
ces Mαβ , which have a kernel eigenvector v0 = (1, 1, . . . , 1)T .
It implies

∑s
β=1 Mαβ =∑s

α=1 Mαβ = 0. With this property,
we write Mαβ as

Mαβ =
{∑s

γ=1,γ �=α Cαγ , α = β,

−Cαβ, α �= β,
(G1)

where Cαβ (α �= β) are just the off-diagonal elements of M
with a minus sign. We give three propositions below.

Proposition 1. If Cαβ > 0 for all 1 � α, β � s, α �= β,
then Mαβ is positive semidefinite and Rank(M ) = s − 1.

We use the criterion that all its leading principal minors
are non-negative to show the positive semidefiniteness. Let us
denote the leading principal minor of M of order k (1 � k � s)
by Dk (M ). We find

D1(M ) = M11 =
s∑

α �=1

C1α � 0, (G2)

D2(M ) = det

(
M11 M12

M21 M22

)
=

s∑
α1 �=1,α2 �=2

C1α1C2α2 − C12C21,

(G3)

and

Dk (M ) =
s∑

α1,...,αk

′
C1α1C2α2 · · ·Ckαk . (G4)

Here,
∑′ means the summation imposed by the single rule

that there is not any subset {i1, . . . , i j} ⊆ {1, . . . , k} such that
{αi1 , . . . , αi j } is its permutation. This single rule leads to the
following subrules: (i) no Cαα appears in the sum [e.g., (G2)],
since {α} is a permutation of {α}; (ii) no squares of any C
appear in the sum, i.e., for α �= β, CαβCβα is not allowed since
{β, α} is a permutation of {α, β} [e.g., Eq. (G3)]; (iii) in every
term of Dk (M ), there is at least an α j (1 � j � k) that is not in
the set {1, . . . , k}. Subrule (iii) is a simple result of the general
permutation rule.

Using (iii), it is easy to show that det M = Ds(M ) = 0, thus
Rank(M ) � s − 1. Moreover, since each leading principal mi-
nor Dk (M ) � 0, Mαβ is positive semidefinite.

Next, we prove Rank(M ) = s − 1 by contradiction—if
Rank(M ) � s − 2, then any minor of order s − 1 should van-
ish. However,

Ds−1(M ) =
s∑

α1,...,αs−1

′
C1α1C2α2 · · ·Cs−1,αs−1 > 0 (G5)

since it contains at least one term C1sC2s · · ·Cs−1,s, a contra-
diction (QED).

We want to emphasize that Proposition 1 together with
Eq. (G1) is a statement about UPC. It can be equiva-
lently stated as “UPC leads to a positive-semidefinite M and
Rank(M ) = s − 1.” We cannot prove the most general case,
but we will prove two special cases below, which still contain
enough information for understanding this general property.

Proposition 2. Under the UPC, if an isolated band m
contains s orbitals, then the Hessian matrix M is positive
semidefinite and Rank(M ) = s − 1.

The condition above can be stated as “for each 1 � α � s
there exists a neighborhood of some k-point in Brillouin zone
such that |umkα| �= 0.” Based on Proposition 1, we only need
to show Cαβ > 0. From Eq. (29) we find for a single isolated
band m,

Cαβ =
∑

k

tanh(βEmk/2)

2Emk
|umkα|2|umkβ |2, α �= β, (G6)

which is positive. Therefore, the proposition is proved.
By induction, we know that whenever an orbital is removed

from the band, one positive eigenvalue of M will approach 0,
lowering the rank by 1. It can be easily seen that |umkr | → 0
if the rth orbital is removed. Then M will have an additional
kernel eigenvector er = (. . . , 0, 1, 0, . . . )T (with its rth com-
ponent nonzero).

Proposition 3. Under the UPC, for a composite of n bands
formed from s orbitals, if (i) the composite is incomplete
(n < s), (ii) the n bands are energetically close to each other
compared to the interaction scale �, and (iii) the composite
contains all the s orbitals, then the Hessian matrix M is posi-
tive semidefinite and Rank(M ) = s − 1.

This proposition is based on three conditions, but the first
two can be relaxed. Similarly, the third condition can be stated
as “for each 1 � α � s there exists some band l ∈ C and a
neighborhood of some k-point in Brillouin zone such that
|ulkα| �= 0.” The second condition states that the n bands form
an ICFB. With this condition one can omit the band index in
Elk, Elk → Ek. From Eq. (29), Cαβ of the composite bands
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can be expressed as

Cαβ ≈
∑

k

tanh(βEk/2)

2Ek

∑
l,l ′∈C

u∗
l ′kαulkαu∗

lkβul ′kβ

=
∑

k

tanh(βEk/2)

2Ek
|bk,αβ |2, (G7)

where we have defined

bk,αβ =
∑
l∈C

u∗
lkαulkβ. (G8)

Equation (G7) is the leading term of Cαβ if it is expanded in
powers of ξlk − ξl ′k. Since it is required that the composite
is incomplete (n < s), we have |bk,αβ | strictly greater than 0.
Then Cαβ > 0, and the proposition is proved. If instead n = s,
then bk,αβ = δαβ , making the leading term of Cαβ vanish.

For cases other than those stated in Proposition 3, one
should be able to numerically check that Cαβ > 0 always
holds under UPC. Analogous to the single isolated band case,

whenever an rth orbital is removed from the composite, er

becomes an additional kernel eigenvector and Rank(M ) is
lowered by 1.

APPENDIX H: EQUIVALENCE OF THE TWO
DEFINITIONS OF MINIMAL QUANTUM METRIC

In this Appendix, we show how the two definitions of
MQM given in Sec. IV are equivalent to each other based on
the rank information of matrix ∂2�/∂�I

α∂�I
β .

Consider the geometric transformation that each orbital’s
position transforms as xα = x0

α + δxα . During this transfor-
mation, hopping integrals tσ

i j,αβ are fixed, while the Bloch
components ulkα undergo the change

ulkα = e−ik·δxα u0
lkα. (H1)

The intra- and interband quantum metric transform accord-
ingly, gl

μν = gl,0
μν + δgl

μν , gll ′
μν = gll ′,0

μν + δgll ′
μν , with

δgl
μν (k) = 〈δxμδxν〉0

lk − 〈δxμ〉0
lk〈δxν〉0

lk +
[(

i

2

∑
α

δxα,μu0∗
lkα∂νu0

lkα + c.c. − i〈δxμ〉0
lk

〈
u0

lk

∣∣∂νu0
lk

〉)+ μ ↔ ν

]
,

δgll ′
μν (k) =

[
− 1

2
〈δxμ〉0

ll ′k〈δxν〉0
l ′lk − i

2

(〈δxμ〉0
ll ′k〈u0

l ′k|∂νu0
lk〉 + 〈δxν〉0

l ′lk
〈
u0

lk

∣∣∂μu0
l ′k
〉)]+ μ ↔ ν. (H2)

Here 〈〉0
lk represents the average over different orbitals in the

initial state u0
lk, while 〈〉0

ll ′k represents the overlap between
different bands, i.e.,

〈δxμ〉0
lk =

s∑
α=1

δxα,μ

∣∣u0
lkα

∣∣2,
〈δxμδxν〉0

lk =
s∑

α=1

δxα,μδxα,ν

∣∣u0
lkα

∣∣2, (H3)

〈δxμ〉0
ll ′k =

s∑
α=1

δxμ,αu0∗
lkαu0

l ′kα.

With these established, let us vary the functional I in
Eq. (20) around some fixed positions {x0

α}. One can readily
show the following identity:

∂I

∂xα,μ

∣∣∣∣
{x0

α}
=
(

2i

�

)
V 0

α,μ, (H4)

where V 0
α,μ is Eq. (30) evaluated at {x0

α}. Based on Def-
inition 2, if {x0

α} extremize I , then V 0
α,μ = Mαβdμ�0

β = 0,
implying D(2)

s = 0 in Eq. (6). Therefore, we have proved that
Definition 2 leads to Definition 1.

To show the other way requires the rank of the Hessian
matrix ∂2�/∂μ�α∂ν�β to be s − 1. The uniform pairing case
has been proved in Appendix G. Assuming Rank(M ) = s − 1,
then the vanishing of D(2)

s in Eq. (6) has two solutions: ei-
ther (i) dμ�α = 0 or (ii) dμ�1 = dμ�2 = · · · = dμ�s = iλμ,
μ = x, y. These two solutions are identical up to a U (1)
gauge transformation [30,31]. To see this, we write the second

solution as
�q,α = �[1 + iλ · q + Sα (q2)], (H5)

where λ = (λx, λy) is a real vector and Sα (q2) is a complex
function of q2 order. A new order parameter that has an overall
phase difference can be defined,

�̃q,α = e−iλ·q�q,α, (H6)

which satisfies dμ�̃α = 0 and recovers the first solution.
Both solutions above lead to the vanishing of extremization
Eq. (H4), since Vα,μ = Mαβdμ�α . We have shown that Def-
inition 1 implies Definition 2. Therefore, the two definitions
are equivalent.

With the knowledge that Rank(M ) = s − 1, one can further
show that the minimal positions exist and are unique, up to
fixing the position of one orbital [31].

Starting from some general positions {x0
α}, let us con-

sider the transformation xα = x0
α + δxα again, under which

dμ�α = dμ�0
α + δdμ�α and Vα,μ = V 0

α,μ + δVα,μ. Using
Eqs. (30) and (H1), the change of Vα,μ is found to be

δVα,μ = −2i�Mαβδxβ,μ. (H7)

By the invertibility of Mαβ in the (s − 1)-dim subspace, we
obtain

δdμ�α = −2i�δxα,μ. (H8)

Imposing dμ�0
α + δdμ�α = 0, the minimal positions are thus

located at

δxα,μ = − i

2�
dμ�0

α, (H9)

from the initial positions {x0
α}.
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As discussed at the end of Sec. IV, when some orbitals are
removed from the composite bands, their positions become
irrelevant to the geometric functional I . Thus, the MQM or-
bital positions are hyperlines or hyperplanes in the geometric
space. We use two-orbital models as an example to illustrate
this in Appendix I.

APPENDIX I: TWO-ORBITAL MODELS

Inserting Eq. (H2) into Eq. (9), and inserting Eq. (H8)
into Eq. (32), we find both δD(1)

s and δD(2)
s have a quadratic

form of the orbital coordinate change δxα,μ, therefore they
take a parabolic shape in the 3(s − 1)-dim geometric space.
The eigenvalues of Hessian matrix Mαβ show the steepness of
the parabola, while the eigenvectors tell the directions where
the MQM functional undergoes the steepest change. When-
ever an orbital is removed from the composite, one eigenvalue
of Mαβ reaches zero, and its position becomes irrelevant to
the functional I . In this Appendix, we illustrate this using
two-orbital models.

For two-orbital models, one can define the composite to
contain either one (valence or conduction) band or both bands,
depending on the Fermi energy and interaction scale. Since
the position of one orbital can permanently be fixed, we write
I as a function I (r), where r = (x, y) ≡ x2 − x1 is orbital
2’s position relative to orbital 1. To calculate I (r), one can
use the method of the Bloch function, i.e., using Eq. (H1)
to get (H2). Here, instead, we use the Bloch Hamiltonian
method.

We choose the lattice geometry where the two orbitals sit
on the same site as the reference geometry, r = 0. This defines
the Bloch Hamiltonian of a two-orbital model,

h(k) = d0(k)σ0 +
∑

j=x,y,z

d j (k)σ j (I1)

[we omitted the spin index, so h(k) is for spin-↑ only and
the spin-↓ sector is its time-reversal counterpart] where σ j are
Pauli matrices in the orbital space. Then, the quantum metric
is

gμν ≡ gv
μν = gc

μν = −gvc
μν = 1

4∂μd̂ · ∂ν d̂, (I2)

where d = (dx, dy, dz ) and d̂ = d/|d| is a unit vector.
Under the geometric transformation, h(k) is transformed

by the unitary matrix U (k) = diag{1, eik·r}:
h̃(k) = U (k)†h(k)U (k), (I3)

therefore vector d is rotated as

d̃x = dx cos(k · r) + dy sin(k · r),

d̃y = −dx sin(k · r) + dy cos(k · r), (I4)

d̃z = dz,

which gives the quantum metric change

g̃μν = gμν + 1
4

[
(−d̂x∂μd̂y + d̂y∂μd̂x )rν

+ (−d̂x∂ν d̂y + d̂y∂ν d̂x )rμ + (d̂2
x + d̂2

y

)
rμrν

]
, (I5)

where μ or rμ = x or y. Then I (r) of Eq. (20) is

I (r) = I0 + I1xx + I1yy + I2(x2 + y2), (I6)

with

I0 =
∑

k

f (k)Trg(k),

I1μ = 1

2

∑
k

f (k)(−d̂x∂μd̂y + d̂y∂μd̂x ), (I7)

I2 = 1

4

∑
k

f (k)
(
d̂2

x + d̂2
y

)
.

Here, the form of f (k) depends on whether the composite
contains only one or both bands. For the former, f (k) =
fv(c)(k) = tanh(βEv(c)k/2)/Ev(c)k; for the latter,

f (k) = 1

Evk
tanh

βEvk

2
+ 1

Eck
tanh

βEck

2

− tanh
βEvk

2

[
2p(+)

vc (k)

Evk + Eck
+ 2p(−)

vc (k)

Evk − Eck

]
− tanh

βEck

2

[
2p(+)

vc (k)

Evk + Eck
+ 2p(−)

vc (k)

Eck − Evk

]
. (I8)

Notice that I0, I1μ, I2 are all geometry-independent quanti-
ties. Completing the squares in Eq. (I6), one gets

I (r) = I0 − I2
1x + I2

1y

4I2
+ I2

[(
x + I1x

2I2

)2

+
(

y + I1y

2I2

)2]
,

(I9)

indicating that the extremal position is located at rmin =
−(I1x, I1y)/(2I2). The sign of the parabola is determined by
sgn(I2) = sgn( f (k)). It turns out that Eq. (I8) is the same as
Eq. (E3), which we have proved to be positive. Therefore, for
two-orbital models, no matter whether the composite contains
one band or both the valence and conduction band, I2 > 0,
and the function is minimized at the point rmin. This is another
example showing that the Hessian matrix M for a composite of
two bands of a two-orbital model is positive semidefinite and
Rank(M ) = 1, with the first two conditions stated in Proposi-
tion 3 relaxed.

Next, we consider two prototype models, the Bravais-
lattice BHZ model [80,81] and the non-Bravais-lattice Hal-
dane model [82], to show how the parabola evolves under
topological phase transitions.

The BHZ model [80,81] is defined on a square lattice.
Choosing the geometric gauge where both orbitals sit on the
same site, the Hamiltonian has

d(k) = (t sin kx, t sin ky, m + t cos kx + t cos ky). (I10)

Inserting this into Eq. (I7), one gets rmin = (0, 0), regardless
of the composite, temperature, and value of m/t . This is en-
forced by the C4 symmetry of the model hopping graph.

Similarly, the Bloch Hamiltonian of the Haldane model has

d0(k) = 2t2 cos φ

3∑
i=1

cos(k · ai ),

dx(k) = t1[1 + cos(k · a2) + cos(k · a3)],

dy(k) = t1[sin(k · a2) − sin(k · a3)],

dz(k) = m − 2t2 sin φ

3∑
i=1

sin(k · ai ). (I11)
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Inserting this into Eq. (I7), we find rmin = (0,
√

3), regardless
of the composite, temperature, t1, t2, and m values. This is
enforced by the C6 symmetry of the hopping graph.

As m/t → ∞, both the BHZ and Haldane model transit to
the topologically trivial phase, in which d̂2

x + d̂2
y ∝ t2/m2 →

0 (during the transition, we assume t, t1, t2 are fixed but m
is varied). Suppose the composite contains the isolated va-
lence or conduction band only (� ∼ t � m). In that case,
we find f (k) ∼ 1/�, which has no dependence on m, there-
fore I2 ∝ f (k)(d̂2

x + d̂2
y ) → 0, implying that the parabola in

Eq. (I9) becomes flat. This means the functional I (r) becomes
a constant in the geometric space as one orbital is removed
from the band.

Conversely, if the composite contains both the valence
and conduction band (� ∼ m � t), it always contains two
orbitals, even in the topologically trivial phase. In the atomic
limit, from Eq. (I8), one can show

f (k) ∼ m2

�3
. (I12)

Therefore, I2 ∼ t2/�3 remains finite, and the rank of the Hes-
sian matrix does not decrease. This means I (r) of Eq. (I9)
remains parabolic in the atomic limit.

APPENDIX J: HESSIAN MATRIX
OF NONUNIFORM PAIRING

This Appendix studies the properties of the matrix of the
second derivative of the grand potential with order parameters
beyond the uniform pairing. In particular, we show that this
matrix may not be positive semidefinite.

We restrict the interaction to be an on-site intraorbital
density-density interaction. We also assume a time-reversal
invariant channel �̂ in orbital space, i.e., under TRS, the
matrix �̂ is mapped to itself up to a U (1) phase. Then for our
interaction type, the pairing matrix at q = 0 takes the diagonal
form �̂ = diag{�1,�2, . . . ,�s}, whose entries are taken to
be real but may be nonuniform.

For simplicity, we consider the case of a single isolated
band at T = 0, with the gap equation given by Eq. (27). The

q = 0 gap equation reads

�α = Uα

N

∑
k

|umkα|2 �m,k(0)

2Emk
, 1 � α � s. (J1)

Here �m,k(0)=〈umk|�̂|umk〉 is the band-projected gap at q=0,
and Emk =

√
ξ 2

mk + �m,k(0)2 is the quasiparticle energy.
Following the discussions at the end of Appendix C and

computing the derivative of Eq. (27), we find

Mαβ = δαβ

�α

∑
k

�m,k(0)

2Emk
|umkα|2 −

∑
k

1

2Emk
|umkα|2|umkβ |2

(J2)
and

Vα,μ =
∑

k

1

2Emk
[(u∗

mkα∂μumkα − ∂μu∗
mkαumkα )�m,k(0)

− 2|umkα|2Im〈umk|�̂|∂μumk〉]. (J3)

Now U (1) symmetry imposes
∑s

β=1 Mαβ�β = 0 and∑s
β=1 Vα,μ�α = 0, so the kernel vector is instead v0 =

(�1,�2, . . . ,�s)T .
For the most general case, Rank(M ) = s − 1. To study the

semidefiniteness, we take two-orbital models as an example.
Note that the off-diagonal elements of Mαβ are all negative, so
we write

Mαβ =
(

a −b
−b c

)
, (J4)

with b > 0. Kernel eigenvector v0 leads to a = (�2/�1)b
and c = (�1/�2)b. Since a, c are the diagonal entries of
M, we conclude that for the two-orbital case, the Hessian
matrix is positive semidefinite if and only if sgn(�1�2) = 1.
This result coincides largely but not completely with the pair
density-wave transition discovered in Ref. [58] when one
Hubbard interaction turns repulsive, U1U2 < 0. However, as a
reminder, there it was also found that a solution channel with
sgn(�1�2) = −1 exists when both interactions are attractive,
U1,U2 > 0.

For models with more than two orbitals, similar but more
complicated conditions will be required for a nonpositive-
definite Hessian matrix.
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