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Recent experiments on cuprates have shown the possibility of opening a gap above the superconducting critical
temperature, in the so-called phase-fluctuating state, by enhancing the phase coherence of preformed Cooper
pairs. Quench-drive spectroscopy, an implementation of 2D coherent spectroscopy, has emerged as a powerful
tool for investigating out-of-equilibrium superconductors and their collective modes. In this paper, we enrich
the quench-drive scheme by developing a systematic generalization to study the nonlinear response of d-wave
incoherent Cooper pairs in a symmetry-resolved manner. In particular, we not only show that it is possible to
obtain a third-harmonic signal from fully incoherent pairs with an equilibrium vanishing order parameter, but
we also characterize the full flourishing 2D spectrum of the generated nonlinear response. The results provide a
deeper theoretical insight on recent experimental results, opening the door to a symmetry-driven design of future
experiments on unconventional and enhanced superconductors.
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I. INTRODUCTION

Since their discovery, high-temperature superconductors
have been intensely studied because of their properties and
rich phase diagram [1–3]. These unconventional superconduc-
tors are characterized by a complex order parameter whose
value depends on the quasiparticles’ crystal momentum: it can
assume both positive and negative values with maximum ab-
solute value at the antinodal points of the Brillouin zone, while
vanishing at the nodal points [4]. This character is a result
of the B1g symmetry of the dx2−y2 superconducting pairing,
descending from their D4h crystal structure [5,6]. However,
some features of this class of materials are still under debate,
such as the conditions and possibility to induce and experi-
mentally observe collective modes [7–14] or the origin of the
pseudogap phase [15–17].

In particular, various attempts have been made to study
and detect the amplitude Higgs mode even in unconventional
superconductors, both investigating the nonequilibrium non-
linear behavior of these materials [12,18] and characterizing
the symmetries of their response [19,20]. Recent advances
have shown that the nonlinear behavior of unconventional su-
perconductors when probed by light emerges as the blending
of different contributions, depending on electron-hole doping
and impurity concentration, among others [21–23].
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Beside this, it has been suggested that the pseudogap
phase is a precursor of the superconducting state, character-
ized by finite pairing strength and preformed Cooper pairs
with phase incoherence [15,16,24]. Even if this picture is
controversial and has been disproved to some extent, in
cuprates, in a region of the phase diagram above the super-
conducting critical temperature, the superconducting phase is
incoherent [25–27].

When an electromagnetic field interacts with a phase-
fluctuating superconductor, for some values of intensity and
frequency of the incident radiation, it is possible to induce
phase coherence among preexisting phase-incoherent Cooper
pairs: this process is responsible for the transient enhancement
of the order parameter or the appearance of a finite super-
conducting gap in the case of complete phase-incoherence
[24,28]. If this transition from an incoherent to a partially
coherent phase is fast enough, such as when induced by a
short-time quench pulse, then oscillations of the order param-
eter (quasiparticles’ and amplitude mode’s excitations) can be
produced as well, similarly to what happens in light-induced
superconductors [29].

Moreover, the generation of odd higher harmonics from
driven superconductors has been theoretically shown and
experimentally observed: this result originates from the non-
linear behavior of the optical kernel in the superconducting
state [8,18]. 2D coherent spectroscopy (2DCS) on supercon-
ductors [30] has developed as a systematic generalization of
pump probe [31] in the context of the broader concept of
high-dimensional spectroscopy [32–36]. In addition, quench-
drive spectroscopy [Fig. 1(a)] has been proposed by Puviani
et al. [37,38] as a specific scenario of THz 2DCS to study
superconductors, combining a few-cycle short-time quench
pulse and a long-time multicycle driving field. This allows us
to obtain a complex 2D nonlinear response embedding many
nonlinear contributions, providing useful information on the
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FIG. 1. Quench-drive spectroscopy of unconventional superconductors. (a) The 2D quench-drive spectroscopy is performed with a short
(quench) pulse, followed by a long Gaussian-shaped (drive) pulse at a delayed time �t . The output signal is analyzed as a function of the real
time t . (b) Band structure (on the left) and dx2−y2 gap symmetry (on the right) of the unconventional superconductors studied in this paper. The
nodal points are identified with �k = 0, for k = (kx, ky = ±kx ), while the antinodal ones are at k = (0, ±π ), (±π, 0).

optical kernel of the superconductor. In fact, this technique
can be used on superconductors to study high-harmonic
generation and to address quasiparticles’ excitations as well as
collective states, as shown by a recent experimental realization
[39]. Since then, these two-dimensional spectroscopies have
been widely developed [40–43], proving to be suitable for
extracting information and details on the superconducting
order parameter and its collective modes [23,44].

In this paper, we combine the quench-drive spectroscopy
technique, which allows us to investigate the nonequilibrium
behavior of materials, with the symmetry selection allowed
by pulses’ polarization typically used in other spectroscopic
techniques, such as Raman [5,45,46] or birefringence [28]
spectroscopy. Here, we study the nonlinear response to
quench drive pulses of fully phase-incoherent Cooper pairs
with dx2−y2 -wave pairing symmetry [Figs. 1(b) and 1(c)], as
in unconventional superconductors. In particular, we system-
atically investigate the order parameter’s dynamics and the
high-harmonic generation process as a function of the real
time and quench-drive delay time, as well as their Fourier
spectra. The main results of our paper can be summarized with
the following points:

(1) The presence of nonlinear response even with vanish-
ing order parameter at equilibrium.

(2) The induced gap oscillations have predominant B1g

and B2g symmetry according to the spectroscopy scheme.
(3) The nonlinear current response has B1g or B2g symme-

try according to whether it originates from the driving or the
quench pulse, respectively.

(4) The third-harmonic generation originates from pre-
dominant B1g symmetry excitation.

We also want to highlight that all these results are di-
rectly experimentally accessible, and the first one suggests
that our approach can be used for testing the hypothesis of
incoherent pairs above Tc. In addition, while the first result
does not necessarily require a symmetry-resolved quench-
drive spectroscopy scheme to be obtained (even if only partial
information would otherwise be caught), the other results
are only achievable with the use of the symmetry-resolved
technique introduced in this paper.

The paper is organized as follows: In Sec. II, we provide a
brief theoretical overview of nonlinear current generation by
incoherent Cooper pairs with dx2−y2 symmetry. In Sec. III, we
describe the foundations of symmetry-resolved quench-drive

spectroscopy. In Sec. IV, we show and analyze the numerical
results, studying the symmetry-resolved nonlinear response
obtained for different configurations of quench and drive
pulses. Eventually, in Sec. V we conclude summarizing
the paper and providing an outlook for possible extensions
and future research. In Appendices A and B, we propose
the full theoretical calculations of the pseudospin model
and the quench-drive nonlinear response generation, while
in Appendix C we provide more results, obtained with a
different choice of the quench and drive frequencies.

II. NONLINEAR RESPONSE
OF INCOHERENT COOPER PAIRS

In this section, we theoretically investigate the non-
linear current generated by a material in a state with
phase-fluctuating superconductivity subject to quench and
drive pulses. The result is obtained by solving the Bloch
equations derived from the pseudospin model of the BCS
Hamiltonian described in Appendices A and B.

In cuprates, recent experimental results have shown the
presence of superconducting fluctuations even above the su-
perconducting critical temperature [47]. This behavior has
been explained by postulating the presence of incoherent
Cooper pairs: in this picture, while the pairing persists
even above the critical superconducting temperature, the
Cooper pairs lose their phase coherence [48]. This has been
experimentally supported by further photoemission [49], mag-
netization [50], and transport measurements [51,52], which
suggest the presence of local correlations and superconduct-
ing pairing above the critical temperature [24]. Therefore, to
model the state with phase-fluctuating superconductivity char-
acterized by the presence of preformed incoherent pairs, we
consider an artificial equilibrium superconducting state ob-
tained by adding a random momentum-dependent phase φk to
the original Cooper pairs’ state, as in Ref. [28]. As a result, the
strength of the pairing potential remains unchanged, as well as
the number of total Cooper pairs, while the superconducting
order parameter decreases due to the reduced coherence. Ac-
cording to the maximum angle φmax which defines the range of
the random phase φk, with φk ∈ [−φmax,+φmax] we are able
to describe different conditions of the material from the pure
superconducting phase for φmax = 0 to the complete loss of
coherence for φmax = π .
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We define the gap of the pure superconducting state �
(0)
k =

�
(0)
0 fk and the superconducting order parameter in the pres-

ence of incoherent pairs as �̃
(φ)
k = �̃(φ) fk, such that

�̃(φ) = V
∑

k′
f 2
k′

�
(0)
0

2E (0)
k′

eiφk′ , (1)

where V is the same pairing strength of the original state, and
E (0)

k =
√

ε2
k + (�(0)

k )2 . We notice that the order parameter is
calculated with the sum of the coherent contributions over all
the Cooper pairs in momentum space. In phase-fluctuating
superconductors, the global coherence is lost as the Cooper
pairs acquire an additional momentum-dependent phase φk .
The superconducting gap in the new equilibrium state can be
written in the pseudospin formalism as [53]

�̃
(φ)
k = V fk

∑
k′

fk′ (σ̃k′,x − iσ̃k′,y), (2)

where fk is the dx2−y2 -wave symmetry of the superconduct-
ing pairing. Moreover, we have introduced the equilibrium
pseudospin components:

σ̃k,x = σk,x cos φk = fk
�

(0)
0 cos φk

2E (0)
k

σ̃k,y = −σk,x sin φk = − fk
�

(0)
0 sin φk

2E (0)
k

ˆ̃σ z
k = σ̂ z

k. (3)

To describe the dynamics of the system, we use the
Heisenberg’s equation of motion

∂t σ̃k = b̃ × σ̃k, (4)

with the new pseudomagnetic field defined as

b̃ = (−2�̃′ fk,−2�̃′′ fk, 2εk ). (5)

In the presence of an external gauge field represented by the
vector potential A(t ) coupling to the electrons, the pseudospin
changes in time according to

σ̃k(t ) = σ̃k(0) + δσ̃k(t ). (6)

The vector potential is not restricted here to any particular
form, but in the context of quench-drive spectroscopy we will
describe is as the sum of the quench and drive pulses’ con-
tributions, A(t ) = Aq(t ) + Ad (t ) = Aq(t − tq) + Ad (t − td ).
Here Aq(d )(t ) is the vector potential of the quench (drive)
pulse only, with amplitude Aq(d ), respectively, while Aq(d ) is
the quench (drive) pulse shape, shifted at center time tq(d ),
respectively. The external electromagnetic field is included
in the pseudomagnetic field by means of the Peierls’ min-
imal substitution k → k − eA(t ) in the fermionic energy,
resulting in

b̃k(t ) = (−2�̃′(t ) fk,−2�̃′′(t ) fk, εk−eA(t ) + εk+eA(t ) ). (7)

Here we considered the limit of a small superconducting
gap velocity (in comparison to the electron velocity), so the
minimal coupling of the pairing term can be neglected [54].
The equation of motion in Eq. (4) can be decomposed into
a set of differential equations, whose solution provides the

time-dependent value of the pseudospin σ̃k(t ). Once this term
is known, we can obtain the value of the time-dependent
order parameter �̃(φ)(t ) = �̃(φ)(0) + δ�̃(φ)(t ), as well as the
generated nonlinear current (see Appendix B). However, we
notice that the complex order parameter can be written as

�̃(φ) = |�̃(φ)| eiθ , (8)

where θ is the global phase of the superconducting gap. How-
ever, an additional momentum-dependent phase appears in the
definition of the order parameter according to Eq. (1): as a
result, the gap equation is not self-consistent anymore and the
value of the gap is subject to some time-dependent noise due
to the phase incoherence of the preformed pairs.

In the full generated current, we can distinguish two non-
vanishing contributions, namely, a linear component with the
same oscillating behavior of the driving field A(t ),

j(1)(t ) = −e2
∑

k

A(t ) · ∇kvk
(
2 ˆ̃σ z

k (0) + 1
)
, (9)

and a nonlinear term including all higher orders:

j(NL)(t ) = e
∑

k

vk−eA(t )
(
2 ˆ̃σ z

k (t ) − 2 ˆ̃σ z
k (0)

)
. (10)

Since the third pseudospin component in equilibrium is inde-
pendent on the phase coherence [Eq. (3)], the linear current
in Eq. (9) is always nonzero, even for fully incoherent Cooper
pairs and vanishing gap.

More details on the solution of the equation of motion and
the derivation of the generated current for the quench-drive
setup are provided in Appendices A and B.

III. SYMMETRY-RESOLVED
NONLINEAR 2D SPECTROSCOPY

In this section, we propose the theoretical foundations for
the symmetry-resolved quench-drive spectroscopy, identify-
ing the main nonlinear components for different configura-
tions and their corresponding symmetry [55].

First, we can conveniently write the frequency spectrum
of gap oscillations, as obtained from the solution of the
Bloch equations after transforming into Fourier space, with
(ω, ν) as the conjugate of the time variables (t,�t ), using the
convolution operation (∗) defined as [B ∗ C](x) = ∫

dy B(y)
C(x − y) [38].

δ�k(ω, ν) ∝ [Ai ∗ Aj](ω, ν) γi j (k), (11)

with i, j ∈ {x, y} and the vector potential Ai, j including both
the quench and the driving fields. The Raman-like factor
γi j (k) = ∇k(vk · ĵ) (where ĵ is the unitary vector along the
direction of j) represents the second-order light-matter cou-
pling and includes the overall symmetry of the gap oscillations
(Fig. 2). In this paper, we are considering unconventional
superconductors characterized by a D4h crystal symmetry,
with dx2−y2 order parameter. For this point-group symmetry,
the only relevant irreducible representations (irreps) are A1g,
B1g and B2g. Therefore, the Raman-like factors can be decom-
posed into the irreps of the D4h point group as follows [45]:

γxx = γA1g + γB1g, (12a)

γyy = γA1g − γB1g, (12b)
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FIG. 2. Table of symmetries of Raman factors, γrs, with r, s ∈
{q, p}, where the labels q and p represent the quench and drive
pulses’ directions, respectively.

γxy = γB2g, (12c)

γx′x′ = γA1g + γB2g, (12d)

γx′y′ = γB1g, (12e)

γy′y′ = γA1g − γB2g, (12f)

γx′x = (γA1g + γB1g + γB2g )/
√

2, (12g)

γx′y = (γA1g − γB1g + γB2g )/
√

2, (12h)

with x̂′ = (x̂ + ŷ)/
√

2 and ŷ′ = (x̂ − ŷ)/
√

2, corresponding
to an angle with respect to the x̂ axis of π/4 and −π/4,
respectively. The general rule given the angles α and θ with
respect to the x̂ axis reads [28]

γαθ (k) = γA1g cos (α − θ ) + γB1g cos (α + θ )

+ γB2g sin (α + θ ). (13)

Similarly, the third-order nonlinear current, which represents
the lowest-order nonvanishing nonlinear contribution, can be
written as

j (3)
i (t,�t ) ∝ Aj (t,�t )

∑
k

γi j (k) δσ̃ z
k (t,�t ), (14)

with i, j, k, l ∈ {x, y}. We notice that in this expression the
order parameter’s oscillations of Eq. (11) are embedded into
the time-dependent pseudospin component δσ̃ z

k (t,�t ). It is
convenient to consider its spectrum in Fourier space, where
(ω, ν) are the conjugate of the variables (t,�t ), as

j (3)
i (ω, ν) ∝

∑
j,k,l

∫
dω1dω2dω3 χ

(3)
i jkl (ω − ω1) Aj (ω1)

× Ak (ω2) Al (ω3) δ(ω − ω1 − ω2 − ω3), (15)

where the delta function over the frequencies enforces en-
ergy conservation. Here we also introduced the third-order
nonlinear susceptibility χ

(3)
i jkl = γi j γkl χ (3)

ρρ , where χ (3)
ρρ is

the third-order density-density response function. Here we
omitted the sum over k and the frequency dependencies for
convenience of notation.

As an example, we can derive the symmetry of the xyx′y
response, which enters the nonlinear current along the x di-
rection with interaction of pulses along x̂′ and ŷ as follows:

χ
(3)
xyx′y = χ (3)

ρρ γxy γx′y

= χ (3)
ρρ γB2g (γA1g − γB1g + γB2g )/

√
2 = χ

(3)
B2g

/
√

2, (16)

with χ
(3)
B2g

= χ (3)
ρρ γB2g γB2g/

√
2, which is the only nonvanish-

ing term in Eq. (16) after summing over the full Brillouin
zone. When analyzing the quench-drive spectra, we can
substitute the subscripts m, q, and d representing the measure-
ment, quench and drive axis, respectively, to Eqs. (11), (14),
and (15).

As shown by Puviani et al. [38], there are six contributions
of the third-order nonlinear susceptibility in a quench-drive
spectroscopy setup, which sum up to provide the full nonlinear
response, namely (Fig. 3),

χ (3) =χ
(3)
mddd + χ

(3)
mddq + χ

(3)
mqdd

+ χ
(3)
mdqq + χ

(3)
mqqd + χ (3)

mqqq. (17)

Each of them can be decomposed into the D4h symmetry
irreps as shown before. For example, selecting the output
along the x axis parallel to the driving field, and with a quench
pulse along the x̂y diagonal, i.e., m = x, q = x′, d = x, for the
purely driving response, we get

χ
(3)
mddd = χ (3)

ρρ γmd γdd

= χ
(3)
A1g

+ χ
(3)
B1g

, (18)

where the first Raman factor represents the measurement-
driving vertex, while the second corresponds to the driving-
driving one. Analogously, for the mixed quench-drive re-
sponse quadratic in the quench amplitude field, we have

χ
(3)
mdqq = χ (3)

ρρ γmd γqq = χ
(3)
A1g

(19)

and

χ
(3)
mqqd = χ (3)

ρρ γmq γqd

= (
χ

(3)
A1g

+ χ
(3)
B1g

+ χ
(3)
B2g

)
/
√

2, (20)

which will appear at ν �= 0 in the two-dimensional quench-
drive Fourier spectrum of the nonlinear response.

Interestingly, this example shows in practice how the na-
ture of the two-dimensional spectroscopy allows us to extract
an A1g symmetry response (and, similarly, the B1g and B2g)
from only one susceptibility component. Moreover, the pres-
ence of multiple contributions for different values of the 2D
frequency components (ω, ν) allows us to measure and se-
lectively address all the symmetries response with only one
experiment.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we present the results obtained from
the numerical implementation of the expressions and time-
dependent Bloch equations show in Secs. II and III. We
modeled the electronic band dispersion of the unconventional
superconductor as εk = −2t (cos kx + cos ky) − μ, where the
quasimomentum components are expressed in units of the
lattice constant a. We used the values of t = 125 meV
for the nearest-neighbor hopping energy, chemical poten-
tial μ/t = −0.2, obtaining an electron occupation n = 0.9
as in Ref. [24]. For the dx2−y2 order parameter �

(0)
k =

�(0)
max(cos kx − cos ky)/2, we chose the value �(0)

max = 31 meV.
The calculations were performed with a summation over the
full Brillouin zone {kx, ky} ∈ {−π, π} with a homogeneous
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FIG. 3. Table of symmetry-resolved nonlinear spectra contributions. The table shows the six symmetry-resolved components of the third-
order nonlinear susceptibility χ

(3)
i jkl ∝ χ (3)

ρρ γi jγkl (with {i, j, k, l} ∈ {m, q, d}, which are the measurement, quench and drive axis, respectively)
in a 2D quench-drive spectrum on a D4h crystal. We considered three (I)–(III) given input (quench and drive) directions as well as two
(a), (b) measurement axes.

square sampling and a total number of k points Nk = 106.
For the time-dependent evolution, we used a time step of
δt = 3 × 10−4 ps, and for the quench-drive delay δ�t =
2.5 × 10−2 ps. For the pulses, we used a few-cycle quench
and a Gaussian-shaped long-duration drive, with vector field
amplitudes for the quench and drive pulses Aq = 0.8 and
Ad = 0.8, respectively. Both of the pulses have been described
by sinusoidal functions with frequencies �q and �d , respec-

tively, and Gaussian envelopes of shape e−(t−tq,d )/(2σ 2
q,d ) with

2σ 2
q = 0.01 ps2 and 2σ 2

d = 5 ps2, respectively. Moreover, we
set the reference time t = 0 at the center of the Gaussian
envelope of the driving pulse. The maximum intensity used
for each pulse is provided for the corresponding vector po-
tential in units of h̄/(e a), where e is the electron charge and
a the lattice constant. Moreover, we chose the frequency of
quench (�q) and drive (�d ) to be different but both in the
THz spectrum, with values �d = 11 THz and �q = 7 THz. In
general, different choices of amplitude and frequencies can be
made to suppress or enhance specific symmetry contributions.
In this paper, we focused on the fully phase-incoherent Cooper
pairs, with φmax = π , for which �̃(φ) = 0.

In our calculations and analysis, we restricted ourselves to
only three quench-drive symmetry configurations. These can
be addressed in terms of the quench and drive angles defined
with respect to the x̂ axis αq and αd , respectively, as follows:

(I ) αq = 0 αd = 0, (21a)

(II ) αq = π/4 αd = π/4, (21b)

(III ) αq = π/4 αd = 0. (21c)

We studied the behavior of the superconducting gap
(Sec. IV A) and the generated nonlinear current (Sec. IV B)

along the (a) x and (b) y direction, as well as their correspond-
ing 2D spectra.

More results, obtained with drive and quench frequencies
�d = 3.66 THz and �q = 7.48 THz, respectively, are pro-
vided in Appendix C: in this case, the quench pulse is nearly
resonant with the bare superconducting gap, while the drive is
at a much lower energy.

A. Emergent superconducting gap and oscillations

First, we calculated the behavior of the order parameter,
i.e., the superconducting gap, within the quench-drive spec-
troscopy setup. In Figs. 4(a)(I)–4(a)(III), we show the 2D
time-dependent behavior of the absolute value of the gap. In
all our simulations, we have set the reference time t = 0 at the
center of the Gaussian envelope of the driving pulse. Since
the initial system is formed by incoherent pairs, the initial
superconducting gap is zero. However, when the quench and
drive pulses perturb the incoherent state, they are able to in-
duce coherence in the Cooper pairs, giving rise to a finite gap
value, in accordance with Ref. [28]. However, thanks to the
quench-drive spectroscopic technique, exploiting the symme-
try resolution for different quench and drive directions, we can
analyze more in depth the gap behavior and the symmetry of
its oscillations. Indeed, in Ref. [24] it was shown that a quench
pulse along the x axis, i.e., with αq = 0, tends to reduce
the superconducting gap decreasing coherence, while with
αq = π/4 it is increased. Here, we go beyond that scheme,
observing that, with the given frequencies of the pulses, a long
driving pulse with αd = 0 can also induce coherence in a fully
incoherent setup, while a quench along the same direction
keeps suppressing it [Figs. 4(a)(I) and 4(a)(III)]. On the other
hand, a long driving pulse with αd = π/4 can also increase
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FIG. 4. Gap oscillations and frequency spectra. (a) 2D oscillations in (t,�t ) of the absolute value of the superconducting gap, |�|, for the
three scheme configurations (I)–(III) described in the main text and illustrated by the plots of quench and drive pulses. The main symmetry
contributions are written for the strongest signals, according to the table in Fig. 2. (b) Absolute value of the 2D Fourier transform of the full
complex gap, |F{�(t,�t )}| = |�(ω, ν )|.

the gap coherence, but with less efficiency [Fig. 4(a)(II)]. To
understand this, we can use the symmetry table in Fig. 2:
in fact, for both Figs. 4(a)(I) and 4(a)(III) conditions, the
pairs are excited mainly in the B1g symmetry channel. On
the contrary, in the Fig. 4(a)(II) scheme, the gap is excited
with a predominant B2g symmetry. As a consequence, the B1g

symmetry enhances the gap if used in a driving, while it tends
to suppress it if imposed by a short quench.

Additional information can be extracted from the analysis
of the 2D Fourier spectra of the complex gap, as shown in
Fig. 4(b). On the one hand, there is a 2�d oscillation for
the (II) scheme, which results from the B2g excitation, while
no 2� peak (originating from quasiparticles’ and amplitude
mode excitations) appears here. On the other hand, in schemes
(I) and (III), where the B1g symmetry is mainly excited as the
relevant one, we notice dominant frequency components at
ω ≈ 0.5 �d and ω ≈ 2.5 �d . The reason is that within this
symmetry the dominant excitation of the superconducting gap
is provided by the quasiparticles’ excitation and amplitude
mode, which have an intrinsic frequency of ω = 2�̃(φ) and
ω ≈ 0.4 �̃(φ), as predicted in Ref. [20].

B. Nonlinear current generation

Since the order parameter is not easily accessible in a direct
way in experiments, we analyze here the generated nonlinear
current by the material: this is because the linear current
contains a strong response from the incoherent pairs, while
the interesting information is contained in the purely nonlinear
part. In Fig. 5, we show the 2D current and the corresponding
spectra for the (I)–(III), (a) and (b) configurations, indicat-
ing the main symmetry contributions to each term, obtained
from Fig. 3.

We first notice that the current measured along the x direc-
tion [Figs. 5(a)(I), 5(a)(II) and 5(a)(III)] follows the behavior
of the gap in Fig. 4, even though the intensity peak for the
B1g symmetries (I), (III) is one order of magnitude larger than
the one with B2g (II). This can be partly ascribed to the pulse
duration and the frequency difference between the quench and
the drive, even though the corresponding gap intensities are in
the opposite order.

The calculations performed selecting the polarization
along the y axis are particularly interesting: In fact, the
response of configuration Fig. 5(I)(b) vanishes (in accor-
dance to the symmetry-resolved susceptibility in Fig. 3),
and the response in Fig. 5(II)(b) is surprisingly lower than
the one in Fig. 5(III)(b), even though the gap for t = �t
in the latter case is smaller than in the former. We can
also notice that the response in Fig. 5(II)(b) occurs only
when quench and drive overlap and extends along the t
axis, while the current in Fig. 5(III)(b) is visible only
along the diagonal t = �t , starting when the driving overlaps
with the quench. This means that in the former case the χmdqq,
χmddq and χmqqd are the most relevant contributions, while
in the latter χmqdd is, with B2g and B1g dominant symmetry,
respectively. Overall, the B2g symmetry is responsible for the
gap enhancement from a short pulse, while the B1g symmetry
dominates when a long driving is applied, as well as in the
nonlinear current generation.

Additional information can be extracted from the 2D spec-
tra, obtained with the Fourier transform of the time-dependent
plots (Fig. 6). In general, the signals at ν = 0 are inde-
pendent of the quench pulse, while all the diagonal lines
originate from at least a quench pulse component. The hor-
izontal lines with ω = const, which appear in Fig. 6(I)(a) and
Fig. 6(III)(a) in correspondence of the first harmonic signal,
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FIG. 5. 2D nonlinear current. Plots of the generated nonlinear current as a function of real time t and the quench-drive delay time �t for
three different schemes (I)–(III) described in the main text, and two polarized output measures along (a) x and (b) y axis, respectively. The
symmetries written represent the main contribution according to the table of the nonlinear susceptibilities in Fig. 3. Be aware of the different
color scale for each plot.

are also independent on the ω frequency and are generated
by χ

(3)
mddd .

We first notice that, while in the Fig. 6(II)(b) scheme
the most prominent features are peaks at (ω = �d , ν = n�d )
followed by diagonal spectral lines, in Fig. 6(III)(b) the diag-
onal features peaked below ω = �d are more visible, at ω ≈
�q, ν ≈ �q. In particular, the diagonal signal starting from

the origin and with ω = −ν is the sum of the contributions of
nonlinear susceptibilities χ

(3)
mqdd + χ

(3)
mddq + χ (3)

mqqq.
The third harmonic generated by the driving pulse, ap-

pearing along the vertical axis for ν = 0, is generated by
the third-order nonlinear susceptibility χ

(3)
mddd , and appears

in Figs. 6(a)(I) and 6(a)(III). Its importance is twofold:
First, this generally proves that it is possible to generate a

FIG. 6. 2D nonlinear current spectra. Plots of the Fourier transform of the nonlinear current in Fig. 5 for three different schemes (I)–(III)
described in the main text, and two polarized output measures along (a) x and (b) y axis, respectively. Be aware of the different log color scale
for each plot.
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third-harmonic response even in fully incoherent Cooper pairs
exhibiting an initially null gap, when properly quenched and
driven. This feature has been experimentally shown in cuprate
superconductors above their critical temperature, where a
phase-fluctuating phase with a vanishing gap is expected [10].
Second, the third harmonic is generated only when the B1g

symmetry is explicitly excited (see also Fig. 3). However,
we can also notice that in configuration Fig. 6(III)(b) there
is a nonvanishing third-harmonic component at ν = 0, origi-
nating from a diagonal line which accidentally overlaps with
ν = 0 due to a higher-order quench-drive mixing, of the kind
χ

(5)
mq,qddd .

In addition to this analysis, for fully incoherent Cooper
pairs, we extended the same approach to partially incoher-
ent superconductors (see Appendix C for the results and a
detailed analysis). We have shown that the main features of
the symmetry-resolved nonlinear quench-drive spectroscopy
are still in place, since they are determined by the symmetry
of the underlying Cooper pairing. This would allow us to
point whether there are preformed pairs even with a van-
ishing superconducting order parameter. Moreover, it would
be possible to discriminate between a fully incoherent and a
partially incoherent superconductor by analyzing the intensity
of the third-harmonic signal and especially at its time- and
frequency-dependent modulations for given symmetries.

V. CONCLUSION AND OUTLOOK

In this paper, we have calculated the nonlinear response of
a phase-fluctuating superconductor with dx2−y2 pairing sym-
metry without phase coherence, characterized by vanishing
superconducting gap in equilibrium. We have adopted the
recently proposed quench-drive spectroscopy scheme [37,38],
with THz pulses, inducing a finite superconducting gap and
analyzing the generated nonlinear current response. In partic-
ular, we have developed a symmetry-resolved analysis, which
allows us to selectively address symmetry components ac-
cording to the quench and drive pulses and the measurement
axis chosen.

We have found (i) a nonlinear response even with zero
equilibrium order parameter and (ii) induced gap oscilla-
tions with predominant B1g and B2g symmetry, according to
the spectroscopy scheme. Moreover, (iii) the nonlinear cur-
rent response has B1g or B2g symmetry according whether
it originates from the driving or the quench pulse, respec-
tively, while (iv) the third harmonic generation originates from
predominant B1g symmetry excitation. We stress that the re-
sults (ii)–(iv) explicitly require the symmetry-based technique
introduced in this paper to be obtained, giving one demon-
stration of the power and relevance of symmetry-resolved
quench-drive spectroscopy.

We also highlight that our theoretical approach can be
applied to any superconductor and superconducting-related
effect, since it is based on the redundancy symmetry breaking
to generate a nonlinear response. Moreover, the symmetry-
resolved analysis is extremely powerful as it allows us to
identify the underlying symmetry of the order parameter, the
Cooper pairing, and any physical mechanism giving rise to a
photon-induced response. Among these, we mention the pos-
sibility to address different collective excitations [30,56], and

even helping in shining light on the superconducting diode
effect [57].
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APPENDIX A: PSEUDOSPIN MODEL
FOR A SUPERCONDUCTOR

In this Appendix, we provide a detailed description of the
usage of the pseudospin model to solve the equation of motion
of a superconductor when perturbed by an external field. To
describe the superconducting phase of a material, we adopt
the BCS model expressed by the mean-field Hamiltonian

ĤBCS =
∑
k,σ

εkĉ†
k,σ ĉk,σ −

∑
k

(�kĉ†
k,↑ĉ†

−k,↓ + H.c.), (A1)

where εk = ξk − μ, ξk is the electronic band dispersion, μ

the chemical potential, and �k the momentum-dependent su-
perconducting order parameter. This latter is described by a
complex number which satisfies the gap equation

�k =
∑

k′
Vk,k′ 〈ĉ−k′,↓ĉk′,↑〉, (A2)

Vk,k′ being the (momentum-dependent) pairing interaction.

It can be factorized as Vk,k′ = V fk fk′ , with fk = f
(dx2−y2 )

k =
(cos kx − cos ky)/2 the d-wave form factor of the supercon-
ducting order parameter. Therefore, it follows from Eq. (A2)
that the gap function itself can be factorized as �k = �0 fk.

We now rewrite the BCS Hamiltonian using the pseudospin
formalism as [18,53,58]

ĤBCS =
∑

k

bk · σ̂k, (A3)

with the pseudospin vector

σ̂k = 1
2 �̂

†
kτ�̂k, (A4)

which is defined in Nambu-Gor’kov space, with spinor �̂
†
k =

(ĉ†
k,↑ ĉ−k,↓) and the Pauli matrices τ = (τ1, τ2, τ3). The

pseudomagnetic field is defined by the vector

bk = (−2�′ fk,−2�′′ fk, 2εk ), (A5)

where εk = ξk − μ, ξk being the fermionic band dispersion,
μ the chemical potential.

In the presence of an external gauge field represented by
the vector potential A(t ) coupling to the electrons, the pseu-
dospin changes in time according to

σk(t ) = σk(0) + δσk(t ), (A6)

with δσk(t ) = (xk(t ), yk(t ), zk(t )). The external electromag-
netic field is included in the pseudomagnetic field by means
of the minimal substitution k → k − eA(t ) in the fermionic
energy, resulting in

bk(t ) = (−2�′(t ) fk,−2�′′(t ) fk, εk−eA(t ) + εk+eA(t ) ). (A7)
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The Heisenberg equation of motion for the pseudospin can be
written in the Bloch form, ∂tσk = bk × σk, providing the set
of differential equations

∂t x(t ) = −(εk−eA + εk+eA)y(t ) − fk

Ek
εkδ�

′′(t )

+ 2δ�′′(t ) fkz(t ),

∂t y(t ) = 2εkx(t ) + 2(� + δ�′(t )) fkz(t )

− δ�′ fk
εk

Ek
+ � fk

2Ek
(εk−eA + εk+eA − 2εk ),

∂t z(t ) = −2 � fk y(t ) − � f 2
k

Ek
δ�′′(t ) − 2δ�′′(t ) fkx(t ).

(A8)

Here, for simplicity of calculations and without loss of gen-
erality, we assumed a real order parameter, �′′(t = 0) = 0, at
the initial time t = 0, so y(0) = 0.

APPENDIX B: QUENCH-DRIVE NONLINEAR
RESPONSE OF A SUPERCONDUCTOR

To describe a quench-drive experiment, we have to choose
the appropriate vector potential A(t ) = Aq(t ) + Ad (t ) =
Aq(t − tq) + Ad (t − td ), where Aq(t ) is the quench pulse cen-
tered at time t = tq, Ad (t ) is the driving field centered at
t = td . Introducing the time-delay �t = td − tq and putting
td = 0, we can rewrite A(t ) = Aq(t + �t ) + Ad (t ). There-
fore, the expressions in Eq. (A8) depend on both t and �t .

The solution of Eq. (A8) provides the time-dependent
pseudospin from which the time-dependent order parameter
�(t ) and the generated current j(t ) can be calculated. From
the self-consistent gap equation, we get

�k(t ) = V fk

∑
k′

σ x
k′ (t ) − iσ y

k′ (t ). (B1)

The current generated by the superconductor in this quench-
drive setup is given by the expression

j(t,�t ) = e
∑

k

vk−eA(t,�t )〈ĉ†
k,↑ĉk,↑ + ĉ†

k,↓ĉk,↓〉(t,�t ).

(B2)

To separate the linear and the nonlinear contributions to the
full generated output current, we first expand the velocity in
series of powers of the vector potential A:

vk−eA(t,�t ) = vk + ∇A(vk−eA(t,�t ) )|A=0 · A + . . . . (B3)

We note that ∇A(·)|A=0 = [∇A(κ ) ∇κ (·)]|A=0 =
−e ∇κ (·)|A=0, with κ = k − eA. Here we omitted the
explicit time dependence of A and κ from t and �t . Now we
can rewrite Eq. (B3) as

vκ = vk − e ∇κvκ |A=0 · A + . . . . (B4)

In particular, the equivalence ∇κvκ |A=0 = ∇kvk holds. There-
fore, we can simplify Eq. (B3) writing

vk = vk − e A · ∇kvk + . . . . (B5)

Additionally, we expand the electron number

〈n̂k〉(t,�t ) = 2zk(t,�t ) + 2σ̂ z
k (0) + 1, (B6)

where we used the relation n̂k = 2σ̂ z
k + 1. Therefore, Eq. (B2)

can be expanded in the lowest orders as

j(t,�t ) ≈ e
∑

k

(vk − e A(t,�t ) · ∇kvk )

· (
2zk(t,�t ) + 2σ̂ z

k (0) + 1
)
. (B7)

We can decompose the generated current along a generic
x′ axis to extract specific symmetry components:

jx′ (t,�t ) = (j(t,�t ) · x̂′) x̂′

= ( jx(t,�t ) cos θ + jy(t,�t ) sin θ ) x̂′. (B8)

The contribution to the current in Eq. (B7) at the lowest order
in the external field is given by

j(0)(t,�t ) = e
∑

k

vk
(
2σ̂ z

k (t,�t ) + 1
)
, (B9)

which vanishes due to parity. At the next order, the linear term
reads

j(1)(t,�t ) = −e2
∑

k

A(t,�t ) · ∇kvk
(
2σ̂ z

k (0) + 1
)
. (B10)

The full nonlinear response, which is given by the sum of all
the odd orders of the current expansion, can be conveniently
calculated by

j(NL)(t,�t ) = e
∑

k

vk−eA(t,�t )
(
2σ̂ z

k (t,�t ) − 2σ̂ z
k (0)

)
.

(B11)

We can also explicitly write the expression of the dominant
nonvanishing nonlinear term generated by the driving pulse,
the third order component, as follows:

j(3)(t,�t ) = −2e2
∑

k

zk(t,�t ) A(t,�t ) · ∇kvk, (B12)

where zk(t,�t ) is the third component of the pseudospin
vector σk(t,�t ), containing the information of the state of the
system perturbed by the quench pulse. The paramagnetic term
is neglected here due to suppression by parity [18].

In general, it is useful to extract the 2D frequency spectrum
of such a response to analyze the relevant high harmonics: For
this reason, we compute the 2D Fourier transform with respect
to the evolution time t and the quench-drive delay time �t ,
obtaining the reciprocal variables ω ≡ F̃ (t ) and ν ≡ F̃ (�t ),
respectively.

As an example, the 2D Fourier transform of Eq. (B12) to
provide the third-harmonic response of the driving frequency
along the direction x̂′ is

j (3)
x′ (ω = 3�d , ν) = − 2e2Ad

∑
k

Fx′ (k) zk(ω = 2�d , ν)

− 2e2Ad

∑
k

Fx′ (k) zk(ω = 4�d , ν),

(B13)
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FIG. 7. Gap oscillations and frequency spectra. (a) 2D oscillations in (t,�t ) of the absolute value of the superconducting gap, |�|, for the
three scheme configurations (I)–(III) described in the main text and illustrated by the plots of quench and drive pulses. (b) Absolute value of
the 2D Fourier transform of the full complex gap, |F{�(t,�t )}| = |�(ω, ν )|.

where Fx′ is an appropriate function independent of the fre-
quency which contains information on the driving shape, the
measurement axis, and the quasiparticles’ momentum.

APPENDIX C: ADDITIONAL RESULTS

We present here additional results, obtained for the same
quench and drive intensities as the ones in the main text, i.e.,
Ad = Aq = 0.8, as well as the pulses’ duration and shape,
but with different frequencies, namely, �d = 3.66 THz and
�q = 7.48 THz, respectively. As a consequence, the quench
is nearly resonant with the maximum superconducting equi-
librium gap, �max = 31 meV = 7.5 THz, while the driving
pulse is far from it. The generated nonlinear current is there-
fore affected by these conditions, and the response appears in
some cases qualitatively and quantitatively different from the
one obtained in the main text, even if the symmetries involved
in the quench-drive spectra are the same.

We first analyze the behavior of the absolute value of the
superconducting gap as a function of the real time t and
the delay time �t . Interestingly, we realize that the gap is
very poorly excited in configurations (I) and (III) due to the
B1g symmetry and the driving contribution, with a maximum
amplitude of about 3 meV, and as low as 1 meV on the
central peak of the driving field at t = 0. On the other hand,
scheme (II) has a higher gap excitation. The corresponding
2D Fourier spectra show that, for schemes (I) and (III) there
are no proper gap oscillations, but rather an almost frequency-
independent enhancement, plus quench-induced contributions
[vertical lines in Figs. 7(I) and 7(III)(b)]. On the other hand,
for scheme (II) with diagonal quench and drive pulses, where
the B2g symmetry is excited, a gap oscillation at ω = 2�d due
to the driving appears, as well as at ω = 2�, which includes

Higgs and quasiparticles’ excitations at twice the induced gap
amplitude, around 8.5 meV.

We now turn to the generated current: Due to the different
resonance conditions, we expect the current responses
involving a quench pulse to be more intense, saturating
the purely drive signals. In particular, for schemes (I) and
(III) where the gap excitation and oscillations are much
smaller, we expect the susceptibility term independent of the
frequency to be the most relevant [8].

In Figs. 8 and 9, the measured nonlinear responses in
time and the corresponding 2D Fourier spectra are shown,
respectively. We notice that the current measured along the
x axis for schemes (I) and (III), involving mainly the B1g

symmetry, is quantitatively different from the one in Fig. 5.
The lower intensity (the scales of Figs. 5 and 8 are different),
in fact, is explained by the fact that the main response involves
the driving pulse, and the corresponding susceptibility is now
more far from resonance. On the other hand, scheme (II),
with quench and drive pulses along the x̂y diagonal axis, now
provides a slightly stronger response, involving mainly the
quench pulse.

The 2D Fourier spectra in Fig. 9 are even more dense of in-
formation. In fact, the spectra of schemes (I) and (III) present
much fewer features than with the choices of frequency in
the main text: in particular, Figs. 9(I)(a) and 9(II)(a) have a
weaker third harmonic generation and only one diagonal line,
representing the nonequilibrium modulation due to the quench
pulses. Moreover, the current measured along the y axis in Fig.
9(III)(b) has no first harmonic contribution, and is saturated by
the same nonequilibrium modulation of Fig. 9(I),(III)(a). On
the other hand, the spectra of Figs. 9(a)(II) and 9(b)(II) are
much more complex, exhibiting more and stronger frequency
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FIG. 8. 2D nonlinear current. Plots of the generated nonlinear current as a function of real time t and the quench-drive delay time �t for
three different schemes (I)–(III) described in the main text and two polarized output measures along (a) x and (b) y axis, respectively. This
figure corresponds to Fig. 5, here obtained with different frequencies of quench and drive pulses, as explained in the main text. Be aware of
the different color scale for each plot and with respect to Fig. 5.

modulations and the emergence of a nonequilibrium third
harmonic at ω = 3�d , ν = 0.

All in all, we have observed how the nonlinear signal is
still present in (I) and (III) configurations, the current intensity
being higher than in scheme (II), even if the gap is less excited
in the former. The reason of this behavior can be ascribed once
again to the symmetries involved and here identified.

We now turn to consider a phase-fluctuating superconduc-
tor with φmax = π/8. In this situation, the superconducting
order parameter is nonzero even in equilibrium, and the res-
onance energy of the quasiparticles’ fluctuations is much
higher. We present in Figs. 10 and 11 the symmetry-resolved
2D nonlinear current and the corresponding Fourier transform
signals in frequency, respectively. As we can notice, these

FIG. 9. 2D nonlinear current spectra. Plots of the Fourier transform of the nonlinear current in Fig. 8 for three different schemes (I)-(III)
described in the main text and two polarized output measures along (a) x and (b) y axis, respectively. This figure corresponds to Fig. 6, here
obtained with different frequencies of quench and drive pulses, as explained in the main text. Be aware of the different log color scale for
each plot.
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FIG. 10. 2D nonlinear current for partially incoherent pairs. Plots of the generated nonlinear current as a function of real time t and the
quench-drive delay time �t for three different schemes (I)–(III) described in the main text, and two polarized output measures along (a) x and
(b) y axis, respectively. This figure corresponds to Fig. 5, here obtained for phase-fluctuating superconductors with φmax = π/8. Be aware of
the different color scale for each plot and with respect to Fig. 5.

are qualitatively similar to the results of Figs. 5 and 6: this
demonstrates that the nonlinear current response originates
mainly from the presence of the underlying Cooper pairing,
which allows us to transiently enhance the superconducting
gap in the quench-drive setup. However, we notice here sig-
nificant quantitative differences with respect to the purely
incoherent case. In fact, it is possible to notice in Fig. 10

the higher intensity in all the nonvanishing responses. In-
terestingly, this quantitative aspect leads to a non-negligible
qualitative difference: namely, the third harmonic signal for
configurations Figs. 11(a)(II) and 11(b)(II) is quantitatively
distinguishable, and the ones in Figs. 11(a)(I) and 11(a)(III)
have numerous features which modulate its time evolution
with frequencies multiple of the driving frequency �d . In

FIG. 11. 2D nonlinear current spectra for partially incoherent pairs. Plots of the Fourier transform of the nonlinear current in Fig. 8 for
three different schemes (I)–(III) described in the main text and two polarized output measures along (a) x and (b) y axis, respectively. This
figure corresponds to Fig. 6, here obtained for phase-fluctuating superconductors with φmax = π/8. Be aware of the different log color scale
for each plot.
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conclusion, we can claim that the main features of the
symmetry-resolved nonlinear quench-drive spectroscopy are
determined by the symmetry of the underlying Cooper pair-
ing, allowing us to distinguish whether there are preformed
pairs even the in absence of a superconducting order param-

eter. However, it would be possible to discriminate between
a fully incoherent and a partially incoherent superconductor
by analyzing the intensity of the third-harmonic signal and
especially at its time- and frequency-dependent modulations
for given symmetries.
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