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Finite-momentum and field-induced pairings in orbital-singlet spin-triplet superconductors
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Finite-momentum pairing in a Pauli-limited spin-singlet superconductor arises from the pair-breaking effects
of an external Zeeman field, a mechanism which is not applicable in odd-parity spin-triplet superconductors.
However, in multiorbital systems, the relevant bands originating from different orbitals are usually separated
in momentum space, implying that orbital-singlet pairing is a natural candidate for a finite-momentum pairing
state. We show that finite-momentum pairing arises in even-parity orbital-singlet spin-triplet superconductors
via the combination of orbitally nontrivial kinetic terms and Hund’s coupling. The finite-momentum pairing is
then suppressed with an increasing spin-orbit coupling, stabilizing a uniform pseudospin-singlet pairing. We also
examine the effects of the magnetic field and find field-induced superconductivity at large fields. We apply these
findings to the multiorbital superconductor with spin-orbit coupling, Sr2RuO4, and show that a finite-momentum
pseudospin-singlet state appears between the uniform pairing and normal states. Future directions of inquiry
relating to our findings are also discussed.
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I. INTRODUCTION

Superconductivity is conventionally understood as the
condensation of electron pairs near the Fermi energy with
momentum k and −k, i.e., a zero center-of-mass momentum,
referred to as uniform pairing. A term in the Hamiltonian
that breaks the degeneracy of the paired electrons gener-
ally suppresses the pairing. For instance, in the case of a
spin-singlet superconductor (SC), the Zeeman field acts as
a pair breaker and destroys the superconductivity. However,
before the normal state is reached, a finite center-of-mass
momentum, q (finite-q) pairing known as the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state [1,2], is found between
the uniform pairing and normal states as the Zeeman field
increases. Unlike the spin-singlet pairing, a finite-q pairing in
a spin triplet may require a different mechanism because the
Zeeman field acting on the triplet pairs will suppress only the
component of the d vector parallel to the field. If the d vector
is not pinned along a certain direction, it can rotate under the
field and thus an FFLO state is not expected.

A natural question is what the potential mechanisms for
finite-q pairing in spin-triplet SCs are. Finite-q pairing that
occurs without the explicit breaking of time-reversal symme-
try is often referred to as a pair-density wave (PDW) [3] and
has been conjectured to be present in a wide variety of corre-
lated materials of interest [4–10]. The putative spin-triplet SC,
UTe2, is one of the materials which has shown evidence for
PDW order [7,8]. The Fe-based SCs and Sr2RuO4 have dis-
played signatures of finite-q pairing [9–14] and an interorbital
spin-triplet order parameter has been argued as a plausible
option for both of them [15–25]. While the possibility of
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finite-q spin-triplet pairing remains a relevant topic for these
correlated SCs, various theoretical models have focused on
spin-singlet finite-q pairings [26–41], and finite-q pairing in-
volving spin-triplet SCs remains relatively less explored.

Here, we explore a mechanism for generating finite-q
pairing in multiorbital systems. In these systems, various
types of superconducting order parameters exist. Notably, the
even-parity orbital-singlet spin-triplet (OSST) pairing, which
implies an antisymmetric wave function under the exchange
of two orbitals, has been proposed for multiorbital SCs such
as Sr2RuO4 and Fe-based SCs [15–25]. As orbital degeneracy
is essential for uniform orbital-singlet pairing, we anticipate
that terms that break the orbital degeneracy, serving as pair
breakers, would hinder the uniform pairing and finite-q pair-
ing may emerge before reaching the normal state.

To illustrate this concept, we first examine a simple two-
orbital model featuring Hund’s coupling, resulting in an
attractive interaction in the OSST channel within mean-field
(MF) theory. In this model, the orbital-dependent potential,
known as orbital polarization, along with the interorbital hop-
ping termed orbital hybridization, gives rise to finite-q pairing.
We also study the effects of spin-orbit coupling (SOC) and
a Zeeman field, and find the appearance of a Fulde-Ferrell
(FF) state for small fields and large SOC. For large fields, we
find a field-induced finite-q and uniform pairing phase, which
survives for a small range of SOC values.

We then investigate the application to a SC involving three
t2g orbitals, such as Sr2RuO4. Both the SOC and Hund’s
interaction have been recognized as playing an important role
in understanding the superconductivity in Sr2RuO4 [42–48].
While the fundamental physics does not change with three or-
bitals, the differences introduced by going beyond two orbitals
are discussed. The OSST finite-q pairing with a wave vector
along the x axis emerges between the uniform pairing and
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normal states with the introduction of the in-plane magnetic
field.

The paper is organized as follows. Since the finite-q pairing
requires a perturbation that hinders the uniform pairing, we
discuss possible pair breakers in the next section. A generic
microscopic model for two orbitals, including the kinetic
terms and SOC, along with the MF pairing terms is introduced
in Sec. III. The phase diagram for OSST pairing as a function
of both the orbital polarization and SOC is obtained. We also
obtain the phase diagram for uniform and finite-q phases as a
function of magnetic field and SOC in Sec. IV. In Sec. V, we
use a three-orbital model to discuss the potential applications
of our findings to Sr2RuO4, and we discuss further directions
of inquiry in the last section.

II. PAIR BREAKERS FOR UNIFORM OSST PAIRING

In this section, we provide an intuitive discussion on gen-
erating finite-q OSST pairing before proceeding to the MF
calculations. Considering that the Zeeman field acts as a pair
breaker for the spin singlet by polarizing the spins, any term
disrupting the degeneracy of orbitals serves as a pair breaker
for the OSST and may induce finite-q pairing before reaching
the normal state.

To formulate such effects, let us consider a two-orbital MF
Hamiltonian describing the uniform superconducting state.
We introduce the basis, ψ

†
k = (ca†

k↑, ca†
k↓, cb†

k↑, cb†
k↓), which con-

sists of creation operators for an electron in one of the two
orbitals a, b with spin σ =↑,↓. Using the Nambu spinor,
�

†
k = (ψ†

k , ψT
−k ), the uniform MF Hamiltonian is

HMF =
∑

k

�
†
k

(
H (k) �(k)
�†(k) −H∗(−k)

)
�k, (1)

where the normal-state Hamiltonian H (k) =∑
γ γ ′ Hγ γ ′

(k)τγ σγ ′ and the gap matrix �(k) =∑
γ γ ′ �γγ ′

(k)τγ σγ ′ (iσ2) are written in terms of the Pauli
and identity matrices, τγ (σγ ′ ) (γ , γ ′ = 0, ...3) in orbital(spin)
space. The terms in H (k) given by the sum over pairs of
indices (γ , γ ′) are determined by the symmetry and other
microscopic considerations, while the terms in the sum for
the gap matrix are determined by the type of pairing under
consideration.

To understand the pair breakers of the OSST, let us re-
call the conventional spin singlet case first. The conventional
orbital-triplet spin-singlet (OTSS) pairing is �00(k)τ0iσ2, and
the Zeeman term with arbitrary direction of the magnetic
field, −τ0(h · σ) where h ≡ (H01, H02, H03), suppresses the
pairing by breaking the spin degeneracy. The OSST pair-
ing, on the other hand, is represented by iτ2�OSST · σ(iσ2),
with �OSST ≡ (�21,�22,�23), which can become an attrac-
tive channel within MF theory due to the Hund’s coupling
[15–17,20,49,50]. In analogy to the Zeeman term −τ0(h · σ )
being a pair breaker for the OTSS, the pair-breaking terms
for the OSST pairing can be written as (hP(k) · τ )σ0, where
hP(k) ≡ (H10(k), H20(k), H30(k)). These terms suppress the
OSST pairing by breaking the orbital degeneracy. The first
component, hx

P(k)τ1σ0, corresponds to a spin-independent
hybridization between a, b orbitals, for example, via interor-
bital hopping. The second component corresponding to the

TABLE I. Terms in the normal-state Hamiltonian,
Hγ γ ′

(k)τγ σγ ′ , which have a pair-breaking effect on a gap
matrix, �γγ ′

(k)τγ σγ ′ (iσ2). Any term which breaks the time-reversal
symmetry is a pair breaker for the conventional OTSS pairing, �00,
with the Zeeman field, h ≡ (H01, H 02, H 03), listed in the second
row. The third and fourth rows are pair breakers for OSST pairing,
�OSST ≡ (�21, �22, �23). The OSST pair breakers are written as
(hP(k) · τ )σ0, where hP(k) ≡ (H10(k), 0, H30(k)). Since the second
component breaks time-reversal symmetry, it is neglected.

SC gap Pair breaker

OTSS: �00τ0(iσ2) Zeeman field: -τ0(h · σ )

OSST: iτ2�OSST · σ(iσ2) Orbital
polarization: hz

P(k)τ3σ0

Orbital
hybridization: hx

P(k)τ1σ0

term hy
P(k)τ2σ0 is neglected to preserve time-reversal sym-

metry. The third component, hz
P(k)τ3σ0, corresponds to an

orbital-dependent potential or dispersion and is termed orbital
polarization, which may arise from the two orbitals having
different hopping integrals, for instance.

The OSST pairing along with the respective terms in the
Hamiltonian that act as pair breakers are summarized in Ta-
ble I. For comparison, the conventional OTSS is also listed.
Note that the Zeeman field does not have a pair-breaking effect
on OSST pairing in the absence of a pinning of the d vector
(for example, via SOC), as discussed previously. Another
example that generates the orbital polarization is the nematic
order, i.e., a spontaneous rotational symmetry breaking in the
density of the two orbitals, such as 〈nyz − nxz〉 for (dyz, dxz )
orbitals on a square lattice. Alternatively, hz

P can have a k
dependence due to an anisotropy in the dispersions of the
orbitals. In the next section, we discuss a concrete example
to make the origin of such terms clear.

III. FINITE-Q OSST PAIRING IN ZERO FIELD

To elucidate the mechanism for generating finite-q pairing
from the uniform OSST pairing, we will now consider the case
of two orbitals a, b related by C4, such as (dyz, dxz ) orbitals.
Later, we will comment on more general cases. The or-
bital dispersions are ξ

a/b
k = −2t1 cos ky/x − 2t2 cos kx/y − μ,

with t1 and t2 the nearest neighbor (NN) hoppings along the
y(x)- and x(y)-axis for a(b) orbitals, respectively. The orbital
hybridization originating from interorbital hopping is tk =
−4tab sin kx sin ky. The minimal normal-state Hamiltonian re-
specting time reversal and inversion is then

H (k) = ξ+
k

2
τ0σ0 + ξ−

k

2
τ3σ0 + tkτ1σ0. (2)

We have defined ξ±
k = ξ a

k ± ξ b
k , and thus ξ−

k plays the role of
the k-dependent orbital polarization, equivalent to hz

P(k) listed
in Table I, while tk is equivalent to hx

P(k). With the choice of
orbital dispersions, we have ξ−

k = 2(t1 − t2)(cos kx − cos ky),
showing that the strength of ξ−

k is controlled by δt ≡ (t1 − t2).
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FIG. 1. Phase diagram for OSST pairing as a function of the
orbital polarization, δt , within the two-orbital model described in the
main text. Here, the orbital polarization arising from the (dyz, dxz )-
like electronic dispersions generates a k-dependent splitting which
gives rise to a transition between the uniform and finite-q OSST
pairing. The first transition occurs at (δt )1 ≈ 0.016 and the transition
to the normal state at (δt )2 ≈ 0.046. The representative Fermi surface
(FS) in each phase is also shown, where the red and blue curves
represent the two spin-degenerate electronic bands.

Using the finite-q Nambu spinor, �
†
kq = (ψ†

k , ψT
−k+q), the

MF Hamiltonian is given by

HMF,q =
∑

k

�
†
kq

(
H (k) �q(k)
�†

q(k) −H∗(−k + q)

)
�kq. (3)

Note that we assume only a single center-of-mass momen-
tum wave vector, q, for simplicity. The OSST pairing has
the form shown above, �q(k) = iτ2�OSST(q) · σ(iσ2), where
�OSST(q) = −V

2 da/b(q) is given in terms of the d vector asso-
ciated with the two orbitals a, b, defined as

da/b(q) = 1

4N

∑
kσσ ′

[iσ2σ]σσ ′
〈
ca
−k+qσ cb

kσ ′ − cb
−k+qσ ca

kσ ′
〉
. (4)

Here, an attractive interaction V can be obtained from the
Hund’s coupling within the MF theory [15–17,20,49,50], as
mentioned previously.

We show how the finite-q pairing state arises by self-
consistently solving for the three components of the order
parameter defined by Eq. (4) numerically, at zero temperature.
The energy units are defined by 2t1 = 1 and we set μ = −0.4
and tab = 0.015. While a nonzero value for tab is important to
split apart the remaining orbital degeneracy in the regions of k
space where ξ−

k vanishes, the precise value is not important for
our results. Here, we investigate the effect of a k-dependent
splitting of the bands via the hopping anisotropy, δt , i.e.,
we tune the strength of ξ−

k . Similar results can be obtained
by adding a rigid shift of the orbitals instead, as discussed
previously.

The ordering wave vector is fixed to be of the form q = qx̂,
as an examination of alternative wave vectors, including q =
q(x̂ + ŷ), indicates this corresponds to the lowest free-energy
MF solution (see Fig. 7 for more details). The interaction is
fixed at V = 0.8, and for each value of δt , the self-consistent
solution and free energy are obtained as a function of q to
find the ground-state solution. The resulting phase diagram
as a function of δt is shown in Fig. 1, with (δt )1 ≈ 0.016
and (δt )2 ≈ 0.046. For δt < (δt )1, the uniform, i.e., q = 0,
OSST pairing is favored due to the significant regions of
orbital degeneracy in k space. This uniform state gives way to

the finite-q pairing, q 
= 0, for (δt )1 < δt < (δt )2, before the
normal state is reached for δt > (δt )2. The three components
of the d vector given by Eq. (4) are nonzero and degenerate
in both phases. The order parameters as a function of δt are
shown in the Appendixes (see Fig. 6).

Identifying solid-state candidate materials with almost de-
generate Fermi surfaces (FSs) originating from two different
orbitals is nontrivial due to the different dispersions of these
orbitals. However, such a situation can be engineered using
different degrees of freedom. For example, bilayer systems
made of a single layer with one orbital exhibit almost de-
generate FSs when the bilayer coupling is very weak. The
resulting pairing is an interlayer-singlet spin-triplet, stabi-
lized by the same form of interaction, but representing a
ferromagnetic interaction between the two layers. In this
case, tuning the polarization or hybridization corresponds
to adjusting a layer-dependent potential or bilayer coupling,
for example, via an external bias or pressure, respectively.
Additionally, other systems with valley (or sublattice-index)
degrees of freedom may also be relevant, resulting in interval-
ley (intersublattice)-singlet spin-triplet pairing. Although we
do not have specific candidate materials, our theoretical study
will motivate future investigations into OSST pairing in the
absence of SOC. When SOC is included, the OSST pairing
does not require nearly degenerate FSs [17,20]. Below we
will include the SOC for more realistic cases and examine the
resulting phases.

Effect of SOC

The uniform OSST pairing is favored when the orbital
degeneracy in k space is large, and gives way to the finite-q
pairing as the degeneracy is reduced. However, in the presence
of the SOC, the pairing in the OSST channel is boosted,
as it does not require nearly degenerate FSs. Additionally,
due to SOC, intraorbital and interorbital spin-singlet pairings
with the same symmetry may be induced [17,20]. Here, we
have considered a model on the square lattice with D4h point
group, and the OSST pairing is in the A1g channel, which
indeed contains intraorbital spin-singlet pairings [24,51,52].
As the OSST pairing is the only attractive one, the intraorbital
singlets are induced through the SOC, and are usually an order
of magnitude smaller. Regardless of this, the introduction of
SOC allows for an intraband pseudospin-singlet component
of pairing from the OSST order parameter itself, which can
stabilize the uniform pairing even for large orbital polariza-
tion [17,20,53]. In light of this, one expects that the SOC
and orbital polarization have opposite effects on the finite-q
pairing. To demonstrate this, we now include the effects of
SOC by modifying H (k) in Eq. (2) to, H (k) − λτ2σ3. The
SOC takes the form corresponding to the z component of the
atomic SOC, 2λLzSz.

We tune the strength of the SOC, λ, in addition to the or-
bital polarization, δt , with the resulting phase diagram shown
in Fig. 2. The points where calculations were done are shown,
while the denser points close to the boundaries used to deter-
mine the precise boundary locations are omitted for clarity.
The y axis corresponds to the phase diagram shown in Fig. 1,
where the pairing is a true spin triplet and all components
of the d vector are degenerate, while the pairing regions for
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FIG. 2. Phase diagram for OSST pairing in the two-orbital model
as a function of the orbital polarization, δt , and SOC, λ. The three
components of the d vector are degenerate for λ = 0. For λ 
= 0, the
uniform pairing (grey) corresponds to da/b(q) = (0, 0, dz

a/b(0)) and is
generally characterized by a dominant intraband pseudospin-singlet
pairing component. The smaller finite-q pairing region (green) corre-
sponds to (0, 0, dz

a/b(q)), while the larger region (red) corresponds to
(dx

a/b(q), dx
a/b(q), 0). Both regions correspond to dominant interband

pairing at the Fermi energy, however, the former region contains
a significant intraband component of pairing. This is shown in the
corresponding figure in the Appendix (see Fig. 5). The points where
calculations were done are indicated by markers, while the denser
points closer to boundaries are omitted for clarity. The blue arrow
represents the value of δt used for the phase diagram shown in Fig. 3.

nonzero SOC are now split into those where either the dz
a/b or

{dx
a/b, dy

a/b} order parameters in the orbital basis are nonzero.
The uniform pairing state at nonzero SOC corresponds to only
the z component of the d vector being nonzero due to the σ3

dependence of the SOC, which generates the intraband pair-
ing component. This is labeled “q = 0 pseudospin-singlet” in
Fig. 2 since, for large orbital polarization, it is the intraband
pseudospin-singlet component which is not only dominant,
but also supports the uniform pairing over the finite-q pair-
ing. The finite-q pairing appears in a domelike shape due to
competing effects of δt and SOC.

There are two separate finite-q pairing regions, with the d
vector rotating from the out-of-plane, (z), to in-plane, (x-y),
direction when the orbital polarization is large enough. This
can be explained by the dx

a/b(q), dy
a/b(q) order parameters

projecting almost completely to interband triplet pairing. In
contrast, the dz

a/b(q) order parameter contributes to both in-
traband singlet and interband singlet and triplet pairing. As
a result, for directions parallel to q, the (0, 0, dz

a/b(q)) phase
gives rise to both interband gaps at the Fermi energy, and in-
traband gaps close by, in contrast to the purely interband gaps
in the (dx

a/b(q), dx
a/b(q), 0) phase (see Appendixes A and B for

more details about the MF pairing states including intraband
versus interband pairing and the quasiparticle dispersion).

The finite-q OSST pairing will therefore be favored when
the SOC is either zero or intermediate in strength, depending
on the value of the orbital polarization. As the SOC increases,
the OSST pairing is no longer well-defined as the orbitals and

spins are strongly coupled, and the pairing is described by an
(intraband) pseudospin singlet, even though the microscopic
interaction leading to the attractive interaction is defined on
the original orbital and spin basis, such as the Hund’s cou-
pling. This type of spin-triplet pairing was referred to as a
shadowed triplet [25,54].

The presence of the PDW phase requires a certain in-
teraction strength, V , due to the imperfect nesting of the
bands, a feature common to other models for PDW phases
[27,28,30,38,40]. A smaller value will limit the uniform state
to a smaller region of orbital polarization. This also depends
on the orbital hybridization, tab, which is detrimental to the
uniform state as mentioned previously, and the form of or-
bital polarization, e.g., a k-dependent versus rigid shift of the
orbitals. Here, we have fixed an interaction strength to show
a visible transition between the uniform and PDW state. The
phase boundaries may shift depending on the details discussed
above, but the qualitative description of the phase diagram
remains unchanged.

IV. MAGNETIC FIELD INDUCED PHASES

Since the SOC leads to a mixture of singlet and triplet
pairing, the question of how these pairing states respond to
the magnetic field naturally arises. To investigate this, we now
include the effects of an in-plane Zeeman field by modifying
H (k) in Eq. (2) to H (k) − λτ2σ3 − hxτ0σ1 and treat hx as
a tuning parameter. The in-plane direction for the field is
chosen, as we focus on the Zeeman coupling and neglect the
coupling of the orbital angular momentum to the field.

Starting from zero SOC, and fields that are small relative
to the band splitting, the field merely suppresses the x com-
ponent of the triplet order parameter. When the field is of the
order of the band splitting, a reentrant or field-induced pairing
state with only the x component of the d vector may appear.
Therefore, we consider a value of the orbital polarization such
that there is no superconductivity, corresponding to δt = 0.05,
as shown by the blue arrow in Fig. 2, and study the effects of
the field and SOC together.

The resulting phase diagram is shown in Fig. 3. The mag-
netic field is increased from zero to a value on the same
order as the band splitting on the y axis, and the SOC is
increased from zero along the x axis. As shown in Fig. 3,
there are four distinct pairing states. For values of the SOC
larger than λ � 0.022, a uniform pairing state with order
parameter, (0, 0, dz

a/b(0)), arises due to the SOC generating an
intraband pseudospin-singlet pairing component. This pairing
state behaves similarly to a true spin singlet and is therefore
suppressed by the magnetic field, giving way to a finite-q
pairing state with a small wave vector, q = qx̂, matching the
field splitting. This phase resembles a field-driven FF phase,
but originates from OSST pairing. It is distinct from the
zero-field PDW phase, which corresponds to interband pairing
between two Kramer’s degenerate bands, rather than between
two spin-split bands. The order parameters are plotted as a
function of the magnetic field in the inset on the right for
λ = 0.05. A jump corresponding to the transition from q = 0
to q 
= 0 can be seen. In addition to the primary out-of-plane
spin-triplet order parameter, an orders of magnitude smaller

214512-4



FINITE-MOMENTUM AND FIELD-INDUCED PAIRINGS IN … PHYSICAL REVIEW B 109, 214512 (2024)

FIG. 3. Phase diagram as a function of magnetic field, hx , and
SOC, λ. For λ � 0.022, the uniform state (grey) appears, and is
destabilized by the field in favor of a finite-q state with a q vector
connecting the spin-split bands (green). The order parameters as a
function of hx at λ = 0.05 are shown in the right inset. There is also
an orders of magnitude smaller dy

a/b component with a relative phase
of π

2 induced by the in-plane field, which is omitted for clarity. At
large fields, there is a field-induced uniform pairing (blue) due to the
field compensating for the orbital splitting and bringing oppositely
spin-split bands together. The uniform pairing is surrounded by a
finite-q pairing (pink), mirroring the behavior at low field. The order
parameters are shown for λ = 0.005 on the left, and the FS for
(λ, hx ) = (0, 0.067) is shown in Fig. 11, along with the interband
pairing amplitude.

dy
a/b component with a relative π

2 phase is induced by the
in-plane field, which we omit for clarity.

When the magnetic field approaches the band splitting
caused by the orbital polarization and hybridization, the two
bands which are oppositely spin polarized approach each
other in k space. This is shown by the representative FS for
(λ, hx ) = (0, 0.067) in Appendix C (see Fig. 11). When the
SOC is small, the field reduces the band splitting enough to
drive a transition to the uniform pairing with order parameter,
(dx

a/b(0), 0, 0), i.e., pairing between up and down spins along
the x direction. As the SOC increases, due to the noncom-
muting nature of the Zeeman field proportional to σ1 and the
SOC proportional to σ3, the bands do not approach each other
sufficiently close enough for the uniform pairing to emerge.
Instead, a window of finite-q pairing with order parameter,
(dx

a/b(q), 0, 0), is obtained, where q is given by the mismatch
between the two oppositely spin-polarized bands. This phase
is labeled by PDW′ in Fig. 3, since it occurs in the presence
of time-reversal symmetry breaking but is distinct from an FF
phase. As the SOC increases further, this pairing phase is also
suppressed. The order parameters as a function of the field are
shown in the inset on the left in Fig. 3 for λ = 0.005. The
order parameters correspond to a cut through the region with
the uniform pairing surrounded by two finite-q pairing states.

Since the SOC works together with the Hund’s coupling
to produce a weak-coupling instability [17,20], the existence
of the uniform phase is robust to changes in the interaction
strength. However, the region of the field-induced phases is
expected to shrink (expand) for smaller (larger) interaction

strengths, which also depends on the orbital hybridization and
polarization, as discussed above.

A similar field-induced uniform interband pairing has
been found recently in Refs. [32,55], starting from purely
spin-singlet pairing. In Ref. [32], a single-band system
was considered, with the field-induced phase requiring the
presence of altermagnetism. Reference [55] considered an ef-
fective two-band conventional spin-singlet SC with both intra
and interband pairing. Here, we have shown that OSST pairing
exhibits a similar uniform field-induced phase, and that such
a phase can survive inclusion of the SOC up to a critical value
which will depend on the exact microscopic model. However,
in addition to the uniform field-induced phase, we also find
a finite-q pairing state which is induced by a large magnetic
field. The transitions between the finite-q and uniform phases
at large field mirror the FF-like pairing phase transition for
larger values of SOC. For the former, the pairing wave vec-
tor connects oppositely spin-polarized bands that originate
from two distinct zero-field Kramer’s degenerate bands. Con-
cretely, the pairing in the band basis, defined by fermionic
operators, f †

i,k,s, in bands i = 1, 2 with pseudospin s = +/−,

corresponds to interband pairing, 〈 f †
1,k,− f †

2,−k+q,+〉 
= 0. With
negligible SOC, the spins +/− are defined by the direction
of the field. In the FF-like pairing state, the dominant pairing
component in the band basis for small fields corresponds to
intraband pairing, i.e., 〈 f †

i,k,− f †
i,−k+q,+〉 
= 0, due to the SOC.

V. FINITE-Q PAIRING IN Sr2RuO4

The pairing phases can be investigated in other multiorbital
systems beyond the two-orbital case. For instance, with three
t2g orbitals, there are now three interorbital d vectors with the
same effective interaction originating from Hund’s coupling,
which we investigate next. The complexity can be further en-
hanced by the mixing between the three orbitals, allowing for
nontrivial momentum-dependent pairings [24,25,54]. Since
our aim is to address finite-q pairing, we restrict ourselves to
the A1g state stabilized by atomic SOC [17,20]. While details
such as the direction of the q vector may depend on the precise
OSST pairing symmetry, the existence of the finite-q state
itself is not contingent upon the pairing symmetry.

We consider three t2g orbitals on a square lattice, along
with sizable atomic SOC and Hund’s coupling. Depending on
the tight-binding parameters used, such a model can describe
Sr2RuO4, and other materials such as the iron-pnictide SCs
[56]. Here, we consider the application to Sr2RuO4 and show
that OSST pairing can give rise to a finite-q pairing state.
While our aim is not to perform a detailed study of Sr2RuO4,
we note that OSST pairing is one of the candidate order
parameters for Sr2RuO4, making this a relevant application
[24,25,57].

We consider an effective interaction Hamiltonian con-
taining an attractive channel for OSST pairing originat-
ing from the on-site Hubbard-Kanamori interaction terms
[15–17,20,49,50],

Heff = −2NV
∑
α<β

d̂
†
α/β (q) · d̂α/β (q), (5)
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where N is the number of sites and α < β represents a
sum over the three unique pairs of orbitals. The interaction
strength, V = JH − U ′, is given in terms of the renormalized
low-energy interorbital Hubbard (U ′) and Hund’s interaction
(JH ) parameters [17,20]. While the condition for an attractive
interaction in MF theory is unrealistic, studies going beyond
MF theory have found OSST pairing with realistic bare in-
teraction parameters [18,19,21]. Indeed, the local effective
interaction between same-spin electrons becomes attractive
within second-order perturbation theory when the local mag-
netic susceptibility is large [18,58]. We calculate the nine
order parameters, dα/β , self-consistently and consider only a
single wave vector, q, in the MF theory to simplify the cal-
culation, as the qualitative physics is not expected to change
from this choice.

We use the normal-state Hamiltonian described in
Ref. [22], and described in the Appendix D, which in-
cludes a sizable value of SOC, appropriate for Sr2RuO4 [45].
We express energies in units of 2t3 = 1, where t3 is the
nearest-neighbor hopping of the dxy orbital. In these units,
the SOC strength is λ = 0.085. Note that the difference
with our previous model is that now the orbital polariza-
tion between (dyz, dxz ) orbitals is much larger, and we have
the complete atomic SOC, 2λL · S, acting in the space of
the three t2g orbitals. An external in-plane Zeeman field
is included, HZeeman = −ghx

∑
i Sx

i , with g = 2 assumed for
simplicity. Fixing the interaction strength at V = 0.6, we self-
consistently solve for the order parameters, dα/β (q), at zero
temperature as a function of q. We choose an interaction
strength such that the uniform state is visible up to a reason-
ably sized field value for resolving the q vector in the finite-q
phase. As before, wave vectors of the form, q = qx̂, are found
to be more stable than q = q(x̂ + ŷ).

The resulting order parameters, along with the asso-
ciated wave vectors, are shown in Fig. 4. Starting from
zero, the in-plane field, hx, is increased along the x axis.
At zero field, the atomic SOC favors a uniform pair-
ing state with the three primary nonzero order parameters,
(dx

xz/xy(0), dy
xy/yz(0), dz

yz/xz(0)). The dz
yz/xz pairing corresponds

to the SOC-stabilized order parameter in our two-orbital
model shown previously, while the other two involving the dxy

orbital carry the same A1g symmetry. The in-plane magnetic
field also induces the dz

xy/yz and dy
yz/xz order parameters to be-

come finite with a relative phase of π
2 , however, they are orders

of magnitudes smaller. In the band basis where orbitals and
spins are mixed, the intraband pseudospin-singlet is dominant,
as discussed above. This is apparent from the suppression of
all three components of the d vector, as the field is increased
from zero. At hx ≈ hc1, the pair-breaking effect of the field is
large enough such that a finite-q pairing develops, and there
is a transition to an FF phase. At this point, the x component
of the d vector is noticeably suppressed compared to the y
component, as expected for the field along the x direction for
a triplet order parameter. The wave vector increases with the
field until the normal state is reached at hx ≈ hc2.

The results shown here with three orbitals are similar to
the low-field pairing phases shown in Fig. 3 for the simpler
two-orbital model, although the presence of the third orbital
leads to two additional OSST order parameters. The presence
of finite-q superconductivity in the case of moderately large

FIG. 4. MF order parameters, dα/β , and ordering wave vector,
q = qx̂, for the three-orbital model [22] as a function of in-plane
magnetic field, hx . Of the nine order parameters, only the three
nonzero ones are shown for clarity. The in-plane magnetic field along
the x direction also induces the dz

xy/yz and dy
yz/xz order parameters to

become nonzero with a relative phase of π

2 , however, they are orders
of magnitude smaller and thus omitted. The two critical fields denot-
ing the transition to the finite-q and normal states are, hc1 ≈ 0.003
and hc2 ≈ 0.006, respectively.

SOC is therefore robust to additional complexity introduced
when describing a t2g-orbital material such as Sr2RuO4. As
shown by Fig. 3, the high-field phases are expected to be
relevant for a material with sizable band degeneracy and small
SOC. The application of these parts of the parameter space, as
well as those found in Fig. 2 for other multiorbital SCs such
as Fe-based SCs, are left for future study.

FIG. 5. Phase diagram corresponding to Fig. 2 of the main text,
with the percentage of intraband pairing added to representative
points. Due to the finite q, both PDW phases can acquire a tiny
percentage of intraband pairing when the SOC is zero. Since the SOC
does not induce intraband pairing for the (dx

a/b, dx
a/b, 0) state, this

remains constant as λ increases, while it increases in the (0, 0, dz
a/b)

state (see text for more details).
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FIG. 6. MF order parameters corresponding to cuts at λ = 0 and
λ = 0.005 through Fig. 5.

VI. SUMMARY AND DISCUSSION

In summary, we have shown how finite-q pairing, referred
to as PDW or FF phases depending on the origin of the finite
center-of-mass momentum, can be generated from uniform
OSST pairing. With zero external field, the PDW state arises
due to the pair-breaking effects of the orbital polarization
and/or hybridization on the uniform state. Using a simple
model of two orbitals on a square lattice, we demonstrate
the appearance of the PDW upon increasing the orbital polar-
ization. When the SOC is introduced, the PDW region splits
into two separate phases with different d-vector directions due
to the competition between interband pairing characterized
by the d vector in the x-y plane, versus a combination of
intraband and interband pairing characterized by the d vector
along the z axis. An external in-plane magnetic field induces
the uniform OSST pairing at high fields for small SOC, which
becomes a finite-q pairing for larger SOC. Upon increasing
SOC, the uniform pseudospin-singlet pairing is found at low

FIG. 7. Free-energy difference with the normal state, �F =
FMF − FN, for self-consistent solutions obtained over a grid of wave
vectors at a representative point in the parameter space, (λ = 0, δt =
0.02). The best MF solution is obtained for the two degenerate wave
vectors of the form q = (q, 0) or q = (0, q), which is indicated by
the green markers. For computational efficiency, a smaller system
size of 800 × 800 was used for this calculation.

fields, which becomes the FF phase by increasing the field.
We have applied this picture to the three-orbital SC, Sr2RuO4,
which has exhibited signs of an FFLO phase in recent nuclear
magnetic resonance experiments [14]. Within a three-orbital
model for the t2g orbitals and SOC, the uniform OSST pair-
ing evolves into an FF phase with an in-plane Zeeman field.
This phase is characterized by three distinct spin-triplet com-
ponents with the associated d vectors. Due to the strong
SOC, the dominant pairing can be described as an intraband
pseudospin-singlet.

Our analysis focuses solely on the finite-q A1g pairing with
a single wave vector. However, in materials like Sr2RuO4,
pairing symmetries with higher angular momentum, such as
d-wave (B1g or B2g), have been proposed. We expect that the
theoretical framework we are employing for finite-q pairing
in the presence of SOC and in-plane magnetic fields can also
be extended to accommodate these higher angular momentum
pairing states. This parallels the situation observed in the
FFLO state for a d-wave spin singlet under the Zeeman field
[59,60], which bears similarities to the s-wave spin singlet
case.

A few additional aspects concerning the limitations of
the current paper and topics for future investigation warrant
some discussion. For a two-orbital model, we have used the
component of the atomic SOC, LzSz, relevant for the dxz and
dyz orbitals. In this case, the phase diagram depends on the
direction of the field. We have presented the phase diagram
for the field along the x (or, equivalently, y) direction. When
the field aligns with the z direction, the uniform field-induced
phase may extend to larger values of SOC. In this scenario,
a transition between multiple uniform and finite-q phases
separated by a large field interval may be possible. However,
if this corresponds to the out-of-plane direction, the orbital
limiting of the pairing will have to be considered. We note that
in the spin-triplet SC, UTe2, there is a rich phase diagram as a
function of magnetic field, which exhibits low- and high-field
pairing phases [61], in addition to recent evidence for finite-q
superconductivity [7,8]. The application of OSST pairing to
this problem is left as an interesting future direction.

An additional candidate for finite-q pairing originating
from an OSST order parameter is the family of Fe-based
SCs. The OSST pairing state has been proposed previously
to explain the superconductivity of the iron-pnictide SCs
[16,20,23], due to the strong Hund’s coupling and significant
SOC [62]. Indeed, a PDW state based on OSST pairing was
also proposed using a two-band model for LaFeAsO1−xFx

[63]. However, the SOC and associated intraband pairing
was neglected in Ref. [63]. We have shown that the finite-q
PDW phase within our model can survive the inclusion of
SOC and leads to two different PDW states. Furthermore, we
have found the presence of finite-q and uniform field-induced
phases for a range of SOC values up to 3% of the largest
NN hopping parameter. The SOC strength for the Fe-based
SCs may be of an appropriate size for these phases to become
relevant. However, whether an OSST PDW phase appears in
the iron pnictides, taking into account the SOC and intersite
interactions, as well as competition with other order parame-
ters such as a spin-density wave, remains as a future study.

Finally, while we have neglected finite-frequency effects in
the present MF study, it was pointed out that odd-frequency
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FIG. 8. Quasiparticle dispersion for the MF solution, (0, 0, dz
a/b(q)), corresponding to λ = 0.005 and δt = 0.02. The X′ − � − X direction

is shown, depicted by the inset FS, which is parallel to the pairing wave vector, q = qx̂.

pairing correlations are ubiquitous in multiband systems
[64,65]. For example, an odd-frequency odd-interband pairing
component will be induced from even-frequency even-
interband pairing. In our scenario, such a pairing will therefore
already be present for q = 0, when both SOC and orbital
hybridization are finite, and the finite-q pairing is expected
to lead to additional odd-frequency correlations. Such odd-
frequency components may have important experimental
consequences, for example, in the superfluid weight [66].
More generally, the critical role of finite-frequency correla-
tion effects on superconductivity and other instabilities in
a Hund’s metal have become apparent from dynamical MF
theory studies [67,68]. In particular, when dynamical corre-
lations are taken into account, the Hund’s coupling allows
for the superconducting state to survive in the strong corre-
lation limit, despite a small quasiparticle weight, which is not
captured by a renormalized quasiparticle approximation [67].
Several dynamical MF theory studies for Sr2RuO4 have also
found pairing states containing both even- and odd-frequency
pairing [21,69], and have shown that the finite-frequency
correlations are essential for describing the normal-state prop-
erties [47,70,71]. An intriguing future avenue of investigation
is therefore the question of what role finite-frequency corre-
lations may play in OSST finite-q states in the Hund’s metal
regime, which may be studied by one of the cluster extensions
of dynamical MF theory [72,73].
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APPENDIX A: MF PAIRING STATES AT ZERO FIELD

The phase diagram as a function of SOC, λ, and orbital
polarization, δt , is reproduced in Fig. 5, with the percentage
of intraband pairing shown at representative points. The per-
centage of intraband pairing in the MF pairing solutions is
defined by Pintra

Pintra+Pinter
, where the FS-averaged total intraband

pairing amplitude is Pintra = 1
2NF

∑
iss′,k∈FS |〈 fi,k,s fi,−k+q,s′ 〉|.

The number of FS points is NF , and cancellations due to a
k-dependent sign are avoided by taking the absolute value at
each point. Similarly the total interband pairing amplitude is
Pinter = 1

2NF

∑
i 
= j,ss′,k∈FS |〈 fi,k,s f j,−k+q,s′ 〉|.

The MF order parameters corresponding to the three com-
ponents of Eq. (4) are shown for two different cuts through the
phase diagram in Fig. 6. The left (right) panels correspond to
fixed values of λ = 0(0.005), respectively, and zero magnetic
field, hx = 0. A representative FS for λ = 0 and a value of
δt = 0.035, where the q 
= 0 state is stabilized, is shown as an
inset in the left panel. The ordering wave vector is of the form
q = qx̂, which best connects the two bands near the X point
as discussed below. A lattice size of 1600 × 1600 was used,

FIG. 9. Quasiparticle dispersion for the MF solution, (dx
a/b(q), dx

a/b(q), 0), corresponding to λ = 0.005 and δt = 0.025.
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FIG. 10. Quasiparticle dispersion for the MF solutions corresponding to λ = 0.005 and δt = 0.02(0.025) in the left(right) panels for the
� − Y direction, which is perpendicular to q. Only the positive k direction is shown for the y direction since the dispersion is symmetric.

which determines the resolution in q, and we have checked
larger sizes to confirm our results are qualitatively unchanged.

Since the SOC is zero, the OSST pairing corresponds to
purely interband spin-triplet pairing in the band basis for q =
0. The right panel shows the two separate q 
= 0 phases with
different d-vector directions that appear in Fig. 5 for small
SOC. There is a slight increase in the order parameters before
the development of a finite q as δt is increased. We attribute
this to an increase in the density of states at the Fermi energy
due to a splitting, ∝ 4δt , of the two van Hove singularities at
higher energy. In the finite-q state, there is a smaller average
gap, since the q vector doesn’t allow for a gap over all regions
of the FS.

The difference between the in-plane (dx
a/b, dy

a/b) and out-of-
plane (dz

a/b) order parameters is that, for q = 0, the in-plane
one projects to purely interband spin-triplet pairing, while
the out-of-plane one projects to interband spin-triplet, inter-
band spin-singlet, and intraband spin-singlet. When q 
= 0,
both states may also acquire an additional small intraband
pairing component due to contributions from kinetic terms
of the form (Hγ γ ′

(k) − Hγ γ ′
(−k + q)) [for example, from

the orbital hybridization, tk = H10(k)]. This is shown by the
tiny percentage (≈2 − 3%) of intraband pairing in the q 
= 0
phase for λ = 0. For small values of orbital polarization,
the dz

a/b(q) triplet order parameter allows for an intraband
component of pairing to exist near the Fermi energy as SOC

FIG. 11. Interband pairing amplitude for the field-induced pair-
ing state with order parameter (dx

a/b(0), 0, 0), plotted over the
normal-state FS shown by the grey dashed lines, for (λ, δt, hx ) =
(0, 0.05, 0.067).

is increased (shown also by the quasiparticle dispersion in
Fig. 8). However, once the splitting between bands is large
enough, δt ≈ 0.025, the (dx

a/b, dx
a/b, 0) pairing state becomes

more favorable due to a larger interband pairing component.
The free-energy difference between the MF solutions and

the normal state, as a function of q = (qx, qy) for a repre-
sentative point, (λ = 0, δt = 0.02), is shown in Fig. 7. As
discussed in the main text, the best solution is found for wave
vectors of the form q = (q, 0) or q = (0, q), with the two be-
ing degenerate due to the C4 symmetry. We have also checked
the comparison between (q, 0) and (q, q) wave vectors for
other points in the parameter space and find the same result.
We attribute this finding to the better nesting of the bands
along the directions parallel to x or y for such a q vector, which
is more favorable for pairing due to a larger density of states
from nearby van Hove singularities at the X/Y points of the
Brillouin zone.

APPENDIX B: QUASIPARTICLE DISPERSION

The quasiparticle dispersion obtained by diagonalizing
Eq. (3) of the main text for the MF solution with λ = 0.005
and δt = 0.02 (Fig. 8) as well as δt = 0.025 (Fig. 9) are
shown. The former solution corresponds to the state with
out-of-plane d vector, (0, 0, dz

a/b(q)), while the latter corre-
sponds to the in-plane d-vector state, (dx

a/b(q), dx
a/b(q), 0).

The dispersions are shown plotted over the direction in k
space parallel to the wave vector, q = qx̂, i.e., the X′ − � − X
direction, as depicted in the inset FS of Fig. 8. The finite q
gives rise to an overlap between a particle fi band and the
corresponding shifted hole f j band (i 
= j) at the Fermi energy
for positive and negative k. This opens a gap originating from
the interband pairing, 〈 fi,k,s f j,−k+q,s′ 〉, as shown by the circles
at the Fermi energy in Figs. 8 and 9. However, due to the single
q, an unpaired set of bands arise for both positive and negative
k, leading to the depaired regions [1]. The intraband crossings
are shifted away from the Fermi energy and are gapped (gap-
less) for δt = 0.02(0.025), as shown by the circles in both
figures. This is due to the intraband component of pairing,
〈 fi,k,s fi,−k+q,s′ 〉, which is significant only for the out-of-plane
d-vector pairing state.

The dispersion in Fig. 10 shows the direction perpendicular
to q, i.e., the � − Y direction for both pairing states. Only the
positive k direction is shown for clarity since the dispersion is
symmetric. Since this direction is perpendicular to q, the two
distinct bands near the Y point are not connected to each other
after being shifted, but rather mostly overlap with themselves.
Therefore, the interband gaps occur away from the Fermi
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TABLE II. Tight-binding parameters for the three-orbital model
from Ref. [22] used in Sec. V of the main text. All parameters are in
units of 2t3 = 1.

t1 t2 t3 t4 t5 λ μ1 μ2

0.45 0.05 0.5 0.2 0.025 0.085 0.531 0.631

energy, similar to the q = 0 case. The intraband crossings are
shifted slightly away from the Fermi energy and are gapped
(gapless) for δt = 0.02(0.025).

APPENDIX C: FIELD-INDUCED PAIRING

The field-induced pairing region shown in Fig. 3 of the
main text arises due to the oppositely spin-polarized bands
approaching each other in k space as the magnetic field is
increased. For this to occur, the pairing in the orbital ba-
sis must project to interband pairing. For zero SOC, the
uniform OSST order parameters project to purely interband
pairing, making the field-induced phase robust. To show this,
the interband pairing amplitude, 〈 f2,k,+ f1,−k,−〉 is shown in
Fig. 11 for a representative field value for zero SOC in the
uniform field-induced region, (λ, δt, hx ) = (0, 0.05, 0.067),
with order parameter (dx

a/b(0), 0, 0). The underlying normal-
state FS is shown by the grey dashed line. The pairing

is largest on the two overlapping oppositely spin-polarized
bands, f2,k,+, f1,k,−, and reaches a maximum value of 0.5.
This can be compared to the zero-temperature BCS value
for the pairing amplitude evaluated on the FS, 〈ck,↑c−k,↓〉 =

�k

2
√

ξ 2
k +|�k|2

FS−→ 1
2

�k
|�k| .

APPENDIX D: THREE-ORBITAL TIGHT-BINDING MODEL

The normal-state Hamiltonian for the three-orbital model
in Sec. V of the main text is

H0 =
∑

k,σ,m

ξm
k cm†

kσ cm
kσ +

∑
k,σ

tkcyz†
kσ

cxz
kσ + H.c.

+ iλ
∑

k,l,m,n

εlmncl†
kσ cm

kσ ′σ
n
σσ ′ , (D1)

including the orbital dispersions ξm
k , hybridization between

(dyz, dxz ) orbitals tk, and atomic SOC λ. The SOC is written
in terms of the completely antisymmetric tensor, εlmn, with
(l, m, n) = (x, y, z) representing the t2g orbitals, (yz, xz, xy).
The orbital hybridization is tk = −4t5 sin kx sin ky and the or-
bital dispersions are ξ

yz/xz
k = −2t1 cos ky/x − 2t2 cos kx/y −

μ1 − μ, ξ
xy
k = −2t3(cos kx + cos ky) − 4t4 cos kx cos ky −

μ2 − μ. The parameters are given in Table II, in units of
2t3 = 1, and the chemical potential, μ, is adjusted to fix the
electronic filling at 2

3 .

[1] P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-
exchange field, Phys. Rev. 135, A550 (1964).

[2] A. I. Larkin and Y. N. Ovchinnikov, Nonuniform state of su-
perconductors, Zh. Eksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys.
JETP 20, 762 (1965)].

[3] D. F. Agterberg, J. S. Davis, S. D. Edkins, E. Fradkin, D. J. Van
Harlingen, S. A. Kivelson, P. A. Lee, L. Radzihovsky, J. M.
Tranquada, and Y. Wang, The physics of pair-density waves:
Cuprate superconductors and beyond, Annu. Rev. Condens.
Matter Phys. 11, 231 (2020).

[4] M. Hamidian, S. Edkins, S. H. Joo, A. Kostin, H. Eisaki, S.
Uchida, M. Lawler, E.-A. Kim, A. Mackenzie, K. Fujita et al.,
Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x ,
Nature (London) 532, 343 (2016).

[5] H. Chen, H. Yang, B. Hu, Z. Zhao, J. Yuan, Y. Xing, G. Qian,
Z. Huang, G. Li, Y. Ye et al., Roton pair density wave in a
strong-coupling kagome superconductor, Nature (London) 599,
222 (2021).

[6] X. Liu, Y. X. Chong, R. Sharma, and J. C. S. Davis, Discov-
ery of a Cooper-pair density wave state in a transition-metal
dichalcogenide, Science 372, 1447 (2021).

[7] Q. Gu, J. P. Carroll, S. Wang, S. Ran, C. Broyles, H. Siddiquee,
N. P. Butch, S. R. Saha, J. Paglione, J. S. Davis et al., Detection
of a pair density wave state in UTe2, Nature (London) 618, 921
(2023).

[8] A. Aishwarya, J. May-Mann, A. Raghavan, L. Nie, M.
Romanelli, S. Ran, S. R. Saha, J. Paglione, N. P. Butch, E.
Fradkin et al., Magnetic-field-sensitive charge density waves in
the superconductor UTe2, Nature (London) 618, 928 (2023).

[9] Y. Liu, T. Wei, G. He, Y. Zhang, Z. Wang, and J. Wang, Pair
density wave state in a monolayer high-Tc iron-based supercon-
ductor, Nature (London) 618, 934 (2023).

[10] H. Zhao, R. Blackwell, M. Thinel, T. Handa, S. Ishida, X. Zhu,
A. Iyo, H. Eisaki, A. N. Pasupathy, and K. Fujita, Smectic pair-
density-wave order in EuRbFe4As4, Nature (London) 618, 940
(2023).

[11] K. Cho, H. Kim, M. A. Tanatar, Y. J. Song, Y. S.
Kwon, W. A. Coniglio, C. C. Agosta, A. Gurevich, and
R. Prozorov, Anisotropic upper critical field and possible
Fulde-Ferrel-Larkin-Ovchinnikov state in the stoichiometric
pnictide superconductor LiFeAs, Phys. Rev. B 83, 060502(R)
(2011).

[12] C. Tarantini, A. Gurevich, J. Jaroszynski, F. Balakirev, E.
Bellingeri, I. Pallecchi, C. Ferdeghini, B. Shen, H. H. Wen, and
D. C. Larbalestier, Significant enhancement of upper critical
fields by doping and strain in iron-based superconductors, Phys.
Rev. B 84, 184522 (2011).

[13] S. Kasahara, Y. Sato, S. Licciardello, M. Čulo, S. Arsenijević,
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