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Charge-4e superconductivity in a Hubbard model
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A phase of matter in which fermion quartets form a superconducting condensate, rather than the paradig-
matic Cooper pairs, is a recurrent subject of experimental and theoretical studies. However, a comprehensive
microscopic understanding of charge-4e superconductivity as a quantum phase is lacking. Here, we study a
two-orbital tight-binding model with attractive Hubbard-type interactions. Such a model naturally provides
the Bose-Einstein condensate as a limit for electron quartets and supports charge-4e superconductivity, as we
show by mapping it to a spin-1/2 chain in this perturbative limit. Using density matrix renormalization group
calculations for the one-dimensional case, we further establish that the ground state is indeed a superfluid phase
of 4e charge carriers and that this phase can be stabilized well beyond the perturbative regime. Importantly, we
demonstrate that 4e condensation dominates over 2e condensation even for nearly decoupled orbitals, which is
a more likely scenario in electronic materials. Our model paves the way for both experimental and theoretical
exploration of 4e superconductivity and provides a natural starting point for future studies beyond one dimension
or more intricate 4e states.

DOI: 10.1103/PhysRevB.109.214509

I. INTRODUCTION

Electron pairing is the generic instability of a Fermi liq-
uid in the presence of attractive interactions [1]. This result
prompts the question whether superconductivity based on
four-electron condensates could exist in physical systems or
whether such a phase will always be preempted by two-
electron superconductivity. Experimentally, definite evidence
for charge-4e superconductivity is to date missing. Yet, un-
usual flux quantization in kagome metals were interpreted as
signatures of 4e superconductivity [2–4], and the breaking
of time-reversal symmetry (TRS) above the superconducting
critical temperature Tc in some iron-based superconductors
was argued to be compatible with fermion quadrupling [5–7],
although without establishing phase coherence.

Still, several theoretical studies proposed specific scenarios
or broader mechanisms that would enable 4e-superconducting
phases. These include the thermal fluctuation regime above
a pair-density-wave phase, in which 4e-superconductivity
appears as a vestigial order [8–13], doping an antiferromag-
net [14], the coupling of two superconducting condensates
[15,16], by frustrating the superconductivity in 45-degree
twisted bilayer cuprates [17], through condensation of
Skyrmions in a quantum spin-Hall phase [18]. Other attempts
have tackled models built as mean-field analogs of Bardeen-
Cooper-Schrieffer (BCS) theory for a 4e order parameter
[19,20], or by studying a 4e analog of a BCS wave function
[21] corresponding to a highly nonlocal Hamiltonian. Despite
this plethora of proposals, a microscopic understanding of the
quantum nature of 4e superconductivity is missing.

A body of work that is motivated by experiments with
ultracold atoms studied SU(N) Hubbard models in one dimen-
sion [22–27]. These systems host quite generically so-called
molecular superfluid phases, which are in essence charge-Ne
superconductors. For condensed matter systems, the phase

robustness away from the SU(N) symmetric limit [23] and
realizations in other dimensions are of great interest, but un-
derexplored.

In this work, we study charge-4e superconductivity in
an attractive Hubbard-type model, which is local and ap-
peals through its simplicity. The attractive Hubbard model
has been a vital theoretical test bed for establishing su-
perconductivity beyond the BCS mean-field approximation
[28]. As such, it allows us to explore the crossover from
BCS to a Bose-Einstein-condensate (BEC) regime [29–31]
and the competition between charge density wave (CDW)
order and singlet superconductivity. The BEC limit of the
Hubbard model is a particularly natural starting point: For
large enough attractive interactions and no hopping between
the sites, fermions are bound into pairs at each lattice site.
Adding hopping between the sites as a perturbation then
allows the pairs to move and establish phase coherence at
low enough temperatures for appropriate fillings [32]. This
physics is well described through mapping the effective low-
energy model to a hard-core boson or spin model [33]. Here,
we generalize the idea of the BEC limit as a starting point by
considering two orbitals per site and choosing the interactions
between the states such as to form four-electron bound states.
While the model realizes an SU(4) Hubbard model when
inter- and intraorbital interactions are equal, we focus on the
case of interorbital interactions weaker than intraorbital inter-
actions, a scenario more likely to occur in electronic materials.

Note that one-dimensional (1D) superconductors are gap-
less states, for which correlations decay algebraically as a
function of distance. Specifically, we define a 1D 4e super-
conductor as a state in which four-body correlations decay
algebraically, while two- and one-body correlations decay
exponentially. As a consequence of the charge carriers being
quartets, in other words e∗ = 4e, this phase should respond to
flux insertion with a flux quantization of a quarter of the flux
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FIG. 1. The charge-4e model introduced in Eq. (3). (a) Real-
space schematic with a unit cell highlighted by the gray dashed
rectangle. (b) Energy levels as a function of particle number N
for the single-site Hamiltonian, Eq. (1) (U = −0.5, V = −0.7).
(c) Schematic phase diagram as a function of δ and t , evaluated
at constant V/U = 0.2. The empty and full phases correspond to
regions where the ground state is the empty or full state, respectively,
the CDW phase corresponds to a Q = π CDW state, and the 4e
phase indicates the charge-4e superconducting region of the phase
diagram. The dashed line indicates the onset of a Luttinger liquid
phase, labeled by LL, which breaks down the 4e superconductivity
and suppresses the CDW. The phase boundaries are traced from the
iDMRG data obtained at bond dimension χ = 500 (Appendix D 2).

quantum, �0/4 = h/(4e). In this work, we explore the stabil-
ity and properties of a charge-4e phase in the thermodynamic
limit, using the infinite density matrix renormalization group
(iDMRG) algorithm [34–37].

II. MODEL

It is instructive to first construct the BEC limit for the
4e-superconducting phase. Working in the grand-canonical
ensemble, we consider a lattice system with—for now—no
tunneling between unit cells, and a (near) degeneracy between
ground states, which differ in filling by four electrons. To
realize this situation, we consider a 1D chain with each site
containing two spinful orbitals, labeled by � ∈ {1, 2} and spin
index σ ∈ {↑,↓} [Fig. 1(a)]. Hence, every site has four single-
particle states, labeled by orbital � and spin σ , and we further
denote by ĉ†

i,�,σ (ĉi,�,σ ) the creation (annihilation) operator for
such an electronic state at the ith site.

The corresponding density operator is n̂i,�,σ = ĉ†
i,�,σ ĉi,�,σ ,

and we define n̂i,� = (n̂i,�,↑ + n̂i,�,↓). The on-site Hamiltonian

for the ith site reads

Ĥi = −μ
∑
�,σ

n̂i,�,σ + U
∑

�

n̂i,�,↑n̂i,�,↓ + V n̂i,1n̂i,2, (1)

where μ is the chemical potential, and U and V are the
Hubbard interaction parameters within the same and between
different orbitals, respectively. In the following, we focus
on the regime μ, U, V < 0 and express all the parameters
in units of (−μ) for compactness of notation. The on-site
Hamiltonian, Eq. (1), is diagonal in the occupation number
basis, and the fourfold occupied state has energy

E4 = 2δ, δ ≡ 2 + U + 2V. (2)

By tuning δ � 1 and U, V appropriately, the low-energy
subspace of the single-unit-cell Fock space comprises the
empty (N = 0) and fourfold occupied (N = 4) states only,
while the states with particle numbers N = 1, 2, 3 lie at higher
energy [Fig. 1(b)]. Note that this energy hierarchy can only
be reached if V �= 0. At V = 0, the two orbitals are fully
decoupled, and N = 2 states become part of the low-energy
subspace with the N = 4 state.

For a finite lattice of size L, the (near) degeneracy of zero-
and four-electron states at every site leads to an extensive
(near) ground-state degeneracy of states with N = 4n (n =
0, 1, · · · L) particles. In a thermodynamically large lattice,
the (near) degeneracy occurs at all fillings 0 < ν < 1.1 The
extensive ground-state degeneracy alone is not sufficient to
reach a superconducting state. Thus, we connect neighboring
sites by spin- and orbital-conserving tunneling terms, leading
to the final Hamiltonian

Ĥ =
L∑

i=1

Ĥi − t
L∑

i=1

∑
�,σ

(ĉ†
i,�,σ ĉi+1,�,σ + H.c.). (3)

By introducing tunneling between the unit cells, the degener-
acy is lifted for finite L and may, in the thermodynamic limit,
result in a phase-coherent superconducting condensate whose
constituents are electronic quartets [38].

Figure 1(c) shows the ground-state phase diagram of
Hamiltonian (3) as obtained from a two-site iDMRG al-
gorithm (Appendix D 1) for the case of V/U = 0.2 (Ap-
pendix D 2). Importantly, with this approach, we work in
the grand-canonical ensemble, directly in the thermodynamic
limit. The phase diagram features 4e superconductivity in a
large part of the parameter space,2 separated by a (Q=π )
CDW with filling ν = 1/2. While for zero hopping the system
is either empty or full, finite hopping leads to a nontrivial
filling and can introduce coherence between sites. At large
values of t , where a transition to a Luttinger liquid phase oc-
curs, the 4e superconducting phase is suppressed as indicated

1We define ν := N/4L before the thermodynamic limit is taken.
2At V = 0, the two orbitals � = 1, 2 of each site are completely

decoupled. In this limit, the system realizes two independent copies
of a 1D Hubbard chain, one formed by the � = 1 orbitals and the
other by the � = 2 orbitals. The attractive fermionic Hubbard chain
is known to host a charge-2e superconducting ground state for certain
range of filling [39,40] (see also Appendix A), while the SU(4)
symmetric case of V = U was studied in Refs. [22–25].
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by the dashed line in Fig. 1(c). Using iDMRG, it is hard to
reliably locate this transition between two gapless regimes.
Yet, the numerical evidence we discuss below, in Secs. IV A
and IV B, shows the extent of charge-4e superconductivity
well beyond the perturbative regime in a substantial portion of
the phase diagram. Note that the regions of t � 1 and δ � 1
of the phase diagram can be qualitatively understood through
a mapping of the low-energy limit to an effective spin-1/2
model, which we discuss in the following.

III. LOW-ENERGY EFFECTIVE MODEL

To see that the Hamiltonian (3) realizes the quartetting
phase, we consider a low-energy effective model in the limit
of t � 1 and δ � 1. This regime motivates a mapping of the
Hamiltonian in Eq. (3) to a spin-1/2 chain, where the two spin
states at every site correspond to the empty and four-electron
state, namely the quartet of our model, of the fermionic sites.
As compared to the 2e case, the hopping of a quartet is a
fourth-order process in t , competing with second-order pro-
cesses, which makes the conclusion about the emergence of
a phase-coherent condensate less immediate. Although the
effective model has some degree of complexity due to fourth-
order terms in perturbation theory, the result simplifies to an
XXZ chain with external magnetic field and next-to-nearest-
neighbor coupling. We indicate the spin-1/2 operator at site
i by Ŝ j

i = σ
j

i /2 ( j = x, y, z), with σ j the Pauli matrices. The
low-energy effective spin Hamiltonian reads (Appendix B)

Ĥspin =
∑

i

J
(
Ŝx

i Ŝx
i+1 + Ŝy

i Ŝy
i+1 + 	Ŝz

i Ŝz
i+1

)
+ h

∑
i

Ŝz
i + K

∑
i

Ŝz
i Ŝz

i+2, (4a)

and, to leading order, the coefficients depend on t and δ as

J ∼ t4, J	 ∼ t2, K ∼ t4, h = 2δ. (4b)

Their exact form is derived in Appendix B. Without next-
to-nearest-neighbor coupling, meaning K = 0, this model
realizes the paradigmatic XXZ model, which is known to host
a paramagnetic gapless superfluid phase [41]. A nonzero value
of K does not introduce frustration in the model, therefore
it does not disrupt the underlying phases. The model in Eq.
(4) can be equivalently expressed as a 1D attractive Hubbard
model for hardcore bosons, as shown in Appendix B, which
is also known to host a superfluid phase [42].

We compute the ground state of the effective model in
Eq. (4) within two-site iDMRG, and draw the phase diagram
as a function of the perturbative parameters t and δ, at fixed
V/U = 0.8 (Fig. 2). For the low-energy effective model to
be valid, we need V/U to be of order 1, while the pertur-
bation theory breaks down for V/U � 1. At small t/|δ|, the
ground state is ferromagnetic, with opposite polarization de-
pending on the sign of δ. At large t/|δ|, the system orders
antiferromagnetically, and finally, for values of t comparable
to |δ| (t/|δ| ∼ 1), the ground state is in a superfluid gapless
phase. In the language of the original fermionic model, the
ferromagnetic phases with opposite polarization correspond
to a completely empty or completely filled chain, the anti-
ferromagnetic phase maps to a Q = π CDW order, where

FIG. 2. Effective spin model. Phase diagram of the effective spin
model of Eq. (4) as a function of δ, t and fixed V/U = 0.8. The
phase boundaries are traced based on the spin polarization, its vari-
ance, and spin correlations as obtained from iDMRG (Appendix B).
The different spin phases are labeled by a pictorial representation of
the spin configuration.

sites are alternatively empty or fourfold occupied, and the
gapless superfluid phase translates into a charge-4e supercon-
ducting gapless phase. Below, we use iDMRG in the original
fermionic model to characterize the nontrivial regions of this
phase diagram further.

IV. NUMERICAL RESULTS

We now come back to and study the fermionic Hamil-
tonian, Eq. (3), beyond the aforementioned perturbative
mapping to a spin-1/2 chain, where the existence of 4e
superconductivity is rigorously established. In this section,
we consider individual points in parameter space lying well
within the phases of interest to explore their specific sig-
natures in terms of transfer matrix properties, correlations
and susceptibility. We consider iDMRG results with differ-
ent values of bond dimension χ to extrapolate the infinite
long-range distance behavior of gapless phases, which would
require χ → ∞ for a full description. As the full and empty
lattice states are simply gapped product states, we focus on
the comparison between the 4e-superconducting phase, the
CDW phase, and the 2e superconductivity, which is restored
in the limit V = 0. For completeness, we show the data for the
Luttinger liquid phase in Appendix D 3.

Based on the insights of this section, we draw the phase
boundaries in Fig. 1(c) by considering iDMRG data at fixed
bond dimension. The boundaries are then obtained by con-
sidering the value of correlations at finite distance, CDW
order parameter, and filling of the iDMRG ground state
(Appendix D 2). In Appendix C, we complement the iDMRG
results with exact diagonalization data on a finite-size chain
of length L = 8, where we show the evolution of the many-
body energy spectrum under magnetic flux insertion, which
displays the expected �0/4 periodicity.

A. Transfer matrix observables

To characterize different phases, we analyze the transfer
matrix T [43,44] constructed from the matrix-product (MPS)
ground states obtained from iDMRG in the respective phases.
The transfer matrix is obtained by contracting the physical
legs of the on-site MPS tensor obtained from iDMRG at fixed
χ with its Hermitian conjugate. The resulting tensor has four
virtual legs of dimension χ , and can therefore be recast into
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FIG. 3. Transfer matrix characterization of the charge-4e (top),
CDW (middle), and charge-2e (bottom) phases, as obtained from the
iDMRG ground state. (a) The two largest eigenvalues in absolute
value of T are shown as a function of inverse bond dimension 1/χ .
(b) Transfer matrix eigenvector overlaps with the pair operators P�̄=0,
P�̄=1, and Q as a function of 1/χ . The 2e panels are evaluated on
the charge-2e model (Appendix A), hence only P�̄=0 is shown. The
parameters for the panels are (δ, t, V/U ) = (−0.5, 0.6, 0.2) for the
4e, (0, 1, 0.2) for the CDW, and (−0.3, 0.5, 0) for 2e panels.

the matrix T of size χ2 × χ2. The transfer matrix can be de-
composed in terms of its eigenvalues {λi}χ

2

i=1 and eigenvectors

{|vi〉}χ
2

i=1 (ordered as |λ1| > |λ2| � |λ2| � · · · � |λχ2 |)

T =
χ2∑
i=1

λi |vi〉 〈vi| (5)

with the largest eigenvalue λ1 = max{λi}χ
2

i=1 = 1, by con-
struction and normalization constraints, and all the other
eigenvalues |λi| < 1 for i �= 1.

This matrix encodes information on the decay of correla-
tions in the ground state: If the subleading eigenvalue of T is
separated from 1 by a gap that persists in the limit χ → ∞,
all correlations decay exponentially over large enough dis-
tances. Another way to see this is to note that the correlation
length ξ of a state can be extracted from the second lead-
ing eigenvalue of T , λ2, through the relation λ2 = e− 1

ξ [45].

Therefore, ξ
χ→∞−−−→ ∞ is equivalent to λ2

χ→∞−−−→ 1. Indeed,
the subleading eigenvalue extrapolates to 1 in this limit in the
putative charge-2e and charge-4e phases, while this is not the
case in the CDW phase [Fig. 3(a)]. This allows in principle
for algebraic decay of correlations in the former two phases,
bearing in mind that MPS at finite χ are not able to fully
capture this behavior [45].

To motivate our approach to analyze T , let us consider con-
nected correlators of the following form, for a translationally
invariant system [44,45]:

CO(|i − j|) = 〈Ô†
i Ô j〉GS − 〈Ô†

i 〉GS〈Ô j〉GS, (6)

where Ôi is an operator acting on site i. These can be ex-
pressed as [44]

CO(|i − j|) = tr[Ô†
i T |i− j−1|Ô j] − 〈Ô†

i 〉GS〈Ô j〉GS, (7)

where T is the transfer matrix. By inserting Eq. (5), the con-
nected correlator becomes

CO(|i − j|) =
〈

Ô†
i

⎛
⎝ χ2∑

i=2

λ|i− j+1|
vi

|vi〉 〈vi|
⎞
⎠Ô j

〉
. (8)

Therefore, maximizing the overlap between the second lead-
ing eigenvalue |v2〉 and a generic operator Ô, conveys which
operator is characterized by the slowest exponential decay
across the MPS ground state. This, for a gapless phase, would
lead to algebraic decay in the limit of χ → ∞, combined with
the correlation length divergence.

In practice, there is a finite number of symmetry inequiva-
lent operators in our model, therefore it is sufficient to evaluate
the overlaps between |v2〉 and a finite subset of operators to
find the leading overlaps. To this end, we introduce the pair
and quartet operators

P̂r,�,σ,�̄,S = ĉr,�,σ ĉr,�+�̄,σ+S, Q̂r = ĉr,1,↑ĉr,1,↓ĉr,2,↑ĉr,2,↓. (9)

Since the Hamiltonian in Eq. (3) conserves TRS, particle
number, orbital and spin quantum numbers, it is sufficient
to consider the subset Pr,�̄ ≡ Pr,1,↑,�̄,S out of all the two-body
operators to have a minimal set of operators spanning all the
symmetry inequivalent two-particle operators.

The overlaps between the eigenstate of T with subleading
eigenvalue and the P̂�̄ and Q̂ operators are shown in Fig. 3(b)
as a function of 1/χ . We indicate the overlaps with the pair
and quartet operators by P�̄ and Q, respectively. While P�̄=0
dominates in the charge-2e superconducting phase, Q domi-
nates in the charge-4e phase, and no overlap has a substantial
amplitude in the CDW phase, as compared to the two for-
mer phases. This indicates that the operators with slowest
decay across large distances, ultimately becoming algebraic at
χ → ∞, are the quartet operator in the charge-4e phase and a
pair operator in the charge-2e phase.

B. Correlations and susceptibility

After having discussed the transfer matrix properties in
different regions of the phase diagram, we analyze the cor-
relations and susceptibility to a superconducting mean-field
perturbation.

a. Correlations. We define the reduced two- and four-body
correlation functions

C̄(4)(r) = C(4)(r) − [
C(2)

�̄=0
(r)

]2
,

C̄(2)(r) = C(2)
�̄=0

− [C(1)(r)]2, (10)

where C(2)
�̄,S

(r) = |〈P̂†
0,�̄

P̂r,�̄〉|, C(4)(r) = |〈Q̂†
0Q̂r〉|, and C(1)

�,σ (r)

= |〈ĉ†
0,�,σ ĉr,�,σ 〉|. Due to the symmetries of the Hamiltonian,
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FIG. 4. Characterization through correlations and susceptibility of the charge-4e (top row), CDW (middle row), and charge-2e (bottom
row) phases, as obtained from iDMRG. (a)–(c) Log-log plot of the absolute value of the (a) C̄ (2)

�̄=0
, (b) C̄ (2)

�̄=1
, and (c) C̄ (4) defined in Eq. (10) as a

function of distance r. The dashed horizontal lines indicate the value of |〈P̂�̄=0〉|2, in (a) bottom row, and |〈Q̂ 〉|2, in (c) upper row, at different
χ , corresponding to the value at which the algebraically decaying correlations level off for the 2e and 4e case, respectively (Appendix D 4).
(d)–(e) Susceptibility to (d) charge-4e and (e) charge-2e perturbations, see Eq. (14). Throughout the figure the color opacity indicates the
bond dimension χ , while purple and orange distinguish 2e and 4e probes, respectively. The parameters for the panels are the same as the one
considered in Fig. 3.

all the C(1)
�,σ (r) ≡ C(1)(r)’s are equal. In Eq. (10) we already

used the ensuing simplification by dropping the respective
indices. All the expectation values are computed over the
ground state.

Figures 4(a)–4(c) show the correlations, Eq. (10), evaluated
on the ground state in three different phases, as a function of
distance r and different bond dimension χ of the MPS ansatz.
In the 4e-superconducting phase, the two-body correlations
decay exponentially for any χ , while the four-body correla-
tions decay algebraically before leveling off at a distance that
increases with χ . For the CDW case, all the correlations decay
exponentially. At V/U = 0, the charge-2e superconducting
phase has C̄(2)

�̄=0
correlations following an algebraic decay,

which then level off at large distances, while C̄(2)
�̄=1

and C̄(4)

are exponentially suppressed.
The constant behavior at large r in the 4e and 2e cases is

an artifact of the finite χ [42], and an intrinsic limitation of
the MPS ansatz to capture gapless systems [45]. The constant
value at which correlations level off can be directly related to
the local expectation values of particle nonconserving opera-
tors, namely

lim
r→∞C(2)

�̄
(r) = |〈P̂0,�̄〉|2, lim

r→∞C(4)(r) = |〈Q̂0〉|2. (11)

The squared expectation values as in the right-hand sides
in Eq. (11), are indicated by the dashed lines in the
relevant panels of Fig. 4, and they coincide with the value at
which the algebraically decaying correlations level off at large

distances. From the above arguments it follows that the con-
nected correlations, namely 〈P†

0,�̄=0
Pr,�̄=0〉 − 〈P†

r,�̄=0
〉〈P

r,�̄=0
〉

and 〈Q†
0Qr〉 − 〈Q†

0〉〈Q0〉, exponentially decay at large dis-
tances instead of leveling off, and this is shown in
Appendix D 4.

The observations above can be explained by noting that
even though the Hamiltonian in Eq. (3) does not break
particle-number conservation, the ground state obtained from
the iDMRG algorithm at finite χ acquires a nonzero expec-
tation value of the pair operator P̂�̄=0 and quartet operator Q̂
in the 2e and 4e phases, respectively. This is allowed because
particle number conservation is not imposed in the iDMRG
simulations (Appendix D 1). The true ground state, which
would be obtained at χ → ∞, in general does not mix differ-
ent particle number sectors, and therefore we expect the pair
and quartet expectation values to go to zero as χ increases,
and similarly for the particle number fluctuations. The former
are shown in Appendix D 4. For the latter, we carry out a
numerical analysis in Appendix D 5, where we consider the
quantity

var(N̂L )/L = (〈
N̂2

L

〉 − 〈N̂L〉2)/L, (12)

with N̂L the particle number operator on a system of finite size
L, and show that Eq. (12) extrapolated to L → ∞ approaches
zero for increasing bond dimension χ . For completeness, the
bare correlations (without subtraction) are shown in Appendix
D 4.
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FIG. 5. (a) Log-log plot of the correlations defined in Eq. (10) for
varying V/U ∈ [0, 1], constant δ = −0.3 and t = 0.5, and at fixed
bond dimension χ = 500. (b) Exponents extracted from the curves
in (a), as defined in Eq. (15). At V/U = 0 only η2 is defined.

b. Susceptibilities. Figures 4(d)–4(e) show the suscep-
tibilities to the charge-4e and charge-2e superconducting
perturbations for the same choices of model parameters con-
sidered in Fig. 3. In particular, we study the susceptibilities
to mean-field perturbations of charge-2e and -4e type with
perturbations of the form

δĤ2e = 	2e

∑
i,�

(ĉ†
i,�,↑ĉ†

i,�,↓ + H.c.) (13a)

and

δĤ4e = 	4e

∑
i

(Q̂†
i + H.c.), (13b)

respectively. These perturbations lead to nonvanishing expec-
tation values |〈P̂†

�̄=0
〉| and |〈Q̂†〉| with respect to the ground

state of the perturbed Hamiltonian, where we dropped the
index r due to translational symmetry. Finally, we obtain the
susceptibilities

χ2e = ∂|〈P̂†
�̄=0

〉|
∂	2e

∣∣∣∣∣
	4e=0

, χ4e = ∂|〈Q̂†〉|
∂	4e

∣∣∣∣∣
	2e=0

. (14)

While the exact order parameters for the charge-2e and
charge-4e superconductors are in principle not known, we
expect a nonzero overlap with P̂�̄=0 and Q̂†, respectively. Im-
portantly, for a choice of parameters falling in the charge-4e
phase χ4e, shows a peak for 	4e → 0, while the charge-2e
phase has a peak in χ2e, and the susceptibilities are constant
in the CDW phase. For completeness, the expectation values
P̂0 and Q̂ are shown in Appendix D 6.

V. STABILITY OF THE CHARGE-4e PHASE

So far, we have focused on a few values of V/U = 0.2 and
V = 0 to establish that they realize, respectively, charge-4e
and charge-2e superconducting phases. We now address the
interpolating regime 0 � V � U , while keeping δ constant.
Figure 5(a) shows the correlations introduced in Eq. (10), and
we drop C̄(2)

�̄=1
as it remains exponentially decaying both in

the 2e and 4e superconducting phases. While C̄(4) remains
algebraic for any V < 0, C̄(2)

�̄=0
switches from an exponential

decay to algebraic at V/U = 0, suggesting a 4e phase for any
nonzero V . We parametrize the long-distance behavior of the

correlations as

C̄(i)(r) ∼ r−ηi , C̄(i)(r) ∼ e− r
ξi , (15)

for algebraic and exponential decay, respectively. While the
MPS ground state cannot fully capture an algebraic decay
[45], we extrapolate the value of ηi’s by considering the
correlations up to a finite distance, after which they become
constant. In Fig. 5(b), the extracted ξ2, η4 for V/U > 0, and
η2 for V/U = 0 are shown. Remarkably, the charge-4e phase
remains stable over a large parameter range away from V =
U , the SU(4) limit where quarteting had been numerically
observed [22–25]. Defining a phase boundary between the
charge-4e and charge-2e phases is challenging, but our data
suggests it lies close to or at V/U = 0.

VI. DISCUSSION

The attractive fermionic Hubbard model describes a sys-
tem where a (charge-2e) superconducting ground state is
unambiguously established theoretically. Realizing supercon-
ductivity in the attractive Hubbard model is the declared and
realistic goal of cold-atom research [46]. In our work, we have
shown that the two-orbital extension of this model realizes a
charge-4e superconducting phase at intermediate and strong
coupling in a substantial part of its phase diagram, and by con-
sidering the thermodynamic limit. In particular, we found the
phase to persist for weak (attractive) interorbital interactions,
which addresses the probably biggest limitation in realizing it
with cold atoms in experiments.

In addition to the implementation in cold-atom experi-
ments, several theoretical avenues for extending our work
present themselves: The approach to construct a charge-
4e superconductor can be replicated in higher dimensions.
Specifically in two dimensions, the physics of Mott and
charge-transfer insulators recently described in van der Waals
heterostructures may be exploited towards a solid-state ex-
perimental realization. Furthermore, the charge-4e order
parameter realized in our model, which is to good approxi-
mation the local quartet operator Q̂, transforms trivially under
all point group (or internal) symmetries of the model (inver-
sion, the exchange between the two orbitals, and time reversal
symmetry). Thus, the type of 4e superconductivity found
here can be denoted conventional, paralleling the classifica-
tion of charge-2e superconductors. Exploring unconventional
charge-4e superconductors, in other words charge-4e order
parameters that transform as a nontrivial representation of the
point group, could lead to the discovery of new topological
states.

Note added. Recently, Ref. [47] appeared, which is closely
related to the work presented here. There, the authors consider
a similar construction as the one used here, applied in the
context of quantum devices.

The code used to generate the data in this work and data
underlying the figures is available online [48].
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APPENDIX A: CHARGE-2e MODEL

In the main text, we presented a charge-4e model built from
a Bose-Einstein-condensate limit, Eq. (3). In this section, we
discuss the analogous construction for a charge-2e system.
We introduce the 2e model by considering a one-dimensional
(1D) chain with a single spinful orbital per site, with ĉ†

i,σ (ĉi,σ )
the creation (annihilation) operator of the electron with spin
σ ∈ {↑,↓} at the ith site. The Hamiltonian for the charge-2e
model is the 1D Hubbard model,

Ĥ2e =
∑

i

Ĥi − t
∑
i,σ

ĉ†
i,σ ĉi+1,σ ,

Ĥi = −μ
∑

σ

n̂i,σ + Un̂i,↑n̂i,↓ (A1)

The Hamiltonian for an individual site, Ĥi, has a four-
dimensional Hilbert space, and the twofold occupied state
has energy δ ≡ (−2μ + U ). For −μ < 0, U < 0 and δ � 1,
the low-energy subspace is made of the empty and twofold
occupied state Fig. 6(a). As in the main text, we express the
parameters in units of (−μ) in the following, unless otherwise
specified. The hopping term in Eq. (A1) induces coherence
between sites and leads to superfluidity in the thermodynamic
limit, for the right choices of δ, t . The ground-state filling
evaluated within ED3 is shown in Fig. 6(b), for a chain of
length L = 6. The figure shows two regions where the ground

3All the ED calculations presented in this work have been obtained
with the package QUSPIN (version 0.3.6) [49,50].

state is the empty or full lattice, a charge density wave (CDW)
region, where the ground state is at half-filling, and intermedi-
ate regions, where the filling interpolates between 0 or 1 and
0.5. Note that in the thermodynamic limit the CDW and the
2e gapless phases become degenerate at half-filling, and the
distinction in Fig. 6(b) is an artifact of finite-size effects in
ED. Figure 6(c) shows the response of the energy spectrum
under flux insertion, which has minima at �/�0 = 0, 1

2 , as
expected from a charge-2e superconductor.

APPENDIX B: DERIVATION OF EFFECTIVE SPIN MODEL

In this section, we outline the derivation of the low-energy
effective spin-1/2 model for the charge-4e model introduced
in the main text, Eq. (3), and we show the resulting phase
diagram.

At every site, the local Hilbert space of the full fermionic
model Eq. (3) is 16 dimensional. In the low-energy effective
model we only retain the two lowest-energy states, namely the
vacuum and the fourfold occupied state

|0〉 , ĉ†
i,1,↑ĉ†

i,1,↓ĉ†
i,2,↑ĉ†

i,2,↓ |0〉 = |4〉 , (B1)

and integrate out all the remaining states. In the following,
we consider the limit δ � 1, where the low-energy theory is
valid, and we introduce the V/U ratio r, V = rU and U =
(δ − 2)/(1 + 2r). Note that all the quantities are expressed in
units of −μ. We take the hopping term of the Hamiltonian
in (3) to be the perturbation, with t � 1, and then expand in
δ � 1. For the perturbation theory, we consider terms up to
fourth order in t , as this is the minimal order of the pertur-
bative expansion that allows to describe hopping processes of
quartets, and we only retain terms to first order in δ.

In the following, we consider one-, two- and three-site
processes in the fermionic model, and write their perturbation
theory contributions4 There are no corrections coming from
four- or more-than-four-site processes up to this order in per-
turbation theory.

The Hamiltonian projected on a single site does not contain
corrections due to the tunneling term, but it has only the

4We supported the analytical derivation of the model in Eqs. (4)
with the PYTHON package PYMABLOCK (version 0.0.1) [52].

FIG. 6. Charge-2e model. (a) Energy levels for the single site Hamiltonian, with δ = −2μ + U . The inset shows the schematic chain
structure. (b) Filling of the ground state as a function of δ and t as obtained from ED on a chain of length L = 6. (c) Response of the energy
spectrum under flux insertion for a chain of length L = 6, with δ = −0.25 and t = 0.3.
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diagonal entries

〈0| H |0〉 = 0, 〈4| Ĥ |4〉 = 2δ. (B2)

Twosite contribution are both diagonal and off diagonal,

〈4, 0| H |4, 0〉 = 2δ − (δ + 2)t2 −
(
2r2 − r + 1

)
4r(r + 1)

t4

+ O(t5, δ2, t4δ)

= W t2 + Y (r)t4 + O(t5, δ2, t4δ) (B3)

and

〈0, 4| H |4, 0〉 = − (2r + 1)(5r + 1)

4r(r + 1)
t4 + O(t5, δ2, t4δ)

= Z (r)t4 + O(t5, δ2, t4δ), (B4)

respectively.
Three-site contributions, with the two- and one-site contri-

butions subtracted, are only diagonal and of two types

h400 = 〈4, 0, 0| H |4, 0, 0〉 − 〈4, 0| H |4, 0〉
= 〈0, 0, 4| H |0, 0, 4〉 − 〈4, 0| H |4, 0〉
= 〈4, 4, 0| H |4, 4, 0〉 − 2δ − 〈4, 0| H |4, 0〉
= 〈0, 4, 4| H |0, 4, 4〉 − 2δ − 〈4, 0| H |4, 0〉
= − 1

2 t4 + O(t5, δ2, t4δ), (B5)

and

h040 = 〈0, 4, 0| H |0, 4, 0〉 + 2δ − 2 〈4, 0| H |4, 0〉
= 〈4, 0, 4| H |4, 0, 4〉 − 2 〈4, 0| H |4, 0〉

= 2r(2r + 3)

(3r + 2)(4r + 1)
t4 + O(t5, δ2, t4δ)

= X (r)t4 + O(t5, δ2, t4δ). (B6)

To summarize, we have defined

W t2 = −(2 + δ)t2,

Y (r)t4 = −
(
2r2 − r + 1

)
4r(r + 1)

t4

Z (r)t4 = − (2r + 1)(5r + 1)

4r(r + 1)
t4

X (r)t4 = 2r(2r + 3)

(3r + 2)(4r + 1)
t4. (B7)

We first map the low-energy fermionic model to a hardcore
bosonic model, and we then translate the hardcore bosonic
model to a spin-1/2 model. We identify the bosonic creation
and annihilation operators

b̂†
i ≡ ĉ†

i,1,↑ĉ†
i,1,↓ĉ†

i,2,↑ĉ†
i,2,↓, b̂i = (b̂†

i )†, (B8)

which satisfy the hard-core bosonic algebra

[b̂i, b̂†
j] = δi, j (1 − 2b̂†

i b̂i ), [b̂i, b̂ j] = 0. (B9)

At every site, the two fermionic low-energy states are mapped
to the bosonic states

|0〉 → |0〉 , |4〉 → b̂†
i |0〉 = |1〉 . (B10)

In the bosonic language, the one- and two-site contribu-
tions give

H1,2 =
∑

i

[2δ ni + Z (r) t4nini+1] +
∑

i

(W t2 + Y (r)t4)

× ni[(1 − ni+1) + (1 − ni−1)]

=
∑

i

(2δ + 2W t2 + Y (r)t4) ni +
∑

i

Z (r)t4 nini+1

−
∑

i

2(W t2 + Y (r)t4) nini+1 (B11)

and three-site contributions result into

H3 =
∑

i

(X (r) − 1)t4ni +
∑

i

(X (r) + 1)t4nini+1

−
∑

i

2X (r)nini+1. (B12)

The total Hamiltonian is Hh.c. bosons = H1,2 + H3.
The hardcore bosons can be expressed in terms of spin-1/2

operators Sk
i = σ k

i /2 (k = x, y, z, σ k Pauli matrices) acting on
site i

b̂†
i = 2S+

i = (
Sx

i + iSy
i

)
, b̂i = 2S−

i = (
Sx

i − iSy
i

)
,

b̂†
i b̂i = n̂i =

(
Sz

i + 11

2

)
, (B13)

which satisfy the relations

[S−
i , S+

j ] = −2δi jS
z
i , (σ±

i )2 = 0,

Sx
i Sx

i+1 + Sy
i Sy

i+1 = 2(S+
i S−

i+1 + S−
i S+

i+1). (B14)

In terms of spin operators, the low-energy effective Hamilto-
nian becomes Eq. (4) in the main text, namely

Hspin =
∑

i

[
J
(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + 	Sz

i Sz
i+1

)]
+

∑
i

[
hSz

i + KSz
i Sz

i+2

]
, (B15a)

with

J = 2Z (r)t4, J	 = −2W t2 + Y (r)t4 + X (r)t4,

	 = −W t2 + Y (r)t4 + X (r)t4/Z (r)t4, h = 2δ,

K = X (r) + 1)t4 (B15b)

At r = 1 we retrieve the SU(4) symmetric case, where the
effective model parameters assume the values

J = − 9
2 t4, J	 = 2t2(2 + δ) − 3

10 t4,

h = 2δ, K = 7
5 t4. (B16)

Figure 7 shows some observables evaluated on the two-site
iDMRG ground state of (B15) as a function of δ, t , at constant
r = 0.8.
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FIG. 7. Effective spin model. (a) Expectation value of the zcomponent of the spin Sz, (b) its variance, and (c) correlations measured at a
fixed distance i = 10. These values are obtained within iDMRG with bond dimension χ = 50, and constant V/U = 0.8. Data points marked
by a pink dot in (a) correspond to iDMRG runs that reached the maximal number of sweeps before reaching the accuracy 	E .

APPENDIX C: QUARTER OF A MAGNETIC FLUX
QUANTA PERIODIC RESPONSE

We employ ED on a finite chain to gather evidence for
a phase-coherent charge-4e superconducting state. The spec-
trum of a L = 8 chain with periodic boundary conditions,
shown in Fig. 8(a), shows the low-energy modes in the sec-
tors with particle numbers N = 4n, n ∈ Z+, and the absolute
ground state for N = 20 particles, which is away from half-
filling. We further observe a low-lying state at ν = 1/2 (ν :=
N/(4L)), which we will identify as a charge density wave
(CDW) below.

Figure 8(b) depicts the lowest-energy state energy spec-
trum as a function of flux � through the ring. Conveniently,
ED allows to probe the response to such a flux through
modification of the tunneling amplitude t → eiϕt at every
site, with ϕ = 2π�/(L�0) with �0 = h/e the flux quantum.
The spectrum shows four minima with period π/2, hinting
at a �0/4 periodicity under flux insertion, the telltale sig-
nature of the charge-4e superconducting phase. (Note that
we attribute the absence of exact degeneracy of states at
ϕ = 0, π/2, π, 3π/2 to finite-size effects.) Importantly, the
finite curvature of the spectrum close to ϕ = 0 is a measure
for the nonzero superfluid weight Ds, which is indicative of a

FIG. 8. Spectrum periodicity under flux insertion. (a) ED spec-
trum on the L = 8 chain with periodic boundary conditions, as a
function of filling sector ν = N/(4L), with N the particle number.
(b) ED spectrum on the L = 8 chain with periodic boundary condi-
tions as a function of inserted flux �, normalized by the flux quanta
�0. Colors distinguish between states with different N , as indicated
in the legend. For both panels, δ = −0.2, t = 0.35, and V/U = 0.2.
The data at �0/�0 > 0.5 are obtained by repeating the spectrum
evaluated at 1 − �0/�0.

coherent state [53–57]. More precisely, the superfluid weight
ground state is Ds = 0.25. For comparison, the curvature of
the half-filled state is 0.007.

APPENDIX D: iDMRG

1. iDMRG parameters

The iDMRG results presented throughout this work have
been obtained by using the two-site iDMRG algorithm im-
plemented in the tenpy library (version 0.10.0) [51]. The
two-site algorithm uses two sites of the Hamiltonian intro-
duced in Eq. (3) to perform the iDMRG minimization.

The main parameters for the iDMRG runs used throughout
this work are

(1) ‘‘chi_list’’: {0:χ/2, n_1:3χ/4, n_2:χ}, where
χ is the bond dimension quoted with the data. The values n_1
and n_2 are of order 20 and 50, respectively.

(2) ‘‘trunc_params’’ :{‘‘svd_min’’:1.e-15,
‘‘trunc_cut’’:1e-8}, and ‘‘update_env’’:10.

(3) ‘‘max_E_err’’=‘‘max_S_err’’=	E . The param-
eter 	E , determines the two-site iDMRG convergence
threshold, and we take the same for both energy and
entropy convergence. Generically, 	E is taken in the range
10−4–10−8, depending on the phase and model.

(4) ‘‘min_sweeps’’: 50, and ‘‘max_sweeps’’: be-
tween 500 and 1000.

(5) ‘‘mixer’’:True, with parameters:
‘‘mixer_params’’:{‘‘amplitude’’:1.e-5,

‘‘decay’’:1.2, ‘‘disable_after’’:30}.
The remaining parameters are set to the TENPY default.

The model in Eq. (3) in the main text is encoded in a ladder
structure, see tenpy.models.lattice.Ladder in TENPY,
where the two orbitals labeled by � = 1, 2 are encoded as the
two spinful fermionic sites at the two ends of the ladder rungs.

To implement spinful fermionic sites, we use the TENPY

structure site.SpinHalfFermionSite, with the options
cons_N = ‘‘None’’, cons_Sz = ‘‘None’’, which im-
ply no local conservation of charge and spin z component
for the fermionic degrees of freedom, respectively. Also, the
states we choose as initial ansatz for the starting point of
the iDMRG algorithm mix different particle number sectors.
This, with the choice of cons_N, cons_Sz, ensures that the
iDMRG algorithm is not constrained to a fixed particle filling,
therefore effectively realizing the ground state minimization
in the grand canonical ensemble. This allows to run the cal-
culations without knowing the ground-state filling a priori.
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FIG. 9. Charge-4e model. iDMRG data evaluated at constant V/U = 0.2, fixed bond dimension χ = 500, and maximal energy error
	E = 10−6, as a function of t and δ. Pink dots indicate data points for which the iDMRG run reached the maximal number of sweeps before
convergence. The panels display the following quantities evaluated on the ground state: (a) filling, (b) variance of the filling, (c) order parameter
for the CDW, (d)–(f) correlations at a fixed distance r = 10, respectively (d) C (1), (e) C̄ (2), and (f) C̄ (4). Note that for (d)–(f) the color scale is
logaritmic, hence correlations below the value 10−12 are flattened.

Note that the Hamiltonian in Eq. (3) for the charge-4e model
conserves particle number, and therefore the true ground
state (which is obtained in the limit χ → ∞) has a well-
defined filling. We comment on this aspect more in detail in
Appendix D 4.

2. Phase diagram from iDMRG

In this section, we present in more detail the numerical
results obtained within iDMRG applied to the model of Eq. (3)
in the main text, in other words, the full fermionic model that
realizes a charge-4e superconducting phase. To characterize
the phase boundaries, we obtain a series of observables eval-
uated on the iDMRG ground state: the results are collected in
Fig. 9 at bond dimension χ = 500, 	E = 10−6. The quanti-
ties shown in the panels of Fig. 9 are defined as follows:

(1) Filling

ν =
2∑

i=1

∑
�,σ

〈n̂i,σ,�〉GS/8,

where i runs over the two sites over which the iDMRG min-
imization is performed, and � and σ are the orbital and spin
index respectively.

(2) Variance of the on-site filling

var(ν) = 1

16

∑
�,σ

〈
n̂2

i,σ,�

〉
GS

− ν2.

(3) The CDW order parameter

OCDW = 1

16

2∑
i=1

∑
�,σ

(−1)i〈n̂i,�,σ 〉GS.

(4) The correlations C(1), C̄(2) ≡ C(2)
�̄=0

and C̄(4), defined in
Eq. (10) in the main text.

The jumps in the values of the filling, correlations and the
CDW order parameters allow us to trace the phase boundaries
sketched in Fig. 1 of the main text. The transitions between
empty and full lattice towards the gapless charge-4e phase is
sharply defined by the jump in the value of ν as well as the cor-
relations, and the same holds for the transition between CDW
and charge-4e phase. The phase boundaries that separates the
charge-4e phase and the CDW from the Luttinger liquid are
less sharp, and therefore harder to numerically pinpoint. We
trace them based on the jump in C̄(2), where the transition is
more evident.

Figure 10 shows the behavior of the C̄(4) correlations across
two phase transitions: between the fully filled ground state and
the 4e phases, and between the 4e and CDW phases, for dif-
ferent choices of bond dimension χ . The figure suggests that
the results are converged to a sufficient degree for χ = 500
and thus, showcases how the choice of χ = 500 for the phase
diagram allows us to trace the same boundaries that would
be obtained at higher values of χ , within sufficient accuracy,
while being more accessible numerically.

3. Luttinger liquid

For completeness, Fig. 11 shows the iDMRG data for
a point in parameter space falling in the Luttinger liquid
phase. In Figs. 11(a)–11(b), we show the data correspond-
ing to Fig. 3 of the main text, and Figs. 11(c)–11(g) to
Fig. 4. As visible in Figs. 11(e)–11(g), the Luttinger liquid
phase is characterized by an algebraic decay of both the C̄(2)

�̄=0
and C̄(4) correlations. In fact, the transition to the Luttinger
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FIG. 10. Bond dimension scaling. Log-log fountain plot of C̄ (4)(r) correlations for different bond dimension χ (specified by the panel
titles). The correlations are evaluated within two-site iDMRG, with 	E = 10−6, at fixed t/(−μ) = 0.6 and varying δ/(−μ) ∈ [−0.8, −0.2].
For each value of δ, correlations are shifted by an equally spaced offset, for visibility, and different values of δ are both labeled by the
corresponding value and distinguished by color. In the phase with ground-state filling ν = 1, correlations are constant and zero, therefore they
do not appear in the panels. This choice of parameters drives the system across two phase boundaries: first between the full lattice (δ � −0.65)
and the 4e phase (δ � −0.60), and then between 4e (δ � −0.30) and the CDW (δ � −0.35) phases. Dashed lines indicate that the iDMRG
calculation reached the maximal number of sweeps before reaching the energy precision, which occurs close to the phase boundaries values.

liquid phase is most visible in the jump of the value of the
C̄(2)

�̄=0
correlations in Fig. 9. The transfer matrix leading and

subleading eigenvalues, Fig. 11(a), indicate that the phase is
gapless, and Fig. 11(b) shows that there is no leading transfer
matrix eigenvector overlap. Finally, Figs. 11(c)–11(d) indicate
that this phase does not display a peak in the susceptibility to
mean-field superconducting perturbations, in contrast to the

case of the charge-2e and charge-4e phases. Data obtained
at χ = 100 is subject to dominant numerical fluctuations, as
this bond dimension is too low to be able to capture the
properties of the Luttinger liquid phase. This is clear from
the exponential decay of the correlations in Figs. 11(e) and
11(g) at χ = 100, which do not occur for any other higher
value of χ .

FIG. 11. iDMRG data for the Luttinger liquid. Luttinger liquid iDMRG data evaluated at δ = −0.4, t = 1.4 and V/U = 0.2 (and 	E =
10−6 in the iDMRG parameters). (a) Transfer matrix leading and subleading eigenvalues, in absolute value, as a function of inverse bond
dimension 1/χ . (b) Transfer matrix eigenvector overlaps P and Q, as defined in Sec. IV A, as a function of 1/χ . (c), (d) Superconducting
susceptibilities (c) χ2e and (d) χ4e introduced in Eq. (14) as a function of mean-field perturbation strength, 	2e, and 	4e, respectively. (e)–(g)
Log-log plot of two- and four-body correlations defined in Eq. (10), as a function of distance r and for varying χ . The panels show (e) C̄ (2)

�̄=0
,

(f) C̄ (2)
�̄=1

and (g) C̄ (4), respectively. The transparency of the data in (c)–(g) distinguishes different values of χ , as shown in the legend in (d). The
scale of each panel is adjusted to match the scale chosen in Figs. 3, 4, except for (e)–(g), where the y range is extended for visibility of (g).
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FIG. 12. Bare correlations. Log-log plot of the bare correlations evaluated on the ground state of the model in Eq. (3), for the (a) 4e,
(b) CDW, (c) 2e, and (d) Luttinger liquid phases. The panels correspond to the same choice of model parameters of Fig. 4 in the main
text, for (a)–(c), and Fig. 11 for (d): (a) δ = −0.5, t = 0.6, V/U = 0.2, (b) δ = 0, t = 1, V/U = 0.2, (c) δ = −0.3, t = 0.5, V/U = 0, and
(d) δ = −0.4, t = 1.4, V/U = 0.2. Here all correlations are obtained at fixed bond dimension χ = 700.

4. Correlations

In this section, we analyze in more detail some of the
properties of the correlations in the charge-4e system, as a
complement to the data shown in Fig. 4. First, we show the
bare correlations, for completeness, and we then discuss the
leveling off that the algebraically decaying correlations un-
dergo at large distances.

In Fig. 12, we show the bare (without subtraction) cor-
relations, namely C(1), C(2)

�̄
, and C(4), for the same choices

of model parameters of Figs. 4 and 11. The oscillations in
the absolute value of the correlations are a numerical effect,
and they can be suppressed for instance in two dimensions by
considering larger lattices along the added dimension [58].

As pointed out in Sec. IV B, the algebraically decaying
correlations in Fig. 4 level off at a constant value, after some
distance r∗

χ , with both the distance and the constant value
depending on χ . The distance r∗

χ increases with increasing χ ,
while the constant value reached by the correlations decreases
with increasing χ . This behavior can be explained by observ-
ing that the iDMRG ground state at finite χ breaks particle

number conservation, which leads to a nonzero on-site expec-
tation value of the operators P̂0, Q̂. This is an artifact of the
finite bond dimension, which leads to an iDMRG ground state
that mixes different particle sectors, and this effect should
disappear in the limit of χ → ∞. To clarify this point, we
consider the correlations in the large r limit, which become

C(2)
�̄

(r) = 〈P̂†
0,�̄

P̂r,�̄〉 r→∞−−−→ 〈P̂†
0,�̄

〉〈P̂r,�̄〉, (D1)

and

C(4)(r) = 〈Q̂†
0Q̂r〉 r→∞−−−→ 〈Q̂†

0〉〈Q̂r〉. (D2)

The finite expectation values on the right-hand side of the limit
are responsible for the constant behavior observed at large
distance. The absolute values of 〈P̂�̄=0〉 and 〈Q̂〉 are shown
in Fig. 13 for the 4e, CDW, 2e, and Luttinger liquid phases,
and when finitethey decrease with increasing χ , as expected.
In Fig. 14, we show the connected two-body correlations

C(2)
connected,�̄

(r) =
〈
P̂†

0,�̄
P̂r,�̄

〉
− 〈

P̂r,�̄

〉
, (D3a)

FIG. 13. Pair and quartet expectation value at finite bond dimension. Expectation value on the iDMRG ground state of the operator (top
row) P̂�̄=0 and (bottom row) Q̂ without mean-field perturbation (	2e = 0, 	4e = 0) as a function of inverse bond dimension, 1/χ . The panels
are evaluated in the (a) 4e, (b) CDW, (c) 2e and (d) Luttinger liquid (LL), phases, with the same parameters as Figs. 3, 4 for (a)–(c), and Fig. 11
for (d).
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FIG. 14. Connected correlations. Connected correlations as defined in Eqs. (D3), as a function of distance r and for different values of bond
dimension χ . The top and central rows show the connected two-body correlations for the pair operators P̂�̄=0 and P̂�̄=1 respectively, and the
bottom row shows the four-body connected correlations. The transparency of the data corresponds to different values of the bond dimension χ ,
as indicated in the legend in the bottom row panel (a). (a)–(d) correspond to parameters falling in the (a) 4e, (b) CDW, (c) 2e, and (d) Luttinger
liquid phases, respectively, with the same choice of model parameters as the ones of Figs. 3, 4 of the main text for (a)–(c), and of Fig. 11
for (d).

and connected four-body correlations

C(4)
connected(r) = 〈Q̂†

0Q̂r〉 − 〈Q̂†
0〉〈Q̂r〉, (D3b)

which exponentially decay at large distances, rather than lev-
eling off, consistently with the above considerations.

FIG. 15. Particle number fluctuations. Top row: Value of the particle number variance for a system of size L divided by L, as a function of
1/L and for different values of χ . The dashed gray lines indicate the linear fit with function a/L + b extracted from the data at fixed χ . Bottom
row: Intercept at 1/L = 0 as extracted from the top row (i.e., the b parameter obtained from the linear fit), as a function of 1/χ . The dashed
lines indicate the linear fit of the data points. The panels are evaluated for the (a)–(e) 4e, (b)–(f) CDW, (c)–(g) 2e, and (d)–(h) Luttinger liquid
phases, with the same choice of model parameters as the ones in Figs. 3 and 11.
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FIG. 16. Pair and quartet expectation values with mean-field perturbation. Expectation values of (top row) P̂�̄=0 and (bottom row) Q̂
operators in absolute value, and as a function of perturbation strength, 	2e and 	4e, respectively. (a)–(d) are evaluated in the (a) 4e, (b) CDW,
(c) 2e, and (d) Luttinger liquid phases, respectively, with the same parameter choice of Figs. 3, 4 in the main text for (a)–(c), and of Fig. 11
for (d).

5. Particle number fluctuations

As a complementary analysis to the one presented in
Fig. 13, we inspect how the particle number fluctuations
behave as a function of bond dimension. To this end, we
consider the particle number operator N̂ = ∑

i ni, with ni =
(ni,�=0 + ni,�=1) and ni,� = (ni,�,↑ + ni,�,↓), and compute its
variance

〈N̂2〉 − 〈N̂〉2 =
∑
i, j

〈nin j〉 −
(∑

i

〈ni〉
)2

. (D4)

To evaluate Eq. (D4), we have to impose a cutoff on the system
size, such that the summation runs from sites 0 to a finite size
L. Then, we compute the variance of the particle number on a
finite system of size L, N̂L, as

var(N̂L )

L
= 1

L
(〈N̂L

2〉 − 〈N̂L〉2)

= 1

L

L∑
i=0

L∑
j=0

〈nin j〉 − 1

L

(
L∑

i=0

〈ni〉
)2

. (D5)

Figures 15(a)–15(d) show the value of the quantity in Eq. (D5)
at finite L, and as a function of 1/L for different phases. The
value at L → ∞ is extrapolated through a linear fit of the data
at L > 100, and it is finite at finite χ . In Figs. 15(e)–15(h),
we plot the L → ∞ intercept extracted from the linear fit, as
a function of 1/χ . Note that here we exclude the data point
at χ = 100, which is numerically less stable. The particle
number fluctuations approach zero as the bond dimension in-
creases, as expected from the fact that the Hamiltonian of the
charge-4e model preserves the particle number. The intercept
of the L → ∞ value at χ → ∞ is small but still finite, likely
due to numerical inaccuracy.

6. Susceptibility

In Eq. (14), in Sec. IV B of the main text, we have de-
fined the superconducting susceptibilities to charge-2e and
charge-4e superconducting mean-field perturbation. For com-
pleteness, Fig. 16 shows the raw expectation values 〈P̂0〉 and
〈Q̂〉 from which the susceptibilities χ2e and χ4e, shown in
Figs. 4(d), 4(e) are computed.
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