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Andreev bound states can occur at single impurities in superconductors if the impurities suppress su-
perconductivity for a given system. In particular, well-known Yu-Shiba-Rusinov states occur at magnetic
impurities in conventional s-wave superconductors. Here we demonstrate that nonmagnetic impurities in
superconductor/antiferromagnet (S/AF) heterostructures with conventional intraband s-wave pairing also pro-
duce Andreev bound states. Analogously to the Yu-Shiba-Rusinov bound states the bound states in S/AF bilayers
are spin split, but the spin of a particular bound state is determined by the sublattice to which the impurity
belongs. The standard decay of the bound state local density of states is superimposed by atomic oscillations
related to the staggered character of the exchange field in the host material and by another oscillating pattern
produced by finite-momentum Néel triplet pairing generated at the impurity.
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I. INTRODUCTION

Impurities in superconductors are some of the most im-
portant tools for identifying the nature of the pairing state
and microscopic properties of superconductors and for re-
alization of topological superconductivity [1–7]. A lot of
effort is devoted to investigation of how different types of
impurities influence the critical superconducting temperature
for different types of superconducting pairing. In conven-
tional s-wave superconductors nonmagnetic impurities do not
suppress superconductivity according to Anderson’s theorem
[8]. However, magnetic impurities are pair breaking for con-
ventional s-wave superconductors and suppress their critical
temperature [1,9]. For unconventional superconductors with
anisotropic [1,10] or s-wave odd-parity pairing [11–15] even
nonmagnetic impurities can be pair breaking.

A related important problem is the study of Andreev bound
states, which can occur in the vicinity of single impurities
if the impurities suppress superconductivity for a given sys-
tem. The single-impurity Andreev bound states have attracted
much attention over the last several decades [1]. The mag-
netic impurities break the time-reversal symmetry and for this
reason they are pair breaking even for conventional s-wave
superconductors. Well-known Yu-Shiba-Rusinov states occur
at magnetic impurities [16–18]. On chains of magnetic im-
purities they can form topological bands due to overlapping
of bound states at separate impurities [5–7]. For d-wave su-
perconductors even nonmagnetic impurities are pair breakers
and produce bound states due to the fact that the change
of the quasiparticle momentum upon scattering disrupts the
phase assignment for particular directions of the momenta
in such a pairing state [1,19]. In addition, the nonmagnetic
impurities can result in superconductivity suppression and
impurity-induced Andreev bound states in multiband super-
conductors [20–22]. In unconventional superconductors they
serve as a test of the pairing symmetry [3,4].

Here we demonstrate that impurity-induced Andreev
bound states at nonmagnetic impurities can also occur
in superconductor/antiferromagnet (S/AF) heterostructures
with conventional intraband s-wave pairing. The system is
sketched in Fig. 1 and represents a thin-film bilayer composed
of a superconductor and a two-sublattice antiferromagnet. The
general physical argument allowing for the bound state at
a nonmagnetic impurity in such a system is the following.
The ideal bilayer in the absence of impurities is symmetric
under simultaneous action of time reversal and sublattice in-
terchange. The presence of impurity breaks this symmetry. As
a result, for conduction electrons the impurity can be viewed
as effectively magnetic. Analogously to the Yu-Shiba-Rusinov
bound states the bound states in S/AF bilayers are spin split,
but the spin of a particular bound state is determined by
the sublattice to which the impurity belongs (see Fig. 1 for
illustration).

The presence of Andreev bound states at single nonmag-
netic impurities in S/AF bilayers is in agreement with the
behavior of the superconducting critical temperature of such
systems in the presence of random disorder, which has already
been studied [23–25]. In Ref. [24] it was shown that nonmag-
netic impurities can suppress or enhance superconductivity
depending on the value of the chemical potential. At μ �
Tc0, where Tc0 is a critical temperature of the superconduc-
tor, the nonmagnetic impurities enhance superconductivity of
S/AF bilayers. It is connected with the presence of so-called
Néel triplet correlations [26], which are destructive to singlet
superconductivity in the S layer, but are actually interband
correlations and therefore are suppressed by nonmagnetic
disorder. In contrast, if μ � Tc0 the superconductivity is sup-
pressed by nonmagnetic disorder. Here we demonstrate that
the same sensitivity to the value of the chemical potential
occurs in the problem of a single impurity: the bound states
only exist at μ � Tc0, when the impurities suppress super-
conductivity.
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FIG. 1. Sketch of the system under consideration. An insulating
two-sublattice antiferromagnet (AF) with staggered magnetization
mA = −mB induces a staggered exchange field hA = −hB via the
proximity effect in the adjacent thin superconductor (S). The unit cell
is shown by a rectangle. An impurity can occupy site A or B in the
S layer. Both possible variants are shown by red balls. The LDOS
of Andreev bound states localized at the corresponding impurity is
shown schematically. The energy spectrum of the bound states with
the appropriate spin structure (red arrows) is also shown above the
corresponding impurity.

The paper is organized as follows. In Sec. II we describe
the considered model and formulate the T -matrix approach
generalized for theoretical description of single impurity
problems in the two-sublattice formalism. In Sec. III we dis-
cuss the dependence of bound state energies on all significant
physical parameters and present dependencies of the impurity-
induced local density of states (LDOS) on the quasiparticle
energy. Section IV is devoted to discussion of the spatial
distribution of the LDOS around an impurity. Our conclusions
are formulated in Sec. V. The Appendixes provide additional
information on the derivation of the two-sublattice T -matrix
formalism, phase diagrams of the regions where the bound
states exist, and the spin and spatial structure of the impurity-
induced LDOS.

II. SYSTEM AND METHOD

In the considered thin-film S/AF bilayer (see Fig. 1) the
antiferromagnet is assumed to be an insulator. The magnetism
is staggered and the S/AF interface is fully compensated,
that is, the interface magnetization has zero average value.
The sites in the superconductor are marked by the radius
vector r = (x, y, z)T , where x, y, z are integer numbers, and
the interface is in the (x, y) plane. The influence of the antifer-
romagnetic insulator on the thin S layer with thickness smaller
than the superconducting coherence length ξ can be described
by the Néel-type exchange field hN

r = (−1)x+y+zh [26], which
leads to the following effective lattice Hamiltonian of the S
layer:

Ĥ = − t
∑

〈rr′〉,σ
ĉ†

rσ ĉr′σ +
∑

r

(�ĉ†
r↑ĉ†

r↓ + H.c.) − μ
∑
r,σ

n̂rσ

−
∑
r,αβ

ĉ†
rα (hN

r σ )αβ ĉrβ +
∑

σ

U0c†
rimp,σ crimp,σ (1)

where 〈rr′〉 means summation over the nearest neighbors,
ĉ†

rσ (ĉrσ ) is the creation (annihilation) operator for an electron
with spin σ at site r, t parametrizes the hopping between
adjacent sites, and � accounts for on-site s-wave pairing.
Since the superconducting layer is thin with respect to ξ , �

and h are assumed to be homogeneous along the z direction. μ
is the electron chemical potential, n̂rσ = ĉ†

rσ ĉrσ is the particle
number operator, σ = (σx, σy, σz )T are Pauli matrices in spin
space, the lattice constant is denoted by a, and U0 is a potential
of the single nonmagnetic impurity, which is located at site
rimp.

To calculate the bound state energies and LDOS around
a single impurity we generalized the T -matrix formalism [1]
for taking into account the antiferromagnetic character of the
host material. It is done on the basis of the Gor’kov Green’s
functions in the two-sublattice framework [24,26]. Relegating
technical details of the derivations to Appendix A, here we
present the resulting equations. In the framework of the two-
sublattice formalism we choose the unit cell with two sites
belonging to two sublattices A and B, as shown in Fig. 1. The
Green’s function is a 8 × 8 matrix in the direct product of spin,
particle-hole, and sublattice spaces. Therefore, in addition to
the Pauli matrices σ = (σx, σy, σz )T in spin space we define
the Pauli matrices τ = (τx, τy, τz )T in particle-hole space and
ρ = (ρx, ρy, ρz )T in sublattice space.

In the framework of the T -matrix approach the retarded
Green’s function takes the form

Ǧii = Ǧ0
ii + Ǧ0

iiimp
Ť Ǧ0

iimpi, (2)

where i ≡ rA is the coordinate of a unit cell coinciding with
the radius vector of its A site. Ǧ0

i j is the homogeneous Green’s
function of the S/AF bilayer in the absence of the impurity
and the T matrix takes the form

Ť = (
1 − Ǔ0Ǧ0

iimpiimp

)−1
Ǔ0 (3)

with Ǔ0 being a matrix of impurity potential, which takes the
form

Ǔ0 = U0
(ρx ± iρy)

2
. (4)

The sign ± describes the impurity located at a site A (B). For
definiteness further we assume that the impurity is located
at the A site. The results for impurities located at a site B
are obtained by h → −h. Then the bound state energies are
determined by the following equation:

det
(
1 − Ǔ0Ǧ0

iimpiimp

) = 0, (5)

where Ǧ0
iimpiimp

can be found analytically (see Appendix A),

it is diagonal in spin space Ǧ0
iimpiimp

= Ǧ0
iimpiimp,↑(1 + σz )/2 +

Ǧ0
iimpiimp,↓(1 − σz )/2, and its spin-up and spin-down compo-

nents take the form

Ǧ0
iimpiimp,σ

= Gσ
0xτ0ρx + Gσ

yxτyρx + Gσ
zxτzρx

+ Gσ
0yτ0ρy + Gσ

yyτyρy + Gσ
zyτzρy, (6)

Gσ
0x = μ[(−h2 + �2 − ε2 + μ2)I1 − I2]

Gσ
yx = −i�[(−h2 + �2 − ε2 + μ2)I1 + I2]
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Gσ
zx = ε[(−h2 − �2 + ε2 − μ2)I1 − I2]

Gσ
0y = 2ihσεμI1

Gσ
yy = 2hσ�εI1

Gσ
zy = ihσ [(h2 − �2 − ε2 − μ2)I1 + I2], (7)

where ε is a quasiparticle energy, σ = ±1 as a factor in
the expression for spin-up (-down) components, h = |h|,
I1 = − 2

√
2iπ

(α1+α2 )α1α2
, I2 =

√
2iπ

α1+α2
, α1,2 =

√
−β1 ∓

√
β2

1 − 4β0 ,

β0 = h4 + (�2 − ε2 + μ2)2 − 2h2(�2 + ε2 + μ2), and β1 =
2(�2 − ε2 − μ2 + h2).

The superconducting order parameter is taken as � = 0.1t
throughout the paper. In principle, it is also disturbed by
the pair-breaking impurity and should be calculated self-
consistently. But we do not perform the self-consistency
procedure, which is a quite standard approximation upon
treating single-impurity problems because the suppression of
the order parameter is determined by the Fermi wavelength
and does not affect the position of the bound state [1].

III. BOUND STATE ENERGIES AND
ENERGY-RESOLVED DOS

The LDOS at A and B sublattices can be calculated as

NA,B(ε, i) = − 1

π
Im

[
Tr

[
Ǧii(τ0 + τz )(ρx ± iρy)

4

]]
. (8)

The LDOS calculated at the impurity site and at the nearest
neighbor of the impurity is plotted in Figs. 2(a) and 2(b),
respectively. The bound states are represented by the peaks
at ε = ±εb with asymmetric heights inside the superconduct-
ing gap. Higher outer peaks in Fig. 2(b) correspond to the
superconducting gap 2ES

g . At the impurity site they are fully
destroyed by the bound state [see Fig. 2(a)]. The asymmetry
of the bound state peaks is connected with the overall particle-
hole asymmetry of the LDOS. This asymmetry is clearly
seen in the insets, which show the LDOS for a larger energy
range. Here we can also see the antiferromagnetic gap 2EAF

g at
energies ε ∈ [−μ − h,−μ + h] and an additional peak inside
this gap. This peak corresponds to another impurity-induced
bound state, which is not related to superconductivity and
survives also in the normal state. We do not focus on this
nonsuperconducting bound state here.

As it was briefly mentioned in the Introduction, the phys-
ical reason for appearance of these bound states is that the
impurity in the S/AF host behaves like a magnetic impurity.
Below we provide more details about this physical explana-
tion. Energies of the bound states as functions of the impurity
strength are plotted in Fig. 3. It is seen that at stronger stag-
gered effective exchange field h the bound state is shifted
deeper inside the superconducting gap region. For the cho-
sen set of parameters we cannot consider h > 0.9μ = 18�

because of the overall suppression of superconductivity by
the Néel triplet correlations [24]. For comparison the energies
of the Yu-Shiba-Rusinov bound states at a magnetic impurity
with the same strength in a conventional s-wave supercon-
ducting host are plotted by the dashed lines. Unlike the case
of magnetic impurity our nonmagnetic impurities in S/AF
bilayers are not able to support low- and zero-energy bound

FIG. 2. LDOS as a function of energy. (a) LDOS at the impurity
site. (b) LDOS at the nearest neighbor of the impurity. The insets
show the same LDOS for larger energy range. 2ES

g is a superconduct-
ing gap at the Fermi level. The antiferromagnetic gap 2EAF

g at ε ∈
[−μ − h, −μ + h] and the nonsuperconducting additional bound
state inside this gap are also seen. t = 10�, μ = 20�, h = 15�,
U0 = 10�. The Dynes parameter describes the level broadening,
� = 0.02� (see Appendix A for description).

states. In this sense one can say that they are weaker pair
breakers as compared to the magnetic impurities.

All the results discussed above are related to the case of
strong chemical potential μ = 20�, which is far from half
filling. For μ = 0 the LDOS NA(ε, iimp) as a function of ε

is shown in Fig. 4. One can see that if the chemical potential
is close to half filling μ = 0, the bound states do not appear.
Therefore, one can conclude that whether or not an impurity
in the S/AF bilayer becomes effectively magnetic depends
on the value of the chemical potential. To understand the
underlying physical reason let us consider the wave functions
of Bloch electrons in a homogeneous superconductor in the
presence of the staggered exchange field. They take the form(

ψ̂A
iσ

ψ̂B
iσ

)
(p) =

( √
1 + σh/(μ + ε)

√
1 − σh/(μ + ε)e−ipyay

)
eipi, (9)

where it is assumed that the unit cell is chosen along the y
axis, and py and ay are the electron momentum component
and the lattice constant along this axis, respectively. We are
mainly interested in the low energies ε ∼ �. If μ � � the
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FIG. 3. Bound state energies as functions of the impurity
strength. μ = 20�. Different colors correspond to different h.
Dashed lines represent bound state energies at a magnetic impurity
with the same strength in a conventional s-wave superconductor.

probability density of spin-up electrons is presumably con-
centrated at sites A and the probability density of spin-down
electrons is concentrated at sites B. Consequently, if the im-
purity is located at a site A, it interacts more strongly with
spin-up electrons and vice versa [25]. This is the reason of
the effectively magnetic behavior of nonmagnetic impurities
in S/AF bilayers. In contrast, if μ = 0, then at ε < 0 spin-up
electrons are concentrated at A sites, but at ε > 0 spin-down
electrons are concentrated there. Since all energies ε ∼ �

around the Fermi level contribute to superconducting pairing
symmetrically, there is no difference in the spin-up and spin-
down contribution to the interaction between the impurity and
electrons. Therefore, impurities do not behave as effectively
magnetic.

More quantitatively the regions of existence of the bound
states and the dependence of the bound state energies on μ

and h can be summarized in the form of the phase diagram
presented in Fig. 5. In this figure the bound state energy εb

is shown in the plane (h, μ). The white region corresponds
to full suppression of superconductivity by the Néel exchange
field of the AF layer. Although in the present paper the super-
conducting order parameter is not calculated self-consistently,
the boundary of the superconductivity suppression in the

FIG. 4. LDOS as a function of energy. At μ = 0 there is the
only gap 2Eg = 2(� − h). In this case both antiferromagnetic and
superconducting gaps are open at the Fermi level and, therefore, 2Eg

is of mixed origin. μ = 0, h = 0.6�, U0 = 10�.

FIG. 5. Bound state energy εb in the plane (h, μ). The white re-
gion corresponds to fully suppressed superconductivity. U0NF = 0.3.

(h, μ) plane has already been calculated earlier [24]. From
Fig. 5 it is seen that at small μ � � the bound state indeed
merges with the superconducting gap ES

g for an arbitrary h.
For larger μ the bound state appears. Its energy is governed
by the parameter h/μ because it is this parameter which
is responsible for making the impurity effectively magnetic
[see Eq. (9)]. The impurity strength U0 is chosen to provide
maximal deviation of the bound state energy from the edge of
the gap. In order to prove that the regions in the (h, μ) plane,
where the bound states exist, do not depend qualitatively
on the particular choice of U0, and to provide more infor-
mation on the phase diagram, we also plotted the curvature
|d2εb/dU 2

0 |U0=0| in the plane (h, μ) (see Appendix B). If this
quantity is above zero, it indicates the existence of the bound
states for a given set (h, μ) at an arbitrary value of U0.

IV. SPATIAL STRUCTURE OF THE LDOS
AROUND IMPURITY

Spatial structure of the LDOS around impurity at the en-
ergy of the bound state ε = −εb is calculated according to
Eq. (8) and is presented in Fig. 6. The spatial region occupied
by the bound state has a spatial scale of the order of the su-
perconducting coherence length ξ ∼ vF /� ∼ 2at/�, where
vF ∼ 2at is the Fermi velocity of an electron in the normal
state of the superconductor. The exponential decay is super-
imposed by a power-law suppression analogously to the case
of magnetic impurities in conventional superconductors [1].
However, unlike the magnetic impurities in conventional su-
perconductors here the LDOS has a “staggered” component,
which oscillates between the sublattices. It is seen that if the
impurity is localized at A site, the bound state LDOS is mainly
concentrated at the B sublattice everywhere except for the
atomic-scale region near the impurity site. This fact is closely
connected with the spin polarization of the bound state LDOS.
The spin-resolved impurity-induced LDOS is presented in
Fig. 8 in Appendix C. It is seen that the bound states are indeed
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FIG. 6. LDOS at ε = −εb as a function of coordinates. The
impurity is at the A site of the unit cell iimp = (0, 0). μ = 20�,
h = 15�, U0 = 10�.

spin split and if the impurity is at the A site the lower bound
state ε = −εb corresponds to the spin-down polarization (if
the impurity is at the B site, the spin polarization of the bound
states is reversed), as it is illustrated in Fig. 1. According to
Eq. (1) it is energetically favorable to concentrate the DOS
for spin-down electrons at the B sublattice to minimize the
exchange energy.

Another interesting feature of the spatial structure of the
bound state LDOS is that the overall decay of the LDOS and
staggered oscillations associated with the sublattice structure
are also superimposed by oscillations of a larger spatial scale
compared to the atomic one, which is nevertheless signif-
icantly smaller than the superconducting coherence length
scale. We associate these oscillations with the generation of
finite-momentum Néel-type triplet correlations, which were

FIG. 7. |d2εb/dU 2
0 |U0=0| in the plane (h, μ). The white region

corresponds to fully suppressed superconductivity.

(a)

(a)

(b)

FIG. 8. Perturbation δNσ = Nσ − N0,σ of the LDOS by the im-
purity. Here N0,σ is the LDOS at the same site in the absence of
the impurity. (a) Spin-down local perturbation of the LDOS δN↓ and
(b) spin-up perturbation δN↑. μ = 20�, h = 15�, U0 = 10�.

originally predicted for S/AF bilayers with metallic antiferro-
magnets due to the Umklapp electron scattering processes at
the AF/S interface [27]. The period of oscillations is Losc =
πvF /

√
μ2 − h2. Data presented in Fig. 6 are calculated at

h = 1.5t and μ = 2t . Then Losc ≈ 4a, which is in agreement
with the additional oscillation period seen in the figure. More
detailed data proving that the reason for the appearance of
the additional period of the LDOS oscillations is the finite-
momentum Néel triplet pairing can be found in Appendix D.
These data include the Fourier transform of Fig. 6, the ex-
plicit spatial structure of the Néel triplets demonstrating the
same period. We also extracted the corresponding period for
different (h, μ) points and checked that they are in excel-
lent agreement with the analytical expression for Losc (see
Appendix D).

V. CONCLUSIONS

Based on the T -matrix approach we demonstrated that
nonmagnetic impurities in S/AF heterostructures with con-
ventional intraband s-wave pairing produce Andreev bound
states. The physical reason is that the nonmagnetic impurities
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in the presence of a staggered exchange field in the host mate-
rial can behave as effectively magnetic due to the atomically
oscillating, staggered, character of wave functions of conduc-
tion electrons. Whether or not an impurity in the S/AF bilayer
becomes effectively magnetic depends on the value of the
chemical potential. The bound states only exist at μ � Tc0.
It is in agreement with the behavior of the superconducting
critical temperature of such systems in the presence of random
disorder because it was shown earlier that only in this regime
the nonmagnetic impurities are pair breaking for conventional
s-wave superconductivity.

Analogously to the Yu-Shiba-Rusinov bound states the
bound states in S/AF bilayers are spin split, but the spin of
a particular bound state is determined by the sublattice to
which the impurity belongs. The spatial structure of the bound
state LDOS is also investigated. It is shown that the standard
decay of the bound state LDOS is superimposed by atomic
oscillations related to the staggered character of the exchange
field in the host material and by another oscillating pattern
produced by finite-momentum Néel triplet pairing generated
at the impurity.
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APPENDIX A: T -MATRIX APPROACH FOR
TWO-SUBLATTICE GREEN’S FUNCTIONS

Calculations of the bound states and the LDOS have been
performed in the framework of the T -matrix approach gen-
eralized for the antiferromagnetic host material. The general
formalism of the Gor’kov Green’s functions in the two-
sublattice framework has been developed earlier [24,26]. The
unit cell with two sites in it is chosen as shown in Fig. 1 of the
main text. Introducing the two-sublattice Nambu spinor či =
(ĉA

i,↑, ĉA
i,↓, ĉB

i,↑, ĉB
i,↓, ĉA†

i,↑, ĉA†
i,↓, ĉB†

i,↑, ĉB†
i,↓)T and the Pauli matrices

σ = (σx, σy, σz )T in spin space, τ = (τx, τy, τz )T in particle-
hole space, and ρ = (ρx, ρy, ρz )T in sublattice space, we
define the retarded Green’s function as

Ǧi j (t1 − t2) = −
(

1 0
0 −iσy

)
τ

ρx�(t1 − t2)

×〈{či(t1), č†
j (t2)}〉

(
1 0
0 −iσy

)
τ

, (A1)

where i is now the radius vector of the full unit cell,
and subscript τ means that the explicit matrix structure
corresponds to the particle-hole space. The Green’s func-
tion is a 8 × 8 matrix in the direct product of spin,
particle-hole, and sublattice spaces. We choose the z axis
along h. The Fourier-transformed Green’s function Ǧi j (ε) =∫

eiε(t1−t2 )Ǧi j (t1 − t2)d (t1 − t2) obeys the equation(
Ȟ0

i − Ǔi
)
Ǧi j = δi j, (A2)

where Ȟ0
i is the Hamiltonian of the homogeneous S/AF bi-

layer, which acts on the Green’s function as follows:

Ȟ0
i Ǧi j = [(ε + i�)τz + μ + hσzρz + �iτy]ρxǦi j + ǨiǦi j

(A3)

where � > 0 is the Dynes parameter describing the broaden-
ing of the bound state peaks. Ǩi is the kinetic term for nearest
neighbor hopping

ǨiǦi j = ρ+
∑

a

Ǧi+a−ay, j + ρ−
∑

a

Ǧi+a+ay, j (A4)

and a ∈ {±ax,±ay,±az}. Ǔi is the potential of the impurity,
which in the two-sublattice formalism takes the form

Ǔi = Ǔ0δi,iimp = U0
(ρx + νiρy)

2
δi,iimp , (A5)

where ν = ±1 if the impurity is located at the A (B) site.
The standard T -matrix ansatz for the full Green’s function

takes the form

Ǧi j = Ǧ0
i j +

∑
m,l

Ǧ0
imŤml Ǧ

0
l j, (A6)

where Ǧ0
i, j is the Green’s function of the homogeneous S/AF

bilayer in the absence of impurity obeying

Ȟ0
i Ǧ0

i j = δi j . (A7)

Subtracting perturbed (A2) and unperturbed (A7) equa-
tions, and multiplying by H0

j from the right, we obtain

Ťi j − Ǔi

∑
m

Ǧ0
il Ťl j − Ǔiδi j = 0. (A8)

Due to isotropy of the impurity potential we can write

Ťi j = Ť 0δi,iimpδ j,iimp . (A9)

Then from Eq. (A8) it follows that

Ť 0 = (
1 − Ǔ0Ǧ0

iimp,iimp

)−1
Ǔ0. (A10)

Energy of the bound states is determined by the poles of the T
matrix, that is, the bound state energies are obtained from the
following equation:

det
(
1 − Ǔ0Ǧ0

iimp,iimp

) = 0. (A11)

The spin-resolved LDOS at A and B sites of the ith unit cell
is determined via the imaginary part of the retarded Green’s
function

NA,B
↑,↓ (ε, i)

= − 1

π
Im

{
Tr

[
Ǧii(σ0 + sσz )(τ0 + τz )(ρx + νiρy)

8

]}
,

(A12)

where s = ±1 for spin ↑ (↓) and ν = ±1 for A (B) sub-
lattices. The Green’s function Ǧii is calculated according to
Eqs. (A6), (A9), and (A10). The homogeneous Green’s func-
tion Ǧ0

i j can be calculated analytically,

Ǧ0
i j =

∫
d3 p

(2π )3
e

ipyayρz
2 Ǧ0(p)e

−ipyayρz
2 eip(i− j), (A13)
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and Ǧ0(p) should be found from the unperturbed Gor’kov
equation in the momentum representation:

(ετz + μ + hσzρz + iτy�)ρxǦ0(p)

− 2t[cos(pxa) + cos(pya)]Ǧ0(p) = 1. (A14)

Then Ǧ0
i j is diagonal in spin space, that is, Ǧ0

i j = Ǧ0
i j,↑(1 +

σz )/2 + Ǧ0
i j,↓(1 − σz )/2, and each of the components in spin

space can be expanded over Pauli matrices in particle-hole and
sublattice spaces:

G0
i j,σ = Gσ

0xτ0ρx + Gσ
yxτyρx + Gσ

zxτzρx + Gσ
0yτ0ρy

+ Gσ
yyτyρy + Gσ

zyτzρy (A15)

with

Gσ
0x = μ[(−h2 + �2 − ε2 + μ2)I1 − I2]

Gσ
yx = −i�[(−h2 + �2 − ε2 + μ2)I1 + I2]

Gσ
zx = ε[(−h2 − �2 + ε2 − μ2)I1 − I2]

Gσ
0y = 2iσhεμI1

Gσ
yy = 2σh�εI1

Gσ
zy = iσh[(h2 − �2 − ε2 − μ2)I1 + I2] (A16)

where I1 = − 2
√

2iπ
(α1+α2 )α1α2

, I2 =
√

2iπ
α1+α2

, α1,2 =√
−β1 ∓

√
β2

1 − 4β0 , β0 = h4 + (�2 − ε2 + μ2)2 −
2h2(�2 + ε2 + μ2), and β1 = 2(�2 − ε2 − μ2 + h2).

APPENDIX B: PHASE DIAGRAM

In order to provide more information on the phase dia-
gram of the bound state existence in Fig. 7 we present the
curvature |d2εb/dU 2

0 |U0=0| in the plane (h, μ). If this quantity
is more than zero, it indicates the existence of the bound
states for a given set (h, μ) at an arbitrary value of U0. This
figure shows the same trends as Fig. 5, thus indicating that
the regions of existence/absence of the bound states do not
depend qualitatively on the particular value of U0. The shaded
area corresponds to the region of small μ, where the bound
states do not exist at all values of U0 and, therefore, it is not
possible to determine the curvature.

APPENDIX C: SPIN STRUCTURE OF THE
BOUND STATE LDOS

In order to prove that the Andreev bound states generated
by a nonmagnetic impurity are spin resolved, in Fig. 8 we plot
the spin-resolved LDOS at ε = −εb. Only the perturbation
δNσ of the LDOS by the impurity is shown. Here δNσ =
Nσ − N0,σ , where N0,σ is the LDOS at the same site in the
absence of the impurity. It manifests a perfect staggered order.
In Fig. 8 the nonmagnetic impurity is located at the A site. It
is seen that in this case only the spin-down LDOS N↓ is per-
turbed by the impurity for the lower bound state −εb, except
for the impurity site. Directly at the impurity site we see very
local perturbation of the LDOS in the spin-up subband, which
results from the fact that the nonmagnetic impurity by itself
works as an on-site perturbation of the chemical potential.

FIG. 9. Fourier transform of the LDOS presented in Fig. 6. ε =
−εb. The impurity is at the A site. μ = 20�, h = 15�, U0 = 10�.

APPENDIX D: SPATIAL OSCILLATIONS OF THE LDOS

Here we provide more detailed data that prove that the rea-
son for the appearance of the additional period of the LDOS
oscillations is the finite-momentum Néel triplet pairing. In
Fig. 9 we demonstrate the Fourier transform of the LDOS data
presented in Fig. 6. The peak corresponding to the oscillation
period Losc ≈ 4a is clearly seen as a green ring curve. Also
in Fig. 6 we see two additional specific features. The largest
green ring curve approximately having radius qa ≈ π repre-
sents the Néel staggered order of the LDOS. The central red
ring curve of the smallest radius originates from the overall
decay of the impurity-induced LDOS at the length scale ξ .
The fourfold-symmetric anisotropy of the image is due to the
fact that we consider the square lattice.

In Fig. 10 we additionally demonstrate the oscillation pe-
riod Losc extracted from the LDOS for different points in
the (h, μ) space. The dashed line represents the formula
Losc = πvF /

√
μ2 − h2. It is seen that the data are in excellent

FIG. 10. Losc extracted from the LDOS for different points in the
(h, μ) space, denoted by the black circles. The dashed line represents
the formula Losc = πvF /

√
μ2 − h2.
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FIG. 11. Impurity-induced perturbation δFt of the ideal Néel
triplet correlation structure at ε = −εb. The impurity is at the A site.
μ = 20�, h = 15�, U0 = 10�.

agreement with this dependence. Moreover, as it was already
indicated in Sec. IV, the period increases as μ decreases.
This suggests that this periodic pattern cannot be ascribed
to the Friedel oscillations because in the framework of the
considered tight-binding model on a square lattice the period
of Friedel oscillations does not manifest such a monotonic
dependence on μ.

Also in Fig. 11 we demonstrate the perturbation
in the spatial structure of the Néel-type triplet corre-
lations induced by the impurity. The perturbation is
defined as δFt (ε) = Ft (ε) − F 0

t (ε), where F A,B
t (ε) =

(1/8)Tr[Ǧii(ε)(τx − iτy)σz(ρx + iνρy)] is the anomalous
component of the retarded Green’s function and F 0A,B

t (ε) =
(1/8)Tr[Ǧ0

ii(ε)(τx − iτy)σz(ρx + iνρy)] is the anomalous
component of the homogeneous Green’s function in the
absence of the impurity. The Green’s function δFt in Fig. 11
is a sum of the both sublattices. The anomalous Green’s
function is plotted at ε = −εb. The rings corresponding to the
oscillations of the amplitude of the Néel triplet pairs with the
period Losc ≈ 4a are seen in this figure.
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