
PHYSICAL REVIEW B 109, 214507 (2024)

Superconductivity in the Fibonacci chain
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Superconductivity was recently reported in several quasicrystalline systems. These are materials which are
structurally ordered, but since they are not translationally invariant, the usual BCS theory does not apply. At
the present time, the underlying mechanism and the properties of the superconducting phase are insufficiently
understood. To gain a better understanding of quasiperiodic superconductors, we consider the attractive Hubbard
model on the Fibonacci chain, and examine its low-temperature superconducting phase in detail using the
Bogoliubov–de Gennes mean-field approach. We obtain superconducting solutions as a function of the param-
eters controlling the physical properties of the system: the strength of the Hubbard attraction U , the chemical
potential μ, and the strength of the modulation of the Fibonacci Hamiltonian w. We find that there is a bulk
transition at a critical temperature that obeys a power law in U . The local superconducting order parameter is
self-similar both in real and perpendicular spaces. The local density of states varies from site to site, however,
the width of the superconducting gap is the same on all sites. The interplay between the Hubbard attraction
and the intrinsic gaps of the Fibonacci chain results in a complex zero-temperature μ-U phase diagram with
insulating domes surrounded by superconducting regions. Finally, we show that tuning w from weak to strong
quasicrystalline modulation gives rise to qualitatively different thermodynamic behaviors as could be observed
by measuring the specific heat.
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I. INTRODUCTION

Superconductivity in a quasicrystal was first reported for
an Al-Zn-Mg alloy in 2018 [1], with a critical temperature
of 0.05 K. More recently, superconductivity has also been
observed in the van der Waals layered quasicrystal Ta1.6Te,
with a bulk critical temperature ∼1 K [2], and in near-
30◦ twisted bilayer graphene moiré quasicrystal [3]. These
findings have raised questions regarding the nature of the
superconducting instability and the structure of the Cooper
pairs. Standard BCS theory for homogeneous systems does
not, of course, apply for these systems, due to the absence
of translational invariance. While attempts have been made to
employ the superposition of nearly degenerate eigenfunctions
for constructing extended quasiperiodic Bloch wave functions
in momentum space [4], the task of providing an appropriate
theoretical framework for describing interacting quasicrystals
remains challenging. There have been a number of previous
theoretical studies for two-dimensional models. For example,
a real-space dynamical mean-field theory treatment of the
negative-U Hubbard model on the Penrose vertex model was
used to study the spatial modulation of the superconducting
order parameter [5]. Further studies have been carried out for
models on the Penrose tiling [6–9] and the Ammann-Beenker
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tiling [8,10,11]. Other numerical works on two-dimensional
(2D) models have investigated the superconducting state in
the presence of a magnetic field [12] and topological super-
conductivity [13–15]. The results from these studies show that
there are very complex variations in real space of the super-
conducting order parameter and of the local density of states.
However, there is little understanding of these variations and
how they depend on band filling, even on a qualitative level.

To understand the systematics of spatial variations in such
quasiperiodic systems, here we consider a paradigmatic one-
dimensional model, i.e., the superconducting Fibonacci chain.
We will examine in detail the dependence of the order pa-
rameter on the local environment, and interpret it in terms of
approximate analytical solutions in a perturbative limit. The
model also allows us to analyze the dependence of the density
of states, the specific heat, and the transition temperature on
the parameters of the Hamiltonian, namely, the hopping mod-
ulation strength, the chemical potential, and the interaction
strength U .

To this end, we use the Bogoliubov–de Gennes frame-
work to treat the negative-U Hubbard model on the Fibonacci
chain, assuming an inhomogeneous, i.e., site-dependent, s-
wave superconducting order. We justify the use of mean-field
theory by arguing that the one-dimensional (1D) results
can be carried over to a three-dimensional (3D) extension
of the Fibonacci chain, in which periodic 2D lattices are
stacked along the third direction in a quasiperiodic way (see
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Appendix, Sec. A 1). Such structures, which have been studied
both theoretically [16–20] and experimentally [21–23], moti-
vate the use of mean-field theory which would otherwise not
be meaningful for a true one-dimensional system. When the
in-plane periodic hopping amplitudes are sufficiently weaker
than the aperiodic hopping amplitudes in the out-of-plane
direction, we find a close similarity between the results for
the 1D and 3D systems.

To summarize the main results, we observe how local
environments determine the local superconducting order pa-
rameter. Inherited from the Fibonacci hopping pattern, there
is a self-similarity of the order-parameter distribution in both
real and perpendicular spaces. In addition, we study the varia-
tions of the local density of states (LDOS) in real space. While
the details of the spectra, such as the heights of the coherence
peaks, depend strongly on the local environment, the spectral
gap which opens at the Fermi level is the same for all sites.
This spectral gap is proportional to the critical temperature
at which all local order parameters vanish, consistent with a
bulk transition. We show that Tc scales as a power law of U ,
where the power is a function of the modulation strength w.
We calculate a zero-temperature phase diagram in the μ-U
plane, which shows insulating domes surrounded by super-
conducting regimes. Finally, we show that the temperature
dependence of the heat capacity shows qualitatively different
behaviors in the weak, moderate, and strong hopping modula-
tion regimes.

II. MODEL

We consider an off-diagonal tight-binding model with a
spatial modulation of the hopping integrals according to the
Fibonacci series. This results in a binary hopping sequence
generated by the infinite limit of the substitution rule tA →
tAtB, tB → tA on an initial single hopping tA. The nearest-
neighbor hopping integrals ti take one of two values, tA or tB,
according to the Fibonacci sequence, where i is the position
index. In our numerical calculations, we use finite hopping
sequences generated by applying the substitution rule a finite
number of times denoted by n. These are the approximants
of the Fibonacci chain, finite (periodic) structures that locally
retain quasiperiodic character. The nth generation approxi-
mant contains a number of atoms equal to the Fibonacci
number Fn = Fn−1 + Fn−2, with F0 = F1 = 1. We parametrize
the strength of the quasiperiodic potential by the modulation
strength w = tB − tA, with tB > tA. We fix the total bandwidth
with the constraint that the average hopping t = Fn−1tA+Fn−2tB

Fn
=

1. With this constraint, tA and tB are fully specified by w.
The hopping ratio is given by ρ = tA/tB = 1 − wτn

τn+w
, where

τn = Fn
Fn−1

. The τn are called convergents of the golden ratio τ ,
and τn → τ in the limit n → ∞.

Tight-binding models on the Fibonacci chain, the simplest
quasicrystal, have been extensively studied for non-interacting
electrons. These models have properties which are strikingly
different from those of periodic systems, notably a fractal
eigenvalue spectrum and states (see [24]). For a periodic ap-
proximant of length Fn, there are Fn distinct bands, and Fn − 1
gaps. As n → ∞, the gaps become dense, and the spectrum
becomes singular continuous. As an example, in Fig. 1(b), we

FIG. 1. (a) Cut-and-project method to generate the Fibonacci
chain: projecting selected sites of the 2D square lattice (within the
blue strip) onto a line with slope equal to the golden ratio generates
the Fibonacci chain. The chain linked by A and B hoppings is shown
at the bottom of this figure. Atom sites (defined in Sec. II) are marked
by green in the Fibonacci chain. Global density of states in a 610-site
approximant of the Fibonacci tight-binding chain (b) without and
(c) with an attractive Hubbard U . When the attractive Hubbard in-
teraction is introduced, a superconducting gap appears in the density
of states at the Fermi level, indicated by the arrows in (c). The
modulation strength is w = 0.2 in (b) and (c). The energy broadening
width in density of states calculation (Lorentzian broadened) is 0.02t .

show the global density of states of a noninteracting 610-site
approximant of the Fibonacci chain.

It was shown by Sire and Mosseri [25] that local environ-
ments can be easily classified in terms of the conumbers of
sites. The conumber indexing is derived by considering the
projection onto the perpendicular space in the cut-and-project
scheme or model set method [26] of generating the Fibonacci
chain. The conumber c(i) ∈ [0, Fn − 1] of a site with position
index i can be defined for a given Fibonacci approximant by
[27,28]

c(i) = Fn−1i mod Fn. (1)

The conumbering index classifies sites according to their local
environment: sites with similar local environments are closer
to each other. In particular, the conumber indexing partitions
sites into atom or molecule sites. There are Fn−3 sites that
have a weak hopping tA in both directions. These are called
atom sites and their conumber falls in the central window
of the conumber sequence c(i) ∈ [Fn−2, Fn−1]. In Fig. 1(a),
atom sites are marked by green dots. In contrast, the 2Fn−2

molecule sites have a strong hopping tB in either the left or
the right direction and, accordingly, their conumber lies in the
right [c(i) > Fn−1] or the left [c(i) < Fn−2] window. This con-
umber representation was recently used in a study of spatial
variations of the charge density, to show how these variations
provide direct information on the topological indices of the
chain [29].

We now consider the superconducting phase induced by
the attractive interaction ĤI = ∑

i −Uc†
i↑c†

i↓ci↓ci↑ on the off-
diagonal Fibonacci model such that the Hamiltonian is

Ĥ = −
∑

iσ

tic
†
i+1σ ciσ + H.c. +

∑
iσ

(εi − μ)c†
iσ ciσ + ĤI . (2)
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FIG. 2. The superconducting order parameter (a) in real space and (b) in perpendicular space for a Fibonacci chain with 610 sites at
half-filling. Panels (a)–(d) share all the same calculation parameters: the chain length is 610, the hopping modulation strength is w = 0.2, and
the BCS pairing strength is U = 1.3t . (c) Local density of states (LDOS) at four different sites marked in (b) with different representative
values of the order parameter. The width of the central gap is the same in the LDOS for all sites. (d) Coherence peak height in the LDOS vs
the order parameter at the corresponding site. The order parameter at a given site is positively correlated with the height of the coherence peak
in the local density of states for that site. (e) Dependence of the critical temperature on the square of the modulation strength for a chain with
610 sites and BCS pairing strength U = 1.3t . The data points within the red frame in the main figure are magnified in the inset, which shows
a linear scaling between critical temperature and the square of the modulation strength. In the inset of (e), the w values are 0.0,0.1,0.2,0.3,0.4
from left to right.

The Bogoliubov–de Gennes approximation [30] for this
model results from introduction of two mean-field terms: the
Hartree shift εH

i = −U 〈c†
i↑ci↑〉 and superconducting pairing

amplitude �i = U 〈ci↑ci↓〉. The resulting mean-field Hamilto-
nian is

ĤBdG = −
∑

iσ

tic
†
i+1σ ciσ + H.c. +

∑
iσ

(
εi + εH

i − μ
)
c†

iσ ciσ

− U
∑

i

(�ic
†
i↑c†

i↓ + �∗
i ci↑ci↓), (3)

where ciσ (c†
iσ ) is the electron annihilation (creation) operator

with spin σ at site number i, εi is an onsite potential, and μ

is the chemical potential. The second and third lines are the
result of the mean-field treatment of the negative-U Hubbard
term. The mean-field quantities �i, representing the local su-
perconducting order parameter (OP) and local Hartree energy
εHF

i , must satisfy self-consistency conditions

�i = U
∑

n

v∗
inuin[1 − 2 f (En, T )], (4)

εHF
i = U

∑
n

|uin|2 f (En, T ) + |vin|2[1 − f (En, T )], (5)

where En are the positive eigenvalues, and (uin, vin) are
the eigenvectors of the Bogoliubov–de Gennes pseudo-
Hamiltonian [30] corresponding to (3). All of the results
below are reported in units of t , the average hopping
amplitude.

III. RESULTS

A. Order parameter and critical temperature at half-filling

Figures 1(b) and 1(c) show the density of states of the
half-filled Fibonacci chain without and with the Hubbard at-
traction. In the absence of interactions, the density of states
has gaps of varying widths throughout the spectrum. In the

infinite system, the presence of a Hubbard attraction opens a
superconducting gap at the Fermi level, with coherence peaks
appearing on either side. In a finite system, this occurs as
long as U is larger than a threshold due to finite-size effects.
This gap is distinct from the intrinsic gaps of the noninter-
acting Fibonacci chain, which are also present in Fig. 1(b).
When U is nonzero, and a gap opens, the singularities of the
density of states of the noninteracting model are effectively
averaged over an energy scale of order of the gap. The local
superconducting order parameters �i are shown in Fig. 2(a)
for a 610-site approximant at half-filling. The order param-
eter is position dependent as the quasicrystal does not have
translational symmetry. Its modulation follows the underly-
ing quasiperiodic pattern. The complex real-space pattern,
shown in Fig. 2(a), is self-similar, as shown in the Appendix,
Sec. A 2. The complex spatial dependence is considerably
simplified when transformed to conumber space, following
Eq. (1). Figure 2(b) shows the same �i as in Fig. 2(a),
but with the indices permuted according to the conumber
transformation. The site-by-site modulations observed in real
space take a layered structure, akin to a sequence of plateaus.
Note that this is a self-similar fractal pattern, emerging also
in conumber space. The self-similarity of OP distribution is
explained in detail in the Appendix, Sec. A 2. Furthermore,
the conumber indexing allows us to connect the magnitude of
the order parameter with the local neighborhood of the sites
of the Fibonacci chain. We find that the atom sites, with weak
bonds to either side, have higher local order parameters than
the molecule sites, with a strong bond to one side and a weak
bond to the other side. This is a consequence of the fact that
the eigenstates have higher spectral weight on the atom sites
than on the molecule sites [31,32].

Even though the local order parameter is site dependent,
the superconducting gap width �g in the local density of
states is the same for all sites. This is shown by example
of four representative sites with distinct neighborhoods in
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Fig. 2(c). The vertical dashed line marks the smallest energy
with a nonzero value of the local density of states. This
observation is a corollary of the fact that there is only one
critical temperature although the order parameter varies lo-
cally, i.e., the superconducting transition in the Fibonacci
chain is a bulk transition. In systems lacking translational
invariance, the superconducting phase can be extremely in-
homogeneous, with variations in the local order parameter.
The quasicrystal is also inhomogeneous but since it possesses
exact symmetries, the variations are not random but self-
similar. The uniqueness of the transition temperature is not
dictated by symmetry but by the degree of localization of
the wave functions. We have shown that in the Fibonacci
there is a single transition temperature; in other words, the
superconducting transition is a bulk transition. This is a con-
sequence of the special features possessed by electronic states
in a quasicrystal. Contrary to states in a strongly disordered
crystal, states in quasicrystals are not localized in the An-
derson sense. This property, which is due to the symmetries
of the quasicrystal, implies long-range coherence, and there-
fore a bulk transition and homogeneous superconducting gap
in quasicrystals. This is consistent with the findings of [10]
where the same is found to be true in the Ammann-Beenker
tiling, a 2D quasicrystal, and in contrast to disordered systems,
where strong disorder leads to the formation of superconduct-
ing islands [33,34]. The magnitude of the order parameter is
reflected by the strength of the coherence peaks. The posi-
tive correlation between the coherence peak heights and the
magnitude of the order parameter is shown in the scatter
plot in Fig. 2(d). As can be expected in this mean-field
theory, the average order parameter �avg scales as

√
Tc − T

close to and below the critical temperature (see Fig. 9 in the
Appendix, Sec. A 4).

Figure 2(e) depicts the critical temperature Tc plotted
against the square of the modulation strength w2. It shows
that Tc increases monotonically with w. This is a consequence
of the fact that as w is increased, the Fibonacci chain ap-
proaches the limit of disconnected atoms and molecules. In
this limit, the intrinsic gaps of Fibonacci chain take up a
higher proportion of the total bandwidth. Since the bandwidth
remains constant, the density of states in the ungapped regions
must become higher as more states get squeezed into smaller
energy intervals. This ultimately leads to a higher number of
states being available to form the superconducting condensate
around the Fermi level. The increase of critical temperature
has been observed in other 1D models [35,36]. The functional
form of the critical temperature as a function of the modula-
tion strength can be understood in two opposite limits. In the
weak modulation limit ρ → 1,w → 0, the critical tempera-
ture scales quadratically in w (inset of Fig. 2). This follows
from treating the quasiperiodic modulation as a perturbation
to the periodic system [25], by which one can show that the
intrinsic gaps of the Fibonacci chain grow linearly with w

in the perturbative regime [29]. In the Appendix, Sec. A 5,
we show how this translates to the BCS order parameter
scaling quadratically in w. In the strong modulation limit
ρ → 0,w → ∼ 2.6, Tc becomes essentially independent of
w. In this limit, the Fibonacci chain decouples into a series
of disconnected atoms (monomers) and molecules (dimers).
In this limit, the density of states takes the form of a delta

FIG. 3. Scaling of the critical temperature with the Hubbard
attraction, shown on a log-log scale. Curves are shown for varying
values of the modulation strength w. The calculations are performed
for an approximant of 610 sites. These results indicate a power-law
dependence.

function localized entirely on the atom sites, and therefore
the critical temperature saturates to the value expected for a
single-site Bogoliubov–de Gennes calculation kTc → U/4 as
ρ → 0 (see the Appendix, Sec. A 6).

B. Scaling of the critical temperature and the superconducting
gap width with U

In quasicrystals, the multifractality of the spectrum and
of the eigenstates plays a crucial role in controlling the su-
perconducting order parameter and critical temperature. The
singularities of the spectrum offer a means to control these
properties, for example, to enhance the value of Tc by tuning
the chemical potential, μ.

In this section we examine the scaling of Tc and �g as a
function of the attractive interaction U for different w values.
It has been shown [37,38] that when the density of states near
the chemical potential scales as a power law, ρ(E ) ∼ E−p,
Tc(U ) should follow a power law Tc ∼ U 1/|p|. In the noninter-
acting Fibonacci chain, the density of states is characterized
by power-law singularities throughout the spectrum. Let us
consider the case of half-filling and the behavior of the density
of states close to E = 0. An exact solution was found for the
scaling index at the center of the band [39]. This solution
predicts that p > 0 increases when the modulation strength
is increased (see also [40]). Thus, the power-law scaling be-
tween Tc and U should depend on the modulation strength, as
we show below.

In Fig. 3, the dependence of Tc on U is shown for different
values of w in an approximant with 610 sites. The critical
temperatures and gap widths are global superconducting prop-
erties which are proportional to each other when U is varied
keeping other parameters constant, as shown in Fig. 10(a)
in the Appendix, Sec. A 6. Due to this proportionality, we
also observe that the gap width �g follows power-law scal-
ing with respect to U , shown in Fig. 10(b). For fixed U ,
both kBTc and �g gradually increase and finally saturate as
the modulation strength is enhanced toward the atomic limit.
This scaling at half-filling illustrates that the quasiperiodic
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FIG. 4. (a) Local superconducting order-parameter distribution
in conumber space for a Hubbard attraction U = 0.9t at various
chemical potentials for a Fibonacci chain approximant of 2584 sites.
(b) Phase diagram: average superconducting order parameter as a
function of the Hubbard attraction U and the chemical potential μ.
Insulating lobes occur where the superconducting order parameter
vanishes (black regions).

modulation strength is a sensitive tuning parameter to change
the critical temperature and spectral gap width for a given
value of interaction strength U . Other band fillings are ob-
served to have similar behavior.

C. Superconducting order parameter as a function of band
filling: T = 0 phase diagram

We now study the effects of varying the chemical potential
μ in the Fibonacci chain. In Fig. 4(a), the color map shows the
amplitude of the local order parameter in conumber space for
a range of electron densities, parametrized by μ along the y
axis. In our convention, μ = 0 represents the half-filled chain.
If the Fermi level is tuned to a gapless part of the noninteract-
ing spectrum, or if the intrinsic gap is not too large, the system
is superconducting below a finite Tc, and �i is nonzero every-
where, with a characteristic self-similar plateau structure akin
to what is shown in Fig. 2(a), except that the relative values
of the plateaus depend on the filling. On the coarse level, the
relative magnitude of the local order parameter at a given
site depends on the immediate local environment of the site.
When the system is close to half-filling, atom sites (the sites
between two red lines) have higher OP values; away from
half-filling, the molecule sites have higher OP values. The
finer structure in Fig. 4 is governed directly by the electron
density around the Fermi level. Note the qualitative similarity
between Fig. 4(a) and the local electron density map shown
in Fig. 11 of [41] (reproduced in the Appendix, Sec. A 8).
Figure 4(a) also shows a self-similar pattern feature which is
inherited from the spatial modulations of the Fibonacci chain
couplings.

Upon varying the chemical potential μ and attraction U ,
we find the distribution of the average OP, shown in Fig. 4(b),

which is closely related to the spectrum of the Fibonacci
approximants. There are two distinct phases, i.e., supercon-
ducting and insulating, that can be identified in this way,
depending on whether the Fermi level lies in a region of finite
density of states, or an intrinsic gap.

If the Fermi level is tuned to a gap, the system may be in-
sulating or superconducting, based on a competition between
the strength of the attraction U and the width of the intrinsic
gap. A minimal model with this phenomenology is the BCS
model for a semiconductor [42,43], a two-band model with an
attractive BCS term. In this model, when the Fermi level lies
within a gap, there is a sharp transition from the superconduct-
ing to the insulating state as the Cooper pair binding energy
crosses below the gap width. An analogous phenomenology
is reflected in the Fibonacci chain, where the noninteracting
spectrum contains a hierarchy of gaps. When the Fermi level
is close to or within a particular gap, the low-energy physics
can heuristically be approximated by the two-band model, as
the fine structure in the density of states further away from
the Fermi level is less relevant. Figure 4(b) is a color map
of the average order parameter in the chain as a function of
μ and U . We see in Fig. 4(b) that as the BCS attraction is
reduced, a hierarchy of insulating regions (with �avg = 0)
start to appear. Each of the insulating regions is associated
with an intrinsic gap of the Fibonacci chain. This gives rise
to a complex phase diagram where at smaller values of U ,
a series of superconductor-insulator transitions occur as the
chemical potential is raised or lowered.

D. Temperature dependence of the specific heat at half-filling

We next consider the thermodynamics of superconducting
Fibonacci chains at half-filling, as measured by the tempera-
ture dependence of the electronic specific heat,

Ce(T ) = T
dS(T )

dT
, (6)

where the entropy is defined by

S(T ) = 2
∑

α

[
ln (1 + e−βEα ) + βEα

eβEα + 1

]
. (7)

Here Eα are the eigenvalues of the Hamiltonian, and β =
1/kBT . Inspecting the numerical results shown in Fig. 5, we
observe three distinct regimes, depending on the modulation
strength of the hopping parameter w. The specific-heat jump
increases as w increases. According to the analysis in [6], a
higher fraction of eigenstates with energies below Tc leads to
larger jump of Ce at Tc. Close to the homogeneous limit (w →
0), we recover the expected thermodynamic behavior of the
uniform one-dimensional system, characterized by a sharply
peaked specific heat that abruptly jumps to its normal state
value at T = Tc, consistent with mean-field theory [Fig. 5(a)].
In this regime, we observe a single, site-independent, super-
conducting order parameter [Fig. 5(d)]. In the opposite limit
w > 1, the system effectively breaks into two constituents,
i.e., atom sites and two-site molecules, both of which are only
weakly connected with their neighbors. For half-filling, the
superconducting order parameter is largest on the atom sites
where the LDOS at the Fermi level is larger [blue symbols in
Fig. 5(f)]. In contrast, the LDOS at half-filling for molecule

214507-5



YING WANG et al. PHYSICAL REVIEW B 109, 214507 (2024)

FIG. 5. (a)–(c) Temperature dependence of the specific heat Ce/kBT for various modulation strengths w. For intermediate w ∈ [0.5, 0.8],
a broadening of the peak is observed near the jump of specific heat. (d)–(f) Temperature dependence of the local superconducting order
parameters. Blue (orange) dots represent the OP values of atom (molecule) sites. For intermediate w, we find a broad distribution of the local
OP values, which lead to the thermal broadening of the peak in the specific heat. Results are shown for a Fibonacci chain approximant with
610 sites and U = 1.3t .

sites is very small, so that superconducting order is locally
suppressed (orange symbols). The resulting distribution of the
�i is therefore bimodal, with one of the peaks close to zero.
In contrast, in the intermediate regime (w ∈ [0.5, 0.8]) we
observe a broad distribution of local superconducting OPs,
reflecting the many different local environments, as shown
in Fig. 5(e). This leads to a broadening of the peak in the
specific heat, as observed in Fig. 5(b). This broadening of the
specific heat is noteworthy: it is a signature of the intermediate
w regime.

To summarize this section, the distribution of the order
parameter has a strong effect on the behavior of the specific
heat. Specifically, for narrow OP distributions (w close to 0
or w > 1), one finds that the specific heat drops sharply at
T = Tc. However, for broad distributions of the OP at inter-
mediate w there is a rounding effect in Ce(T ) that should also
be observable in other thermodynamic quantities.

IV. CONCLUSIONS

In conclusion, in this study we have examined local and
global superconducting features of the quasicrystalline Fi-
bonacci chain. Using a site-dependent mean-field approach,
we have observed self-similar patterns of the local super-
conducting order parameter in real and perpendicular spaces.
The local density of states varies from site to site, with large
differences in the heights of the coherence peaks. However,
the width of the spectral gap remains the same throughout the
chain. This is in keeping with the observation that there is a
single transition temperature Tc for this system, below which
all of the local order parameters are nonzero.

As is well known, varying the hopping modulation mod-
ifies the density of states of the Fibonacci chain. As a result,
the spectral gap width and the critical temperature are strongly
influenced by the hopping modulation strength. They have a
power-law dependence on interaction strength U , where the
exponents depend on the modulation w. For strongly mod-
ulated chains, the critical temperature becomes much larger

than for the homogeneous chain. Enhanced critical temper-
atures have also been observed in other models with fractal
eigenstates, such as the Aubry-André model [35], a gener-
alized Aubry-André model [36], and in disordered models
[44,45]. However, although Tc may be enhanced by increas-
ing w, one should note that the distribution of local order
parameters becomes highly inhomogeneous in this limit. The
temperature dependence of the specific heat is seen to depend
strongly on the modulation strength of the hopping parame-
ter, exhibiting a considerable smearing of the peak feature at
intermediate strengths, where the local superconducting order
parameter is distributed most widely.

The observed self-similarity in the superconducting or-
der parameter suggests intriguing possibilities for controlling
collective states in quasicrystalline materials. These insights
could prove useful for the design of spatially inhomogeneous
metamaterials with specifically tailored collective properties.
In conclusion, our results for the Fibonacci chain serve to
illustrate the complexity of the new phases arising due to inter-
actions combined with geometrical structure in quasicrystals.
These systems can be expected to offer a rich platform for
exploring novel superconducting phenomena.

ACKNOWLEDGMENTS

The authors acknowledge the Center for Advanced Re-
search Computing (CARC) at the University of Southern
California for providing computing resources that have
contributed to the research results reported within this
publication. We also thank Dr. Y. Wan for providing high-
performance computing resources.

APPENDIX

1. 3D extension of the Fibonacci chain

In order to verify our mean-field 1D simulation results are
valid, we compare the solutions of the Bogoliubov–de Gennes
Hamiltonian on the 1D Fibonacci chain with those on a
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FIG. 6. Visualization of the 3D Fibonacci model. The black
bonds stand for the in-plane hopping amplitude tp. The interlayer
hopping amplitudes tA and tB are represented by orange lines and
green lines.

periodic 6 × 6 square grid of Fibonacci chains that are cou-
pled to each other by an in-plane hopping tp. Alternatively, this
system may be interpreted as a stack of periodic 2D crystals
(square lattice with hopping tp), with the interlayer hopping
modulated like the Fibonacci chain (see Fig. 6). The electronic
spectrum and superconducting order parameters (OP) at half-
filling are studied. The hopping amplitude along the stacking
direction is t . For simplicity, all the results below are reported
in units of t . We tested the following in-plane hopping ampli-
tudes tp: 0.000, 0.01, 0.02, 0.05. In Fig. 7(a), as tp increases
up to 0.02, there is noticeable difference in the density of
states (DOS) between the 3D extension of Fibonacci chain
and the 1D Fibonacci chain. The superconducting gap widths
are all the same no matter 3D lattice or the 1D chain. When
comparing the superconducting order parameter, the average
OPs per layer are plotted against the single-lattice OP of the
1D chain [Fig. 7(b)]. Most of OPs are overlapped with 1D
results. To see the differences better, the percent differences
between the OP per layer and OP of the 1D Fibonacci chain
are shown in Fig. 7(c). There is a huge percent difference
of order parameter as tp increases to 0.02 and beyond. It is
reasonable to simplify the 3D model to 1D when the in-plane
interactions and properties are not dominating. Thus, when the
in-plane hopping amplitudes are much less than those along
the stacking direction, the mean-field results are valid applied
to 1D systems.

2. Self-similar pattern in real and perpendicular spaces

The self-similarity of superconducting order-parameter
distribution in real and perpendicular spaces is shown in
Fig. 8. The central pattern (labeled by the red frame) is dis-
played in the next panel. Similar patterns recur scaled by the
renormalization parameter τ 3 [31,41].

3. Properties of the convergents of the golden ratio

The golden ratio is the positive root of of the polynomial
x2 − x − 1. This implies two useful identities,

τ 2 = 1 + τ, (A1)

τ = 1 + 1

τ
. (A2)

FIG. 7. (a) Plots of density of states of 3D extension of Fibonacci
chain with varying tp. (b) Plots of the OPs against the site indices
in z direction based on the coordination convention given in Fig. 6
of the 3D model. (c) Percent differences of average OPs relative
to the 1D Fibonacci chain. The Fibonacci sequence length is 144.
The modulation strength is w = 0.2. The attraction strength is 1.0.
These calculation parameters apply to all the calculations within this
figure. Various tp values are denoted by the different colors indicated
above (a).

The analogous identities for the convergents are

τnτn−1 = 1 + τn−1, (A3)

τn = 1 + 1

τn−1
. (A4)

The application of these identities allows us to compactly
express the relation between the modulation strength w, the
hoppings tA and tB, and the hopping ratio ρ = tA/tB:

tA = 1 − w

τnτn−1
(A5)

= 1 − w

1 + τn−1
, (A6)

tB = 1 + w

τn
(A7)

= 1 + w(τn+1 − 1), (A8)

ρ = 1 − wτn

τn + w
. (A9)
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FIG. 8. (a) Superconducting order distribution in real space of a 2584-site chain at half-filling with U = 0.9t (top), central 610-site segment
(middle), and central 144-site segment (bottom). (b) Same figure as Fig. 4(a) (left), central 610-site plaquette (middle), central 144-site
plaquette (right).

For the Fibonacci chain in the limit n → ∞, the convergents
τn can be replaced by the golden ratio τ in the above expres-
sions. When ρ → 0, ωmax ≈ 2.618; when ρ → 1, ωmin = 0.

4. Average order parameter as a function of temperature

In Fig. 9, the square of the average order parameter is
plotted as a function of temperature near the critical temper-
ature. These curves follow the

√
Tc − T relation as expected

in mean-field theory. The respective average order-parameter
magnitudes for atom sites and molecule sites also fit the
same

√
Tc − T relation just by multiplying different constant

coefficients.

5. Quadratic scaling of the superconducting gap
for weak modulation strength

When the modulation strength vanishes, w = 0, all eigen-
states are doubly degenerate: ε+

n = ε−
n = εn. Turning on w,

this degeneracy splits linearly in w [29],

ε±
n = εn ± αnw, (A10)

FIG. 9. (a)–(d) The square of the average order parameter at
different temperatures near its corresponding Tc value for different
modulation strengths. The dots represent the data points, and the
curves are fits to �2

avg = const × (Tc − T ) (which is the same as
�avg = const × √

Tc − T ). Here, the Fibonacci approximant length
is 610, and the Hubbard attraction is U = 1.3t .

FIG. 10. (a) Plots of gap width �g vs kBTc of a 610-site chain
showing that they are proportional, with a w-dependent coefficient
of proportionality. (b) Scaling of the superconducting gap width with
the Hubbard attraction, also showing a power-law scaling, with a
w-dependent exponent. (c) Plots of the slopes of gap width �g vs
kBTc varying with modulation strength w at Fibonacci chains with
different lengths. As w increases from 0 to its maximum, this slope
first increases and then drops to the minimum value near w = 0.5,
then increases to the largest value ∼4.
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FIG. 11. Noninteracting Fibonacci chain: spatial distribution of
the LDOS intensity as a function of energy and conumber index.
The darker colors represent higher LDOS intensity. Reproduced with
permission from [41].

where 2αn is the gap width of the pair of states at εn. The
contribution of a state at energy ε±

n to the density of states
at energy ε′, DOS(ε′), is a monotonically decreasing function
of �ε±

n = |ε±
n − ε′|, which we denote as f (�ε±

n ). Expanding
f (�ε±

n ) to second order in w,

DOS(ε′) =
∑

n

f (�ε+
n ) + f (�ε−

n ) (A11)

=
∑

n

[2 f (�εn) + f ′(�εn)(αnw − αnw)

+ f ′′(�εn)(αnw)2] (A12)

=
∑

n

2 f (�εn) + w2
∑

n

f ′′(�εn)α2
n (A13)

= DOSw=0(ε′) + w2F (ε′), (A14)

where we let F (ε′) = ∑
n f ′′(�εn)α2

n . Thus, in the regime of
sufficiently small w, the density of states at a given energy ε′
is proportional to the square of the modulation strength.

In BCS theory, � ∝ e
− 1

N (ε f )U , where N (ε) is the density of
states of the noninteracting system without any quasiperiodic
modulation. We now Taylor expand this up to lowest order in
w2,

�(w) ∝ e
− 1

U(N (ε f )+w2F (ε f )) (A15)

= e
− 1

UN (ε f ) +
w2F (ε f )

UN (ε f )2
+O(w4 )

(A16)

= e
− 1

UN (ε f )

(
1 + w2F (ε f )

UN (ε f )2
+ O(w4)

)
(A17)

= �(ω = 0)

(
1 + w2β(ε f )

UN (ε f )

)
+ O(w4), (A18)

where β(ε f ) = F (ε f )/N (ε f ).

6. Critical temperature in the strong modulation limit

The gap equation at different temperatures is

1 = U
∫

dε
ρ(ε)

2E
tanh

(
E

2kBT

)
, (A19)

where E = √
ε2 + �2. When w → wmax, the density of states

near the Fermi level can be approximated by a delta function,
and considering ε → 0 at the Fermi level, the gap equa-
tion can be simplified,

1 = U

2�
tanh

(
�

2kBT

)
. (A20)

Near the transition temperature Tc, � → 0. Then Eq. (A20)
can be written in the limiting form

U

2
lim
�→0

tanh
(

�
2kBTc

)
�

= 1. (A21)

This limit can be calculated by L’Hôpital’s rule

U

4kBTc
lim
�→0

1

cosh2
(

�
2kBTc

) = 1 (A22)

U

4kBTc
= 1. (A23)

Thus, kBTc = U
4 = 0.325. This result is pretty close to the

numerically calculated critical temperature 0.326.

7. Ratio of gap width and critical temperature, and its
dependence on modulation strength

The coefficient of proportionality between �g and kBTc

increases with w, as shown in Fig. 10(b). We first ana-
lyze the slope of �g

kBTc
in the large-w limit. When ρ →

0 (corresponding to w → ∼ 2.6), the chain is made up
of disconnected atoms (single sites connected by vanishing
weak bonds) and molecules (pairs of sites connected to each
other by strong bonds and to the rest by weak bonds). In
this limit, only the atom sites contribute to the pairing if
the system is at half-filling since their energy is zero and
the Bogoliubov–de Gennes equation is represented by the
matrix,

HBdG
atom =

(
0 �

�∗ 0

)
. (A24)

The positive-energy eigenvector of this matrix is 1√
2
(
1
1)

regardless of the value of �. Plugging this into � =
U

∑
n v∗

nun where n labels the positive-energy eigenvectors
of the Bogoliubov–de Gennes pseudo-Hamiltonian. we find
that the zero-temperature self-consistent order parameter is
U/2. Therefore, the gap width is �g ≈ 2 × �atom = U . Also,
kBTc = U

4 which has been proved in Appendix, Sec.6. There-

fore, �g

kBTc
= 4 in the large modulation strength limit, as seen

in Fig. 10(b).
In the small-w limit, the calculated slope value is 3.46,

which is close to that of BCS theory �g

kBTc
= 2�

kBTc
= 2 × 1.76 =

3.52.

8. Intensity distribution of the local density of states in
perpendicular and energy space

In the noninteracting Fibonacci chain [41], the spatial in-
tensity pattern of the local density of states resembles that of
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the local superconducting order parameter shown in Fig. 4(a).
Not surprisingly, the electron density distribution inherits
the self-similar feature in perpendicular space. Comparison

of Fig. 11 with Fig. 4(a) illustrates how the superconduct-
ing order-parameter distribution follows the electron density
distribution.
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