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Many-body quantum dynamics of spin-orbit coupled Andreev states in a Zeeman field
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We provide a theoretical framework to describe the quantum many-body dynamics of Andreev states in
Josephson junctions with spin-orbit coupling and a magnetic Zeeman field. In such cases, employing a doubled
Nambu spinor description is technically advantageous but one then has to be careful to avoid double-counting
problems. By deriving the Lindblad master equation in the so-called excitation picture, we show that a physically
consistent many-body theory free from double-counting problems follows. We apply our formalism to a study
of dynamical parity stabilization of the Andreev sector at intermediate times after an initial microwave pulse, in
particular addressing the combined effects of spin-orbit coupling and Zeeman field.
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I. INTRODUCTION

At present, nanoscale Josephson junctions are intensely
studied in view of their relevance for many applications, e.g.,
in quantum information processing, as ultrasensitive quan-
tum sensors, or as superconducting diodes [1–6]. Over the
past decade, high-quality hybrid nanowires realizing Joseph-
son junctions with just a few transport channels of high
transmission probability have become available in different
laboratories [7–26]. Typically, the supercurrent is then mostly
carried by subgap Andreev bound states (ABSs) [1,27–33]
localized near the weak link between the superconducting
banks. Importantly, these ABSs can also be used to encode
a qubit degree of freedom [34–38] if one can preserve the
fermion number parity of the Andreev sector (simply referred
to as “parity” below) on sufficiently long timescales below
the parity switching time τp. The timescale τp describing
transitions between states of opposite parity is generated by a
variety of microscopic mechanisms [22,39–41]. Recent exper-
iments have shown that coherent Andreev qubit manipulations
are feasible on timescales of up to ∼100 µs [9,13,15,17,22–
25].

In the context of quantum information processing appli-
cations, spin-based Andreev qubits [22–25,37,42,43] are of
particular importance. Here spin-orbit interaction (SOI) ef-
fects in combination with weak magnetic Zeeman fields play
a central role. The corresponding qubit manipulations are
possible through electrostatic gate modulations of the SOI
[14,18,24,44], by magnetic flux variations [15,17], and/or
by Zeeman field changes. In fact, many nanowires stud-
ied experimentally so far are based on material platforms
with strong SOI, e.g., InAs or InSb. We here study weak
links of intermediate length L ≈ ξ0, where ξ0 is the su-
perconducting coherence length. One then finds typically
four (spin-split) positive-energy ABSs and nontrivial conse-
quences of the SOI can arise. (In the short-junction limit
L � ξ0 [45–49], there are only two levels and SOI does
not cause new physics. For the complementary long-junction
limit, see, e.g., Refs. [50–52].) Below we mainly con-
sider Josephson junctions with relatively high transparency,

where electron-electron interaction effects are strongly sup-
pressed; we therefore neglect interaction effects, but see
Refs. [44,53,54].

Previous theory work has analyzed the ABS dispersion
relation and the corresponding wave functions in Josephson
junctions with SOI and Zeeman fields [43,44,55–59]. Here
we go beyond those works and study the nonequilibrium
population dynamics in the Andreev sector in the presence of
both SOI and Zeeman field. The analogous case without SOI
and magnetic field has been studied in Ref. [39]. We derive
the master equation governing the population dynamics for the
present case. We then apply the formalism to investigate the
impact of SOI and magnetic field on the Andreev population
dynamics after an initial microwave pulse. Such a pulse has
been shown experimentally [22] and theoretically [39,40] to
allow for dynamical parity polarization over long but finite
timescales. We here examine how this phenomenon is affected
by the SOI and the Zeeman field.

The structure of the remainder of this paper is as follows. In
Sec. II, we describe our model. For details on the eigenstates,
we refer to the Appendix. In Sec. III, we derive a Lindblad
master equation governing the dynamics of the Andreev sector
(under certain assumptions specified below). The diagonal
elements of the time-dependent reduced density matrix de-
scribing the Andreev sector, which are associated with the
population probabilities of many-body Andreev states, obey
a matrix rate equation which we specify explicitly. In Sec. IV,
we then use this matrix rate equation to study the population
dynamics after an initial strong microwave pulse. We compare
our results to those of Ref. [39], obtained in the absence of
the SOI and the Zeeman field. Importantly, we do not attempt
a quantitative comparison to the experiments of Ref. [22].
Instead our main goal is to provide a conceptual framework
for describing the many-body population dynamics in the
Andreev sector if both the SOI and a Zeeman field are present.
In such cases, it is technically convenient to work in an aug-
mented space where Nambu spinor fields are doubled [60].
However, one must then make sure that no double-counting
problems arise. We here show how to consistently formulate
the Lindblad equation approach in such cases. Our formalism
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FIG. 1. Schematic sketch of the studied setup. (a) A Josephson
junction is embedded in a superconducting loop threaded by a mag-
netic flux and inductively coupled to a microwave resonator with
resonance frequency �. The junction can be driven by a microwave
pulse of frequency �d . The average phase difference across the
junction is ϕ0, and we assume a homogeneous pairing gap � in the
loop containing the junction. (b) The Josephson junction is formed
by a ballistic spinful single-channel nanowire of length L between
two superconducting banks. At the left and right ends of the wire,
boundary states in the respective superconductor and in the wire
are coupled by spin- and energy-independent tunneling amplitudes
which we assume to be equal. These are encoded by the matrix M.
We also include spin-orbit coupling and a constant magnetic Zeeman
field in the nanowire, encoded by the matrix W (E ). For details, see
main text.

is generally applicable for this type of problem, well beyond
the specific example discussed in this work. Other applica-
tions of this approach will be reported elsewhere. Finally, we
conclude with a summary and an outlook in Sec. V.

II. MODEL

In this section, we describe the model used in our study,
see Sec. II A, where a spin-orbit coupled Josephson junc-
tion is embedded in a superconducting loop coupled to an
electromagnetic environment. In Sec. II B, we perform an
expansion to lowest order in the coupling to the environment
to arrive at the model studied in the remainder of the paper.
Unless specified explicitly, we use units with h̄ = e = kB = 1
throughout the paper. The notation 0± implies positive and
negative infinitesimals, respectively.

A. Josephson junction with spin-orbit coupling
and Zeeman field

We consider a single-channel Josephson junction between
two superconductors of conventional s-wave BCS type with
the same pairing gap � and the same Fermi velocity vF .
The coherence length is then given by ξ0 = vF /�. The re-
spective order parameter phases are denoted by φ1 and φ2.
The weak link representing the junction region is assumed to
be a normal-conducting impurity-free one-dimensional (1D)
nanowire of length L. This single-channel wire is connected
by tunnel couplings at its ends (x = ∓L/2) to the respec-
tive superconducting bank; see Fig. 1(b). In the nanowire
region, we include the SOI, where the polar axis defines the
z direction and the SOI strength is encoded by a parameter

γSO. We also include a weak magnetic Zeeman field ∝ b;
see Eq. (6) below. (In the superconducting banks, this field
may slightly renormalize �. This effect is kept implicit be-
low.) For concreteness, as in Ref. [39], we assume that the
Josephson junction is embedded in a loop inductively coupled
to a microwave resonator with resonance frequency �; see
Fig. 1(a). This resonator is responsible for an electromagnetic
environment that triggers transitions between the fermionic
eigenstates of the junction. (Our formalism can easily be
adapted to other types of electromagnetic environments.) In
addition, a magnetic flux threading the superconducting loop
containing the weak link imposes the average phase difference
ϕ0 = φ1 − φ2 across the Josephson junction.

Within the standard low-energy quasiclassical theory ap-
proach [32], one describes the superconductors in terms of
field envelopes 	α,σ (x, t ) for right- or left-moving (α = ±)
electrons with spin σ ∈ {↑,↓}. With the coordinate x < 0
(x > 0) for the left (right) superconductor, we here retain only
the 1D channel propagating through the junction and perform
a low-energy expansion around the Fermi momenta ±kF . The
above fields are collected into a single four-spinor field,

	(x, t ) =

⎛
⎜⎜⎝

	+,↑
	+,↓
	−,↑
	−,↓

⎞
⎟⎟⎠. (1)

To efficiently account for the SOI and the Zeeman field in
the normal region, we define an eight-spinor field �(x, t ) by
employing particle-hole (Nambu) space [60],

�(x, t ) = 1√
2

(
	(x, t )
	̃∗(x, t )

)
, (2)

with

	̃(x, t ) = ρxiσy	(x, t ) =

⎛
⎜⎜⎝

	−,↓
−	−,↑
	+,↓

−	+,↑

⎞
⎟⎟⎠. (3)

We use Pauli matrices τx,y,z in Nambu space, ρx,y,z in right-left
mover space, and σx,y,z in spin space. The corresponding iden-
tity matrices (τ0, ρ0, σ0) are often kept implicit. The Nambu
spinor field in Eq. (2) satisfies the reality constraint

ρxσyτy�(x, t ) = �∗(x, t ), (4)

which implies redundancy. Hence one needs to be careful to
avoid double-counting problems [60].

With the above definitions, within the low-energy qua-
siclassical approximation, the superconducting banks are
described by a Bogoliubov–de Gennes (BdG) Hamiltonian
[32,39],

H (t ) =
∑
j=1,2

∫
s j x<0

dx �†(x, t )[[−ivF ρz∂x + Vj (t )]τz

+ �τxeiτzφ j (t )]�(x, t ), (5)

where Vj (t ) = φ̇ j (t )/2 follows from the second Josephson
relation and we define s1 = +1 and s2 = −1. Note that the left
superconductor ( j = 1) corresponds to x < 0 and the right one
( j = 2) to x > 0. The boundary Nambu spinor states �(0−, t )
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and �(0+, t ) are then tunnel-coupled to the respective ends
of the normal wire forming the weak link. We next show
that those couplings generate a time- (or energy-)dependent
transfer matrix connecting these boundary spinors.

The single-particle Hamiltonian for the uncoupled and bal-
listic (impurity-free) normal-conducting nanowire of length L,
with new coordinates |x| < L/2 pertaining to the nanowire, is
taken in the form

hN = p̂2

2m
+ γSO p̂σz + b · σ, (6)

with an effective mass m and the 1D momentum operator
p̂. The SOI strength and the Zeeman field are encoded by
γSO and the vector b, respectively, where σ = (σx, σy, σz ).
Estimates for γSO for realistic geometries can be found,
e.g., in Refs. [14,59]. We now linearize Eq. (6) around the
Fermi points in the wire, which are denoted by ±k0. Using
p̂ → αk0 − i∂x, we introduce field operators ψα,σ (x, E ) for
right- and left-movers (α = ±) in the nanowire with spin σ ∈
{↑,↓} and energy E . With ψα = (ψα,↑, ψα,↓)T , the second-
quantized low-energy Hamiltonian for the nanowire is then
given by

HN =
∑
α=±

∫ L/2

−L/2
dx ψ†

α (x){[αv0 + γSOσz] (−i∂x )

+αγSO k0σz + b · σ}ψα (x), (7)

where v0 = k0/m is the Fermi velocity in the wire. Since there
is no backscattering inside the nanowire described by Eq. (7),
the right-left-mover index α = ± is conserved. We can thus
connect the boundary spinors ψα (−L/2, E ) and ψα (+L/2, E )
by a transfer matrix Wα (E ) in spin space. Explicitly, we find

ψα (−L/2, E ) =Wα (E ) ψα (L/2, E ),

Wα (E ) = Bα

(
eiλα,↑L 0

0 eiλα,↓L

)
B−1

α , (8)

where the matrix Bα (E ) and the numbers λα,σ (E ) are found
by diagonalizing a matrix resulting from Eq. (7),⎛

⎝ bz+αγSOk0−E
αv0+γSO

bx−iby

αv0+γSO

bx+iby

αv0−γSO

bz+αγSOk0+E
αv0−γSO

⎞
⎠ = Bα

(
λα,↑ 0

0 λα,↓

)
B−1

α . (9)

Below we use the four-spinor field ψ (x) = (ψ+, ψ−)T , in
analogy to the corresponding definition in the superconduct-
ing banks; see Eq. (1). Furthermore, we use a 4 × 4 transfer
matrix W (E ) which is diagonal in left-right-mover space,
W (E ) = diag[W+(E ),W−(E )].

Next we take into account spin-independent tunneling am-
plitudes connecting the nanowire ends to the corresponding
left and right superconducting banks. We assume that the
respective contacts have the energy-independent transmis-
sion probabilities T1 and T2. For simplicity, in what follows,
we assume equal transmission probabilities, T1 = T2 = T .
However, the generalization to asymmetric cases poses no
conceptual challenge. The corresponding reflection amplitude
at each junction is then defined by r = √

1 − T . At the left
contact ( j = 1), the state at the right boundary of the left
superconductor, 	(0−, E ), and the state at the left end of the
nanowire, ψ (−L/2, E ), are then matched according to the

transfer matrix condition [32,36,46]

	(0−, E ) = Mψ (−L/2, E ), M = 1√
T

(ρ0 + rρx )σ0.

(10)
We emphasize again our convention that the left (right) super-
conductor has spatial coordinates with x < 0 (x > 0), while
we use different coordinates with −L/2 < x < L/2 for the
nanowire. Similarly, at the right contact ( j = 2), we have the
condition

ψ (L/2, E ) = M	(0+, E ). (11)

Combining Eqs. (10) and (11) with the transfer matrix W (E )
across the normal-conducting nanowire region, we arrive at
a matching condition connecting the two superconducting
boundary states,

	(0−, E ) = T (E )	(0+, E ), T (E ) = MW (E )M, (12)

where T (E ) is the full transfer matrix; see Fig. 1(b). In this
way, we have effectively integrated out the normal-conducting
region.

The corresponding matching condition for the Nambu
spinor states (2) is given by

�(0−, E ) = T̂ (E ) �(0+, E ),

T̂ (E ) =
(

T (E ) 0
0 ρxσyT ∗(−E )σyρx

)
, (13)

where the explicit 2 × 2 structure of T̂ (E ) refers to Nambu
space. In the time domain, the matching condition (13) is
equivalently written as

�(0−, t ) = T̂ (t ) �(0+, t ). (14)

Since we focus on the symmetric case T1 = T2, we are free
to choose a gauge where the voltage in the normal-conducting
region vanishes and the superconducting phases can be written
as φ j (t ) = s jϕ(t )/2, with the phase difference ϕ(t ). One then
obtains T̂ (t ) from T̂ (E ) through the replacement E → i∂t .
Finally, the Nambu spinors obey the normalization condition∫ ∞

−∞
dx |�(x, E )|2 = 1 − ξw(E ),

ξw(E ) = L

2
(|�(0−, E )|2 + |�(0+, E )|2).

(15)

The ξw(E ) term here arises due to the wave function weight
in the normal-conducting region [39].

B. Expansion in the system-environment coupling

To proceed, we write the phase difference as ϕ(t ) = ϕ0 +
δϕ(t ), where the fluctuating phase δϕ(t ) due to the microwave
resonator is assumed to be a small perturbation, |δϕ(t )| � 1.
Following Ref. [39], we expand the BdG Hamiltonian to lead-
ing order in δϕ. After a global canonical transformation,

�(x, t )|s j x<0 → e−iτzs jϕ0/4 �(x, t ), (16)

we obtain the Hamiltonian

H (t ) = H0 + HI (t ) + Henv + O(δϕ2), (17)
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where Henv describes the electromagnetic environment which
is equivalent to a set of harmonic oscillators [32]. The nonin-
teracting (δϕ = 0) BdG Hamiltonian is given by

H0 =
∑
j=1,2

∫
s j x<0

dx �†(x, t )[−ivF ρzτz∂x + �τx]�(x, t ),

(18)
and the leading-order interaction term follows as

HI (t ) =
∑

j

∫
s j x<0

dx �†(x, t ) sgn(−x)

[
δϕ̇

4
τz

+ �
δϕ

2
τy

]
�(x, t ). (19)

Due to the transformation (16), the transfer matrix acquires
an additional phase factor. As a result, the final matching
condition reads

�(0−, t ) = eiτzϕ0/2 T̂ (E → i∂t ) �(0+, t ). (20)

We consider the above problem in the interaction picture.
The Nambu field operator can be expanded in terms of the sta-
tionary eigenstates �ν (x) with energy Eν of the BdG problem
posed by H0 in Eq. (18) and the matching condition (20),

�(x, t ) =
∑

ν

�ν (x)γν (t ), (21)

with fermion operators γν (t ) = e−iEν tγν . Explicitly, with
Eq. (13), this BdG problem is given by

[−ivF ρzτz∂x + �τx]�ν (x) = Eν�ν (x),

�ν (0−) = eiτzϕ0/2 T̂ (Eν ) �ν (0+). (22)

As a result, we find

H0 =
∑

ν

Eνγ
†
ν γν, (23)

where the index ν includes subgap ABS solutions with |Eν | <

� as well as quasiparticle continuum states with quantum
numbers ν = p ≡ (E , s, σ ) where |E | > �. The index s ∈
{1, 2, 3, 4} specifies the incoming scattering state type, and σ

refers to the spin state. Due to the particle-hole symmetry of
the BdG Hamiltonian,

CH0C−1 = −H0, C = σyτyK, (24)

where K denotes complex conjugation, for every solution
with Eν > 0, we must have a corresponding solution at the
opposite energy Eν̄ = −Eν . This fact is readily shown by
combining Eqs. (4) and (22); see also Ref. [55]. Using in ad-
dition Eq. (21), one finds that the corresponding quasiparticle
operator is given by γν̄ = γ †

ν .
In the interaction picture, up to an irrelevant time-

derivative term [39], the interaction term (19) can be written
as

HI (t ) = δϕ(t )

2
I (t ), (25)

with the Josephson current operator

I (t ) =
∑
μ �=ν

Iμ,νγ
†
μ (t )γν (t ),

Iμ,ν =
∫

dx �†
μ(x) sgn(−x)

[
Eμ − Eν

2i
τz + �τy

]
�ν (x)

= I ∗
ν,μ. (26)

We provide a concise discussion of the BdG eigenstates re-
sulting from Eq. (22) and of the current matrix elements (26)
in the Appendix.

In what follows, we denote ABS solutions with the quan-
tum number ν = λ. Using the matrix T (E ) in Eq. (12) and the
function γ (E ) = cos−1(E/�), we show in the Appendix that
the matching equation has nontrivial solutions only for ener-
gies satisfying the condition

det[Ap(E ) − Ah(E )] = 0 (27)

with the particle and hole matrices

Ap(E ) = eiϕ0/2eiρzγ (E )/2 T (E ) eiρzγ (E )/2,

Ah(E ) = ρxσyA∗
p(−E )σyρx. (28)

We obtain Eλ(ϕ0) and the corresponding ABS wave function,
see Eq. (A1) in the Appendix, by numerically solving Eq. (27)
and determining the corresponding eigenvectors. In practice,
we study cases with L ≈ ξ0 = vF /�, where one typically
encounters four spin-split positive-energy ABS solutions.

III. MANY-BODY ANDREEV-STATE
POPULATION DYNAMICS

In this section, we derive the dynamical equations gov-
erning the time evolution of the many-body Andreev states
for the above model. First, in Sec. III A, we introduce the
so-called excitation picture and contrast it with the alternative
semiconductor picture [39,46]. We show that the excita-
tion picture offers a particularly convenient representation
for superconducting problems with SOI and Zeeman fields,
since double-counting issues are more difficult to handle in
the semiconductor picture. In Sec. III B, we then derive a
Lindblad master equation for the dynamics of the reduced
density operator ρA(t ) describing the Andreev-state sector. In
Sec. III C, we discuss the many-body population dynamics in
the Andreev subspace by considering the diagonal elements
of ρA(t ). For γSO = 0 and b = 0, our approach recovers the
results of Ref. [39]. Applications of the formalism to cases
with finite SOI and/or magnetic Zeeman field are presented
in Sec. IV.

A. Excitation picture vs semiconductor picture

The Nambu representation introduced in Eq. (2) is very
convenient for theoretically handling the combined effects
of superconductivity, SOI, and Zeeman fields in a unified
framework [60]. However, due to the reality constraint (4), this
representation also comes at a cost since it implies an artificial
doubling of the number of single-particle states. We explain
below how one can circumvent the appearance of spurious
nonphysical many-body states in such a formulation.
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FIG. 2. Schematic BdG spectrum of a short (L � ξ0 ) junction
without SOI and Zeeman field, taken at fixed phase difference ϕ0.
In this case, one obtains a single spin-degenerate ABS with energies
E↑ = E↓ = E > 0 and E < �, plus the corresponding states at en-
ergy −E obtained from particle-hole symmetry. (a) Double counting
can be removed in the semiconductor picture by retaining only the
single-particle states (E↑, −E↓) inside the tilted orange-dashed box.
Alternatively, in the excitation picture, double counting is removed
by retaining only the positive-energy single-particle states (E↑, E↓)
inside the horizontal green-dashed box. Continuum states with |E | >

� correspond to the shaded regions. (b) The four possible many-
body Andreev states {|g〉, |e〉, |−〉, |+〉} in the semiconductor picture
(left side), where filled (empty) dots indicate occupied (empty)
single-particle ABS levels. In the equivalent excitation picture (right
side), these four states are represented by {|00〉, |11〉, |01〉, |10〉},
respectively.

Let us first consider the case of a short junction without
SOI and Zeeman field at fixed phase difference ϕ0 and fixed
other parameters; see Fig. 2. In this example, we have a
single spin-degenerate ABS with positive energy E↑ = E↓ =
E , plus the particle-hole partner states at energy −E . In
order to avoid the double-counting problem, one may em-
ploy the semiconductor picture [39,46], where one retains
only the single-particle ABSs with, say, energy E↑ and −E↓;
see Fig. 2(a). The corresponding four many-body states are
shown in the left part of Fig. 2(b); for details, see below.
Alternatively, in the excitation picture, we instead retain the
two positive energy levels (E↑, E↓), where the corresponding
many-body states are shown in the right part of Fig. 2(b).

Let us summarize the many-body Andreev states for this
example, as shown in Fig. 2(b). (i) In the semiconductor pic-
ture, the ground state |g〉 is obtained by filling the energy level
−E and leaving the energy level +E empty. In the excitation
picture, both energy levels Eσ=↑,↓ are empty. We denote the
ground state as |00〉 in the excitation picture. This state has
(by convention [39]) even parity. (ii) In the even-parity sector,
there is one excited state with excitation energy 2E above the
ground state. In the semiconductor picture, the lower level is
empty but now the upper level is occupied. This state has been
labeled |e〉 in Ref. [39]. In the excitation picture, both levels
Eσ are occupied, and the state is thus denoted as |11〉. (iii)
In the odd-parity sector, there are two degenerate states with
energy E above the ground state. In the semiconductor picture,
the state |−〉 has both levels ±E empty, while the state |+〉 has
both levels occupied [39]. In the excitation picture, one occu-
pies only one of the two states. Here the two corresponding
odd-parity states are called |01〉 and |10〉, respectively.

We now consider a junction in the presence of the SOI and
the Zeeman field. (In the absence of the Zeeman field, the

FIG. 3. Andreev state dispersion and many-body Andreev states
for a junction with SOI and Zeeman field. (a) ABS dispersion Eλ

vs phase difference ϕ0 obtained numerically from Eq. (27). The
red dots indicate the four positive-energy states for ϕ0 = π/2. We
here consider L = 1.5ξ0, k0ξ0 = 0.1,T = 0.75, γSO = 0.14, v0 =
vF , and |b| = 0.2� with bx/bz = 3 and by = 0. (b) The red levels
show the positive-energy single-particle ABS levels for ϕ0 = π/2;
cf. the red dots in panel (a). The sixteen possible many-body states
are shown in the excitation picture as blue levels. We distinguish
the even and odd fermion parity sectors. The notation |n1n2n3n4〉
with nλ ∈ {0, 1} means that the energy level Eλ is either empty or
occupied.

Kramers degeneracy takes over the role of spin degeneracy.)
For instance, for a weak link of intermediate length L ≈ ξ0 =
vF /�, one typically finds four single-particle ABSs at positive
energies, where two spin-degenerate levels split into four lev-
els if both SOI and a Zeeman term are present. An example
is shown in Fig. 3(a). In such cases, we find that the semi-
conductor picture is not useful for constructing a many-body
formulation of the theory since it is ambiguous how to select
pairs of positive and negative energy states. From now on, we
therefore use the excitation picture throughout. This picture
allows us to directly circumvent double-counting problems in
the many-body theory by construction. For the case L ≈ ξ0,
with fixed phase difference ϕ0, we order the positive ABS
energies by increasing energy, 0 � E1 � E2 � E3 � E4 < �;
see Fig. 3(b). The resulting 16 many-body Andreev states are
written as |n1n2n3n4〉 with nλ ∈ {0, 1}, where nλ = 0 (nλ = 1)
means that the energy level Eλ is unoccupied (occupied). The
ground state is then given by |0000〉. One can group those
states into even- and odd-parity states; see Fig. 3(b).

In the Schrödinger picture, the current operator (26) then
takes the form

I =
∑
μ �=ν

(2Iμ,νγ
†
μγν + Iμ̄,νγμγν + Iμ,ν̄γ

†
μγ †

ν ), (29)

where summations are taken over non-negative BdG energy
solutions only. We here used the particle-hole relations γν̄ =
γ †

ν and Eν̄ = −Eν , which imply Iμ,ν = −Iν̄,μ̄. The term
with μ = ν has been excluded in Eq. (29) since it does not
contribute to the dynamical equations below. The possible
transitions contributing to the current matrix elements (29) are
illustrated in Fig. 4. The first term in Eq. (29) describes transi-
tions between BdG single-particle eigenstates with quantum
numbers ν → μ; see Fig. 4(a). In the other two terms, we
encounter fermionic pair annihilation or creation processes.
Such processes effectively arise from terms mixing ABSs
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FIG. 4. Illustration of the three contributions to the current ma-
trix element (29) in the excitation picture. (a) Transition between
positive-energy BdG single-particle states ν → μ, where the filled
(empty) dot implies that the state |ν〉 (|μ〉) is initially filled (empty).
The diagram in panel (b) [panel (c)] involves fermionic pair annihi-
lation [creation] processes, along with the creation [annihilation] of
a zero-energy Cooper pair. Such processes emerge in the excitation
picture due to negative-energy BdG states.

with positive and negative energies in the excitation picture;
see also Ref. [55]. As shown in Figs. 4(b) and 4(c), those
processes involve the creation or annihilation of a Cooper pair,
respectively.

B. Lindblad equation

We now turn to the dynamical equations for the density
matrix ρ(t ) for the fermionic part of the system. Assuming
that the harmonic oscillator bath representing Henv in Eq. (17)
remains in thermal equilibrium at temperature Tenv at all times,
we assume for the total density operator ρtot (t ) ≈ ρ(t ) ⊗ ρenv

in the interaction picture. We make the standard Born-Markov
assumptions of weak system-bath coupling and short bath
memory time, which for our system are met for Tenv � 10−2�

and dimensionless system-bath coupling strength κ0 � 1
[39]. After tracing over the environmental modes, we obtain

∂tρ =
∫ ∞

0
dτ D(τ )[I (t − τ )ρ(t )I (t ) − I (t )I (t − τ )ρ(t )]

+H.c., (30)

with a bath correlation function D(τ ). Introducing real and
imaginary parts in the frequency domain,∫ ∞

0
dτ D(τ )eiωτ = X (ω) + iY (ω), (31)

the imaginary part Y (ω) is neglected below since it only
weakly renormalizes the BdG quasiparticle energies. This
causes the so-called Lamb shifts. For the population dynamics
studied in Sec. III C below within the Born approximation,
such Lamb shifts are irrelevant. However, if one wishes to
study quantum coherences encoded by the off-diagonal entries
of the density operator, Y (ω) may have to be included [61].

In terms of the spectral density of a microwave-circuit envi-
ronment with resonance frequency �, dimensionless coupling
strength κ0, and damping constant ηd [32],

J (ω) = κ2
0 ηd

π

⎛
⎝ 1

(ω − �)2 + η2
d

2

− 1

(ω + �)2 + η2
d

2

⎞
⎠, (32)

we obtain

X (ω) = πJ (ω)[nB(ω) + 1], (33)

where nB(ω) = (eω/Tenv − 1)−1 is the Bose-Planck distribu-
tion. We also include a background Ohmic spectral density
in J (ω), Johm = 2α0ωe−|ω|/ωc , with a dimensionless coupling
α0 � 1 and the ultraviolet cutoff frequency ωc. In any case,
the spectral density is defined to be asymmetric, J (−ω) =
−J (ω).

For a given jump operator c, we employ the standard dissi-
pator superoperator L[c] defined as [61]

L[c]ρ = cρc† − 1
2 {c†c, ρ}, (34)

where {·, ·} is the anticommutator. Inserting I (t ) obtained
from Eq. (29) into Eq. (30), and using H0 in Eq. (23), we
then obtain a Lindblad master equation [61,62] for the time
evolution of the fermionic density operator,

∂tρ = −i
∑

ν

Eν[γ †
ν γν, ρ(t )] +

∑
μ,ν

(�μ,ν L[γ †
μγν]ρ(t ) +

+1

2
(�μ̄,ν L[γμγν]ρ(t ) + �μ,ν̄ L[γ †

μγ †
ν ]ρ(t ))). (35)

Since we work in the excitation picture, all summations over
indices ν or μ involve only non-negative (ABS or continuum)
quasiparticle energies Eν and Eμ. Using Eq. (33), the corre-
sponding transition rates, see also Fig. 4, are given by

�a,b = 2X (Eb − Ea) |Ia,b|2, (36)

with the indices a ∈ {μ, μ̄} and b ∈ {ν, ν̄}, including both
positive and negative BdG energy levels. For a = μ̄, we define
ā = μ. (We recall our notation ν̄ for the particle-hole partner
state with negative energy Eν̄ = −Eν and quasiparticle opera-
tor γν̄ = γ †

ν .)
The transition rates in Eq. (36) satisfy certain symmetry re-

lations. First, since the environment is in thermal equilibrium,
we obtain the detailed balance relation

�a,b = e(Eb−Ea )/Tenv �b,a. (37)

In addition, from the particle-hole symmetry in Eq. (24), we
infer the symmetry relation

�a,b = �b̄,ā. (38)

In order to focus on the time evolution of the many-body
Andreev states, we next trace over the quasiparticle continuum
states. In general, this is a difficult task, and we here follow
Ref. [39] by making two assumptions. First, we assume that
entanglement between the Andreev sector and the continuum
sector can be neglected at all times such that the fermionic
density operator factorizes, ρ(t ) ≈ ρA(t ) ⊗ ρc(t ). Here, ρA(t )
is the reduced density operator of the Andreev sector while
ρc(t ) describes the continuum quasiparticle sector. Second,
we assume that ρc(t ) can be written in terms of an equi-
librium distribution function, ñp, which depends only on the
continuum-state quantum numbers p = (E , s, σ ),

ρc(t ) =
∏

p

[ñp|1p〉〈1p| + (1 − ñp)|0p〉〈0p|], (39)

where |1p〉 = γ †
p |0p〉 and |0p〉 are the eigenstates of γ †

p γp
with eigenvalue 1 and 0, respectively. Note that the product
extends only over E > � solutions since we work in the
excitation picture. For the distribution function, we choose
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FIG. 5. Illustration of the transition rates �in
λ [panel (a)] and �out

λ

[panel (b)] connecting the ABS level λ to the quasiparticle contin-
uum; see Eq. (36). The distribution function ñp of the continuum
particles is defined in Eq. (40). Note that in the excitation picture,
“anomalous” processes involving a Cooper pair have to be taken into
account.

a Fermi-Dirac distribution parametrized by a “quasiparticle
temperature” Tqp,

ñp = (eE/Tqp + 1)−1. (40)

We note that ñp̄ = 1 − ñp holds for the corresponding
negative-energy state. The temperature Tqp may differ from
the temperature Tenv of the electromagnetic environment. For
instance, in order to describe quasiparticle poisoning effects
due to the presence of excess above-gap quasiparticles, at least
in a qualitative manner, we consider Tqp > Tenv.

Using the symmetry relation (38) and performing the trace
over the continuum sector in Eq. (35), we finally arrive at a
Lindblad equation describing only the Andreev sector,

∂tρA = −i
∑

λ

Eλ[γ †
λ γλ, ρA] +

∑
λ,λ′

(
�λ,λ′ L[γ †

λ γλ′]ρA +

+1

2
(�λ̄,λ′ L[γλγλ′]ρA + �λ,λ̄′ L[γ †

λ γ
†
λ′]ρA)

)

+
∑

λ

(
�in

λ L[γ †
λ ]ρA + �out

λ L[γλ]ρA
)
. (41)

Apart from the transition rates (36) between ABSs, Eq. (41)
also involves transition rates connecting the subgap Andreev
and the above-gap continuum sector,

�in
λ =

∑
p

(�λ,pñp + �λ,p̄ñp̄),

�out
λ =

∑
p

(�p,λñp̄ + � p̄,λñp) = �in
λ̄
. (42)

We emphasize again that summations over ABS indices λ and
over continuum indices p involve only non-negative energy
levels. The corresponding processes are schematically illus-
trated in Fig. 5.

C. Population dynamics of many-body Andreev states

As a final step, we project the Lindblad equation (41)
for the density operator ρA(t ) into the many-body Andreev
states |n〉. For clarity, we focus on cases with four spin-
split positive-energy ABS solutions but for other cases one
can proceed analogously. For the example in Fig. 3, we
have |n〉 = |n1n2n3n4〉, where nλ ∈ {0, 1} specifies whether
the (non-negative) ABS level Eλ is unoccupied or occupied.
Physically, this corresponds to the case of intermediate-length
junctions with L ≈ ξ0. The diagonal elements of ρA represent
the occupation probabilities of the respective 16 Andreev
many-body states,

Pn(t ) = 〈n|ρA(t )|n〉,
∑

n

Pn(t ) = 1. (43)

We combine these probabilities into a 16-dimensional vector
P(t ). Since the dynamics of P(t ) decouples from the off-
diagonal part of ρA(t ), the occupation probabilities evolve
independently from quantum coherences. In what follows, we
then focus on the time evolution of P(t ).

From Eq. (41), by taking the appropriate matrix elements,
we obtain a matrix rate equation of the form

Ṗ(t ) = M P(t ), (44)

where the 16 × 16 matrix M is specified in Tables I and II.
For the stationary state reached at asymptotically long times,
Ṗstat = 0, the steady-state occupation probabilities Pstat follow
by determining the kernel of the matrix M. In general, given
the (real-valued and nonpositive) eigenvalues λk and the cor-
responding right eigenvectors Pk of M, the general solution of
Eq. (44) follows as

P(t ) =
16∑

k=1

ckPkeλkt . (45)

The coefficients ck are determined by matching Eq. (45) to
the initial configuration P(0) at time t = 0. By collecting the
contributions from the odd- and even-parity states only, we
can define the probabilities Podd(t ) and Peven(t ) = 1 − Podd(t )
for occupying the respective parity sector.

IV. RESULTS FOR THE POPULATION DYNAMICS

We now turn to a discussion of results obtained from
Eq. (44). For concreteness, we focus throughout on a weak
link of intermediate length, L = 1.5ξ0, with contact trans-
parencies T1 = T2 = T = 0.75. One then generically finds
four positive-energy single-particle ABS solutions for given
phase difference ϕ0. For the SOI parameter, we assume γSO =
0.14 following the estimates in Ref. [14], but we also contrast
our results to the case without SOI. Similarly, if the Zeeman
field is switched on, we assume |b| = 0.2�. For instance,
taking Nb as superconductor and InAs as nanowire material,
accounting for the rather large g factors in such nanowires
[63], |b| = 0.2� translates into a field strength ≈0.2 T at low
temperatures. We then consider arbitrary directions of the field
with respect to the polar axis defined by the SOI (which is the
z axis).

One example for the single-particle ABS dispersion of such
a junction has already been shown in Fig. 3(a). In Fig. 6,
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TABLE I. Off-diagonal matrix elements Mn,n′ for the matrix M in Eq. (44), expressed in terms of the transition rates (36) and (42). Here
|n〉 = |n1n2n3n4〉 with nλ ∈ {0, 1} labels the 16 possible many-body Andreev states. The indices λ ∈ {1, 2, 3, 4} refer to the four single-particle
ABS states, see, e.g., Fig. 3, where λ̄ corresponds to the negative-partner state. Diagonal matrix elements Mn,n are given in Table II.

|0000〉 |1000〉 |0010〉 |1010〉 |0101〉 |1111〉 |1100〉 |0011〉 |1001〉 |0110〉 |0100〉 |0001〉 |1110〉 |1011〉 |1101〉 |0111〉
〈0000| �in

1̄ �in
3̄ �1̄,3 �2̄,4 0 �1̄,2 �3̄,4 �1̄,4 �2̄,3 �in

2̄ �in
4̄ 0 0 0 0

〈1000| �in
1 �1,3 �in

3̄ 0 0 �in
2̄ 0 �in

4̄ 0 �1,2 �1,4 �2̄,3 �3̄,4 �2̄,4 0
〈0010| �in

3 �3,1 �in
1̄ 0 0 0 �in

4̄ 0 �in
2̄ �3,2 �3,4 �1̄,2 �1̄,4 0 �2̄,4

〈1010| �1,3̄ �in
3 �in

1 0 �2̄,4 �3,2 �1,4 �3,4 �1,2 0 0 �in
2̄ �in

4̄ 0 0
〈0101| �2,4̄ 0 0 0 �1̄,3 �4,1 �2,3 �2,1 �4,3 �in

4 �in
2 0 0 �in

1̄ �in
3̄〈1111| 0 0 0 �2,4̄ �1,3̄ �3,4̄ �1,2̄ �2,3̄ �1,4̄ 0 0 �in

4 �in
2 �in

3 �in
1

〈1100| �1,2̄ �in
2 0 �2,3 �1,4 �3̄,4 0 �2,4 �1,3 �in

1 0 �in
3̄ 0 �in

4̄ 0
〈0011| �3,4̄ 0 �in

4 �4,1 �3,2 �1̄,2 0 �3,1 �4,2 0 �in
3 0 �in

1̄ 0 �in
2̄〈1001| �1,4̄ �in

4 0 �4,3 �1,2 �2̄,3 �4,2 �1,3 0 0 �in
1 0 �in

3̄ �in
2̄ 0

〈0110| �2,3̄ 0 �in
2 �2,1 �3,4 �1̄,4 �3,1 �2,4 0 �in

3 0 �in
1̄ 0 0 �in

4̄〈0100| �in
2 �2,1 �2,3 0 �in

4̄ 0 �in
1̄ 0 0 �in

3̄ �2,4 �1̄,3 0 �1̄,4 �3̄,4

〈0001| �in
4 �4,1 �3,4 0 �in

2̄ 0 0 �in
3̄ �in

1̄ 0 �4,2 0 �1̄,3 �1̄,2 �2̄,3

〈1110| 0 �2,3̄ �1,2̄ �in
2 0 �in

4̄ �in
3 0 0 �in

1 �1,3̄ 0 �2,4 �3,4 �1,4

〈1011| 0 �3,4̄ �1,4̄ �in
4 0 �in

3̄ 0 �in
1 �in

3 0 0 �1,3̄ �4,2 �3,2 �1,2

〈1101| 0 �2,4̄ 0 0 �in
1 �in

3̄ �in
4 0 �in

2 0 �1,4̄ �1,2̄ �4,3 �2,3 �1,3

〈0111| 0 0 �2,4̄ 0 �in
3 �in

1̄ 0 �in
2 0 �in

4 �3,4̄ �2,3̄ �4,1 �2,1 �3,1

we show four additional examples, obtained by numerically
solving Eq. (27). In Fig. 6(a), we observe that in the absence
of the magnetic field, the Kramers degeneracy at ϕ0 = 0, π

takes over the role of the usual spin degeneracy. Moreover,
the dispersion is symmetric, Eλ(2π − ϕ0) = Eλ(ϕ0). As seen
in Fig. 6(b), this symmetry of the dispersion is also found
when we switch off the SOI but switch on the magnetic field.
However, there are no time-reversal-invariant points anymore.
In Fig. 6(c), we consider the case where both SOI and Zeeman
field are present, with the Zeeman field along the nanowire
axis. Now all degeneracies are broken but the above symmetry
still remains intact. While the spectrum looks very similar
to the one in panel (b), there are small differences. We note
that the level crossings are not avoided crossings. However,
if the magnetic field is oriented along the polar axis of the
SOI, we find Eλ(2π − ϕ0) �= Eλ(ϕ0), as shown in Fig. 6(d).

Incidentally, in such cases, the anomalous Josephson effect
and the superconducting diode effect will arise; see, e.g.,
Refs. [42,64,65].

We now turn to the population dynamics Pn(t ) of the
respective many-body Andreev states |n〉. We here assume
that at times t < 0, for a given parameter set, the system
has been prepared in its steady state with probabilities Pstat;
see Sec. III C. At time t = 0, one applies a short and strong
microwave pulse of frequency �d . We assume that �d is
resonant with a transition from the ground state |n0〉 = |0000〉
to an excited many-body Andreev state |n〉 = |n1n2n3n4〉 of
the same fermion parity, i.e., (−1)n1+n2+n3+n4 = +1. (The
microwave drive cannot change the fermion parity.) If the re-
spective transition rate Mn,n0 in Table I is finite (this condition
imposes a selection rule), population inversion between |n0〉
and |n〉 can be induced by the microwave pulse, as explained

TABLE II. Diagonal matrix elements Mn,n in Eq. (44) expressed in terms of the transition rates (36) and (42), where |n〉 = |n1n2n3n4〉
labels the many-body Andreev states. Note that we specify −Mn,n. Off-diagonal matrix elements are specified in Table I.

|n〉 −Mn,n

|0000〉 �1,2̄ + �1,3̄ + �2,3̄ + �1,4̄ + �2,4̄ + �3,4̄ + �in
1 + �in

2 + �in
3 + �in

4

|1000〉 �2,1 + �3,1 + �4,1 + �2,3̄ + �2,4̄ + �3,4̄ + �in
2 + �in

3 + �in
4 + �in

1̄|0010〉 �1,3 + �2,3 + �4,3 + �1,2̄ + �1,4̄ + �2,4̄ + �in
1 + �in

2 + �in
4 + �in

3̄|1010〉 �2,1 + �4,1 + �2,3 + �4,3 + �2,4̄ + �1̄,3 + �in
2 + �in

4 + �in
1̄ + �in

3̄|0101〉 �1,2 + �3,2 + �1,4 + �3,4 + �1,3̄ + �2̄,4 + �in
1 + �in

3 + �in
2̄ + �in

4̄|1111〉 �1̄,2 + �1̄,3 + �2̄,3 + �1̄,4 + �2̄,4 + �3̄,4 + �in
1̄ + �in

2̄ + �in
3̄ + �in

4̄|1100〉 �3,1 + �4,1 + �3,2 + �4,2 + �3,4̄ + �1̄,2 + �in
3 + �in

4 + �in
1̄ + �in

2̄|0011〉 �1,3 + �1,4 + �2,3 + �2,4 + �1,2̄ + �3̄,4 + �in
1 + �in

2 + �in
3̄ + �in

4̄|1001〉 �2,1 + �3,1 + �2,4 + �3,4 + �2,3̄ + �1̄,4 + �in
2 + �in

3 + �in
1̄ + �in

4̄|0110〉 �1,2 + �4,2 + �1,3 + �4,3 + �1,4̄ + �2̄,3 + �in
1 + �in

4 + �in
2̄ + �in

3̄|0100〉 �1,2 + �3,2 + �4,2 + �1,3̄ + �1,4̄ + �3,4̄ + �in
1 + �in

3 + �in
4 + �in

2̄|0001〉 �1,4 + �2,4 + �3,4 + �1,2̄ + �1,3̄ + �2,3̄ + �in
1 + �in

2 + �in
3 + �in

4̄|1110〉 �4,1 + �4,2 + �4,3 + �1̄,2 + �1̄,3 + �2̄,3 + �in
4 + �in

1̄ + �in
2̄ + �in

3̄|1011〉 �2,1 + �2,3 + �2,4 + �1̄,3 + �1̄,4 + �3̄,4 + �in
2 + �in

1̄ + �in
3̄ + �in

4̄|1101〉 �3,1 + �3,2 + �3,4 + �1̄,2 + �1̄,4 + �2̄,4 + �in
3 + �in

1̄ + �in
2̄ + �in

4̄|0111〉 �1,2 + �1,3 + �1,4 + �2̄,3 + �2̄,4 + �3̄,4 + �in
1 + �in

2̄ + �in
3̄ + �in

4̄
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FIG. 6. ABS dispersion Eλ (with Eλ > 0) vs ϕ0 for a weak link
with L = 1.5ξ0, k0ξ0 = 0.1,T = 0.75, and v0 = vF . (a) Finite SOI
strength γSO = 0.14 but vanishing Zeeman field, b = 0. (b) Vanish-
ing SOI strength, γSO = 0, with b along an arbitrary direction for
|b| = 0.2�. (c) Case γSO = 0.14 and Zeeman field b along the x
direction with |b| = 0.2�. (d) Same as in panel (c) but with the
Zeeman field along the z direction.

in Ref. [39]. In this way, one can effectively study the effect
of the microwave drive through a nonequilibrium initial con-
dition in Eq. (44), where the occupation probabilities for the
two levels |n0〉 and |n〉 are exchanged with respect to their
steady-state values.

In Fig. 7(a), we plot the transition rates Mn,n0 from the
ground state |n0〉 to the six two-quasiparticle states (n1 +
n2 + n3 + n4 = 2) as a function of the angle ϑ between the
Zeeman field and the polar SOI axis (for simplicity, by = 0).
We observe that, while the transition rates to the states |0110〉,
|0101〉, and |1100〉 are different from zero for all ϑ , the tran-
sition rates to the states |1010〉, |1001〉, and |0011〉 vanish for
ϑ → 0 (i.e., for b along the z direction). This is a signature
for the onset of a selection rule.

After applying the pulse, the respective initial (t = 0) pop-
ulation probabilities are then given by Pn0 (0) = Pn;stat and
Pn(0) = Pn0;stat , while for all other states we have Pn′ (0) =
Pn′;stat . We then solve Eq. (44) subject to this initial condi-
tion. For γSO = 0 and b = 0, and using the transfer matrix
in Ref. [39], our scheme precisely reproduces the results of
Ref. [39] on dynamical parity stabilization after a microwave
pulse. Below we study how the interplay of SOI and Zeeman
field influences this phenomenon. For clarity, we focus on
the system parameters corresponding to panels (c) and (d) in
Fig. 6.

We start with the case shown in Fig. 6(c), where the
Zeeman field is oriented along the nanowire direction. We
note in passing that this configuration is typically considered
for the generation of Majorana bound states at the nanowire
ends [66]. Applying a resonant microwave drive, one can then

FIG. 7. Transition rates as well as single- and many-body An-
dreev states for a Josephson junction with the parameters in Fig. 6
and finite SOI and Zeeman field. (a) Transition rates Mn,n0 from the
ground state |n0〉 = |0000〉 to each of the six two-quasiparticle states
(cf. the first row of Table I) vs the angle ϑ between the SOI axis and
the Zeeman field. We only show nonzero transition rates within the
same parity sector, where each rate is normalized to its maximum
value in order to allow for a comparison of their ϑ dependence.
The target state |n〉 is specified near each curve. Solid (dashed)
lines correspond to transitions which are allowed (forbidden) by
selection rules for ϑ → 0. (b) Single and many-body states for b in
the x direction, i.e., for ϑ = π/2, cf. Fig. 6(c), with phase difference
ϕ0 = 1.08π . The red levels show the positive-energy single-particle
ABS levels. The many-body states with zero (nonzero) transition
rate Mn,n0 from the ground state are shown as green (blue) levels.
(c) Same as panel (b) but with the Zeeman field along the z direction,
i.e., for ϑ = 0; cf. Fig. 6(d).

drive six different transitions out of the ground state |n0〉. In
Fig. 7(b), the corresponding single-particle and many-body
Andreev states are shown. Starting from the ground state,
all transitions to states with one or two quasiparticles have
a nonzero transition rate Mn,n0 . However, only transitions to
states with the same parity can be induced by the microwave
pulse. In Fig. 8, we show the population dynamics after
three of these microwave-induced transitions. In Fig. 8(a),
we consider a resonant transition |0000〉 → |1001〉. How-
ever, driving the transition |0000〉 → |1010〉 instead gives
very similar results. In Fig. 8(b), we consider the resonant
microwave-induced transition |0000〉 → |0110〉, where we
obtain similar results for the population dynamics after the
transition |0000〉 → |0101〉. Finally, in Fig. 8(c), we show
the population dynamics after the transition |0000〉 → |1100〉,
where the transition |0000〉 → |0011〉 gives similar results.
We observe that for the cases shown in Figs. 8(a) and 8(b),
an odd-parity state (either |0100〉 or |1000〉) is occupied with
large probability for a long intermediate time interval. These
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FIG. 8. Many-body Andreev state population dynamics Pn(t ) vs
time (in units of �−1) for a Josephson junction with the param-
eters in Fig. 6(c), with b in the x direction and phase difference
ϕ0 = 1.08π . We use κ0 = 0.1, � = 10−3�, and ηd = 0.01� in the
spectral density (32), with the background Ohmic part determined by
α0 = 10−4 and ωc = �. We use the temperature scales Tqp = 0.15�

and Tenv = 0.07�. Note the logarithmic timescales. We show only
the curves for many-body levels with time-dependent probability
weights. (There is some time-independent probability weight in other
levels.) Red curves correspond to odd-parity states, black curves to
even-parity states. Three different transitions are shown in panels
(a), (b), and (c), respectively, which can be induced by a microwave
drive from the ground state |0000〉. These transitions are shown as
red arrows in the corresponding right column panels, where selected
many-body Andreev energy levels are depicted; we again distinguish
even- and odd-parity states; cf. the right panel of Fig. 3. Thick (thin)
arrows indicate large (small) transition rates connecting many-body
Andreev states; cf. Table I.

observations correspond to the dynamical parity stabilization
discovered in Ref. [22]: By driving a transition in the even-
parity sector, one stabilizes the odd-parity polarization. It is
worth noting that in Fig. 8(b), there is a transition between
both odd-parity states, with state |0100〉 acting as an inter-
mediate state toward |1000〉. This behavior is a consequence
of the level splitting induced by both SOI and Zeeman field.
Such effects can play a crucial role in further increasing the
lifetime of the odd-parity polarization effect. Indeed, the en-
ergy difference between the states |0110〉 and |0100〉 (which
belong to different parity sectors) is much bigger compared
to the one between |0100〉 and |1000〉 (within the same parity
sector). Suitably designing the electromagnetic environment

such that the spectral density J (ω) exhibits a sub- or super-
Ohmic behavior [67] could allow one to modify the ratio
M|0100〉,|0110〉/M|1000〉,|0100〉. In that way, one may be able to
further stabilize the lifetime of transient states as discussed,
for example, in Ref. [68]. We note that it is also possible
to drive the system by a microwave pulse connecting two
states in the odd-parity sector, and to thereby polarize the
even-parity sector, but we do not discuss this case here.

In our model, the reason for the dynamical stabilization
is the existence of a large many-body transition rate into the
respective odd-parity many-body state; cf. Table I. The large-
ness of the rate can be understood from the closeness of some
ABSs to the quasiparticle continuum. At the same time, the
transition rate from the odd-parity state into the even-parity
ground state |0000〉 is very small since all relevant ABSs are
far away from the quasiparticle continuum. This mechanism
can explain the stabilization of the odd-parity polarization
at intermediate timescales [39]. However, for the transition
in Fig. 8(c), the vanishing rate from the excited even-parity
state into the intermediate odd-parity state excludes this phe-
nomenon. We conclude from Fig. 8 that the combined effects
of SOI and Zeeman field may result in qualitative changes
in the many-body population dynamics in the Andreev sec-
tor. Indeed, the energy splitting induced by the SOI and the
Zeeman field allows one to have a nonzero spectral density
(32), and thus a nonzero transition rate between states which
are otherwise disconnected. At the same time, selection rules
are less restrictive due to the fact that orbital and spin angular
momenta are no longer conserved. As a consequence, a wider
set of initial conditions can be explored, exhibiting different
parity polarization behavior depending on precisely which
transition is driven.

Next we turn to the parameter choice corresponding to
Fig. 6(d), where the Zeeman field is oriented along the z di-
rection. We then obtain the population dynamics shown in the
left column of Fig. 9, where the three panels (a), (b), and (c)
correspond to the three possible transitions from the ground
state |n0〉 which can be induced by a resonant microwave
field and which are allowed by selection rules. In Fig. 7(c),
we show the single-particle and many-body Andreev states
for ϑ = 0, where the Zeeman field is aligned along the z
direction. As in Fig. 7(b), we have highlighted all states that
exhibit a nonzero transition rate Mn,n0 with the ground state.
This is in contrast to the case shown in Fig. 8 with a Zeeman
field in the x direction (ϑ = π/2), where six transitions are
allowed by selection rules but we show only three of those. For
the microwave-induced transitions shown in panels (a) and (b)
of Fig. 9, we again observe a dynamical polarization of the
odd-parity sector at intermediate times, where two odd-parity
states are relevant. For the transition shown in panel (c), we
once more encounter a case where a vanishing transition rate
into the odd-parity state excludes dynamical parity polariza-
tion. The qualitative impact of SOI and Zeeman field on this
phenomenon is therefore of similar importance as for the case
shown in Fig. 8.

In the absence of the SOI and the Zeeman field, selection
rules can be inferred by analyzing the orbital and spin angular
momenta of each ABS. When spin degeneracy is broken,
however, the transition rates exhibit a nontrivial dependence
on both ϑ , see Fig. 7(a), and on the phase difference ϕ0. In
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FIG. 9. Many-body Andreev state population dynamics Pn(t ) vs
time (in units of �−1) for the parameters in Fig. 6(d), with b in the z
direction and the phase difference ϕ0 = 1.08π . The spectral density
of the environment was taken as in Fig. 8. Note the logarithmic
timescales. We show only the curves for many-body levels with time-
dependent probability weights. (There is some time-independent
probability weight in other levels.) Red curves correspond to odd-
parity states, black curves to even-parity states. In contrast to the
case in Fig. 6, here only three transitions, corresponding to panels
(a), (b), and (c), can be induced by a microwave drive starting from
the ground state |n0〉 because of selection rules. These transitions are
shown as red arrows in the corresponding right column panels, where
selected many-body Andreev energy levels are depicted. Thick (thin)
arrows indicate large (small) many-body transition rates.

Fig. 10, we show the ϕ0 dependence of the transition rates
Mn,n0 from the ground state |n0〉 to each of the six possible
two-quasiparticle states |n〉, both for ϑ = 0 and for ϑ = π/2.
Similarly to panels (c) and (d) of Fig. 6, the transition rates for
ϑ = π/2 are symmetric around ϕ0 = π , while for ϑ = 0, a
strong asymmetry is present. Furthermore, the transition rates
quickly drop to zero for some values of the phase difference,
pointing out the onset of a selection rule for the corresponding
target states. Compared to the case without SOI and Zeeman
field, by properly tuning ϕ0, one can thus select which states
can be accessed by an external perturbation. In agreement
with Figs. 8 and 9, for ϕ0 = 1.08π and ϑ = π/2, all six
transitions rates are different from zero, while three of them
vanish for ϑ → 0.

In Fig. 11, we study how the dynamical parity polarization
effect depends on the angle ϑ . We examine all six transitions
|n0〉 → |n〉 that can in principle be excited by a resonant

FIG. 10. Transition rates Mn,n0 from the ground state |n0〉 to each
of the six possible two-quasiparticle states |n〉 vs phase difference ϕ0

for a Josephson junction with the parameters in Fig. 6. The target
states |n〉 are shown in each panel. Solid (dashed) lines correspond
to the angle ϑ = π/2 (ϑ = 0) between b and the SOI polar axis. In
each panel, transition rates are normalized to their maximum value
in the shown interval.

microwave driving pulse. For each |n〉, we determine the max-
imal probability for occupying the odd-parity sector during
the time evolution, PMax

odd , and the lifetime of the corresponding
odd-parity states, τ . We define the latter timescale as the
half-width of the corresponding broad peak in Podd(t ); see
Figs. 8 and 9. We observe from Fig. 11(a) that the achiev-
able odd-parity polarization depends significantly on which
transition is driven, while there is only a weak dependence
on the angle ϑ (except near ϑ = 0). Importantly, almost full
odd-parity polarization is possible for several resonant drive
frequencies while for other drive frequencies, the system does
not get polarized at all; see Fig. 8(c) and Fig. 9(c). As shown
in Fig. 11(b), the lifetime τ of the odd-parity polarization state
is rather insensitive to the angle ϑ as long as one chooses one
of the drive frequencies corresponding to large PMax

odd . The vari-
ations in Fig. 11(b) come from changes in the transition rates
�μ,ν with ϑ . We conclude that the combined effect of SOI
and Zeeman fields can influence the dynamical polarization
effect, both concerning the degree of polarization and (to a
lesser degree) the achievable lifetimes.
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FIG. 11. Dynamical parity polarization as a function of the angle
ϑ between the Zeeman field and the polar SOI axis. The spectral
density of the environment was taken as in Fig. 8. (a) Maximally
achievable odd-parity polarization PMax

odd vs ϑ after each of the six
possible microwave-induced transitions |n0〉 → |n〉. We use the sys-
tem parameters corresponding to Fig. 8 (where ϑ = π/2) and Fig. 9
(where ϑ = 0). Dashed lines are guides to the eye only. Different
symbols correspond to the excited initial states |n〉, as explained in
the legend. (b) Odd-parity lifetime τ (in units of 108�−1) vs ϑ for the
six transitions in panel (a). For two of these transitions, the lifetime
is very short and does not appear on the scale of the figure. Dashed
lines are guides to the eye only. The symbols are used as in panel (a).

V. CONCLUSIONS

In this work, we have put forward a theoretical approach
for describing the many-body quantum dynamics of supercon-
ducting systems with spin-orbit coupling and magnetic fields.
It is well known that such systems can be efficiently described
in terms of a doubled Nambu spinor approach, where one
keeps the electron and hole spinors with both spin projections.
This doubling of the actual number of degrees of freedom is
referred to as the double-counting problem and can give rise
to spurious many-body effects if the theory is constructed in a
cavalier manner. We resolve this general problem by working
in the so-called excitation picture, where only the positive
single-particle solutions of the BdG equation are employed
to construct the many-body theory. This is possible since
the negative-energy solutions are related to the corresponding
positive-energy solutions by particle-hole symmetry, and we
systematically exploit this relation in our approach.

We apply our general formalism to a Josephson junction
formed by a clean 1D nanowire with spin-orbit coupling in
a Zeeman field, which is tunnel-coupled at its end to super-
conducting banks. The junction is embedded in a loop and
inductively coupled to a microwave resonator; see Fig. 1. In
the absence of the electromagnetic environment defined by
the resonator, the BdG single-particle problem can be solved

exactly. This solution provides a convenient basis for the
construction of many-body states. From the diagonal elements
of the reduced density operator of the many-body Andreev
bound states, the Lindblad equation derived in Sec. III then
yields a matrix rate equation for the population dynamics of
the corresponding many-body Andreev states. We here study
how the corresponding populations evolve in time after a
strong initial microwave pulse driving a specific transition.
This question is related to the dynamical parity stabilization
phenomenon discovered experimentally in Ref. [22]. Previous
results [39] for the simpler case without spin-orbit coupling
and without Zeeman field are recovered by our results. We
find that, depending on the microwave driving frequency, the
maximally reachable parity polarization PMax

odd and, to a lesser
degree, the timescale over which the odd-parity sector be-
comes dynamically stabilized show a dependence on the angle
ϑ between the spin-orbit polar axis and the Zeeman field. Our
results suggest that one can optimize the parity stabilization
mechanism by proper field alignment.

To conclude, we have introduced a systematic theoretical
framework for studying the quantum many-body dynamics of
superconducting systems where a doubling of the fermionic
space is indicated, e.g., due to the presence of spin-orbit
interactions and Zeeman fields. The presence of particle-hole
symmetry then implies that the excitation picture allows for
the construction of a many-body theory free from the double-
counting problem. We believe that the approach proposed
here will be useful also for many other theoretical many-body
studies in the future.

All the data underlying the figures presented in this work
can be retrieved at the Zenodo site [69].
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APPENDIX: BDG SOLUTIONS

In this Appendix, we summarize the solution of the BdG
problem defined by Eq. (22) and the supercurrent matrix ele-
ments in Eq. (26). For simplicity, we set � = vF = 1 below.

Andreev bound states. We begin with ABS solutions
(μ = λ) with dispersion E = Eλ(ϕ0). For |E | < �, with the
Heaviside step function �(x) and the Nambu spinor form in
Eq. (2), ABS solutions of the BdG equation are given by

�E ,λ(x) = �(−x)eκλx

√
2

⎛
⎜⎜⎝

aλe−iγλ/2

bλeiγλ/2

aλeiγλ/2

bλe−iγλ/2

⎞
⎟⎟⎠

+�(x)e−κλx

√
2

⎛
⎜⎜⎝

cλeiγλ/2

dλe−iγλ/2

cλe−iγλ/2

dλeiγλ/2

⎞
⎟⎟⎠, (A1)
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where Eλ = cos γλ and κλ = sin γλ. We choose γλ ∈ (0, π )
and use aλ = (aλ,↑, aλ,↓)T , and similarly for bλ, cλ, and dλ.
The normalization condition for the amplitudes in Eq. (A1) is

∑
σ

(|aλ,σ |2 + |bλ,σ |2 + |cλ,σ |2 + |dλ,σ |2) = 2κλ

1 + κλL
. (A2)

The ABS dispersion relation follows by inserting Eq. (A1)
into the matching condition (20). Nontrivial solutions require
the vanishing of a corresponding determinant, which leads to
Eq. (27). The corresponding eigenvectors then determine the
ABS wave functions.

Continuum states. Quasiparticle continuum states with en-
ergy |E | > � are labeled by the multi-index p = (E , s, σ ),
with the scattering channel index s ∈ {1, 2, 3, 4} [39] and the
spin index σ . The corresponding Nambu states are given by a
sum of an incoming and a scattered outgoing state, �p(x) =
�(in)

p (x) + �(out)
p (x). With σE = sgn(E ) and the length L of

the superconducting bank, an incoming state of type s can be
written as

�(in)
p (x) = �(−x)√

2 cosh γ̃

eikx

√
L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δs,1δσ,↑ eγ̃ /2

δs,1δσ,↓ eγ̃ /2

δs,2δσ,↑ e−γ̃ /2

δs,2δσ,↓ e−γ̃ /2

δs,1δσ,↑ σE e−γ̃ /2

δs,1δσ,↓ σE e−γ̃ /2

δs,2δσ,↑ σE eγ̃ /2

δs,2δσ,↓ σE eγ̃ /2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ �(x)√
2 cosh γ̃

e−ikx

√
L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δs,3δσ,↑ e−γ̃ /2

δs,3δσ,↓ e−γ̃ /2

δs,4δσ,↑ eγ̃ /2

δs,4δσ,↓ eγ̃ /2

δs,3δσ,↑ σE eγ̃ /2

δs,3δσ,↓ σE eγ̃ /2

δs,4δσ,↑ σE e−γ̃ /2

δs,4δσ,↓ σE e−γ̃ /2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)

where |E | = cosh γ̃ with γ̃ (E ) ∈ [0,∞) and k(E ) =
σE sinh γ̃ (E ). Similarly, for a given incident (incoming)
state with quantum numbers p, the scattered (outgoing) state
is written as

�(out)
p (x) = �(−x)√

2 cosh γ̃

eikx

√
L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ap,↑ e−γ̃ /2

ap,↓ e−γ̃ /2

bp,↑ eγ̃ /2

bp,↓ eγ̃ /2

ap,↑ σE eγ̃ /2

ap,↓ σE eγ̃ /2

bp,↑ σE e−γ̃ /2

bp,↓ σE e−γ̃ /2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ �(x)√
2 cosh γ̃

e−ikx

√
L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cp,↑ eγ̃ /2

cp,↓ eγ̃ /2

dp,↑ e−γ̃ /2

dp,↓ e−γ̃ /2

cp,↑ σE e−γ̃ /2

cp,↓ σE e−γ̃ /2

dp,↑ σE eγ̃ /2

dp,↓ σE eγ̃ /2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

The normalization condition for the complex-valued scatter-
ing amplitudes (ap,σ , bp,σ , cp,σ , dp,σ ) is given by

∑
σ

(|ap,σ |2 + |bp,σ |2 + |cp,σ |2 + |dp,σ |2) = 1. (A5)

One can then determine the scattering amplitudes, and thereby
the quasiparticle wave functions, by inserting the above ansatz
into the matching condition (20). This implies a linear algebra
problem that can easily be solved numerically.

Current matrix elements. Next we discuss the matrix ele-
ments Iμ,ν in Eq. (26). First, if both indices (μ, ν) = (λ, λ′)
correspond to ABSs, we obtain

Iλ,λ′ =
Eλ−Eλ′

2 sin
(

γλ−γλ′
2

) + sin
(

γλ+γλ′
2

)
κλ + κλ′

×
∑

σ

(a∗
λ,σ aλ′,σ − b∗

λ,σ bλ′,σ + c∗
λ,σ cλ′,σ − d∗

λ,σ dλ′,σ ).

(A6)

Second, following similar arguments as in Ref. [39], we
find that for L → ∞, all current matrix elements between
continuum states (μ, ν) = (p, p′) vanish, Ip,p′ = 0. Super-
conducting phase fluctuations hence do not induce transitions
between continuum states. Finally, for transitions between an
ABS with energy Eλ and a continuum state with quantum
numbers p = (E , s, σ ), we obtain

Iλ,p = i√
L cosh γ̃

∑
σ ′

[
1

κλ − ik
{(a∗

λ,σ ′ap,σ ′ − d∗
λ,σ ′dp,σ ′ )

× W (−z) + (b∗
λ,σ ′bp,σ ′ − c∗

λ,σ ′cp,σ ′ )W (z)}

+ δσ ′,σ

κλ + ik
{(a∗

λ,σ δs,1 − d∗
λ,σ δs,4)W (z∗)

× (b∗
λ,σ δs,2 − c∗

λ,σ δs,3)W (−z∗)}
]
, (A7)

where we use

W (z) = w(z) + E − Eλ

2
w∗(z),

w(z) = �(E ) sinh(z) + �(−E ) cosh(z),

z = [γ̃ (E ) + iγλ]/2. (A8)

We note that for L → ∞, summations over p = (E , s, σ ) can
be performed by using

1

L
∑

p

(· · · ) =
∫

dE ν(E )
4∑

s=1

∑
σ

(· · · ), (A9)

where ν(E ) is the BCS density of states (per unit length, and
recalling our convention � = vF = 1),

ν(E ) = 1

2π

|E |√
E2 − 1

�(|E | − 1). (A10)
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