
PHYSICAL REVIEW B 109, 214502 (2024)

Classification of time-reversal symmetric topological superconducting phases for conventional
pairing symmetries

Seishiro Ono ,1,* Ken Shiozaki,2,† and Haruki Watanabe1,‡

1Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
2Center for Gravitational Physics and Quantum Information, Yukawa Institute for Theoretical Physics, Kyoto University,

Kyoto 606-8502, Japan

(Received 4 April 2023; revised 10 December 2023; accepted 11 April 2024; published 3 June 2024)

Symmetry properties of Cooper pairs play a pivotal role in studies on topological superconductivity.
Unconventional superconductors, whose pairing symmetries are different from conventional Bardeen-Cooper-
Schrieffer superconductors, have been paid attention to as a platform of topological superconductivity. However,
pairing symmetries of most superconductors are actually the conventional one and these superconductors are
usually considered to be topologically trivial. In this work, combining the real-space and the momentum space
approaches developed recently, we conduct classifications of time-reversal symmetric topological superconduc-
tors with conventional pairing symmetries. Remarkably, we find topological superconducting phases in 199
out of 230 space groups. Our finding sheds light on superconductors with conventional pairing symmetries as
candidates for topological superconductors.
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I. INTRODUCTION

In past decades, topological superconductors (TSCs) have
attracted much attention because of their exotic surface states
that realize Majorana fermions. Majorana fermions could
be leveraged for fault-tolerant quantum computation [1].
Topological superconducting phases protected by internal
symmetries, particle-hole symmetry (PHS), and time-reversal
symmetries (TRS) are discovered in the early stages of studies
of TSCs [2–4]. Symmetry properties of Cooper pairs, often
called pairing symmetries, are closely related to the topologi-
cal nature of superconductivity.

Crystalline symmetry plays a pivotal role in supercon-
ductors. Pairing symmetries are classified into irreducible
representations of point groups [5]. Recent intensive studies
reveal that unconventional superconductors, whose pairing
symmetries are distinct from conventional Bardeen-Cooper-
Schrieffer (BCS) superconductivity, have a great chance of
being TSCs [6–16]. For instance, odd-parity superconduc-
tors are promising candidates for TSCs [17,18]. Furthermore,
thanks to the bloom in understanding of TSCs protected by
crystalline symmetries [19–45], it is known that topological
superconducting phases can also exist for even-parity but
unconventional pairing symmetries [32,34,36,46,47]. Unfor-
tunately, however, unconventional superconductivity is quite
rare and most superconductors exhibit conventional pairing
symmetries.

*seishiro.ono@riken.jp; Present address: Interdisciplinary Theoret-
ical and Mathematical Sciences Program (iTHEMS), RIKEN, Wako
351-0198, Japan.

†ken.shiozaki@yukawa.kyoto-u.ac.jp
‡hwatanabe@g.ecc.u-tokyo.ac.jp

Then, it is crucial to understand the topological nature
of superconductors whose order parameters transform in the
same way as the BCS superconductor does under point group
symmetry. Such a superconducting order parameter is said to
have a conventional pairing symmetry. Several studies actu-
ally show the existence of topological phases for conventional
pairing symmetries. For example, for noncentrosymmetric
superconductors in which even-parity and odd-parity com-
ponents are allowed to be mixed, TSCs protected by TRS
and PHS can be realized when the odd-parity component is
comparable to or larger than the even-parity one [48]. More
recently, Ref. [49] has reported a topological superconducting
phase for conventional pairing symmetry in centrosymmet-
ric space group P4/nmm (No. 129). It should be noted that
sign-changing pair potentials, dubbed extended s- or s±-wave
pairings, are required to realize this phase [49–51]. However,
despite intense research efforts, the list of topological phases
for conventional pairing symmetries is still elusive in most
space groups.

In principle, TSCs could be classified by K-theory [23,52–
54], but the actual calculation is often challenging. Recently,
an alternative approach has been introduced based on a real-
space perspective [55–64], which is called Atiyah-Hirzebruch
spectral sequence (AHSS) [59] in real space or topological
crystals [60,65]. The idea of this method is that any topo-
logical crystalline phase can be constructed by symmetrically
placing lower-dimensional topological phases. It has actually
succeeded in comprehensively classifying topological insu-
lators [60,65] and bosonic systems [56,58,63,64]. It should
be stressed that the components of lower-dimensional topo-
logical phases are completely decoupled. Although realistic
systems are usually much more complicated, they are believed
to be deformable to such decoupling limits without closing the
gap. In this sense, the real-space approach works for classifi-
cation problems.
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In this work, we generalize the method to superconductors.
There are two complications in the real-space classification
for superconductors, compared with the case for insulators.
For one, we find one-dimensional building block TSCs that
bring out some technical differences in the classification
procedures. In addition, we discover an obstruction to con-
structing gapped phases. The existence of superconducting
vortices with odd-integer windings can be enforced by crys-
talline symmetries. Consequentially, Majorana zero modes
emerge at the vortex cores.

We overcome these difficulties and provide real-space clas-
sifications of time-reversal symmetric TSCs with conventional
pairing symmetries in all rod groups, layer groups, and space
groups. Importantly, we find that there exist topological su-
perconducting phases in 199 out of 230 space groups (61
centrosymmetric and 138 noncentrosymmetric space groups).
Since pairing symmetries of most realistic materials are con-
ventional as mentioned above, our study will stimulate further
studies of topological superconductivity in realistic materials
that have already been verified or will be discovered in the
future.

II. OVERVIEW OF REAL-SPACE CLASSIFICATION

Our classification of topological superconductors in this
work is based on the framework developed in previous stud-
ies [55,56,58,59,61]. Consider a symmetry group G = Gint ×
G, where Gint and G are an internal symmetry group and
a space group. The classification of topological crystalline
phase with symmetry G is based on a conjecture: any topo-
logical crystalline phase can be adiabatically deformed into
a G-symmetric patchwork of lower-dimensional invertible
topological phases protected by internal symmetries of the
subspace [55,56]. Under this assumption, the classification
of gapped topological crystalline phases is equivalent to the
classification of patchworks that do not contain any gapless
mode in the bulk.

Before moving on to the concrete classification proce-
dures, let us define pairing symmetries formally. Let ĉ†

k,σ
be a

fermionic creation operator with momentum k and a degree of
freedom σ ∈ {1, 2, . . . , Norb}. A symmetry g ∈ G transforms
ĉ†

k,σ
into another creation operator, as implemented by

ĝĉ†
k,σ

ĝ−1 = ĉ†
gk,σ ′[uk(g)]σ ′σ , (1)

where uk(g) is a unitary matrix. When the symmetry g is
present in the superconducting phase, the order parameter
�̂ = 1

2

∑
k

∑
σ,σ ′[�k]σσ ′ ĉ†

k,σ
ĉ†
−k,σ ′ + H.c. is also symmetric

under g, i.e., ĝ�̂ĝ−1 = �̂. To satisfy this, �k is also trans-
formed as

uk(g)�kuT
−k(g) = eiθg�gk, (2)

where θg ∈ R [66]. In the presence of TRS, θg = 0 or
π mod 2π . A pairing symmetry is given by {eiθg}g∈G . We say
that the pairing symmetry is conventional if eiθg = +1 for ∀g ∈
G. When there exists g ∈ G such that eiθg �= +1, we say the
pairing symmetry is unconventional. It should be emphasized
that the term “conventional pairing symmetry” does not al-
ways mean the conventional BCS-type pairing. For example,
consider a quasi-one-dimensional spinless superconducting

system with a single-band normal conducting phase. We fur-
ther assume that the system is symmetric under reflection
My about y direction. Then, it is possible to realize p-wave
pairings, say �kx = sin kx, that satisfy ukx (My)�kx u

T
−kx

(My) =
+�kx . Another example is an extended s-wave or s±-wave
pairing, which is not a BCS-type pairing but has conventional
pairing symmetry.

For superconductors with conventional pairing symme-
tries, the classification can be performed in the following
steps (A)–(E).

(A) Decomposing unit cell: three-dimensional (3D) space
is decomposed into p-dimensional regions for p = 0, 1, 2,

and 3, which are called p-cells. Each p-cell should be cho-
sen small enough so that any two points in a p-cell are not
symmetry related to each other. To define 3-cells, we choose
a closed and simply connected region that covers the entire
space by symmetry operations exactly once. Such a region is
known as an asymmetric unit (AU) [67] and can be chosen as
a polyhedron. The AU is divided into M subregions (M � 1).
The interiors of these subregions and their symmetric copies
are 3-cells. In general, M can be set to 1, but sometimes other
choices are convenient. The 2-cells are polygons on faces of
3-cells. Similarly, 1-cells are line segments along the edges
of 2-cells. End points of 1-cells are 0-cells. This decompo-
sition is referred to as cell decomposition. Although the cell
decomposition for a given symmetry setting is not unique, the
classification outcome does not depend on the choice.

(B) Identifying building blocks: for each p-cell, we deter-
mine its symmetry group, which is composed of Gint and the
subgroup of G that behaves as an internal symmetry group on
the p-cell. For time-reversal symmetric superconductors with
significant spin-orbit coupling (SOC), Gint is generated by the
time-reversal symmetry with T 2 = −1 and the particle-hole
symmetry C2 = +1. On each p-cell, we list all p-dimensional
TSCs protected by the symmetry group of the p-cell. Accord-
ing to Refs. [3,4], for conventional pairing symmetries, there
are four building blocks: 3D Z-TSC on 3-cells, 2D Z2-TSC on
2-cells whose symmetry is Gint only (i.e., without an additional
mirror), and 1D Z2-TSC or 1D Z-TSC on 1-cells depending
on the symmetry of the cell.

(C) Constructing boundary-gapped patchwork: we con-
struct patchworks by symmetrically arranging these building
blocks. A TSC on a p-cell exhibits (p − 1)-dimensional gap-
less boundary modes. We demand that boundary modes in a
patchwork be gapped among them. We refer to patchworks
obtained this way as boundary-gapped patchworks. We iden-
tify boundary-gapped patchworks that can be deformed into
each other.

(D) Checking the absence of vortex zero modes: we check
if a boundary-gapped patchwork is fully gapped. Patchworks
constructed by 2D TSCs may still contain vortex zero modes,
as seen in Sec. III. Since the spectrum is gapless in the pres-
ence of vortex zero modes, we require the absence of such
zero modes to classify gapped TSCs. To achieve this, we
eliminate vortex zero modes from patchworks by considering
combinations of boundary-gapped patchworks, as discussed
in Sec. III. This step is unique to superconductors and was
not necessary in previous studies for insulators and bosonic
systems [58,60,65]. A fully gapped patchwork constructed
from nontrivial TSCs on p-cell gives an element of an Abelian
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group E∞
p,−p = (Z2)np × Zmp with non-negative integers np

and mp (see the Supplemental Material). Let us comment on
the physical consequences of {E∞

p,−p}p=1,2,3. As seen from the
above discussions, nontrivial elements of E∞

1,−1 and E∞
2,−2 are

constructed from 1D TSCs and 2D TSCs, respectively. These
TSCs can be understood as so-called weak or higher-order
TSCs. On the other hand, nontrivial elements of E∞

3,−3 rep-
resent the so-called strong TSCs protected by the 3D winding
numbers. As a result, there is a simple criterion for E∞

3,−3. Let
pg ∈ O(3) be a matrix that represents a real-space transforma-
tion of the point-group part of g. If det pg = +1 for ∀g ∈ G,
the 3D winding number can be nontrivial, i.e., E∞

3,−3 = Z.
Otherwise, the 3D winding number must be zero, namely,
E∞

3,−3 = 0.
(E) Determining K-theoretic classifications: as the last step

we want to determine the Abelian group of these topologi-
cal phases, which is given by K-group. The Abelian group
E∞

p,−p was computed separately for each p = 1, 2, 3 and, in
general, ⊕3

p=1E∞
p,−p does not reproduce the K-group result,

because E∞
p,−p (p = 1, 2, 3) are not mutually independent. For

example, a patchwork obtained by stacking several copies of
nontrivial patchworks in E∞

2,−2 is sometimes equivalent to a
nontrivial patchwork in E∞

1,−1. To identify the group structure
among E∞

p,−p, we have to solve the group extension problem
[59,68], as we will discuss later.

Space group P1̄: let us illustrate the above steps [other than
step (E)] through discussing space group P1̄, generated by
translations and inversion, as an example. The AU is chosen as
the gray region in Fig. 1(a) with 0 � x � 1/2, 0 � y < 1, and
0 � z < 1. A cell decomposition is shown in Fig. 1(b). The
interior of AU gives a 3-cell. Its face on x = 1/2 (i.e., 0 �
y < 1 and 0 � z < 1) contains inversion centers [red points in
Fig. 1(b)] and every point on the face is mapped to another
point on the same face by inversion. Hence the face should
be divided into two 2-cells, one of which is shown by a green
triangle in Fig. 1(b). Similarly, edges of 2-cells that contain
inversion centers must be decomposed into two 1-cells, one of
which is shown by a thick line in Fig. 1(b). This is the end of
step (A). Step (B) is common among almost all space groups.
Since the symmetry of all 1- and 2-cells is Gint only, these cells
host 1D Z2-TSCs and 2D Z2-TSCs.

Now we move on to step (C). We first consider 1D
Z2-TSCs on 1-cells. There are seven symmetry-inequivalent
1-cells, generating in 27 patterns of patchworks. Note that
end points of 1-cells are inversion centers. Hence every TSC
on a 1-cell meets with its inversion copy at end points.
However, the two Majorana-Kramers zero modes sitting at
the inversion center cannot be gapped, because they have
different inversion eigenvalues. This point can be under-
stood by noting that the inversion is represented by τx

(Pauli matrix) whose eigenvalues are ±1 [see Fig. 1(c)].
Therefore, in the current cell decomposition, there are no
boundary-gapped patchworks composed of 1D TSCs. One
might choose a different cell decomposition and put 1D
Z2-TSCs in such a way that four Majorana-Kramers zero
modes meet at each inversion center to make a boundary-
gapped patchwork as illustrated in Fig. 1(d). However, such
a configuration can be deformed into the vacuum. We con-
clude that E∞

1,−1 = 0 regardless of the choice of the cell
decomposition.

We next consider patchworks composed of 2D Z2-TSCs.
There are four symmetry-inequivalent 2-cells. We consider
configurations obtained by placing a 2D TSC on one of them
[see in Fig. 1(e)]. Since two helical edge modes always meet
on each of the boundary 1-cells, they can be gapped in pairs.
Thus all of these configurations are boundary-gapped patch-
works.

Step (D) is the novel part of the classification. As we elab-
orate below, these boundary-gapped patchworks constructed
from 2D Z2-TSCs are not fully gapped because vortex zero
modes survive at inversion centers. To get rid of vortex zero
modes, an even number of 2D Z2-TSCs must be crossing at
each inversion center. However, such a combination of four
planes in Fig. 1(e) does not exist in this cell decomposi-
tion. When a different cell decomposition is assumed, such
a configuration may be realized, but then it can be smoothly
deformed into the vacuum as shown in Fig. 1(f). Thus we
conclude E∞

2,−2 = 0 regardless of the choice of the cell de-
composition.

III. CONSTRUCTION OF FULLY GAPPED PATCHWORKS

As discussed in the preceding section, boundary gapped
patchworks constructed by 2D TSCs are sometimes gapless
due to the presence of vortex zero modes. In this section, we
discuss how to obtain fully gapped patchworks.

A. Superconducting vortices

In the presence of a vortex (with the unit winding) in the su-
perconducting order parameter, 2D px ± ipy superconductors
have a Majorana zero mode at the core of the vortex [69–73].
The zero mode can be described by a continuum model

H±(r; �) =
⎛
⎝ −∇2

2m − μ(r) �(r)
(

1
i ∂x ± i 1

i ∂y
)

�∗(r)
(

1
i ∂x ∓ i 1

i ∂y
) ∇2

2m + μ(r)

⎞
⎠,

(3)

where PHS is represented by τx. The superconducting gap
function �(r) and the chemical potential μ(r) vary slowly
in space. To implement TRS with T 2 = −1, we introduce
a spin degree of freedom and use H+(r; �) for the spin-up
component and H−(r; �∗) for the spin-down component. The
resulting Hamiltonian reads

HDIII(r; �) = H+(r; �) ⊗
(

1 0
0 0

)
+ H−(r; �∗) ⊗

(
0 0
0 1

)
.

(4)

PHS and TRS are represented by τxs0 and iτzsy, respectively.
In these expressions, the second matrix refers to the spin space
and s0 and si’s are another set of Pauli matrices.

Here we argue that a 2D inversion symmetric TSC always
has a vortex with an odd-integer winding at the inversion
center and consequently has a Kramers pair of Majorana
zero modes at the core of a vortex. Inversion symmetry is
represented by τ0 in H±(r; �) and by τ0s0 in HDIII(r; �).
We assume the form �(r) = �0(r)ei(α+nθ ) and μ(r) = μ(r),
where r and θ are polar coordinates and α ∈ R. From
the symmetry condition τ0H±(r; �) = H±(−r; �)τ0, we find
�(−r) = −�(r), which implies that n is an odd integer
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FIG. 1. Illustration of 3D patchworks in space group P1̄. (a) A choice of asymmetric unit. (b) A cell decomposition. Symmetry-inequivalent
0-cells, 1-cells, and 2-cells are represented by red solid circles, black bold lines segments, and the colored faces, respectively. (c) An
example of gapless patchworks. Here, gray lines and blue balls are 1D Z2-TSCs and a Kramers pair of Majorana zero modes, respectively.
(d) The equivalence between a gapped patchwork constructed by 1D Z2-TSCs and the vacuum. (e) Boundary-gapped patchworks for the cell
decomposition in (a). All yellow planes are 2D Z2-TSCs. (f) The equivalence between a gapped patchwork by 2D Z2-TSCs and the vacuum.
The cell decomposition assumed in panels (d) and (f) is different from the one described in (b).

2m − 1 (m ∈ Z). Following in Refs. [69–73], we obtain the
wave function of the vortex zero mode (see Appendix A for
the derivation)

φα
±,m(r, θ ) ∝ e

− ∫ r μ(r′ )
|�0 (r′ )| dr′

[u(θ ), u∗(θ )]T , (5)

u(θ ) = e
i
2 (±α+π/2)e±imθ . (6)

It satisfies τ0φ
α
±,m(r, θ ) = (−1)mφα

±,m(r, θ + π ), which im-
plies that the inversion eigenvalue of the vortex zero mode is
(−1)m. In the time-reversal symmetric case, a Kramers pair of

Majorana zero modes emerges at the vortex core, whose wave
functions are


α
m,↑(r, θ ) = φα

+,m(r, θ ) ⊗
(

1
0

)
, (7)


α
m,↓(r, θ ) = φ−α

−,−m(r, θ ) ⊗
(

0
1

)
. (8)

This completes the proof.
We make the following two remarks. First, here we do

not claim that every 2D time-reversal symmetric TSC with
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FIG. 2. Illustration of patchworks in space groups P2/c and
P4/m. (a) An asymmetric unit for space group P2/c. (b) A cell de-
composition for P2/c. Colored faces are independent 2-cells; black
bold line segments are symmetry-inequivalent 1-cells. Red and blue
solid circles are inversion centers and rotation-invariant points, which
are inequivalent 0-cells. (c) A fully gapped patchwork of P2/c.
(d) An asymmetric unit for space group P4/m. (e) A cell decomposi-
tion for P4/m. Colored faces are independent 2-cells, black bold line
segments are symmetry-inequivalent 1-cells, and red solid circles are
inversion centers that are inequivalent 0-cells. (f) A boundary-gapped
patchwork in P4/m. (g) Enlarged view of (f) near O = (0, 0, 0).
Black arrows represent the phase of �(r).

helical edge modes contains vortex zero modes. The presence
or absence of vortex zero modes depends on the symmetries
we strictly impose on the systems and the pairing symmetries
we consider. Second, the existence of vortices is enforced
only by pairing symmetries and independent of microscopic
details, as seen in the above example of the even-parity in-
version case. As a result, the vortex zero modes can appear
in more generic time-reversal symmetric TSCs than in a TSC
constructed by stacking px ± ipy superconductors, when their
pairing symmetries force vortices to exist in the presence of
spatial symmetries. Nonetheless, the reason why here we fo-
cus on the stacking model is that it is suitable for the analytical
calculations we perform in Appendix A.

Space groups P2/c and P4/m. The patchwork in Fig. 1(f)
was fully gapped but trivial. Here we discuss additional crys-
talline symmetries sometimes make it nontrivial or gapless
due to vortex zero modes. As examples, we consider space
groups P2/c (No. 13) and P4/m (No. 83). The configuration
remains a boundary-gapped patchwork even for these space
groups. Space group P2/c has an additional glide symmetry,
which prohibits the deformation process illustrated in Fig. 1(f)
and makes this patchwork nontrivial. [See Fig. 2(c).]

In contrast, space group P4/m contains fourfold rotation
Cz

4 along the z axis in addition to translations and inversion
in P1̄. A patchwork in Fig. 2(f) cannot be obtained from
the vacuum in the presence of this symmetry. However, as
shown in the following discussions, this state is gapless due
to the vortex zero modes at each inversion center protected by
rotation eigenvalues.

Let us focus on a neighborhood of an inversion center, for
example, the one at the origin (0,0,0) [see Fig. 2(g)]. Then, the
Hamiltonian is described by

H (r) =
(

H (1)
DIII(z, x; �)δ(y) 0

0 H (2)
DIII(z, y; �)δ(x)

)
, (9)

U
(
Cz

4

) =
(

0 τ0s0

iτ0sy 0

)
, (10)

where H (i=1,2)
DIII (z, xi; �) = HDIII[r = (z, xi ); �] in (4) and

U (Cz
4 ) is a unitary representation of the fourfold rotation.

Note that Cz
4 transforms H (1)

DIII(z, x; �) into H (2)
DIII(z, y; �)

and H (2)
DIII(z, y; �) into H (1)

DIII(z,−x; �∗). The wave func-
tions of vortex zero modes are �α

m,s,1 ≡ 
α
m,s(r, θ ) ⊗ (1, 0)T

and �α
m,s,2 ≡ 
α

m,s(r, θ ) ⊗ (0, 1)T , where the latter vectors
describe the degree of freedom of two planes. They are trans-
formed as

U
(
Cz

4

)(
�α

m,↑,1, �
α
m,↓,1, �

α
m,↑,2, �

α
m,↓,2

)

= (
�α

m,↑,1, �
α
m,↓,1, �

−α
−m,↑,2, �

−α
−m,↓,2

)
⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎠.

(11)

This implies that the vortex zero modes have all different
eigenvalues eiq π

4 (q = 1, 3, 5, 7). Hence these four Majorana-
Kramers pairs cannot be gapped among them.

The same number of Majorana-Kramers pairs can be ob-
tained by attaching two 1D TSCs along the rotation axis (z
axis) such that these two interchange under inversion sym-
metry as illustrated in Fig 1(c). However, Majorana-Kramers
pairs constructed this way have both ±1 inversion eigen-
values. In contrast, all the four vortex zero modes have the
inversion eigenvalue (−1)m. Therefore, they cannot be gapped
by attaching these 1D chains.

Space group Pcc2. It is tempting to think that such obstruc-
tions due to vortex zero modes happen only when inversion
symmetry is present. However, this is untrue. Vortex zero
modes can also be enforced by combinations of symme-
tries, not including inversion. As an example, we consider
space group Pcc2 generated by translation along the x di-
rection, twofold rotation along the z-axis C2z, and glide Gx :
(x, y, z) → (−x, y, z + 1/2).

We focus on a 2D layer at x = 0, which has layer group
pb2b (No. 30). Our cell decomposition is shown in Fig. 3(a).
We introduce a 2D TSC described by (4) into each 2-cell.
To respect the symmetry U (C2y) = iτzsx and U (Gz ) = iτzsz,
the gap function �(r) must satisfy �(C2yr) = �∗(r) and
�(Gzr) = −�(r), which implies the presence of vortices with
odd-integer winding. We additionally require that all zero
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FIG. 3. Illustration of patchworks in space group Pcc2. (a) A cell decomposition for layer group pb2b. Symmetry-inequivalent 0-cells,
1-cells, and 2-cells are represented by solid circles, black bold line segments, and the colored face, respectively. (b) An example of vortex
configuration for pb2b. A vortex emerge at each of the 0-cells (blue balls). Arrows represent the phase of �(r). (c) Boundary-gapped
patchworks for space group Pcc2. Note that each plane is symmetric under symmetries in pb2b.

modes can exist only at 0-cells. An example of configurations
satisfying all of these requirements is shown in Fig. 3(b).
Therefore, all the four boundary-gapped patchworks for space
group Pcc2 in Fig. 3(c) have vortex zero modes. A fully
gapped patchwork can be constructed by stacking these four,
which results in E∞

2,−2 = Z2. Vortices can also be enforced in
2D systems with other layer group symmetries, e.g., pm21b
(No. 28).

B. Results for other crystalline symmetries

Applying the above discussions to various symmetry set-
tings, we obtain fully gapped patchworks E∞

2,−2 in all rod
groups, layer groups, and space groups with conventional
pairing symmetries. In the Supplemental Material [74], we
provide lists of (i) E∞

p,−p, (ii) a cell decomposition, and (iii)
patchworks that correspond to generators of E∞

1,−1 and E∞
2,−2

for each space group. We also include E∞
p,−p for rod and layer

groups.
Here, we explain how to utilize these results through an

example of space group P3̄ (No. 147). This space group
is symmorphic and centrosymmetric, which is generated by
inversion, threefold rotation, and lattice translations. Nev-
ertheless, there exists a topological superconducting phase
with conventional pairing symmetry. In Figs. 4(a) and 4(b),
we show an asymmetric unit used in this work and a part
of the cell decomposition. Symmetry-inequivalent 0-cells are
labeled by uppercase alphabets A, B,C, . . ., 1-cells are labeled

by lowercase alphabets a, b, c, . . ., and 2-cells are labeled by
lowercase Greek letters. Their coordinates are given in the
Supplemental Material [74]. For this space group, we find
E∞

1,−1 = Z and E∞
2,−2 = 0. The patchwork generating E∞

1,−1 is
shown in Fig. 4(c), where 1D Z-TSCs are placed on 1-cells a
and b in a symmetric manner.

These pieces of information are useful to understand the
boundary signature of this phase. For example, let us focus
on the boundary perpendicular to the z axis by imposing the
open boundary condition on the z direction and the periodic
boundary condition on the other two directions. Based on the
real-space picture in Fig. 4(c), we expect that Dirac surface
states originate from the Majorana zero modes at the edge
of each 1D chain. We numerically confirm this using a tight-
binding model illustrated in Fig. 5(a), whose boundary state is
shown in Fig. 5(b) (see Appendix B for more details).

C. Final classification

As discussed in overview, we have to solve the group
extension problem to obtain the final classification. In our
problem, we have to find an Abelian group X that satisfies

X/E∞
1,−1 � E∞

2,−2. (12)

There can be multiple possibilities but the correct one can
be identified by a physical argument. We analyze mass terms
of the Dirac Hamiltonian that describes the phase obtained
by stacking two copies of a generator of E∞

2,−2. The group
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FIG. 4. Summary of results for space group P3̄. (a) An asymmetric unit for space group P3̄. A cell decomposition used in this work is
partially shown. Labels of symmetry-inequivalent p-cells (p = 0, 1, and 2) are defined in the Supplemental Material. (b) An asymmetric unit
with the unit cell. (c) The patchwork generating E∞

1,−1. Here, orange lines represent 1D Z-TSCs.

extension is trivial if the uniform mass is allowed in the Dirac
Hamiltonian; otherwise, it is nontrivial. Given X , the final
classification is given by X ⊕ E∞

3,−3.
To demonstrate how to solve (12), here we discuss layer

group pb as an example. This group is generated by glide
symmetry Gx : (x, y, z) → (−x, y + 1/2, z) in addition to
translation in y. After performing the real-space classification,
we obtain E∞

1,−1 = (Z2)2 and E∞
2,−2 = Z2. Their generators are

illustrated in Fig. 6(a). The generator of E∞
2,−2 is described by

the Dirac Hamiltonian (4) with a constant �(r). Then, we ask
if the patchwork constructed by stacking two copies of the
generator of E∞

2,−2 is a nontrivial element of E∞
1,−1. By analyz-

ing the mass term, we find that the stacked patchwork is still
nontrivial and it falls into (0, 1) ∈ E∞

1,−1 = (Z2)2. This result
indicates that the group extension is nontrivial and that the

FIG. 5. Illustration of the tight-binding model in space group P3̄.
(a) Real-space description of the tight-binding model. There are two
orbital degrees of freedom in the unit cell. Primitive lattice vectors
are a1 = (1, 0, 0)T , a2 = (−1/2,

√
3/2, 0)T , and a3 = (0, 0, 1)T ,

and sites are defined on (2/3 + R1)a1 + (1/3 + R2)a2 + R3a3 and
(1/3 + R1)a1 + (2/3 + R2)a2 + R3a3 [R1, R2, R3 ∈ Z]. Here, t and
� denote parameters for hopping and pairing between the same
orbitals along the z direction and t ′ and �′ represent the nearest
hopping and pairing between the two different orbitals. (b) Energy
spectrum of the surface states of the tight-binding model defined
in Appendix B. Here, the open boundary condition is imposed on
the z direction and the periodic one is on the other directions. The
parameters are t = 1.2, � = 1, μ = 1, t ′ = 0.2, and �′ = 0.1.

final classification is Z2 × Z4 (see the Supplemental Material
for more details [74]).

Another class of examples is layer group pn (n = 2, 4, 6),
which contains n-fold rotation symmetry. From the real-space
classification, we have E∞

1,−1 = (Z2)4−n/2 and E∞
2,−2 = Z2.

Unlike the case of layer group pb, the group extension is trivial
and the final classification is E∞

1,−1 ⊕ E∞
2,−2 = (Z2)5−n/2 (see

the Supplemental Material for more details [74]).
The one-by-one analysis of mass terms is laborious. How-

ever, for 159 out of 230 space groups, we succeeded in
sidestepping this issue by computing the final classification
using AHSS in momentum space [54]. It should be empha-
sized that the real-space classifications are still crucial even
when the momentum space classifications are available. This
is because the classifications in momentum space are not
usually informative on the nature of the boundary modes in
each entry of the classification. In the Supplemental Material,

FIG. 6. Illustration of the group extension problem in pb. (a) All
boundary-gapped patchworks, which are generators of E∞

1,−1 and
E∞

2,−2. (b) Relation between the stacked 2D Z2-TSCs and a boundary-
gapped patchwork composed of 1D Z2-TSCs. Here, m(r) denotes the
mass that will partially gap out the edge states.
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we also show the final classifications for all rod groups, all
layer groups, and 159 space groups.

IV. DISCUSSION

In this work, by analyzing the wave functions of vortex
zero modes and studying their symmetry representations, we
succeeded in deriving obstructions to constructing gapped
phases of superconductors. This enabled us to systemati-
cally perform the real-space classification for superconductors
with conventional pairing symmetries in all rod, layer, and
space groups. We found that topologically nontrivial super-
conducting phases exist in 199 out of 230 space groups (61
centrosymmetric and 138 noncentrosymmetric space groups).
In addition, our results for all rod groups and layer groups
are complete K-theoretic classifications. 159 space groups are
also complete. We leave the group extension problem in the
remaining 71 space groups as future work. Our work opens up
a direction of the material search focusing on the conventional
pairing symmetries that are the majority in real materials.

It should be noted that the conventional s-wave pairing may
not be sufficient to realize topological phases found in this
work; it might be that sign-changing gap functions, known
as extended s or s± wave, are required. Such pairings are
still classified as “conventional” from the viewpoint of pairing
symmetries. Indeed, in all of our examples, TSCs used as
building blocks require such sign-changing pairings [50,51].
Given this observation, we conjecture that this is in fact the
case, but we leave a detailed study on the necessary conditions
as a future work.

Note added. Recently, Ref. [75] appeared, which is based
on a similar idea and discusses 2D topological crystalline
phases constructed only by 1D TSCs in wallpaper groups.
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APPENDIX A: VORTEX ZERO MODES IN
TWO-DIMENSIONAL TOPOLOGICAL

SUPERCONDUCTORS

In this Appendix, we provide more detailed discussions on
vortex zero modes in two-dimensional topological supercon-
ductors.

1. px ± ipy superconductor

Following Refs. [22,69,73], here we show that a vortex
with an odd-integer winding in px ± ipy superconductors
traps a vortex zero mode. To this end, we discuss the
eigenvalue equation H±(r; �)φ(r) = Eφ(r) for the continuum
model in (3). As discussed in Ref. [69], a vortex is realized as
a small circular edge between the trivial phase inside and the

bulk px ± ipy superconductor outside. In the polar coordinate
(r, θ ), the off-diagonal component of the matrix in (3) is
rewritten as

�(r)

(
1

i
∂x ± i

1

i
∂y

)
= �(r)e±iθ

(
1

i
∂r ± i

1

r

1

i
∂θ

)
. (A1)

Furthermore, in the diagonal component, we assume
that μ(r) = μ(r) such that μ(r) → μ0 > 0 as r → ∞ and
μ(r) → −μ0 as r → 0. Then, the kinetic term −∇2/2m is
omitted:

−∇2

2m
− μ(r) � −μ(r). (A2)

Then, the eigenvalue equation is rewritten as

(H0 + V )

(
u
u∗

)
= E

(
u
u∗

)
, (A3)

H0 =
(

−μ(r) −i�(r)e±iθ ∂r

−i�∗(r)e∓iθ ∂r μ(r)

)
, (A4)

V =
(

0 ±i�(r)e±iθ 1
r

1
i ∂θ

∓i�∗(r)e∓iθ 1
r

1
i ∂θ 0

)
. (A5)

Here we used PHS to relate the first and second component
of the eigenvector. When the winding number of the vortex
(vorticity) is n, we set �(r) = |�0(r)|e±i(α+nθ ).

In the following, we first ignore the second term V in
(A3) and derive the zero-energy solution for the simplified
equation. When the second term V is ignored, Eq. (A3) is
simplified as

−μ(r)u − i|�0(r)|e±i(α+nθ )e±iθ ∂ru∗ = Eu. (A6)

By the gauge transformation ũ = e∓imθ u, this equation can be
rewritten as

− μ(r)ũ − i|�0(r)|e±i[α+(n−2m)θ]e±iθ ∂r ũ∗ = Eũ, (A7)

which is equivalent to the equation for a vortex with winding
(n − 2m). Therefore, the vorticity n can be changed by an
even number 2m. This indicates that, when n is even, Eq. (A7)
becomes the equation without nontrivial winding (i.e., n = 0),
for which we know the spectrum is gapped. Thus Eq. (A6)
does not have any zero-energy solution.

On the other hand, when n = 2m − 1, we explicitly find a
zero-energy solution to (A6) [22]:

φ±,m(r, θ ) ∝
(

e
i
2 (±α+π/2)e±imθ

e− i
2 (±α+π/2)e∓imθ

)
e
− ∫ r μ(r′ )

|�0 (r′ )| dr′
. (A8)

Next, we claim that the zero-energy solution persists in
the presence of the second term V in (A3). To see this, we
introduce a parameter ε ∈ [0, 1] and consider the Hamiltonian

(H0 + εV )φ(ε, r) = E (ε)φ(ε, r). (A9)

According to the first-order perturbation theory, ∂εE (ε) is
given by φ(ε, r)†V φ(ε, r), which vanishes due to PHS. Like-
wise, any topological property does not change as we increase
ε from 0 to 1 [73]. Thus we always use the wave function
φ±,m(r, θ ) in (A8) in the following discussions.
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TABLE I. Summary of representations and transformations
of �(r).

g U (g) Transformation of �(r) �(r) at gr = r

I τ0s0 �(−r) = −�(r) 0
Cz

n ei π
n τzsz �(Cz

nr) = �(r) Arbitrary
Cx

2 iτ0sy �(Cx
2 r) = �∗(r) Real

2. Time-reversal symmetric topological superconductors

As discussed in the main text, the representations of vortex
zero modes play a crucial role in the real-space classifications.
Here, we discuss the symmetry representations of vortex zero
modes. We first find symmetry representations of HDIII(r; �)
in (4) and then we obtain representations of vortex zero
modes.

In the following, we consider that the 2D TSC is defined on
the xy plane. Also, we assume the conventional pairing sym-
metry. Symmetry operations, which keep a plane invariant,
are generated by combinations of inversion I , n-fold rotation
along z-axis Cz

n, and twofold rotation along x-axis Cx
2 . Let us

start with inversion symmetry. Inversion symmetry is repre-
sented by U (I ) = τ0s0, which is encoded in the model as

U (I )HDIII(r; �) = HDIII(−r; −�)U (I ), (A10)

implying that �(−r) = −�(r). This means that the vorticity
n is odd. That is, inversion symmetry enforces the emergence
of a vortex zero mode.

Similarly, n-fold rotation symmetry (n = 2, 3, 4, 6) is
given by U (Cz

n ) = ei π
n τzsz , which satisfies

U
(
Cz

n

)
HDIII(r; �) = HDIII

(
Cz

nr; �
)
U

(
Cz

n

)
. (A11)

This time, we have �(Cz
nr) = �(r). Thus the winding is even

when the n-fold rotation U (Cz
n ) (n = 2, 4, 6) exists. There-

fore, inversion and these rotations do not coexist.
As for Cx

2 , symmetry representation is expressed by

U
(
Cx

2

) =
(

0 τ0

−τ0 0

)
= iτ0sy (A12)

such that

U (Cx
2 )HDIII(r; �) = HDIII(C

x
2 r; �∗)U (Cx

2 ). (A13)

This implies that �(Cx
2 r) = �∗(r).

Symmetry representations of other symmetries are con-
structed by I, Cz

n, and Cx
2 . For example, twofold rotation

symmetry along the y axis (denoted by Cy
2 = Cz

2Cx
2 ) is defined

by U (Cy
2 ) ≡ U (Cz

2 )U (Cx
2 ). Then, �(Cy

2r) = �∗(r). We sum-
marize the representations and transformations of �(r) for all
symmetries in Table I.

Finally, we discuss how wave functions of vortex zero
modes in Eqs. (7) and (8) are transformed under symmetry
g in Table I. We find

U (g)[
m,↑(r, θ ),
m,↓(r, θ )]

= [
m,↑(r, g(θ )),
m,↓(r, g(θ ))]Uvortex(g), (A14)

where g(θ ) is the angle after the transformation by g. For
example, I (θ ) = θ + π . In Table II, we tabulate g(θ ) and
Uvortex(g) for symmetries in Table I.

TABLE II. Summary of representations of vortex zero modes for
symmetries in Table I.

g g(θ ) Uvortex(g)

I θ + π (−1)mσ0

Cz
n θ + 2π

n cos (2m−1)π
n σ0

Cx
2 −θ cos α iσy

APPENDIX B: TIGHT-BINDING MODEL
FOR A GENERATOR OF E∞

1,−1 IN P3̄

Here, we provide the tight-binding model that we used in
Fig. 5. According to the patchwork in Fig. 4, 1D Z-TSCs are
placed on threefold rotation symmetric lines (2/3 + R1)a1 +
(1/3 + R2)a2 + za3 and (1/3 + R1)a2 + (2/3 + R2)a2 + za3

[R1, R2 ∈ Z], where a1 = (1, 0, 0)T , a2 = (−1/2,
√

3/2, 0)T ,

and a3 = (0, 0, 1)T . The Hamiltonians of each 1D Z-TSC are
given by

Ĥa =
∑

R

[
−t

∑
s=↑,↓

{(c†
R+az,a,scR,a,s) + H.c.}

+
∑

s=↑,↓
+2(t − μ)c†

R,a,scR,a,s

+ �

i
(c†

R+az,a,↑c†
R,a,↓ − c†

R,a,↑c†
R+az,a,↓) + H.c.

]
, (B1)

Ĥb = Î ĤaÎ−1, (B2)

where a and b denote two orbital degrees of freedom cor-
responding to two 1D TSCs in the unit cell. Inversion I
interchanges creation operators of two orbital degrees of free-
dom, i.e., c†

R,b,s = Îc†
−R−a1−a2,a,sÎ

−1. Also, the threefold rota-

tion Cz
3 transforms the creation operators as Ĉz

3c†
R,a,s[Ĉ

z
3]−1 =

ei π
3 sc†

Cz
3R−a1,a,s and Ĉz

3c†
R,b,s[Ĉ

z
3]−1 = ei π

3 sc†
Cz

3R−a1−a2,b,s
.

In momentum space, the Hamiltonian is expressed by Ĥ =
ψ†

kHBdG
k ψk, where

ψ†
k = (c†

k,a,↑c†
k,a,↓c−k,a,↑c−k,a,↓c†

k,b,↑c†
k,b,↓c−k,b,↑c−k,b,↓),

(B3)

HBdG
k =

(
HBdG

k,a wkV

w∗
kV † HBdG

k,b

)
, (B4)

HBdG
k,a = [t (1 − cos kz ) − μ]τzs0 + � sin kzτxsx, (B5)

HBdG
k,b = [t (1 − cos kz ) − μ]τzs0 − � sin kzτxsx, (B6)

V =

⎛
⎜⎜⎝

−t ′ 0 0 −�′
0 −t ′ �′ 0
0 �′ t ′ 0

−�′ 0 0 t ′

⎞
⎟⎟⎠, (B7)

wk = 1 + ei2πk1 + e−i2πk2 . (B8)

Diagonal parts denote inter-layer hopping and pairing be-
tween the same orbital, and off-diagonal parts represent the
hopping and pairing between the two orbital degrees of free-
dom in unit cell. In our numerical simulations, we used
parameters (t, μ,�, t ′,�′) = (1.2, 1.0, 1.0, 0.2, 0.1).
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We find the following symmetry representations of HBdG
k :

U BdG
k (I ) = ei2π (k1+k2 )

(
0 τ0s0

τ0s0 0

)
, (B9)

U BdG
k (Cz

3 ) =
(

ei2π (k1+k2 )ei π
3 τzsz 0

0 ei2πk2 ei π
3 τzsz

)
, (B10)

U (C) =
(

τxs0 0

0 τxs0

)
, (B11)

U (T ) =
(

iτ0sy 0

0 iτ0sy

)
. (B12)
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